transaction.c 77.0 KB
Newer Older
1
/*
2
 * linux/fs/jbd2/transaction.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
 *
 * Copyright 1998 Red Hat corp --- All Rights Reserved
 *
 * This file is part of the Linux kernel and is made available under
 * the terms of the GNU General Public License, version 2, or at your
 * option, any later version, incorporated herein by reference.
 *
 * Generic filesystem transaction handling code; part of the ext2fs
 * journaling system.
 *
 * This file manages transactions (compound commits managed by the
 * journaling code) and handles (individual atomic operations by the
 * filesystem).
 */

#include <linux/time.h>
#include <linux/fs.h>
22
#include <linux/jbd2.h>
23 24 25 26 27
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/highmem.h>
J
Josef Bacik 已提交
28
#include <linux/hrtimer.h>
29
#include <linux/backing-dev.h>
30
#include <linux/bug.h>
31
#include <linux/module.h>
32

33 34
#include <trace/events/jbd2.h>

35
static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36
static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
static struct kmem_cache *transaction_cache;
int __init jbd2_journal_init_transaction_cache(void)
{
	J_ASSERT(!transaction_cache);
	transaction_cache = kmem_cache_create("jbd2_transaction_s",
					sizeof(transaction_t),
					0,
					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
					NULL);
	if (transaction_cache)
		return 0;
	return -ENOMEM;
}

void jbd2_journal_destroy_transaction_cache(void)
{
	if (transaction_cache) {
		kmem_cache_destroy(transaction_cache);
		transaction_cache = NULL;
	}
}

void jbd2_journal_free_transaction(transaction_t *transaction)
{
	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
		return;
	kmem_cache_free(transaction_cache, transaction);
}

67
/*
68
 * jbd2_get_transaction: obtain a new transaction_t object.
69 70 71 72 73 74 75 76 77 78 79 80 81 82
 *
 * Simply allocate and initialise a new transaction.  Create it in
 * RUNNING state and add it to the current journal (which should not
 * have an existing running transaction: we only make a new transaction
 * once we have started to commit the old one).
 *
 * Preconditions:
 *	The journal MUST be locked.  We don't perform atomic mallocs on the
 *	new transaction	and we can't block without protecting against other
 *	processes trying to touch the journal while it is in transition.
 *
 */

static transaction_t *
83
jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 85 86
{
	transaction->t_journal = journal;
	transaction->t_state = T_RUNNING;
J
Josef Bacik 已提交
87
	transaction->t_start_time = ktime_get();
88 89 90
	transaction->t_tid = journal->j_transaction_sequence++;
	transaction->t_expires = jiffies + journal->j_commit_interval;
	spin_lock_init(&transaction->t_handle_lock);
91
	atomic_set(&transaction->t_updates, 0);
J
Jan Kara 已提交
92 93
	atomic_set(&transaction->t_outstanding_credits,
		   atomic_read(&journal->j_reserved_credits));
94
	atomic_set(&transaction->t_handle_count, 0);
95
	INIT_LIST_HEAD(&transaction->t_inode_list);
96
	INIT_LIST_HEAD(&transaction->t_private_list);
97 98

	/* Set up the commit timer for the new transaction. */
99
	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100 101 102 103
	add_timer(&journal->j_commit_timer);

	J_ASSERT(journal->j_running_transaction == NULL);
	journal->j_running_transaction = transaction;
104 105
	transaction->t_max_wait = 0;
	transaction->t_start = jiffies;
106
	transaction->t_requested = 0;
107 108 109 110 111 112 113 114 115 116 117 118

	return transaction;
}

/*
 * Handle management.
 *
 * A handle_t is an object which represents a single atomic update to a
 * filesystem, and which tracks all of the modifications which form part
 * of that one update.
 */

119
/*
120
 * Update transaction's maximum wait time, if debugging is enabled.
121 122 123 124 125 126 127 128
 *
 * In order for t_max_wait to be reliable, it must be protected by a
 * lock.  But doing so will mean that start_this_handle() can not be
 * run in parallel on SMP systems, which limits our scalability.  So
 * unless debugging is enabled, we no longer update t_max_wait, which
 * means that maximum wait time reported by the jbd2_run_stats
 * tracepoint will always be zero.
 */
129 130
static inline void update_t_max_wait(transaction_t *transaction,
				     unsigned long ts)
131 132 133 134 135 136 137 138 139 140 141 142 143
{
#ifdef CONFIG_JBD2_DEBUG
	if (jbd2_journal_enable_debug &&
	    time_after(transaction->t_start, ts)) {
		ts = jbd2_time_diff(ts, transaction->t_start);
		spin_lock(&transaction->t_handle_lock);
		if (ts > transaction->t_max_wait)
			transaction->t_max_wait = ts;
		spin_unlock(&transaction->t_handle_lock);
	}
#endif
}

J
Jan Kara 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
/*
 * Wait until running transaction passes T_LOCKED state. Also starts the commit
 * if needed. The function expects running transaction to exist and releases
 * j_state_lock.
 */
static void wait_transaction_locked(journal_t *journal)
	__releases(journal->j_state_lock)
{
	DEFINE_WAIT(wait);
	int need_to_start;
	tid_t tid = journal->j_running_transaction->t_tid;

	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
			TASK_UNINTERRUPTIBLE);
	need_to_start = !tid_geq(journal->j_commit_request, tid);
	read_unlock(&journal->j_state_lock);
	if (need_to_start)
		jbd2_log_start_commit(journal, tid);
	schedule();
	finish_wait(&journal->j_wait_transaction_locked, &wait);
}

static void sub_reserved_credits(journal_t *journal, int blocks)
{
	atomic_sub(blocks, &journal->j_reserved_credits);
	wake_up(&journal->j_wait_reserved);
}

/*
 * Wait until we can add credits for handle to the running transaction.  Called
 * with j_state_lock held for reading. Returns 0 if handle joined the running
 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
 * caller must retry.
 */
static int add_transaction_credits(journal_t *journal, int blocks,
				   int rsv_blocks)
{
	transaction_t *t = journal->j_running_transaction;
	int needed;
	int total = blocks + rsv_blocks;

	/*
	 * If the current transaction is locked down for commit, wait
	 * for the lock to be released.
	 */
	if (t->t_state == T_LOCKED) {
		wait_transaction_locked(journal);
		return 1;
	}

	/*
	 * If there is not enough space left in the log to write all
	 * potential buffers requested by this operation, we need to
	 * stall pending a log checkpoint to free some more log space.
	 */
	needed = atomic_add_return(total, &t->t_outstanding_credits);
	if (needed > journal->j_max_transaction_buffers) {
		/*
		 * If the current transaction is already too large,
		 * then start to commit it: we can then go back and
		 * attach this handle to a new transaction.
		 */
		atomic_sub(total, &t->t_outstanding_credits);
		wait_transaction_locked(journal);
		return 1;
	}

	/*
	 * The commit code assumes that it can get enough log space
	 * without forcing a checkpoint.  This is *critical* for
	 * correctness: a checkpoint of a buffer which is also
	 * associated with a committing transaction creates a deadlock,
	 * so commit simply cannot force through checkpoints.
	 *
	 * We must therefore ensure the necessary space in the journal
	 * *before* starting to dirty potentially checkpointed buffers
	 * in the new transaction.
	 */
	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
		atomic_sub(total, &t->t_outstanding_credits);
		read_unlock(&journal->j_state_lock);
		write_lock(&journal->j_state_lock);
		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
			__jbd2_log_wait_for_space(journal);
		write_unlock(&journal->j_state_lock);
		return 1;
	}

	/* No reservation? We are done... */
	if (!rsv_blocks)
		return 0;

	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
	/* We allow at most half of a transaction to be reserved */
	if (needed > journal->j_max_transaction_buffers / 2) {
		sub_reserved_credits(journal, rsv_blocks);
		atomic_sub(total, &t->t_outstanding_credits);
		read_unlock(&journal->j_state_lock);
		wait_event(journal->j_wait_reserved,
			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
			 <= journal->j_max_transaction_buffers / 2);
		return 1;
	}
	return 0;
}

250 251 252 253 254 255 256
/*
 * start_this_handle: Given a handle, deal with any locking or stalling
 * needed to make sure that there is enough journal space for the handle
 * to begin.  Attach the handle to a transaction and set up the
 * transaction's buffer credits.
 */

257
static int start_this_handle(journal_t *journal, handle_t *handle,
D
Dan Carpenter 已提交
258
			     gfp_t gfp_mask)
259
{
260
	transaction_t	*transaction, *new_transaction = NULL;
J
Jan Kara 已提交
261 262
	int		blocks = handle->h_buffer_credits;
	int		rsv_blocks = 0;
263
	unsigned long ts = jiffies;
264

J
Jan Kara 已提交
265 266 267 268 269
	/*
	 * 1/2 of transaction can be reserved so we can practically handle
	 * only 1/2 of maximum transaction size per operation
	 */
	if (WARN_ON(blocks > journal->j_max_transaction_buffers / 2)) {
E
Eryu Guan 已提交
270
		printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
J
Jan Kara 已提交
271 272
		       current->comm, blocks,
		       journal->j_max_transaction_buffers / 2);
273
		return -ENOSPC;
274 275
	}

J
Jan Kara 已提交
276 277 278
	if (handle->h_rsv_handle)
		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;

279 280
alloc_transaction:
	if (!journal->j_running_transaction) {
281 282 283 284 285 286
		/*
		 * If __GFP_FS is not present, then we may be being called from
		 * inside the fs writeback layer, so we MUST NOT fail.
		 */
		if ((gfp_mask & __GFP_FS) == 0)
			gfp_mask |= __GFP_NOFAIL;
287 288
		new_transaction = kmem_cache_zalloc(transaction_cache,
						    gfp_mask);
289
		if (!new_transaction)
290
			return -ENOMEM;
291 292 293 294 295 296 297 298
	}

	jbd_debug(3, "New handle %p going live.\n", handle);

	/*
	 * We need to hold j_state_lock until t_updates has been incremented,
	 * for proper journal barrier handling
	 */
299 300
repeat:
	read_lock(&journal->j_state_lock);
301
	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
302
	if (is_journal_aborted(journal) ||
303
	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
304
		read_unlock(&journal->j_state_lock);
305
		jbd2_journal_free_transaction(new_transaction);
306
		return -EROFS;
307 308
	}

J
Jan Kara 已提交
309 310 311 312 313 314
	/*
	 * Wait on the journal's transaction barrier if necessary. Specifically
	 * we allow reserved handles to proceed because otherwise commit could
	 * deadlock on page writeback not being able to complete.
	 */
	if (!handle->h_reserved && journal->j_barrier_count) {
315
		read_unlock(&journal->j_state_lock);
316 317 318 319 320 321
		wait_event(journal->j_wait_transaction_locked,
				journal->j_barrier_count == 0);
		goto repeat;
	}

	if (!journal->j_running_transaction) {
322 323
		read_unlock(&journal->j_state_lock);
		if (!new_transaction)
324
			goto alloc_transaction;
325
		write_lock(&journal->j_state_lock);
326
		if (!journal->j_running_transaction &&
J
Jan Kara 已提交
327
		    (handle->h_reserved || !journal->j_barrier_count)) {
328 329
			jbd2_get_transaction(journal, new_transaction);
			new_transaction = NULL;
330
		}
331 332
		write_unlock(&journal->j_state_lock);
		goto repeat;
333 334 335 336
	}

	transaction = journal->j_running_transaction;

