perf_event_intel.c 39.0 KB
Newer Older
1 2
#ifdef CONFIG_CPU_SUP_INTEL

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#define MAX_EXTRA_REGS 2

/*
 * Per register state.
 */
struct er_account {
	int			ref;		/* reference count */
	unsigned int		extra_reg;	/* extra MSR number */
	u64			extra_config;	/* extra MSR config */
};

/*
 * Per core state
 * This used to coordinate shared registers for HT threads.
 */
struct intel_percore {
	raw_spinlock_t		lock;		/* protect structure */
	struct er_account	regs[MAX_EXTRA_REGS];
	int			refcnt;		/* number of threads */
	unsigned		core_id;
};

25
/*
26
 * Intel PerfMon, used on Core and later.
27
 */
28
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
{
  [PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
  [PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
  [PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
  [PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
  [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
  [PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
  [PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
};

static struct event_constraint intel_core_event_constraints[] =
{
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
	EVENT_CONSTRAINT_END
};

static struct event_constraint intel_core2_event_constraints[] =
{
52 53 54 55 56 57 58 59
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	/*
	 * Core2 has Fixed Counter 2 listed as CPU_CLK_UNHALTED.REF and event
	 * 0x013c as CPU_CLK_UNHALTED.BUS and specifies there is a fixed
	 * ratio between these counters.
	 */
	/* FIXED_EVENT_CONSTRAINT(0x013c, 2),  CPU_CLK_UNHALTED.REF */
60 61 62 63 64 65 66 67
	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
68
	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
69 70 71 72 73 74
	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
	EVENT_CONSTRAINT_END
};

static struct event_constraint intel_nehalem_event_constraints[] =
{
75 76 77
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	/* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
78 79 80 81 82 83 84 85 86 87 88
	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
	EVENT_CONSTRAINT_END
};

89 90 91 92 93 94 95 96 97 98 99 100
static struct extra_reg intel_nehalem_extra_regs[] =
{
	INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff),
	EVENT_EXTRA_END
};

static struct event_constraint intel_nehalem_percore_constraints[] =
{
	INTEL_EVENT_CONSTRAINT(0xb7, 0),
	EVENT_CONSTRAINT_END
};

101 102
static struct event_constraint intel_westmere_event_constraints[] =
{
103 104 105
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	/* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
106 107 108
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
109
	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
110 111 112
	EVENT_CONSTRAINT_END
};

113 114 115 116 117 118 119 120 121 122 123 124 125
static struct event_constraint intel_snb_event_constraints[] =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	/* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
	INTEL_EVENT_CONSTRAINT(0xb7, 0x1), /* OFF_CORE_RESPONSE_0 */
	INTEL_EVENT_CONSTRAINT(0xbb, 0x8), /* OFF_CORE_RESPONSE_1 */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
	EVENT_CONSTRAINT_END
};

126 127 128 129 130 131 132 133 134 135 136 137 138 139
static struct extra_reg intel_westmere_extra_regs[] =
{
	INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff),
	INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff),
	EVENT_EXTRA_END
};

static struct event_constraint intel_westmere_percore_constraints[] =
{
	INTEL_EVENT_CONSTRAINT(0xb7, 0),
	INTEL_EVENT_CONSTRAINT(0xbb, 0),
	EVENT_CONSTRAINT_END
};

140 141
static struct event_constraint intel_gen_event_constraints[] =
{
142 143 144
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	/* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
145 146 147 148 149 150 151 152
	EVENT_CONSTRAINT_END
};

static u64 intel_pmu_event_map(int hw_event)
{
	return intel_perfmon_event_map[hw_event];
}

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
static __initconst const u64 snb_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	/*
	 * TBD: Need Off-core Response Performance Monitoring support
	 */
	[ C(OP_READ) ] = {
		/* OFFCORE_RESPONSE_0.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE_1.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01bb,
	},
	[ C(OP_WRITE) ] = {
		/* OFFCORE_RESPONSE_0.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE_1.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01bb,
	},
	[ C(OP_PREFETCH) ] = {
		/* OFFCORE_RESPONSE_0.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE_1.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01bb,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