J
Jan Kara 已提交
337 338 339 340 341
	if (!handle->h_reserved) {
		/* We may have dropped j_state_lock - restart in that case */
		if (add_transaction_credits(journal, blocks, rsv_blocks))
			goto repeat;
	} else {
342
		/*
J
Jan Kara 已提交
343 344 345
		 * We have handle reserved so we are allowed to join T_LOCKED
		 * transaction and we don't have to check for transaction size
		 * and journal space.
346
		 */
J
Jan Kara 已提交
347 348
		sub_reserved_credits(journal, blocks);
		handle->h_reserved = 0;
349 350 351
	}

	/* OK, account for the buffers that this operation expects to
352 353
	 * use and add the handle to the running transaction. 
	 */
354
	update_t_max_wait(transaction, ts);
355
	handle->h_transaction = transaction;
J
Jan Kara 已提交
356
	handle->h_requested_credits = blocks;
357
	handle->h_start_jiffies = jiffies;
358
	atomic_inc(&transaction->t_updates);
359
	atomic_inc(&transaction->t_handle_count);
J
Jan Kara 已提交
360 361
	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
		  handle, blocks,
362
		  atomic_read(&transaction->t_outstanding_credits),
363
		  jbd2_log_space_left(journal));
364
	read_unlock(&journal->j_state_lock);
365
	current->journal_info = handle;
366 367

	lock_map_acquire(&handle->h_lockdep_map);
368
	jbd2_journal_free_transaction(new_transaction);
369
	return 0;
370 371
}

M
Mingming Cao 已提交
372 373
static struct lock_class_key jbd2_handle_key;

374 375 376
/* Allocate a new handle.  This should probably be in a slab... */
static handle_t *new_handle(int nblocks)
{
M
Mingming Cao 已提交
377
	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
378 379 380 381 382
	if (!handle)
		return NULL;
	handle->h_buffer_credits = nblocks;
	handle->h_ref = 1;

M
Mingming Cao 已提交
383 384 385
	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
						&jbd2_handle_key, 0);

386 387 388 389
	return handle;
}

/**
390
 * handle_t *jbd2_journal_start() - Obtain a new handle.
391 392 393 394 395
 * @journal: Journal to start transaction on.
 * @nblocks: number of block buffer we might modify
 *
 * We make sure that the transaction can guarantee at least nblocks of
 * modified buffers in the log.  We block until the log can guarantee
J
Jan Kara 已提交
396 397 398 399 400 401 402 403
 * that much space. Additionally, if rsv_blocks > 0, we also create another
 * handle with rsv_blocks reserved blocks in the journal. This handle is
 * is stored in h_rsv_handle. It is not attached to any particular transaction
 * and thus doesn't block transaction commit. If the caller uses this reserved
 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
 * on the parent handle will dispose the reserved one. Reserved handle has to
 * be converted to a normal handle using jbd2_journal_start_reserved() before
 * it can be used.
404
 *
405 406
 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
 * on failure.
407
 */
J
Jan Kara 已提交
408 409 410
handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
			      gfp_t gfp_mask, unsigned int type,
			      unsigned int line_no)
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
{
	handle_t *handle = journal_current_handle();
	int err;

	if (!journal)
		return ERR_PTR(-EROFS);

	if (handle) {
		J_ASSERT(handle->h_transaction->t_journal == journal);
		handle->h_ref++;
		return handle;
	}

	handle = new_handle(nblocks);
	if (!handle)
		return ERR_PTR(-ENOMEM);
J
Jan Kara 已提交
427 428 429 430 431 432 433 434 435 436 437 438
	if (rsv_blocks) {
		handle_t *rsv_handle;

		rsv_handle = new_handle(rsv_blocks);
		if (!rsv_handle) {
			jbd2_free_handle(handle);
			return ERR_PTR(-ENOMEM);
		}
		rsv_handle->h_reserved = 1;
		rsv_handle->h_journal = journal;
		handle->h_rsv_handle = rsv_handle;
	}
439

440
	err = start_this_handle(journal, handle, gfp_mask);
441
	if (err < 0) {
J
Jan Kara 已提交
442 443
		if (handle->h_rsv_handle)
			jbd2_free_handle(handle->h_rsv_handle);
M
Mingming Cao 已提交
444
		jbd2_free_handle(handle);
445
		return ERR_PTR(err);
446
	}
447 448 449 450 451
	handle->h_type = type;
	handle->h_line_no = line_no;
	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
				handle->h_transaction->t_tid, type,
				line_no, nblocks);
452 453
	return handle;
}
454 455 456 457 458
EXPORT_SYMBOL(jbd2__journal_start);


handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
{
J
Jan Kara 已提交
459
	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
460 461 462
}
EXPORT_SYMBOL(jbd2_journal_start);

J
Jan Kara 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
void jbd2_journal_free_reserved(handle_t *handle)
{
	journal_t *journal = handle->h_journal;

	WARN_ON(!handle->h_reserved);
	sub_reserved_credits(journal, handle->h_buffer_credits);
	jbd2_free_handle(handle);
}
EXPORT_SYMBOL(jbd2_journal_free_reserved);

/**
 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
 * @handle: handle to start
 *
 * Start handle that has been previously reserved with jbd2_journal_reserve().
 * This attaches @handle to the running transaction (or creates one if there's
 * not transaction running). Unlike jbd2_journal_start() this function cannot
 * block on journal commit, checkpointing, or similar stuff. It can block on
 * memory allocation or frozen journal though.
 *
 * Return 0 on success, non-zero on error - handle is freed in that case.
 */
int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
				unsigned int line_no)
{
	journal_t *journal = handle->h_journal;
	int ret = -EIO;

	if (WARN_ON(!handle->h_reserved)) {
		/* Someone passed in normal handle? Just stop it. */
		jbd2_journal_stop(handle);
		return ret;
	}
	/*
	 * Usefulness of mixing of reserved and unreserved handles is
	 * questionable. So far nobody seems to need it so just error out.
	 */
	if (WARN_ON(current->journal_info)) {
		jbd2_journal_free_reserved(handle);
		return ret;
	}

	handle->h_journal = NULL;
	/*
	 * GFP_NOFS is here because callers are likely from writeback or
	 * similarly constrained call sites
	 */
	ret = start_this_handle(journal, handle, GFP_NOFS);
511
	if (ret < 0) {
J
Jan Kara 已提交
512
		jbd2_journal_free_reserved(handle);
513 514
		return ret;
	}
J
Jan Kara 已提交
515 516
	handle->h_type = type;
	handle->h_line_no = line_no;
517
	return 0;
J
Jan Kara 已提交
518 519
}
EXPORT_SYMBOL(jbd2_journal_start_reserved);
520 521

/**
522
 * int jbd2_journal_extend() - extend buffer credits.
523 524 525 526 527 528 529 530
 * @handle:  handle to 'extend'
 * @nblocks: nr blocks to try to extend by.
 *
 * Some transactions, such as large extends and truncates, can be done
 * atomically all at once or in several stages.  The operation requests
 * a credit for a number of buffer modications in advance, but can
 * extend its credit if it needs more.
 *
531
 * jbd2_journal_extend tries to give the running handle more buffer credits.
532 533 534 535 536 537 538 539 540
 * It does not guarantee that allocation - this is a best-effort only.
 * The calling process MUST be able to deal cleanly with a failure to
 * extend here.
 *
 * Return 0 on success, non-zero on failure.
 *
 * return code < 0 implies an error
 * return code > 0 implies normal transaction-full status.
 */
541
int jbd2_journal_extend(handle_t *handle, int nblocks)
542 543
{
	transaction_t *transaction = handle->h_transaction;
544
	journal_t *journal;
545 546 547 548
	int result;
	int wanted;

	if (is_handle_aborted(handle))
549 550
		return -EROFS;
	journal = transaction->t_journal;
551 552 553

	result = 1;

554
	read_lock(&journal->j_state_lock);
555 556

	/* Don't extend a locked-down transaction! */
557
	if (transaction->t_state != T_RUNNING) {
558 559 560 561 562 563
		jbd_debug(3, "denied handle %p %d blocks: "
			  "transaction not running\n", handle, nblocks);
		goto error_out;
	}

	spin_lock(&transaction->t_handle_lock);
564 565
	wanted = atomic_add_return(nblocks,
				   &transaction->t_outstanding_credits);
566 567 568 569

	if (wanted > journal->j_max_transaction_buffers) {
		jbd_debug(3, "denied handle %p %d blocks: "
			  "transaction too large\n", handle, nblocks);
570
		atomic_sub(nblocks, &transaction->t_outstanding_credits);
571 572 573
		goto unlock;
	}

574 575
	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
	    jbd2_log_space_left(journal)) {
576 577
		jbd_debug(3, "denied handle %p %d blocks: "
			  "insufficient log space\n", handle, nblocks);
578
		atomic_sub(nblocks, &transaction->t_outstanding_credits);
579 580 581
		goto unlock;
	}

582
	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
583
				 transaction->t_tid,
584 585 586 587
				 handle->h_type, handle->h_line_no,
				 handle->h_buffer_credits,
				 nblocks);

588
	handle->h_buffer_credits += nblocks;
589
	handle->h_requested_credits += nblocks;
590 591 592 593 594 595
	result = 0;

	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
unlock:
	spin_unlock(&transaction->t_handle_lock);
error_out:
596
	read_unlock(&journal->j_state_lock);
597 598 599 600 601
	return result;
}


/**
602
 * int jbd2_journal_restart() - restart a handle .
603 604 605 606 607 608
 * @handle:  handle to restart
 * @nblocks: nr credits requested
 *
 * Restart a handle for a multi-transaction filesystem
 * operation.
 *
609 610
 * If the jbd2_journal_extend() call above fails to grant new buffer credits
 * to a running handle, a call to jbd2_journal_restart will commit the
611 612
 * handle's transaction so far and reattach the handle to a new
 * transaction capabable of guaranteeing the requested number of
J
Jan Kara 已提交
613 614
 * credits. We preserve reserved handle if there's any attached to the
 * passed in handle.
615
 */
D
Dan Carpenter 已提交
616
int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
617 618
{
	transaction_t *transaction = handle->h_transaction;
619
	journal_t *journal;
620 621
	tid_t		tid;
	int		need_to_start, ret;
622 623 624 625 626

	/* If we've had an abort of any type, don't even think about
	 * actually doing the restart! */
	if (is_handle_aborted(handle))
		return 0;
627
	journal = transaction->t_journal;
628 629 630 631 632

	/*
	 * First unlink the handle from its current transaction, and start the
	 * commit on that.
	 */
633
	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
634 635
	J_ASSERT(journal_current_handle() == handle);

636
	read_lock(&journal->j_state_lock);
637
	spin_lock(&transaction->t_handle_lock);
638 639
	atomic_sub(handle->h_buffer_credits,
		   &transaction->t_outstanding_credits);
J
Jan Kara 已提交
640 641 642 643
	if (handle->h_rsv_handle) {
		sub_reserved_credits(journal,
				     handle->h_rsv_handle->h_buffer_credits);
	}
644
	if (atomic_dec_and_test(&transaction->t_updates))
645
		wake_up(&journal->j_wait_updates);
646
	tid = transaction->t_tid;
647
	spin_unlock(&transaction->t_handle_lock);
648 649
	handle->h_transaction = NULL;
	current->journal_info = NULL;
650 651

	jbd_debug(2, "restarting handle %p\n", handle);
652
	need_to_start = !tid_geq(journal->j_commit_request, tid);
653
	read_unlock(&journal->j_state_lock);
654 655
	if (need_to_start)
		jbd2_log_start_commit(journal, tid);
656

657
	lock_map_release(&handle->h_lockdep_map);
658
	handle->h_buffer_credits = nblocks;
659
	ret = start_this_handle(journal, handle, gfp_mask);
660 661
	return ret;
}
662
EXPORT_SYMBOL(jbd2__journal_restart);
663 664


665 666 667 668 669 670
int jbd2_journal_restart(handle_t *handle, int nblocks)
{
	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
}
EXPORT_SYMBOL(jbd2_journal_restart);

671
/**
672
 * void jbd2_journal_lock_updates () - establish a transaction barrier.
673 674 675 676 677 678 679 680
 * @journal:  Journal to establish a barrier on.
 *
 * This locks out any further updates from being started, and blocks
 * until all existing updates have completed, returning only once the
 * journal is in a quiescent state with no updates running.
 *
 * The journal lock should not be held on entry.
 */
681
void jbd2_journal_lock_updates(journal_t *journal)
682 683 684
{
	DEFINE_WAIT(wait);

685
	write_lock(&journal->j_state_lock);
686 687
	++journal->j_barrier_count;

J
Jan Kara 已提交
688 689 690 691 692 693 694 695
	/* Wait until there are no reserved handles */
	if (atomic_read(&journal->j_reserved_credits)) {
		write_unlock(&journal->j_state_lock);
		wait_event(journal->j_wait_reserved,
			   atomic_read(&journal->j_reserved_credits) == 0);
		write_lock(&journal->j_state_lock);
	}

696 697 698 699 700 701 702 703
	/* Wait until there are no running updates */
	while (1) {
		transaction_t *transaction = journal->j_running_transaction;

		if (!transaction)
			break;

		spin_lock(&transaction->t_handle_lock);
704 705
		prepare_to_wait(&journal->j_wait_updates, &wait,
				TASK_UNINTERRUPTIBLE);
706
		if (!atomic_read(&transaction->t_updates)) {
707
			spin_unlock(&transaction->t_handle_lock);
708
			finish_wait(&journal->j_wait_updates, &wait);
709 710 711
			break;
		}
		spin_unlock(&transaction->t_handle_lock);
712
		write_unlock(&journal->j_state_lock);
713 714
		schedule();
		finish_wait(&journal->j_wait_updates, &wait);
715
		write_lock(&journal->j_state_lock);
716
	}
717
	write_unlock(&journal->j_state_lock);
718 719 720

	/*
	 * We have now established a barrier against other normal updates, but
721
	 * we also need to barrier against other jbd2_journal_lock_updates() calls
722 723 724 725 726 727 728
	 * to make sure that we serialise special journal-locked operations
	 * too.
	 */
	mutex_lock(&journal->j_barrier);
}

/**
729
 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
730 731
 * @journal:  Journal to release the barrier on.
 *
732
 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
733 734 735
 *
 * Should be called without the journal lock held.
 */
736
void jbd2_journal_unlock_updates (journal_t *journal)
737 738 739 740
{
	J_ASSERT(journal->j_barrier_count != 0);

	mutex_unlock(&journal->j_barrier);
741
	write_lock(&journal->j_state_lock);
742
	--journal->j_barrier_count;
743
	write_unlock(&journal->j_state_lock);
744 745 746
	wake_up(&journal->j_wait_transaction_locked);
}

747
static void warn_dirty_buffer(struct buffer_head *bh)
748
{
749
	char b[BDEVNAME_SIZE];
750

751
	printk(KERN_WARNING
E
Eryu Guan 已提交
752
	       "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
753 754 755
	       "There's a risk of filesystem corruption in case of system "
	       "crash.\n",
	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
756 757
}

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
/* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
static void jbd2_freeze_jh_data(struct journal_head *jh)
{
	struct page *page;
	int offset;
	char *source;
	struct buffer_head *bh = jh2bh(jh);

	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
	page = bh->b_page;
	offset = offset_in_page(bh->b_data);
	source = kmap_atomic(page);
	/* Fire data frozen trigger just before we copy the data */
	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
	kunmap_atomic(source);

	/*
	 * Now that the frozen data is saved off, we need to store any matching
	 * triggers.
	 */
	jh->b_frozen_triggers = jh->b_triggers;
}

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
/*
 * If the buffer is already part of the current transaction, then there
 * is nothing we need to do.  If it is already part of a prior
 * transaction which we are still committing to disk, then we need to
 * make sure that we do not overwrite the old copy: we do copy-out to
 * preserve the copy going to disk.  We also account the buffer against
 * the handle's metadata buffer credits (unless the buffer is already
 * part of the transaction, that is).
 *
 */
static int
do_get_write_access(handle_t *handle, struct journal_head *jh,
			int force_copy)
{
	struct buffer_head *bh;
797
	transaction_t *transaction = handle->h_transaction;
798 799 800
	journal_t *journal;
	int error;
	char *frozen_buffer = NULL;
801
	unsigned long start_lock, time_lock;
802 803 804 805 806

	if (is_handle_aborted(handle))
		return -EROFS;
	journal = transaction->t_journal;

807
	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
808 809 810 811 812 813 814

	JBUFFER_TRACE(jh, "entry");
repeat:
	bh = jh2bh(jh);

	/* @@@ Need to check for errors here at some point. */

815
 	start_lock = jiffies;
816 817 818
	lock_buffer(bh);
	jbd_lock_bh_state(bh);

819 820 821 822 823 824
	/* If it takes too long to lock the buffer, trace it */
	time_lock = jbd2_time_diff(start_lock, jiffies);
	if (time_lock > HZ/10)
		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
			jiffies_to_msecs(time_lock));

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	/* We now hold the buffer lock so it is safe to query the buffer
	 * state.  Is the buffer dirty?
	 *
	 * If so, there are two possibilities.  The buffer may be
	 * non-journaled, and undergoing a quite legitimate writeback.
	 * Otherwise, it is journaled, and we don't expect dirty buffers
	 * in that state (the buffers should be marked JBD_Dirty
	 * instead.)  So either the IO is being done under our own
	 * control and this is a bug, or it's a third party IO such as
	 * dump(8) (which may leave the buffer scheduled for read ---
	 * ie. locked but not dirty) or tune2fs (which may actually have
	 * the buffer dirtied, ugh.)  */

	if (buffer_dirty(bh)) {
		/*
		 * First question: is this buffer already part of the current
		 * transaction or the existing committing transaction?
		 */
		if (jh->b_transaction) {
			J_ASSERT_JH(jh,
				jh->b_transaction == transaction ||
				jh->b_transaction ==
					journal->j_committing_transaction);
			if (jh->b_next_transaction)
				J_ASSERT_JH(jh, jh->b_next_transaction ==
							transaction);
851
			warn_dirty_buffer(bh);
852 853 854 855 856 857
		}
		/*
		 * In any case we need to clean the dirty flag and we must
		 * do it under the buffer lock to be sure we don't race
		 * with running write-out.
		 */
858 859 860
		JBUFFER_TRACE(jh, "Journalling dirty buffer");
		clear_buffer_dirty(bh);
		set_buffer_jbddirty(bh);
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
	}

	unlock_buffer(bh);

	error = -EROFS;
	if (is_handle_aborted(handle)) {
		jbd_unlock_bh_state(bh);
		goto out;
	}
	error = 0;

	/*
	 * The buffer is already part of this transaction if b_transaction or
	 * b_next_transaction points to it
	 */
	if (jh->b_transaction == transaction ||
	    jh->b_next_transaction == transaction)
		goto done;

880 881 882 883 884 885
	/*
	 * this is the first time this transaction is touching this buffer,
	 * reset the modified flag
	 */
       jh->b_modified = 0;

886 887 888 889 890 891 892 893 894
	/*
	 * If the buffer is not journaled right now, we need to make sure it
	 * doesn't get written to disk before the caller actually commits the
	 * new data
	 */
	if (!jh->b_transaction) {
		JBUFFER_TRACE(jh, "no transaction");
		J_ASSERT_JH(jh, !jh->b_next_transaction);
		JBUFFER_TRACE(jh, "file as BJ_Reserved");
895 896 897 898 899 900
		/*
		 * Make sure all stores to jh (b_modified, b_frozen_data) are
		 * visible before attaching it to the running transaction.
		 * Paired with barrier in jbd2_write_access_granted()
		 */
		smp_wmb();
901 902 903 904 905
		spin_lock(&journal->j_list_lock);
		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
		spin_unlock(&journal->j_list_lock);
		goto done;
	}
906 907 908 909 910 911 912
	/*
	 * If there is already a copy-out version of this buffer, then we don't
	 * need to make another one
	 */
	if (jh->b_frozen_data) {
		JBUFFER_TRACE(jh, "has frozen data");
		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
913
		goto attach_next;
914 915
	}

916 917 918
	JBUFFER_TRACE(jh, "owned by older transaction");
	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
919

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
	/*
	 * There is one case we have to be very careful about.  If the
	 * committing transaction is currently writing this buffer out to disk
	 * and has NOT made a copy-out, then we cannot modify the buffer
	 * contents at all right now.  The essence of copy-out is that it is
	 * the extra copy, not the primary copy, which gets journaled.  If the
	 * primary copy is already going to disk then we cannot do copy-out
	 * here.
	 */
	if (buffer_shadow(bh)) {
		JBUFFER_TRACE(jh, "on shadow: sleep");
		jbd_unlock_bh_state(bh);
		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
		goto repeat;
	}
935