253
static __initconst const u64 westmere_hw_cache_event_ids
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
288 289 290 291
		/* OFFCORE_RESPONSE_0.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE_1.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01bb,
292
	},
293 294 295 296
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
297
	[ C(OP_WRITE) ] = {
298 299 300 301
		/* OFFCORE_RESPONSE_1.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01bb,
		/* OFFCORE_RESPONSE_0.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
302 303
	},
	[ C(OP_PREFETCH) ] = {
304 305 306 307
		/* OFFCORE_RESPONSE_0.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE_1.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01bb,
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
/*
 * OFFCORE_RESPONSE MSR bits (subset), See IA32 SDM Vol 3 30.6.1.3
 */

#define DMND_DATA_RD     (1 << 0)
#define DMND_RFO         (1 << 1)
#define DMND_WB          (1 << 3)
#define PF_DATA_RD       (1 << 4)
#define PF_DATA_RFO      (1 << 5)
#define RESP_UNCORE_HIT  (1 << 8)
#define RESP_MISS        (0xf600) /* non uncore hit */

static __initconst const u64 nehalem_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = DMND_DATA_RD|RESP_UNCORE_HIT,
		[ C(RESULT_MISS)   ] = DMND_DATA_RD|RESP_MISS,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = DMND_RFO|DMND_WB|RESP_UNCORE_HIT,
		[ C(RESULT_MISS)   ] = DMND_RFO|DMND_WB|RESP_MISS,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = PF_DATA_RD|PF_DATA_RFO|RESP_UNCORE_HIT,
		[ C(RESULT_MISS)   ] = PF_DATA_RD|PF_DATA_RFO|RESP_MISS,
	},
 }
};

387
static __initconst const u64 nehalem_hw_cache_event_ids
388 389 390 391 392 393
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
394 395
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
396 397
	},
	[ C(OP_WRITE) ] = {
398 399
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
422 423 424 425
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
426
	},
427 428 429 430
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
431
	[ C(OP_WRITE) ] = {
432 433 434 435
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
436 437
	},
	[ C(OP_PREFETCH) ] = {
438 439 440 441
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

488
static __initconst const u64 core2_hw_cache_event_ids
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

579
static __initconst const u64 atom_hw_cache_event_ids
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

static void intel_pmu_disable_all(void)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);

	if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
		intel_pmu_disable_bts();
678 679

	intel_pmu_pebs_disable_all();
680
	intel_pmu_lbr_disable_all();
681 682
}

683
static void intel_pmu_enable_all(int added)
684 685 686
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

687 688
	intel_pmu_pebs_enable_all();
	intel_pmu_lbr_enable_all();
689 690 691 692 693 694 695 696 697 698 699 700 701
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);

	if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
		struct perf_event *event =
			cpuc->events[X86_PMC_IDX_FIXED_BTS];

		if (WARN_ON_ONCE(!event))
			return;

		intel_pmu_enable_bts(event->hw.config);
	}
}

702 703 704 705
/*
 * Workaround for:
 *   Intel Errata AAK100 (model 26)
 *   Intel Errata AAP53  (model 30)
706
 *   Intel Errata BD53   (model 44)
707
 *
708 709 710 711 712 713 714
 * The official story:
 *   These chips need to be 'reset' when adding counters by programming the
 *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
 *   in sequence on the same PMC or on different PMCs.
 *
 * In practise it appears some of these events do in fact count, and
 * we need to programm all 4 events.
715
 */
716
static void intel_pmu_nhm_workaround(void)
717
{
718 719 720 721 722 723 724 725 726
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	static const unsigned long nhm_magic[4] = {
		0x4300B5,
		0x4300D2,
		0x4300B1,
		0x4300B1
	};
	struct perf_event *event;
	int i;
727

728 729 730 731 732 733 734 735 736
	/*
	 * The Errata requires below steps:
	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
	 *    the corresponding PMCx;
	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
	 */
737

738 739 740 741 742 743 744 745 746 747
	/*
	 * The real steps we choose are a little different from above.
	 * A) To reduce MSR operations, we don't run step 1) as they
	 *    are already cleared before this function is called;
	 * B) Call x86_perf_event_update to save PMCx before configuring
	 *    PERFEVTSELx with magic number;
	 * C) With step 5), we do clear only when the PERFEVTSELx is
	 *    not used currently.
	 * D) Call x86_perf_event_set_period to restore PMCx;
	 */
748

749 750 751 752 753 754
	/* We always operate 4 pairs of PERF Counters */
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];
		if (event)
			x86_perf_event_update(event);
	}
755

756 757 758 759 760 761 762
	for (i = 0; i < 4; i++) {
		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
	}

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
763

764 765 766 767 768
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];

		if (event) {
			x86_perf_event_set_period(event);
769
			__x86_pmu_enable_event(&event->hw,
770 771 772
					ARCH_PERFMON_EVENTSEL_ENABLE);
		} else
			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
773
	}
774 775 776 777 778 779
}

static void intel_pmu_nhm_enable_all(int added)
{
	if (added)
		intel_pmu_nhm_workaround();
780 781 782
	intel_pmu_enable_all(added);
}

783 784 785 786 787 788 789 790 791 792 793 794 795 796
static inline u64 intel_pmu_get_status(void)
{
	u64 status;

	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);

	return status;
}

static inline void intel_pmu_ack_status(u64 ack)
{
	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
}

797
static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
798
{
799
	int idx = hwc->idx - X86_PMC_IDX_FIXED;
800 801 802 803 804 805
	u64 ctrl_val, mask;

	mask = 0xfULL << (idx * 4);

	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
806
	wrmsrl(hwc->config_base, ctrl_val);
807 808
}

809
static void intel_pmu_disable_event(struct perf_event *event)
810
{
811 812 813
	struct hw_perf_event *hwc = &event->hw;

	if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
814 815 816 817 818 819
		intel_pmu_disable_bts();
		intel_pmu_drain_bts_buffer();
		return;
	}

	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
820
		intel_pmu_disable_fixed(hwc);
821 822 823
		return;
	}

824
	x86_pmu_disable_event(event);
825

P
Peter Zijlstra 已提交
826
	if (unlikely(event->attr.precise_ip))
827
		intel_pmu_pebs_disable(event);
828 829
}

830
static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
831
{
832
	int idx = hwc->idx - X86_PMC_IDX_FIXED;
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
	u64 ctrl_val, bits, mask;

	/*
	 * Enable IRQ generation (0x8),
	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
	 * if requested:
	 */
	bits = 0x8ULL;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
		bits |= 0x2;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
		bits |= 0x1;

	/*
	 * ANY bit is supported in v3 and up
	 */
	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
		bits |= 0x4;

	bits <<= (idx * 4);
	mask = 0xfULL << (idx * 4);

	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
	ctrl_val |= bits;
858
	wrmsrl(hwc->config_base, ctrl_val);
859 860
}

861
static void intel_pmu_enable_event(struct perf_event *event)
862
{
863 864 865
	struct hw_perf_event *hwc = &event->hw;

	if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
T
Tejun Heo 已提交
866
		if (!__this_cpu_read(cpu_hw_events.enabled))
867 868 869 870 871 872 873
			return;

		intel_pmu_enable_bts(hwc->config);
		return;
	}

	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
874
		intel_pmu_enable_fixed(hwc);
875 876 877
		return;
	}

P
Peter Zijlstra 已提交
878
	if (unlikely(event->attr.precise_ip))
879
		intel_pmu_pebs_enable(event);
880

881
	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
882 883 884 885 886 887 888 889
}

/*
 * Save and restart an expired event. Called by NMI contexts,
 * so it has to be careful about preempting normal event ops:
 */
static int intel_pmu_save_and_restart(struct perf_event *event)
{
890 891
	x86_perf_event_update(event);
	return x86_perf_event_set_period(event);
892 893 894 895
}

static void intel_pmu_reset(void)
{
T
Tejun Heo 已提交
896
	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
897 898 899
	unsigned long flags;
	int idx;

900
	if (!x86_pmu.num_counters)
901 902 903 904 905 906
		return;

	local_irq_save(flags);

	printk("clearing PMU state on CPU#%d\n", smp_processor_id());