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
	/*
	 * Only do the copy if the currently-owning transaction still needs it.
	 * If buffer isn't on BJ_Metadata list, the committing transaction is
	 * past that stage (here we use the fact that BH_Shadow is set under
	 * bh_state lock together with refiling to BJ_Shadow list and at this
	 * point we know the buffer doesn't have BH_Shadow set).
	 *
	 * Subtle point, though: if this is a get_undo_access, then we will be
	 * relying on the frozen_data to contain the new value of the
	 * committed_data record after the transaction, so we HAVE to force the
	 * frozen_data copy in that case.
	 */
	if (jh->b_jlist == BJ_Metadata || force_copy) {
		JBUFFER_TRACE(jh, "generate frozen data");
		if (!frozen_buffer) {
			JBUFFER_TRACE(jh, "allocate memory for buffer");
952
			jbd_unlock_bh_state(bh);
953
			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
954
			if (!frozen_buffer) {
955 956 957 958 959
				printk(KERN_ERR "%s: OOM for frozen_buffer\n",
				       __func__);
				JBUFFER_TRACE(jh, "oom!");
				error = -ENOMEM;
				goto out;
960
			}
961
			goto repeat;
962
		}
963 964 965
		jh->b_frozen_data = frozen_buffer;
		frozen_buffer = NULL;
		jbd2_freeze_jh_data(jh);
966
	}
967 968 969 970 971 972 973
attach_next:
	/*
	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
	 * before attaching it to the running transaction. Paired with barrier
	 * in jbd2_write_access_granted()
	 */
	smp_wmb();
974
	jh->b_next_transaction = transaction;
975 976 977 978 979 980 981 982

done:
	jbd_unlock_bh_state(bh);

	/*
	 * If we are about to journal a buffer, then any revoke pending on it is
	 * no longer valid
	 */
983
	jbd2_journal_cancel_revoke(handle, jh);
984 985 986

out:
	if (unlikely(frozen_buffer))	/* It's usually NULL */
M
Mingming Cao 已提交
987
		jbd2_free(frozen_buffer, bh->b_size);
988 989 990 991 992

	JBUFFER_TRACE(jh, "exit");
	return error;
}

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
/* Fast check whether buffer is already attached to the required transaction */
static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh)
{
	struct journal_head *jh;
	bool ret = false;

	/* Dirty buffers require special handling... */
	if (buffer_dirty(bh))
		return false;

	/*
	 * RCU protects us from dereferencing freed pages. So the checks we do
	 * are guaranteed not to oops. However the jh slab object can get freed
	 * & reallocated while we work with it. So we have to be careful. When
	 * we see jh attached to the running transaction, we know it must stay
	 * so until the transaction is committed. Thus jh won't be freed and
	 * will be attached to the same bh while we run.  However it can
	 * happen jh gets freed, reallocated, and attached to the transaction
	 * just after we get pointer to it from bh. So we have to be careful
	 * and recheck jh still belongs to our bh before we return success.
	 */
	rcu_read_lock();
	if (!buffer_jbd(bh))
		goto out;
	/* This should be bh2jh() but that doesn't work with inline functions */
	jh = READ_ONCE(bh->b_private);
	if (!jh)
		goto out;
	if (jh->b_transaction != handle->h_transaction &&
	    jh->b_next_transaction != handle->h_transaction)
		goto out;
	/*
	 * There are two reasons for the barrier here:
	 * 1) Make sure to fetch b_bh after we did previous checks so that we
	 * detect when jh went through free, realloc, attach to transaction
	 * while we were checking. Paired with implicit barrier in that path.
	 * 2) So that access to bh done after jbd2_write_access_granted()
	 * doesn't get reordered and see inconsistent state of concurrent
	 * do_get_write_access().
	 */
	smp_mb();
	if (unlikely(jh->b_bh != bh))
		goto out;
	ret = true;
out:
	rcu_read_unlock();
	return ret;
}

1042
/**
1043
 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1044 1045 1046 1047 1048 1049 1050 1051 1052
 * @handle: transaction to add buffer modifications to
 * @bh:     bh to be used for metadata writes
 *
 * Returns an error code or 0 on success.
 *
 * In full data journalling mode the buffer may be of type BJ_AsyncData,
 * because we're write()ing a buffer which is also part of a shared mapping.
 */

1053
int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1054
{
1055
	struct journal_head *jh;
1056 1057
	int rc;

1058 1059 1060 1061
	if (jbd2_write_access_granted(handle, bh))
		return 0;

	jh = jbd2_journal_add_journal_head(bh);
1062 1063 1064 1065
	/* We do not want to get caught playing with fields which the
	 * log thread also manipulates.  Make sure that the buffer
	 * completes any outstanding IO before proceeding. */
	rc = do_get_write_access(handle, jh, 0);
1066
	jbd2_journal_put_journal_head(jh);
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	return rc;
}


/*
 * When the user wants to journal a newly created buffer_head
 * (ie. getblk() returned a new buffer and we are going to populate it
 * manually rather than reading off disk), then we need to keep the
 * buffer_head locked until it has been completely filled with new
 * data.  In this case, we should be able to make the assertion that
 * the bh is not already part of an existing transaction.
 *
 * The buffer should already be locked by the caller by this point.
 * There is no lock ranking violation: it was a newly created,
 * unlocked buffer beforehand. */

/**
1084
 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1085 1086 1087 1088 1089
 * @handle: transaction to new buffer to
 * @bh: new buffer.
 *
 * Call this if you create a new bh.
 */
1090
int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1091 1092
{
	transaction_t *transaction = handle->h_transaction;
1093
	journal_t *journal;
1094
	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1095 1096 1097 1098 1099 1100
	int err;

	jbd_debug(5, "journal_head %p\n", jh);
	err = -EROFS;
	if (is_handle_aborted(handle))
		goto out;
1101
	journal = transaction->t_journal;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	err = 0;

	JBUFFER_TRACE(jh, "entry");
	/*
	 * The buffer may already belong to this transaction due to pre-zeroing
	 * in the filesystem's new_block code.  It may also be on the previous,
	 * committing transaction's lists, but it HAS to be in Forget state in
	 * that case: the transaction must have deleted the buffer for it to be
	 * reused here.
	 */
	jbd_lock_bh_state(bh);
	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
		jh->b_transaction == NULL ||
		(jh->b_transaction == journal->j_committing_transaction &&
			  jh->b_jlist == BJ_Forget)));

	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));

	if (jh->b_transaction == NULL) {
1122 1123 1124 1125 1126 1127 1128 1129 1130
		/*
		 * Previous jbd2_journal_forget() could have left the buffer
		 * with jbddirty bit set because it was being committed. When
		 * the commit finished, we've filed the buffer for
		 * checkpointing and marked it dirty. Now we are reallocating
		 * the buffer so the transaction freeing it must have
		 * committed and so it's safe to clear the dirty bit.
		 */
		clear_buffer_dirty(jh2bh(jh));
1131 1132 1133
		/* first access by this transaction */
		jh->b_modified = 0;

1134
		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1135
		spin_lock(&journal->j_list_lock);
1136
		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1137
	} else if (jh->b_transaction == journal->j_committing_transaction) {
1138 1139 1140
		/* first access by this transaction */
		jh->b_modified = 0;

1141
		JBUFFER_TRACE(jh, "set next transaction");
1142
		spin_lock(&journal->j_list_lock);
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
		jh->b_next_transaction = transaction;
	}
	spin_unlock(&journal->j_list_lock);
	jbd_unlock_bh_state(bh);

	/*
	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
	 * blocks which contain freed but then revoked metadata.  We need
	 * to cancel the revoke in case we end up freeing it yet again
	 * and the reallocating as data - this would cause a second revoke,
	 * which hits an assertion error.
	 */
	JBUFFER_TRACE(jh, "cancelling revoke");
1156
	jbd2_journal_cancel_revoke(handle, jh);
1157
out:
1158
	jbd2_journal_put_journal_head(jh);
1159 1160 1161 1162
	return err;
}

/**
1163
 * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
 *     non-rewindable consequences
 * @handle: transaction
 * @bh: buffer to undo
 *
 * Sometimes there is a need to distinguish between metadata which has
 * been committed to disk and that which has not.  The ext3fs code uses
 * this for freeing and allocating space, we have to make sure that we
 * do not reuse freed space until the deallocation has been committed,
 * since if we overwrote that space we would make the delete
 * un-rewindable in case of a crash.
 *
1175
 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
 * buffer for parts of non-rewindable operations such as delete
 * operations on the bitmaps.  The journaling code must keep a copy of
 * the buffer's contents prior to the undo_access call until such time
 * as we know that the buffer has definitely been committed to disk.
 *
 * We never need to know which transaction the committed data is part
 * of, buffers touched here are guaranteed to be dirtied later and so
 * will be committed to a new transaction in due course, at which point
 * we can discard the old committed data pointer.
 *
 * Returns error number or 0 on success.
 */
1188
int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1189 1190
{
	int err;
1191
	struct journal_head *jh;
1192 1193 1194
	char *committed_data = NULL;

	JBUFFER_TRACE(jh, "entry");
1195 1196
	if (jbd2_write_access_granted(handle, bh))
		return 0;
1197

1198
	jh = jbd2_journal_add_journal_head(bh);
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	/*
	 * Do this first --- it can drop the journal lock, so we want to
	 * make sure that obtaining the committed_data is done
	 * atomically wrt. completion of any outstanding commits.
	 */
	err = do_get_write_access(handle, jh, 1);
	if (err)
		goto out;

repeat:
	if (!jh->b_committed_data) {
M
Mingming Cao 已提交
1210
		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1211
		if (!committed_data) {
J
Jan Kara 已提交
1212
			printk(KERN_ERR "%s: No memory for committed data\n",
1213
				__func__);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
			err = -ENOMEM;
			goto out;
		}
	}

	jbd_lock_bh_state(bh);
	if (!jh->b_committed_data) {
		/* Copy out the current buffer contents into the
		 * preserved, committed copy. */
		JBUFFER_TRACE(jh, "generate b_committed data");
		if (!committed_data) {
			jbd_unlock_bh_state(bh);
			goto repeat;
		}

		jh->b_committed_data = committed_data;
		committed_data = NULL;
		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
	}
	jbd_unlock_bh_state(bh);
out:
1235
	jbd2_journal_put_journal_head(jh);
1236
	if (unlikely(committed_data))
M
Mingming Cao 已提交
1237
		jbd2_free(committed_data, bh->b_size);
1238 1239 1240
	return err;
}

J
Joel Becker 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
/**
 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
 * @bh: buffer to trigger on
 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
 *
 * Set any triggers on this journal_head.  This is always safe, because
 * triggers for a committing buffer will be saved off, and triggers for
 * a running transaction will match the buffer in that transaction.
 *
 * Call with NULL to clear the triggers.
 */
void jbd2_journal_set_triggers(struct buffer_head *bh,
			       struct jbd2_buffer_trigger_type *type)
{
1255
	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
J
Joel Becker 已提交
1256

1257 1258
	if (WARN_ON(!jh))
		return;
J
Joel Becker 已提交
1259
	jh->b_triggers = type;
1260
	jbd2_journal_put_journal_head(jh);
J
Joel Becker 已提交
1261 1262
}

1263
void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
J
Joel Becker 已提交
1264 1265 1266 1267
				struct jbd2_buffer_trigger_type *triggers)
{
	struct buffer_head *bh = jh2bh(jh);

1268
	if (!triggers || !triggers->t_frozen)
J
Joel Becker 已提交
1269 1270
		return;

1271
	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
J
Joel Becker 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
}

void jbd2_buffer_abort_trigger(struct journal_head *jh,
			       struct jbd2_buffer_trigger_type *triggers)
{
	if (!triggers || !triggers->t_abort)
		return;

	triggers->t_abort(triggers, jh2bh(jh));
}

1283 1284


1285
/**
1286
 * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1287 1288 1289 1290 1291 1292
 * @handle: transaction to add buffer to.
 * @bh: buffer to mark
 *
 * mark dirty metadata which needs to be journaled as part of the current
 * transaction.
 *
1293 1294 1295 1296
 * The buffer must have previously had jbd2_journal_get_write_access()
 * called so that it has a valid journal_head attached to the buffer
 * head.
 *
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
 * The buffer is placed on the transaction's metadata list and is marked
 * as belonging to the transaction.
 *
 * Returns error number or 0 on success.
 *
 * Special care needs to be taken if the buffer already belongs to the
 * current committing transaction (in which case we should have frozen
 * data present for that commit).  In that case, we don't relink the
 * buffer: that only gets done when the old transaction finally
 * completes its commit.
 */
1308
int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1309 1310
{
	transaction_t *transaction = handle->h_transaction;
1311
	journal_t *journal;
1312
	struct journal_head *jh;
1313
	int ret = 0;
1314 1315

	if (is_handle_aborted(handle))
1316
		return -EROFS;
1317 1318 1319
	journal = transaction->t_journal;
	jh = jbd2_journal_grab_journal_head(bh);
	if (!jh) {
1320 1321 1322
		ret = -EUCLEAN;
		goto out;
	}
1323 1324
	jbd_debug(5, "journal_head %p\n", jh);
	JBUFFER_TRACE(jh, "entry");
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334

	jbd_lock_bh_state(bh);

	if (jh->b_modified == 0) {
		/*
		 * This buffer's got modified and becoming part
		 * of the transaction. This needs to be done
		 * once a transaction -bzzz
		 */
		jh->b_modified = 1;
1335 1336 1337 1338
		if (handle->h_buffer_credits <= 0) {
			ret = -ENOSPC;
			goto out_unlock_bh;
		}
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
		handle->h_buffer_credits--;
	}

	/*
	 * fastpath, to avoid expensive locking.  If this buffer is already
	 * on the running transaction's metadata list there is nothing to do.
	 * Nobody can take it off again because there is a handle open.
	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
	 * result in this test being false, so we go in and take the locks.
	 */
	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
		JBUFFER_TRACE(jh, "fastpath");
1351 1352
		if (unlikely(jh->b_transaction !=
			     journal->j_running_transaction)) {
1353
			printk(KERN_ERR "JBD2: %s: "
1354
			       "jh->b_transaction (%llu, %p, %u) != "
1355
			       "journal->j_running_transaction (%p, %u)\n",
1356 1357 1358 1359 1360 1361 1362 1363 1364
			       journal->j_devname,
			       (unsigned long long) bh->b_blocknr,
			       jh->b_transaction,
			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
			       journal->j_running_transaction,
			       journal->j_running_transaction ?
			       journal->j_running_transaction->t_tid : 0);
			ret = -EINVAL;
		}
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
		goto out_unlock_bh;
	}

	set_buffer_jbddirty(bh);

	/*
	 * Metadata already on the current transaction list doesn't
	 * need to be filed.  Metadata on another transaction's list must
	 * be committing, and will be refiled once the commit completes:
	 * leave it alone for now.
	 */
	if (jh->b_transaction != transaction) {
		JBUFFER_TRACE(jh, "already on other transaction");
1378 1379 1380 1381 1382 1383 1384 1385
		if (unlikely(((jh->b_transaction !=
			       journal->j_committing_transaction)) ||
			     (jh->b_next_transaction != transaction))) {
			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
			       "bad jh for block %llu: "
			       "transaction (%p, %u), "
			       "jh->b_transaction (%p, %u), "
			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1386 1387
			       journal->j_devname,
			       (unsigned long long) bh->b_blocknr,
1388
			       transaction, transaction->t_tid,
1389
			       jh->b_transaction,
1390 1391
			       jh->b_transaction ?
			       jh->b_transaction->t_tid : 0,
1392 1393 1394
			       jh->b_next_transaction,
			       jh->b_next_transaction ?
			       jh->b_next_transaction->t_tid : 0,
1395 1396
			       jh->b_jlist);
			WARN_ON(1);
1397 1398
			ret = -EINVAL;
		}
1399 1400 1401 1402 1403 1404
		/* And this case is illegal: we can't reuse another
		 * transaction's data buffer, ever. */
		goto out_unlock_bh;
	}

	/* That test should have eliminated the following case: */
1405
	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1406 1407 1408

	JBUFFER_TRACE(jh, "file as BJ_Metadata");
	spin_lock(&journal->j_list_lock);
1409
	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1410 1411 1412
	spin_unlock(&journal->j_list_lock);
out_unlock_bh:
	jbd_unlock_bh_state(bh);
1413
	jbd2_journal_put_journal_head(jh);
1414 1415
out:
	JBUFFER_TRACE(jh, "exit");
1416
	return ret;
1417 1418 1419
}

/**
1420
 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
 * @handle: transaction handle
 * @bh:     bh to 'forget'
 *
 * We can only do the bforget if there are no commits pending against the
 * buffer.  If the buffer is dirty in the current running transaction we
 * can safely unlink it.
 *
 * bh may not be a journalled buffer at all - it may be a non-JBD
 * buffer which came off the hashtable.  Check for this.
 *
 * Decrements bh->b_count by one.
 *
 * Allow this call even if the handle has aborted --- it may be part of
 * the caller's cleanup after an abort.
 */
1436
int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1437 1438
{
	transaction_t *transaction = handle->h_transaction;
1439
	journal_t *journal;
1440 1441 1442
	struct journal_head *jh;
	int drop_reserve = 0;
	int err = 0;
1443
	int was_modified = 0;
1444

1445 1446 1447 1448
	if (is_handle_aborted(handle))
		return -EROFS;
	journal = transaction->t_journal;

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
	BUFFER_TRACE(bh, "entry");

	jbd_lock_bh_state(bh);

	if (!buffer_jbd(bh))
		goto not_jbd;
	jh = bh2jh(bh);

	/* Critical error: attempting to delete a bitmap buffer, maybe?
	 * Don't do any jbd operations, and return an error. */
	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
			 "inconsistent data on disk")) {
		err = -EIO;
		goto not_jbd;
	}

1465
	/* keep track of whether or not this transaction modified us */
1466 1467
	was_modified = jh->b_modified;

1468 1469 1470 1471 1472 1473
	/*
	 * The buffer's going from the transaction, we must drop
	 * all references -bzzz
	 */
	jh->b_modified = 0;

1474
	if (jh->b_transaction == transaction) {
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
		J_ASSERT_JH(jh, !jh->b_frozen_data);

		/* If we are forgetting a buffer which is already part
		 * of this transaction, then we can just drop it from
		 * the transaction immediately. */
		clear_buffer_dirty(bh);
		clear_buffer_jbddirty(bh);

		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");

1485 1486 1487 1488 1489 1490
		/*
		 * we only want to drop a reference if this transaction
		 * modified the buffer
		 */
		if (was_modified)
			drop_reserve = 1;
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

		/*
		 * We are no longer going to journal this buffer.
		 * However, the commit of this transaction is still
		 * important to the buffer: the delete that we are now
		 * processing might obsolete an old log entry, so by
		 * committing, we can satisfy the buffer's checkpoint.
		 *
		 * So, if we have a checkpoint on the buffer, we should
		 * now refile the buffer on our BJ_Forget list so that
		 * we know to remove the checkpoint after we commit.
		 */

1504
		spin_lock(&journal->j_list_lock);
1505
		if (jh->b_cp_transaction) {
1506 1507
			__jbd2_journal_temp_unlink_buffer(jh);
			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1508
		} else {
1509
			__jbd2_journal_unfile_buffer(jh);
1510 1511 1512 1513 1514 1515 1516
			if (!buffer_jbd(bh)) {
				spin_unlock(&journal->j_list_lock);
				jbd_unlock_bh_state(bh);
				__bforget(bh);
				goto drop;
			}
		}
1517
		spin_unlock(&journal->j_list_lock);
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	} else if (jh->b_transaction) {
		J_ASSERT_JH(jh, (jh->b_transaction ==
				 journal->j_committing_transaction));
		/* However, if the buffer is still owned by a prior
		 * (committing) transaction, we can't drop it yet... */
		JBUFFER_TRACE(jh, "belongs to older transaction");
		/* ... but we CAN drop it from the new transaction if we
		 * have also modified it since the original commit. */

		if (jh->b_next_transaction) {
			J_ASSERT(jh->b_next_transaction == transaction);
1529
			spin_lock(&journal->j_list_lock);
1530
			jh->b_next_transaction = NULL;
1531
			spin_unlock(&journal->j_list_lock);
1532 1533 1534 1535 1536 1537 1538

			/*
			 * only drop a reference if this transaction modified
			 * the buffer
			 */
			if (was_modified)
				drop_reserve = 1;
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
		}
	}

not_jbd:
	jbd_unlock_bh_state(bh);
	__brelse(bh);
drop:
	if (drop_reserve) {
		/* no need to reserve log space for this block -bzzz */
		handle->h_buffer_credits++;
	}
	return err;
}

/**
1554
 * int jbd2_journal_stop() - complete a transaction
1555 1556 1557 1558 1559 1560 1561 1562 1563
 * @handle: tranaction to complete.
 *
 * All done for a particular handle.
 *
 * There is not much action needed here.  We just return any remaining
 * buffer credits to the transaction and remove the handle.  The only
 * complication is that we need to start a commit operation if the
 * filesystem is marked for synchronous update.
 *
1564
 * jbd2_journal_stop itself will not usually return an error, but it may
1565
 * do so in unusual circumstances.  In particular, expect it to
1566
 * return -EIO if a jbd2_journal_abort has been executed since the
1567 1568
 * transaction began.
 */
1569
int jbd2_journal_stop(handle_t *handle)
1570 1571
{
	transaction_t *transaction = handle->h_transaction;
1572 1573
	journal_t *journal;
	int err = 0, wait_for_commit = 0;
1574
	tid_t tid;
1575 1576
	pid_t pid;

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	if (!transaction) {
		/*
		 * Handle is already detached from the transaction so
		 * there is nothing to do other than decrease a refcount,
		 * or free the handle if refcount drops to zero
		 */
		if (--handle->h_ref > 0) {
			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
							 handle->h_ref);
			return err;
		} else {
			if (handle->h_rsv_handle)
				jbd2_free_handle(handle->h_rsv_handle);
			goto free_and_exit;
		}
	}
1593 1594
	journal = transaction->t_journal;

1595 1596 1597 1598
	J_ASSERT(journal_current_handle() == handle);

	if (is_handle_aborted(handle))
		err = -EIO;
1599
	else
1600
		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1601 1602 1603 1604 1605 1606 1607 1608

	if (--handle->h_ref > 0) {
		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
			  handle->h_ref);
		return err;
	}

	jbd_debug(4, "Handle %p going down\n", handle);
1609
	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1610
				transaction->t_tid,
1611 1612 1613 1614 1615
				handle->h_type, handle->h_line_no,
				jiffies - handle->h_start_jiffies,
				handle->h_sync, handle->h_requested_credits,
				(handle->h_requested_credits -
				 handle->h_buffer_credits));
1616 1617 1618 1619