907
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
908 909
		checking_wrmsrl(x86_pmu_config_addr(idx), 0ull);
		checking_wrmsrl(x86_pmu_event_addr(idx),  0ull);
910
	}
911
	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
912
		checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
913

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
	if (ds)
		ds->bts_index = ds->bts_buffer_base;

	local_irq_restore(flags);
}

/*
 * This handler is triggered by the local APIC, so the APIC IRQ handling
 * rules apply:
 */
static int intel_pmu_handle_irq(struct pt_regs *regs)
{
	struct perf_sample_data data;
	struct cpu_hw_events *cpuc;
	int bit, loops;
929
	u64 status;
930
	int handled;
931

932
	perf_sample_data_init(&data, 0);
933 934 935

	cpuc = &__get_cpu_var(cpu_hw_events);

936
	intel_pmu_disable_all();
937
	handled = intel_pmu_drain_bts_buffer();
938 939
	status = intel_pmu_get_status();
	if (!status) {
940
		intel_pmu_enable_all(0);
941
		return handled;
942 943 944 945
	}

	loops = 0;
again:
946
	intel_pmu_ack_status(status);
947 948 949 950
	if (++loops > 100) {
		WARN_ONCE(1, "perfevents: irq loop stuck!\n");
		perf_event_print_debug();
		intel_pmu_reset();
951
		goto done;
952 953 954
	}

	inc_irq_stat(apic_perf_irqs);
955

956 957
	intel_pmu_lbr_read();

958 959 960
	/*
	 * PEBS overflow sets bit 62 in the global status register
	 */
961 962
	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
		handled++;
963
		x86_pmu.drain_pebs(regs);
964
	}
965

966
	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
967 968
		struct perf_event *event = cpuc->events[bit];

969 970
		handled++;

971 972 973 974 975 976 977 978 979
		if (!test_bit(bit, cpuc->active_mask))
			continue;

		if (!intel_pmu_save_and_restart(event))
			continue;

		data.period = event->hw.last_period;

		if (perf_event_overflow(event, 1, &data, regs))
P
Peter Zijlstra 已提交
980
			x86_pmu_stop(event, 0);
981 982 983 984 985 986 987 988 989
	}

	/*
	 * Repeat if there is more work to be done:
	 */
	status = intel_pmu_get_status();
	if (status)
		goto again;

990
done:
991
	intel_pmu_enable_all(0);
992
	return handled;
993 994 995
}

static struct event_constraint *
996
intel_bts_constraints(struct perf_event *event)
997
{
998 999
	struct hw_perf_event *hwc = &event->hw;
	unsigned int hw_event, bts_event;
1000

P
Peter Zijlstra 已提交
1001 1002 1003
	if (event->attr.freq)
		return NULL;

1004 1005
	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1006

1007
	if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1008
		return &bts_constraint;
1009

1010 1011 1012
	return NULL;
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
static struct event_constraint *
intel_percore_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	unsigned int e = hwc->config & ARCH_PERFMON_EVENTSEL_EVENT;
	struct event_constraint *c;
	struct intel_percore *pc;
	struct er_account *era;
	int i;
	int free_slot;
	int found;

	if (!x86_pmu.percore_constraints || hwc->extra_alloc)
		return NULL;

	for (c = x86_pmu.percore_constraints; c->cmask; c++) {
		if (e != c->code)
			continue;

		/*
		 * Allocate resource per core.
		 */
		pc = cpuc->per_core;
		if (!pc)
			break;
		c = &emptyconstraint;
		raw_spin_lock(&pc->lock);
		free_slot = -1;
		found = 0;
		for (i = 0; i < MAX_EXTRA_REGS; i++) {
			era = &pc->regs[i];
			if (era->ref > 0 && hwc->extra_reg == era->extra_reg) {
				/* Allow sharing same config */
				if (hwc->extra_config == era->extra_config) {
					era->ref++;
					cpuc->percore_used = 1;
					hwc->extra_alloc = 1;
					c = NULL;
				}
				/* else conflict */
				found = 1;
				break;
			} else if (era->ref == 0 && free_slot == -1)
				free_slot = i;
		}
		if (!found && free_slot != -1) {
			era = &pc->regs[free_slot];
			era->ref = 1;
			era->extra_reg = hwc->extra_reg;
			era->extra_config = hwc->extra_config;
			cpuc->percore_used = 1;
			hwc->extra_alloc = 1;
			c = NULL;
		}
		raw_spin_unlock(&pc->lock);
		return c;
	}

	return NULL;
}

1074 1075 1076 1077 1078
static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
{
	struct event_constraint *c;

1079 1080 1081 1082 1083
	c = intel_bts_constraints(event);
	if (c)
		return c;

	c = intel_pebs_constraints(event);
1084 1085 1086
	if (c)
		return c;

1087 1088 1089 1090
	c = intel_percore_constraints(cpuc, event);
	if (c)
		return c;

1091 1092 1093
	return x86_get_event_constraints(cpuc, event);
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
					struct perf_event *event)
{
	struct extra_reg *er;
	struct intel_percore *pc;
	struct er_account *era;
	struct hw_perf_event *hwc = &event->hw;
	int i, allref;

	if (!cpuc->percore_used)
		return;

	for (er = x86_pmu.extra_regs; er->msr; er++) {
		if (er->event != (hwc->config & er->config_mask))
			continue;

		pc = cpuc->per_core;
		raw_spin_lock(&pc->lock);
		for (i = 0; i < MAX_EXTRA_REGS; i++) {
			era = &pc->regs[i];
			if (era->ref > 0 &&
			    era->extra_config == hwc->extra_config &&
			    era->extra_reg == er->msr) {
				era->ref--;
				hwc->extra_alloc = 0;
				break;
			}
		}
		allref = 0;
		for (i = 0; i < MAX_EXTRA_REGS; i++)
			allref += pc->regs[i].ref;
		if (allref == 0)
			cpuc->percore_used = 0;
		raw_spin_unlock(&pc->lock);
		break;
	}
}

1132 1133 1134 1135 1136 1137 1138
static int intel_pmu_hw_config(struct perf_event *event)
{
	int ret = x86_pmu_hw_config(event);

	if (ret)
		return ret;

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	if (event->attr.precise_ip &&
	    (event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use INST_RETIRED.ANY_P
		 * (0x00c0), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * INST_RETIRED.ANY_P counts the number of cycles that retires
		 * CNTMASK instructions. By setting CNTMASK to a value (16)
		 * larger than the maximum number of instructions that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less instructions, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
		u64 alt_config = 0x108000c0; /* INST_RETIRED.TOTAL_CYCLES */

		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	if (event->attr.type != PERF_TYPE_RAW)
		return 0;

	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
		return 0;

	if (x86_pmu.version < 3)
		return -EINVAL;

	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
		return -EACCES;

	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;

	return 0;
}

1182
static __initconst const struct x86_pmu core_pmu = {
1183 1184 1185 1186 1187 1188
	.name			= "core",
	.handle_irq		= x86_pmu_handle_irq,
	.disable_all		= x86_pmu_disable_all,
	.enable_all		= x86_pmu_enable_all,
	.enable			= x86_pmu_enable_event,
	.disable		= x86_pmu_disable_event,
1189
	.hw_config		= x86_pmu_hw_config,
1190
	.schedule_events	= x86_schedule_events,
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
	/*
	 * Intel PMCs cannot be accessed sanely above 32 bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL << 31) - 1,
	.get_event_constraints	= intel_get_event_constraints,
1203
	.put_event_constraints	= intel_put_event_constraints,
1204 1205 1206
	.event_constraints	= intel_core_event_constraints,
};

1207 1208 1209 1210
static int intel_pmu_cpu_prepare(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);

1211 1212 1213
	if (!cpu_has_ht_siblings())
		return NOTIFY_OK;

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	cpuc->per_core = kzalloc_node(sizeof(struct intel_percore),
				      GFP_KERNEL, cpu_to_node(cpu));
	if (!cpuc->per_core)
		return NOTIFY_BAD;

	raw_spin_lock_init(&cpuc->per_core->lock);
	cpuc->per_core->core_id = -1;
	return NOTIFY_OK;
}