	/*
	 * Implement synchronous transaction batching.  If the handle
	 * was synchronous, don't force a commit immediately.  Let's
J
Josef Bacik 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
	 * yield and let another thread piggyback onto this
	 * transaction.  Keep doing that while new threads continue to
	 * arrive.  It doesn't cost much - we're about to run a commit
	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
	 * operations by 30x or more...
	 *
	 * We try and optimize the sleep time against what the
	 * underlying disk can do, instead of having a static sleep
	 * time.  This is useful for the case where our storage is so
	 * fast that it is more optimal to go ahead and force a flush
	 * and wait for the transaction to be committed than it is to
	 * wait for an arbitrary amount of time for new writers to
	 * join the transaction.  We achieve this by measuring how
	 * long it takes to commit a transaction, and compare it with
	 * how long this transaction has been running, and if run time
	 * < commit time then we sleep for the delta and commit.  This
	 * greatly helps super fast disks that would see slowdowns as
	 * more threads started doing fsyncs.
1638
	 *
J
Josef Bacik 已提交
1639 1640 1641 1642
	 * But don't do this if this process was the most recent one
	 * to perform a synchronous write.  We do this to detect the
	 * case where a single process is doing a stream of sync
	 * writes.  No point in waiting for joiners in that case.
1643 1644
	 *
	 * Setting max_batch_time to 0 disables this completely.
1645 1646
	 */
	pid = current->pid;
1647 1648
	if (handle->h_sync && journal->j_last_sync_writer != pid &&
	    journal->j_max_batch_time) {
J
Josef Bacik 已提交
1649 1650
		u64 commit_time, trans_time;

1651
		journal->j_last_sync_writer = pid;
J
Josef Bacik 已提交
1652

1653
		read_lock(&journal->j_state_lock);
J
Josef Bacik 已提交
1654
		commit_time = journal->j_average_commit_time;
1655
		read_unlock(&journal->j_state_lock);
J
Josef Bacik 已提交
1656 1657 1658 1659

		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
						   transaction->t_start_time));

1660 1661
		commit_time = max_t(u64, commit_time,
				    1000*journal->j_min_batch_time);
J
Josef Bacik 已提交
1662
		commit_time = min_t(u64, commit_time,
1663
				    1000*journal->j_max_batch_time);
J
Josef Bacik 已提交
1664 1665 1666 1667 1668 1669 1670

		if (trans_time < commit_time) {
			ktime_t expires = ktime_add_ns(ktime_get(),
						       commit_time);
			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
		}
1671 1672
	}

1673 1674
	if (handle->h_sync)
		transaction->t_synchronous_commit = 1;
1675
	current->journal_info = NULL;
1676 1677
	atomic_sub(handle->h_buffer_credits,
		   &transaction->t_outstanding_credits);
1678 1679 1680 1681 1682 1683 1684 1685

	/*
	 * If the handle is marked SYNC, we need to set another commit
	 * going!  We also want to force a commit if the current
	 * transaction is occupying too much of the log, or if the
	 * transaction is too old now.
	 */
	if (handle->h_sync ||
1686 1687 1688
	    (atomic_read(&transaction->t_outstanding_credits) >
	     journal->j_max_transaction_buffers) ||
	    time_after_eq(jiffies, transaction->t_expires)) {
1689 1690 1691 1692 1693 1694 1695
		/* Do this even for aborted journals: an abort still
		 * completes the commit thread, it just doesn't write
		 * anything to disk. */

		jbd_debug(2, "transaction too old, requesting commit for "
					"handle %p\n", handle);
		/* This is non-blocking */
1696
		jbd2_log_start_commit(journal, transaction->t_tid);
1697 1698

		/*
1699
		 * Special case: JBD2_SYNC synchronous updates require us
1700 1701 1702
		 * to wait for the commit to complete.
		 */
		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1703
			wait_for_commit = 1;
1704 1705
	}

1706 1707
	/*
	 * Once we drop t_updates, if it goes to zero the transaction
L
Lucas De Marchi 已提交
1708
	 * could start committing on us and eventually disappear.  So
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	 * once we do this, we must not dereference transaction
	 * pointer again.
	 */
	tid = transaction->t_tid;
	if (atomic_dec_and_test(&transaction->t_updates)) {
		wake_up(&journal->j_wait_updates);
		if (journal->j_barrier_count)
			wake_up(&journal->j_wait_transaction_locked);
	}

	if (wait_for_commit)
		err = jbd2_log_wait_commit(journal, tid);

1722
	lock_map_release(&handle->h_lockdep_map);
M
Mingming Cao 已提交
1723

J
Jan Kara 已提交
1724 1725
	if (handle->h_rsv_handle)
		jbd2_journal_free_reserved(handle->h_rsv_handle);
1726
free_and_exit:
M
Mingming Cao 已提交
1727
	jbd2_free_handle(handle);
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	return err;
}

/*
 *
 * List management code snippets: various functions for manipulating the
 * transaction buffer lists.
 *
 */

/*
 * Append a buffer to a transaction list, given the transaction's list head
 * pointer.
 *
 * j_list_lock is held.
 *
 * jbd_lock_bh_state(jh2bh(jh)) is held.
 */

static inline void
__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
{
	if (!*list) {
		jh->b_tnext = jh->b_tprev = jh;
		*list = jh;
	} else {
		/* Insert at the tail of the list to preserve order */
		struct journal_head *first = *list, *last = first->b_tprev;
		jh->b_tprev = last;
		jh->b_tnext = first;
		last->b_tnext = first->b_tprev = jh;
	}
}

/*
 * Remove a buffer from a transaction list, given the transaction's list
 * head pointer.
 *
 * Called with j_list_lock held, and the journal may not be locked.
 *
 * jbd_lock_bh_state(jh2bh(jh)) is held.
 */

static inline void
__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
{
	if (*list == jh) {
		*list = jh->b_tnext;
		if (*list == jh)
			*list = NULL;
	}
	jh->b_tprev->b_tnext = jh->b_tnext;
	jh->b_tnext->b_tprev = jh->b_tprev;
}

/*
 * Remove a buffer from the appropriate transaction list.
 *
 * Note that this function can *change* the value of
1787 1788 1789 1790
 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
 * t_reserved_list.  If the caller is holding onto a copy of one of these
 * pointers, it could go bad.  Generally the caller needs to re-read the
 * pointer from the transaction_t.
1791
 *
1792
 * Called under j_list_lock.
1793
 */
1794
static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
{
	struct journal_head **list = NULL;
	transaction_t *transaction;
	struct buffer_head *bh = jh2bh(jh);

	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
	transaction = jh->b_transaction;
	if (transaction)
		assert_spin_locked(&transaction->t_journal->j_list_lock);

	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
	if (jh->b_jlist != BJ_None)
1807
		J_ASSERT_JH(jh, transaction != NULL);
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833

	switch (jh->b_jlist) {
	case BJ_None:
		return;
	case BJ_Metadata:
		transaction->t_nr_buffers--;
		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
		list = &transaction->t_buffers;
		break;
	case BJ_Forget:
		list = &transaction->t_forget;
		break;
	case BJ_Shadow:
		list = &transaction->t_shadow_list;
		break;
	case BJ_Reserved:
		list = &transaction->t_reserved_list;
		break;
	}

	__blist_del_buffer(list, jh);
	jh->b_jlist = BJ_None;
	if (test_clear_buffer_jbddirty(bh))
		mark_buffer_dirty(bh);	/* Expose it to the VM */
}

1834 1835 1836 1837 1838 1839 1840 1841
/*
 * Remove buffer from all transactions.
 *
 * Called with bh_state lock and j_list_lock
 *
 * jh and bh may be already freed when this function returns.
 */
static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1842
{
1843
	__jbd2_journal_temp_unlink_buffer(jh);
1844
	jh->b_transaction = NULL;
1845
	jbd2_journal_put_journal_head(jh);
1846 1847
}

1848
void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1849
{
1850 1851 1852 1853 1854
	struct buffer_head *bh = jh2bh(jh);

	/* Get reference so that buffer cannot be freed before we unlock it */
	get_bh(bh);
	jbd_lock_bh_state(bh);
1855
	spin_lock(&journal->j_list_lock);
1856
	__jbd2_journal_unfile_buffer(jh);
1857
	spin_unlock(&journal->j_list_lock);
1858 1859
	jbd_unlock_bh_state(bh);
	__brelse(bh);
1860 1861 1862
}

/*
1863
 * Called from jbd2_journal_try_to_free_buffers().
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
 *
 * Called under jbd_lock_bh_state(bh)
 */
static void
__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
{
	struct journal_head *jh;

	jh = bh2jh(bh);

	if (buffer_locked(bh) || buffer_dirty(bh))
		goto out;

1877
	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1878 1879 1880
		goto out;

	spin_lock(&journal->j_list_lock);
1881
	if (jh->b_cp_transaction != NULL) {
1882
		/* written-back checkpointed metadata buffer */
1883 1884
		JBUFFER_TRACE(jh, "remove from checkpoint list");
		__jbd2_journal_remove_checkpoint(jh);
1885 1886 1887 1888 1889 1890 1891
	}
	spin_unlock(&journal->j_list_lock);
out:
	return;
}

/**
1892
 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1893 1894
 * @journal: journal for operation
 * @page: to try and free
1895 1896 1897
 * @gfp_mask: we use the mask to detect how hard should we try to release
 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
 * release the buffers.
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
 *
 *
 * For all the buffers on this page,
 * if they are fully written out ordered data, move them onto BUF_CLEAN
 * so try_to_free_buffers() can reap them.
 *
 * This function returns non-zero if we wish try_to_free_buffers()
 * to be called. We do this if the page is releasable by try_to_free_buffers().
 * We also do it if the page has locked or dirty buffers and the caller wants
 * us to perform sync or async writeout.
 *
 * This complicates JBD locking somewhat.  We aren't protected by the
 * BKL here.  We wish to remove the buffer from its committing or
1911
 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1912 1913 1914 1915
 *
 * This may *change* the value of transaction_t->t_datalist, so anyone
 * who looks at t_datalist needs to lock against this function.
 *
1916 1917
 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
 * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1918 1919 1920 1921 1922 1923 1924 1925
 * will come out of the lock with the buffer dirty, which makes it
 * ineligible for release here.
 *
 * Who else is affected by this?  hmm...  Really the only contender
 * is do_get_write_access() - it could be looking at the buffer while
 * journal_try_to_free_buffer() is changing its state.  But that
 * cannot happen because we never reallocate freed data as metadata
 * while the data is part of a transaction.  Yes?
1926 1927
 *
 * Return 0 on failure, 1 on success
1928
 */
1929
int jbd2_journal_try_to_free_buffers(journal_t *journal,
1930
				struct page *page, gfp_t gfp_mask)
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
{
	struct buffer_head *head;
	struct buffer_head *bh;
	int ret = 0;

	J_ASSERT(PageLocked(page));

	head = page_buffers(page);
	bh = head;
	do {
		struct journal_head *jh;

		/*
		 * We take our own ref against the journal_head here to avoid
		 * having to add tons of locking around each instance of
1946
		 * jbd2_journal_put_journal_head().
1947
		 */
1948
		jh = jbd2_journal_grab_journal_head(bh);
1949 1950 1951 1952 1953
		if (!jh)
			continue;

		jbd_lock_bh_state(bh);
		__journal_try_to_free_buffer(journal, bh);
1954
		jbd2_journal_put_journal_head(jh);
1955 1956 1957 1958
		jbd_unlock_bh_state(bh);
		if (buffer_jbd(bh))
			goto busy;
	} while ((bh = bh->b_this_page) != head);
1959

1960
	ret = try_to_free_buffers(page);
1961

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
busy:
	return ret;
}

/*
 * This buffer is no longer needed.  If it is on an older transaction's
 * checkpoint list we need to record it on this transaction's forget list
 * to pin this buffer (and hence its checkpointing transaction) down until
 * this transaction commits.  If the buffer isn't on a checkpoint list, we
 * release it.
 * Returns non-zero if JBD no longer has an interest in the buffer.
 *
 * Called under j_list_lock.
 *
 * Called under jbd_lock_bh_state(bh).
 */
static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
{
	int may_free = 1;
	struct buffer_head *bh = jh2bh(jh);

	if (jh->b_cp_transaction) {
		JBUFFER_TRACE(jh, "on running+cp transaction");
1985
		__jbd2_journal_temp_unlink_buffer(jh);
1986 1987 1988 1989 1990 1991
		/*
		 * We don't want to write the buffer anymore, clear the
		 * bit so that we don't confuse checks in
		 * __journal_file_buffer
		 */
		clear_buffer_dirty(bh);
1992
		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1993 1994 1995
		may_free = 0;
	} else {
		JBUFFER_TRACE(jh, "on running transaction");
1996
		__jbd2_journal_unfile_buffer(jh);
1997 1998 1999 2000 2001
	}
	return may_free;
}

/*
2002
 * jbd2_journal_invalidatepage
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
 *
 * This code is tricky.  It has a number of cases to deal with.
 *
 * There are two invariants which this code relies on:
 *
 * i_size must be updated on disk before we start calling invalidatepage on the
 * data.
 *
 *  This is done in ext3 by defining an ext3_setattr method which
 *  updates i_size before truncate gets going.  By maintaining this
 *  invariant, we can be sure that it is safe to throw away any buffers
 *  attached to the current transaction: once the transaction commits,
 *  we know that the data will not be needed.
 *
 *  Note however that we can *not* throw away data belonging to the
 *  previous, committing transaction!
 *
 * Any disk blocks which *are* part of the previous, committing
 * transaction (and which therefore cannot be discarded immediately) are
 * not going to be reused in the new running transaction
 *
 *  The bitmap committed_data images guarantee this: any block which is
 *  allocated in one transaction and removed in the next will be marked
 *  as in-use in the committed_data bitmap, so cannot be reused until
 *  the next transaction to delete the block commits.  This means that
 *  leaving committing buffers dirty is quite safe: the disk blocks
 *  cannot be reallocated to a different file and so buffer aliasing is
 *  not possible.
 *
 *
 * The above applies mainly to ordered data mode.  In writeback mode we
 * don't make guarantees about the order in which data hits disk --- in
 * particular we don't guarantee that new dirty data is flushed before
 * transaction commit --- so it is always safe just to discard data
 * immediately in that mode.  --sct
 */

/*
 * The journal_unmap_buffer helper function returns zero if the buffer
 * concerned remains pinned as an anonymous buffer belonging to an older
 * transaction.
 *
 * We're outside-transaction here.  Either or both of j_running_transaction
 * and j_committing_transaction may be NULL.
 */
2048 2049
static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
				int partial_page)
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
{
	transaction_t *transaction;
	struct journal_head *jh;
	int may_free = 1;

	BUFFER_TRACE(bh, "entry");

	/*
	 * It is safe to proceed here without the j_list_lock because the
	 * buffers cannot be stolen by try_to_free_buffers as long as we are
	 * holding the page lock. --sct
	 */

	if (!buffer_jbd(bh))
		goto zap_buffer_unlocked;

2066
	/* OK, we have data buffer in journaled mode */
2067
	write_lock(&journal->j_state_lock);
2068 2069 2070
	jbd_lock_bh_state(bh);
	spin_lock(&journal->j_list_lock);

2071
	jh = jbd2_journal_grab_journal_head(bh);
2072 2073 2074
	if (!jh)
		goto zap_buffer_no_jh;

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	/*
	 * We cannot remove the buffer from checkpoint lists until the
	 * transaction adding inode to orphan list (let's call it T)
	 * is committed.  Otherwise if the transaction changing the
	 * buffer would be cleaned from the journal before T is
	 * committed, a crash will cause that the correct contents of
	 * the buffer will be lost.  On the other hand we have to
	 * clear the buffer dirty bit at latest at the moment when the
	 * transaction marking the buffer as freed in the filesystem
	 * structures is committed because from that moment on the
2085
	 * block can be reallocated and used by a different page.
2086 2087 2088
	 * Since the block hasn't been freed yet but the inode has
	 * already been added to orphan list, it is safe for us to add
	 * the buffer to BJ_Forget list of the newest transaction.
2089 2090 2091 2092 2093 2094 2095 2096
	 *
	 * Also we have to clear buffer_mapped flag of a truncated buffer
	 * because the buffer_head may be attached to the page straddling
	 * i_size (can happen only when blocksize < pagesize) and thus the
	 * buffer_head can be reused when the file is extended again. So we end
	 * up keeping around invalidated buffers attached to transactions'
	 * BJ_Forget list just to stop checkpointing code from cleaning up
	 * the transaction this buffer was modified in.
2097
	 */
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
	transaction = jh->b_transaction;
	if (transaction == NULL) {
		/* First case: not on any transaction.  If it
		 * has no checkpoint link, then we can zap it:
		 * it's a writeback-mode buffer so we don't care
		 * if it hits disk safely. */
		if (!jh->b_cp_transaction) {
			JBUFFER_TRACE(jh, "not on any transaction: zap");
			goto zap_buffer;
		}

		if (!buffer_dirty(bh)) {
			/* bdflush has written it.  We can drop it now */
			goto zap_buffer;
		}

		/* OK, it must be in the journal but still not
		 * written fully to disk: it's metadata or
		 * journaled data... */

		if (journal->j_running_transaction) {
			/* ... and once the current transaction has
			 * committed, the buffer won't be needed any
			 * longer. */
			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2123
			may_free = __dispose_buffer(jh,
2124
					journal->j_running_transaction);
2125
			goto zap_buffer;
2126 2127 2128 2129 2130 2131 2132
		} else {
			/* There is no currently-running transaction. So the
			 * orphan record which we wrote for this file must have
			 * passed into commit.  We must attach this buffer to
			 * the committing transaction, if it exists. */
			if (journal->j_committing_transaction) {
				JBUFFER_TRACE(jh, "give to committing trans");
2133
				may_free = __dispose_buffer(jh,
2134
					journal->j_committing_transaction);
2135
				goto zap_buffer;
2136 2137 2138 2139 2140 2141 2142 2143
			} else {
				/* The orphan record's transaction has
				 * committed.  We can cleanse this buffer */
				clear_buffer_jbddirty(bh);
				goto zap_buffer;
			}
		}
	} else if (transaction == journal->j_committing_transaction) {
2144
		JBUFFER_TRACE(jh, "on committing transaction");
2145
		/*
2146
		 * The buffer is committing, we simply cannot touch
2147 2148 2149 2150 2151 2152 2153 2154
		 * it. If the page is straddling i_size we have to wait
		 * for commit and try again.
		 */
		if (partial_page) {
			jbd2_journal_put_journal_head(jh);
			spin_unlock(&journal->j_list_lock);
			jbd_unlock_bh_state(bh);
			write_unlock(&journal->j_state_lock);
2155
			return -EBUSY;
2156 2157 2158 2159 2160 2161
		}
		/*
		 * OK, buffer won't be reachable after truncate. We just set
		 * j_next_transaction to the running transaction (if there is
		 * one) and mark buffer as freed so that commit code knows it
		 * should clear dirty bits when it is done with the buffer.
2162
		 */
2163
		set_buffer_freed(bh);
2164 2165
		if (journal->j_running_transaction && buffer_jbddirty(bh))
			jh->b_next_transaction = journal->j_running_transaction;
2166
		jbd2_journal_put_journal_head(jh);
2167 2168
		spin_unlock(&journal->j_list_lock);
		jbd_unlock_bh_state(bh);
2169
		write_unlock(&journal->j_state_lock);
2170 2171 2172 2173 2174 2175 2176 2177 2178
		return 0;
	} else {
		/* Good, the buffer belongs to the running transaction.
		 * We are writing our own transaction's data, not any
		 * previous one's, so it is safe to throw it away
		 * (remember that we expect the filesystem to have set
		 * i_size already for this truncate so recovery will not
		 * expose the disk blocks we are discarding here.) */
		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2179
		JBUFFER_TRACE(jh, "on running transaction");
2180 2181 2182 2183
		may_free = __dispose_buffer(jh, transaction);
	}

zap_buffer:
2184 2185 2186 2187 2188 2189 2190 2191 2192
	/*
	 * This is tricky. Although the buffer is truncated, it may be reused
	 * if blocksize < pagesize and it is attached to the page straddling
	 * EOF. Since the buffer might have been added to BJ_Forget list of the
	 * running transaction, journal_get_write_access() won't clear
	 * b_modified and credit accounting gets confused. So clear b_modified
	 * here.
	 */
	jh->b_modified = 0;
2193
	jbd2_journal_put_journal_head(jh);
2194 2195 2196
zap_buffer_no_jh:
	spin_unlock(&journal->j_list_lock);
	jbd_unlock_bh_state(bh);
2197
	write_unlock(&journal->j_state_lock);
2198 2199 2200 2201 2202 2203
zap_buffer_unlocked:
	clear_buffer_dirty(bh);
	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
	clear_buffer_mapped(bh);
	clear_buffer_req(bh);
	clear_buffer_new(bh);
2204 2205
	clear_buffer_delay(bh);
	clear_buffer_unwritten(bh);
2206 2207 2208 2209 2210
	bh->b_bdev = NULL;
	return may_free;
}