1224 1225
static void intel_pmu_cpu_starting(int cpu)
{
1226 1227 1228 1229
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
	int core_id = topology_core_id(cpu);
	int i;

1230 1231 1232 1233 1234 1235 1236 1237 1238
	init_debug_store_on_cpu(cpu);
	/*
	 * Deal with CPUs that don't clear their LBRs on power-up.
	 */
	intel_pmu_lbr_reset();

	if (!cpu_has_ht_siblings())
		return;

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
	for_each_cpu(i, topology_thread_cpumask(cpu)) {
		struct intel_percore *pc = per_cpu(cpu_hw_events, i).per_core;

		if (pc && pc->core_id == core_id) {
			kfree(cpuc->per_core);
			cpuc->per_core = pc;
			break;
		}
	}

	cpuc->per_core->core_id = core_id;
	cpuc->per_core->refcnt++;
1251 1252 1253 1254
}

static void intel_pmu_cpu_dying(int cpu)
{
1255 1256 1257 1258 1259 1260 1261 1262 1263
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
	struct intel_percore *pc = cpuc->per_core;

	if (pc) {
		if (pc->core_id == -1 || --pc->refcnt == 0)
			kfree(pc);
		cpuc->per_core = NULL;
	}

1264 1265 1266
	fini_debug_store_on_cpu(cpu);
}

1267
static __initconst const struct x86_pmu intel_pmu = {
1268 1269 1270 1271 1272 1273
	.name			= "Intel",
	.handle_irq		= intel_pmu_handle_irq,
	.disable_all		= intel_pmu_disable_all,
	.enable_all		= intel_pmu_enable_all,
	.enable			= intel_pmu_enable_event,
	.disable		= intel_pmu_disable_event,
1274
	.hw_config		= intel_pmu_hw_config,
1275
	.schedule_events	= x86_schedule_events,
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
	/*
	 * Intel PMCs cannot be accessed sanely above 32 bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL << 31) - 1,
1287
	.get_event_constraints	= intel_get_event_constraints,
1288
	.put_event_constraints	= intel_put_event_constraints,
1289

1290
	.cpu_prepare		= intel_pmu_cpu_prepare,
1291 1292
	.cpu_starting		= intel_pmu_cpu_starting,
	.cpu_dying		= intel_pmu_cpu_dying,
1293 1294
};

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
static void intel_clovertown_quirks(void)
{
	/*
	 * PEBS is unreliable due to:
	 *
	 *   AJ67  - PEBS may experience CPL leaks
	 *   AJ68  - PEBS PMI may be delayed by one event
	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
	 *
	 * AJ67 could be worked around by restricting the OS/USR flags.
	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
	 *
	 * AJ106 could possibly be worked around by not allowing LBR
	 *       usage from PEBS, including the fixup.
	 * AJ68  could possibly be worked around by always programming
1311
	 *	 a pebs_event_reset[0] value and coping with the lost events.
1312 1313 1314 1315 1316 1317 1318 1319 1320
	 *
	 * But taken together it might just make sense to not enable PEBS on
	 * these chips.
	 */
	printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
	x86_pmu.pebs = 0;
	x86_pmu.pebs_constraints = NULL;
}

1321 1322 1323 1324 1325 1326 1327 1328 1329
static __init int intel_pmu_init(void)
{
	union cpuid10_edx edx;
	union cpuid10_eax eax;
	unsigned int unused;
	unsigned int ebx;
	int version;

	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
1330 1331 1332 1333 1334 1335
		switch (boot_cpu_data.x86) {
		case 0x6:
			return p6_pmu_init();
		case 0xf:
			return p4_pmu_init();
		}
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
		return -ENODEV;
	}

	/*
	 * Check whether the Architectural PerfMon supports
	 * Branch Misses Retired hw_event or not.
	 */
	cpuid(10, &eax.full, &ebx, &unused, &edx.full);
	if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
		return -ENODEV;

	version = eax.split.version_id;
	if (version < 2)
		x86_pmu = core_pmu;
	else
		x86_pmu = intel_pmu;

	x86_pmu.version			= version;
1354 1355 1356
	x86_pmu.num_counters		= eax.split.num_counters;
	x86_pmu.cntval_bits		= eax.split.bit_width;
	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
1357 1358 1359 1360 1361 1362