/**
2211
 * void jbd2_journal_invalidatepage()
2212 2213
 * @journal: journal to use for flush...
 * @page:    page to flush
2214 2215
 * @offset:  start of the range to invalidate
 * @length:  length of the range to invalidate
2216
 *
2217 2218 2219 2220
 * Reap page buffers containing data after in the specified range in page.
 * Can return -EBUSY if buffers are part of the committing transaction and
 * the page is straddling i_size. Caller then has to wait for current commit
 * and try again.
2221
 */
2222 2223
int jbd2_journal_invalidatepage(journal_t *journal,
				struct page *page,
2224 2225
				unsigned int offset,
				unsigned int length)
2226 2227
{
	struct buffer_head *head, *bh, *next;
2228
	unsigned int stop = offset + length;
2229
	unsigned int curr_off = 0;
2230
	int partial_page = (offset || length < PAGE_CACHE_SIZE);
2231
	int may_free = 1;
2232
	int ret = 0;
2233 2234 2235 2236

	if (!PageLocked(page))
		BUG();
	if (!page_has_buffers(page))
2237
		return 0;
2238

2239 2240
	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);

2241 2242 2243 2244 2245 2246 2247 2248 2249
	/* We will potentially be playing with lists other than just the
	 * data lists (especially for journaled data mode), so be
	 * cautious in our locking. */

	head = bh = page_buffers(page);
	do {
		unsigned int next_off = curr_off + bh->b_size;
		next = bh->b_this_page;

2250 2251 2252
		if (next_off > stop)
			return 0;

2253 2254 2255
		if (offset <= curr_off) {
			/* This block is wholly outside the truncation point */
			lock_buffer(bh);
2256
			ret = journal_unmap_buffer(journal, bh, partial_page);
2257
			unlock_buffer(bh);
2258 2259 2260
			if (ret < 0)
				return ret;
			may_free &= ret;
2261 2262 2263 2264 2265 2266
		}
		curr_off = next_off;
		bh = next;

	} while (bh != head);

2267
	if (!partial_page) {
2268 2269 2270
		if (may_free && try_to_free_buffers(page))
			J_ASSERT(!page_has_buffers(page));
	}
2271
	return 0;
2272 2273 2274 2275 2276
}

/*
 * File a buffer on the given transaction list.
 */
2277
void __jbd2_journal_file_buffer(struct journal_head *jh,
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
			transaction_t *transaction, int jlist)
{
	struct journal_head **list = NULL;
	int was_dirty = 0;
	struct buffer_head *bh = jh2bh(jh);

	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
	assert_spin_locked(&transaction->t_journal->j_list_lock);

	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2289
				jh->b_transaction == NULL);
2290 2291 2292 2293 2294 2295

	if (jh->b_transaction && jh->b_jlist == jlist)
		return;

	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2296 2297 2298 2299 2300 2301 2302 2303 2304
		/*
		 * For metadata buffers, we track dirty bit in buffer_jbddirty
		 * instead of buffer_dirty. We should not see a dirty bit set
		 * here because we clear it in do_get_write_access but e.g.
		 * tune2fs can modify the sb and set the dirty bit at any time
		 * so we try to gracefully handle that.
		 */
		if (buffer_dirty(bh))
			warn_dirty_buffer(bh);
2305 2306 2307 2308 2309 2310
		if (test_clear_buffer_dirty(bh) ||
		    test_clear_buffer_jbddirty(bh))
			was_dirty = 1;
	}

	if (jh->b_transaction)
2311
		__jbd2_journal_temp_unlink_buffer(jh);
2312 2313
	else
		jbd2_journal_grab_journal_head(bh);
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
	jh->b_transaction = transaction;

	switch (jlist) {
	case BJ_None:
		J_ASSERT_JH(jh, !jh->b_committed_data);
		J_ASSERT_JH(jh, !jh->b_frozen_data);
		return;
	case BJ_Metadata:
		transaction->t_nr_buffers++;
		list = &transaction->t_buffers;
		break;
	case BJ_Forget:
		list = &transaction->t_forget;
		break;
	case BJ_Shadow:
		list = &transaction->t_shadow_list;
		break;
	case BJ_Reserved:
		list = &transaction->t_reserved_list;
		break;
	}

	__blist_add_buffer(list, jh);
	jh->b_jlist = jlist;

	if (was_dirty)
		set_buffer_jbddirty(bh);
}

2343
void jbd2_journal_file_buffer(struct journal_head *jh,
2344 2345 2346 2347
				transaction_t *transaction, int jlist)
{
	jbd_lock_bh_state(jh2bh(jh));
	spin_lock(&transaction->t_journal->j_list_lock);
2348
	__jbd2_journal_file_buffer(jh, transaction, jlist);
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
	spin_unlock(&transaction->t_journal->j_list_lock);
	jbd_unlock_bh_state(jh2bh(jh));
}

/*
 * Remove a buffer from its current buffer list in preparation for
 * dropping it from its current transaction entirely.  If the buffer has
 * already started to be used by a subsequent transaction, refile the
 * buffer on that transaction's metadata list.
 *
2359
 * Called under j_list_lock
2360
 * Called under jbd_lock_bh_state(jh2bh(jh))
2361 2362
 *
 * jh and bh may be already free when this function returns
2363
 */
2364
void __jbd2_journal_refile_buffer(struct journal_head *jh)
2365
{
2366
	int was_dirty, jlist;
2367 2368 2369 2370 2371 2372 2373 2374
	struct buffer_head *bh = jh2bh(jh);

	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
	if (jh->b_transaction)
		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);

	/* If the buffer is now unused, just drop it. */
	if (jh->b_next_transaction == NULL) {
2375
		__jbd2_journal_unfile_buffer(jh);
2376 2377 2378 2379 2380 2381 2382 2383 2384
		return;
	}

	/*
	 * It has been modified by a later transaction: add it to the new
	 * transaction's metadata list.
	 */

	was_dirty = test_clear_buffer_jbddirty(bh);
2385
	__jbd2_journal_temp_unlink_buffer(jh);
2386 2387 2388 2389 2390
	/*
	 * We set b_transaction here because b_next_transaction will inherit
	 * our jh reference and thus __jbd2_journal_file_buffer() must not
	 * take a new one.
	 */
2391 2392
	jh->b_transaction = jh->b_next_transaction;
	jh->b_next_transaction = NULL;
2393 2394 2395 2396 2397 2398 2399
	if (buffer_freed(bh))
		jlist = BJ_Forget;
	else if (jh->b_modified)
		jlist = BJ_Metadata;
	else
		jlist = BJ_Reserved;
	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2400 2401 2402 2403 2404 2405 2406
	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);

	if (was_dirty)
		set_buffer_jbddirty(bh);
}

/*
2407 2408 2409 2410
 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
 * bh reference so that we can safely unlock bh.
 *
 * The jh and bh may be freed by this call.
2411
 */
2412
void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2413 2414 2415
{
	struct buffer_head *bh = jh2bh(jh);

2416 2417
	/* Get reference so that buffer cannot be freed before we unlock it */
	get_bh(bh);
2418 2419
	jbd_lock_bh_state(bh);
	spin_lock(&journal->j_list_lock);
2420
	__jbd2_journal_refile_buffer(jh);
2421 2422 2423 2424
	jbd_unlock_bh_state(bh);
	spin_unlock(&journal->j_list_lock);
	__brelse(bh);
}
2425 2426 2427 2428 2429 2430 2431

/*
 * File inode in the inode list of the handle's transaction
 */
int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
{
	transaction_t *transaction = handle->h_transaction;
2432
	journal_t *journal;
2433 2434

	if (is_handle_aborted(handle))
2435 2436
		return -EROFS;
	journal = transaction->t_journal;
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463

	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
			transaction->t_tid);

	/*
	 * First check whether inode isn't already on the transaction's
	 * lists without taking the lock. Note that this check is safe
	 * without the lock as we cannot race with somebody removing inode
	 * from the transaction. The reason is that we remove inode from the
	 * transaction only in journal_release_jbd_inode() and when we commit
	 * the transaction. We are guarded from the first case by holding
	 * a reference to the inode. We are safe against the second case
	 * because if jinode->i_transaction == transaction, commit code
	 * cannot touch the transaction because we hold reference to it,
	 * and if jinode->i_next_transaction == transaction, commit code
	 * will only file the inode where we want it.
	 */
	if (jinode->i_transaction == transaction ||
	    jinode->i_next_transaction == transaction)
		return 0;

	spin_lock(&journal->j_list_lock);

	if (jinode->i_transaction == transaction ||
	    jinode->i_next_transaction == transaction)
		goto done;

2464 2465 2466 2467 2468 2469 2470
	/*
	 * We only ever set this variable to 1 so the test is safe. Since
	 * t_need_data_flush is likely to be set, we do the test to save some
	 * cacheline bouncing
	 */
	if (!transaction->t_need_data_flush)
		transaction->t_need_data_flush = 1;
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
	/* On some different transaction's list - should be
	 * the committing one */
	if (jinode->i_transaction) {
		J_ASSERT(jinode->i_next_transaction == NULL);
		J_ASSERT(jinode->i_transaction ==
					journal->j_committing_transaction);
		jinode->i_next_transaction = transaction;
		goto done;
	}
	/* Not on any transaction list... */
	J_ASSERT(!jinode->i_next_transaction);
	jinode->i_transaction = transaction;
	list_add(&jinode->i_list, &transaction->t_inode_list);
done:
	spin_unlock(&journal->j_list_lock);

	return 0;
}

/*
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
 * File truncate and transaction commit interact with each other in a
 * non-trivial way.  If a transaction writing data block A is
 * committing, we cannot discard the data by truncate until we have
 * written them.  Otherwise if we crashed after the transaction with
 * write has committed but before the transaction with truncate has
 * committed, we could see stale data in block A.  This function is a
 * helper to solve this problem.  It starts writeout of the truncated
 * part in case it is in the committing transaction.
 *
 * Filesystem code must call this function when inode is journaled in
 * ordered mode before truncation happens and after the inode has been
 * placed on orphan list with the new inode size. The second condition
 * avoids the race that someone writes new data and we start
 * committing the transaction after this function has been called but
 * before a transaction for truncate is started (and furthermore it
 * allows us to optimize the case where the addition to orphan list
 * happens in the same transaction as write --- we don't have to write
 * any data in such case).
2509
 */
2510 2511
int jbd2_journal_begin_ordered_truncate(journal_t *journal,
					struct jbd2_inode *jinode,
2512 2513
					loff_t new_size)
{
2514
	transaction_t *inode_trans, *commit_trans;
2515 2516
	int ret = 0;

2517 2518
	/* This is a quick check to avoid locking if not necessary */
	if (!jinode->i_transaction)
2519
		goto out;
2520 2521 2522
	/* Locks are here just to force reading of recent values, it is
	 * enough that the transaction was not committing before we started
	 * a transaction adding the inode to orphan list */
2523
	read_lock(&journal->j_state_lock);
2524
	commit_trans = journal->j_committing_transaction;
2525
	read_unlock(&journal->j_state_lock);
2526 2527 2528 2529 2530
	spin_lock(&journal->j_list_lock);
	inode_trans = jinode->i_transaction;
	spin_unlock(&journal->j_list_lock);
	if (inode_trans == commit_trans) {
		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2531 2532 2533 2534 2535 2536 2537
			new_size, LLONG_MAX);
		if (ret)
			jbd2_journal_abort(journal, ret);
	}
out:
	return ret;
}