	/*
	 * Quirk: v2 perfmon does not report fixed-purpose events, so
	 * assume at least 3 events:
	 */
	if (version > 1)
1363
		x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1364

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	/*
	 * v2 and above have a perf capabilities MSR
	 */
	if (version > 1) {
		u64 capabilities;

		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
		x86_pmu.intel_cap.capabilities = capabilities;
	}

1375 1376
	intel_ds_init();

1377 1378 1379 1380 1381 1382 1383 1384 1385
	/*
	 * Install the hw-cache-events table:
	 */
	switch (boot_cpu_data.x86_model) {
	case 14: /* 65 nm core solo/duo, "Yonah" */
		pr_cont("Core events, ");
		break;

	case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1386
		x86_pmu.quirks = intel_clovertown_quirks;
1387 1388 1389 1390 1391 1392
	case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
	case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
	case 29: /* six-core 45 nm xeon "Dunnington" */
		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

1393 1394
		intel_pmu_lbr_init_core();

1395
		x86_pmu.event_constraints = intel_core2_event_constraints;
1396
		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
1397 1398 1399 1400 1401
		pr_cont("Core2 events, ");
		break;

	case 26: /* 45 nm nehalem, "Bloomfield" */
	case 30: /* 45 nm nehalem, "Lynnfield" */
1402
	case 46: /* 45 nm nehalem-ex, "Beckton" */
1403 1404
		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
1405 1406
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
1407

1408 1409
		intel_pmu_lbr_init_nhm();

1410
		x86_pmu.event_constraints = intel_nehalem_event_constraints;
1411
		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
1412
		x86_pmu.percore_constraints = intel_nehalem_percore_constraints;
1413
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
1414
		x86_pmu.extra_regs = intel_nehalem_extra_regs;
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426

		if (ebx & 0x40) {
			/*
			 * Erratum AAJ80 detected, we work it around by using
			 * the BR_MISP_EXEC.ANY event. This will over-count
			 * branch-misses, but it's still much better than the
			 * architectural event which is often completely bogus:
			 */
			intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;

			pr_cont("erratum AAJ80 worked around, ");
		}
1427
		pr_cont("Nehalem events, ");
1428
		break;
1429

1430
	case 28: /* Atom */
1431 1432 1433
		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

1434 1435
		intel_pmu_lbr_init_atom();

1436
		x86_pmu.event_constraints = intel_gen_event_constraints;
1437
		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
1438 1439 1440 1441 1442
		pr_cont("Atom events, ");
		break;

	case 37: /* 32 nm nehalem, "Clarkdale" */
	case 44: /* 32 nm nehalem, "Gulftown" */
1443
	case 47: /* 32 nm Xeon E7 */
1444 1445
		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
1446 1447
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
1448

1449 1450
		intel_pmu_lbr_init_nhm();

1451
		x86_pmu.event_constraints = intel_westmere_event_constraints;
1452
		x86_pmu.percore_constraints = intel_westmere_percore_constraints;
1453
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
1454
		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
1455
		x86_pmu.extra_regs = intel_westmere_extra_regs;
1456 1457
		pr_cont("Westmere events, ");
		break;
1458

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	case 42: /* SandyBridge */
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

		intel_pmu_lbr_init_nhm();

		x86_pmu.event_constraints = intel_snb_event_constraints;
		x86_pmu.pebs_constraints = intel_snb_pebs_events;
		pr_cont("SandyBridge events, ");
		break;

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	default:
		/*
		 * default constraints for v2 and up
		 */
		x86_pmu.event_constraints = intel_gen_event_constraints;
		pr_cont("generic architected perfmon, ");
	}
	return 0;
}

#else /* CONFIG_CPU_SUP_INTEL */

static int intel_pmu_init(void)
{
	return 0;
}

#endif /* CONFIG_CPU_SUP_INTEL */