intel_dpll_mgr.c 49.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright © 2006-2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include "intel_drv.h"

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
struct intel_shared_dpll *
skl_find_link_pll(struct drm_i915_private *dev_priv, int clock)
{
	struct intel_shared_dpll *pll = NULL;
	struct intel_dpll_hw_state dpll_hw_state;
	enum intel_dpll_id i;
	bool found = false;

	if (!skl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state))
		return pll;

	for (i = DPLL_ID_SKL_DPLL1; i <= DPLL_ID_SKL_DPLL3; i++) {
		pll = &dev_priv->shared_dplls[i];

		/* Only want to check enabled timings first */
41
		if (pll->state.crtc_mask == 0)
42 43
			continue;

44 45
		if (memcmp(&dpll_hw_state, &pll->state.hw_state,
			   sizeof(pll->state.hw_state)) == 0) {
46 47 48 49 50 51 52 53 54
			found = true;
			break;
		}
	}

	/* Ok no matching timings, maybe there's a free one? */
	for (i = DPLL_ID_SKL_DPLL1;
	     ((found == false) && (i <= DPLL_ID_SKL_DPLL3)); i++) {
		pll = &dev_priv->shared_dplls[i];
55 56
		if (pll->state.crtc_mask == 0) {
			pll->state.hw_state = dpll_hw_state;
57 58 59 60 61 62 63
			break;
		}
	}

	return pll;
}

64
struct intel_shared_dpll *
65 66
intel_get_shared_dpll_by_id(struct drm_i915_private *dev_priv,
			    enum intel_dpll_id id)
67
{
68 69
	return &dev_priv->shared_dplls[id];
}
70

71 72 73 74 75 76 77 78 79 80 81
enum intel_dpll_id
intel_get_shared_dpll_id(struct drm_i915_private *dev_priv,
			 struct intel_shared_dpll *pll)
{
	if (WARN_ON(pll < dev_priv->shared_dplls||
		    pll > &dev_priv->shared_dplls[dev_priv->num_shared_dpll]))
		return -1;

	return (enum intel_dpll_id) (pll - dev_priv->shared_dplls);
}

82 83 84 85 86 87 88 89 90 91 92
/* For ILK+ */
void assert_shared_dpll(struct drm_i915_private *dev_priv,
			struct intel_shared_dpll *pll,
			bool state)
{
	bool cur_state;
	struct intel_dpll_hw_state hw_state;

	if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
		return;

93
	cur_state = pll->funcs.get_hw_state(dev_priv, pll, &hw_state);
94 95 96 97 98 99 100 101
	I915_STATE_WARN(cur_state != state,
	     "%s assertion failure (expected %s, current %s)\n",
			pll->name, onoff(state), onoff(cur_state));
}

void intel_prepare_shared_dpll(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
102
	struct drm_i915_private *dev_priv = to_i915(dev);
103
	struct intel_shared_dpll *pll = crtc->config->shared_dpll;
104 105 106 107

	if (WARN_ON(pll == NULL))
		return;

108
	mutex_lock(&dev_priv->dpll_lock);
109
	WARN_ON(!pll->state.crtc_mask);
110
	if (!pll->active_mask) {
111 112 113 114
		DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
		WARN_ON(pll->on);
		assert_shared_dpll_disabled(dev_priv, pll);

115
		pll->funcs.prepare(dev_priv, pll);
116
	}
117
	mutex_unlock(&dev_priv->dpll_lock);
118 119 120 121 122 123 124 125 126 127 128 129 130
}

/**
 * intel_enable_shared_dpll - enable PCH PLL
 * @dev_priv: i915 private structure
 * @pipe: pipe PLL to enable
 *
 * The PCH PLL needs to be enabled before the PCH transcoder, since it
 * drives the transcoder clock.
 */
void intel_enable_shared_dpll(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
131
	struct drm_i915_private *dev_priv = to_i915(dev);
132
	struct intel_shared_dpll *pll = crtc->config->shared_dpll;
133
	unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
134
	unsigned old_mask;
135 136 137 138

	if (WARN_ON(pll == NULL))
		return;

139 140 141
	mutex_lock(&dev_priv->dpll_lock);
	old_mask = pll->active_mask;

142
	if (WARN_ON(!(pll->state.crtc_mask & crtc_mask)) ||
143
	    WARN_ON(pll->active_mask & crtc_mask))
144
		goto out;
145

146 147 148 149
	pll->active_mask |= crtc_mask;

	DRM_DEBUG_KMS("enable %s (active %x, on? %d) for crtc %d\n",
		      pll->name, pll->active_mask, pll->on,
150 151
		      crtc->base.base.id);

152
	if (old_mask) {
153 154
		WARN_ON(!pll->on);
		assert_shared_dpll_enabled(dev_priv, pll);
155
		goto out;
156 157 158 159
	}
	WARN_ON(pll->on);

	DRM_DEBUG_KMS("enabling %s\n", pll->name);
160
	pll->funcs.enable(dev_priv, pll);
161
	pll->on = true;
162 163 164

out:
	mutex_unlock(&dev_priv->dpll_lock);
165 166 167 168
}

void intel_disable_shared_dpll(struct intel_crtc *crtc)
{
169
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
170
	struct intel_shared_dpll *pll = crtc->config->shared_dpll;
171
	unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
172 173

	/* PCH only available on ILK+ */
174
	if (INTEL_GEN(dev_priv) < 5)
175 176 177 178 179
		return;

	if (pll == NULL)
		return;

180
	mutex_lock(&dev_priv->dpll_lock);
181
	if (WARN_ON(!(pll->active_mask & crtc_mask)))
182
		goto out;
183

184 185
	DRM_DEBUG_KMS("disable %s (active %x, on? %d) for crtc %d\n",
		      pll->name, pll->active_mask, pll->on,
186 187 188 189
		      crtc->base.base.id);

	assert_shared_dpll_enabled(dev_priv, pll);
	WARN_ON(!pll->on);
190 191 192

	pll->active_mask &= ~crtc_mask;
	if (pll->active_mask)
193
		goto out;
194 195

	DRM_DEBUG_KMS("disabling %s\n", pll->name);
196
	pll->funcs.disable(dev_priv, pll);
197
	pll->on = false;
198 199 200

out:
	mutex_unlock(&dev_priv->dpll_lock);
201 202
}

203
static struct intel_shared_dpll *
204
intel_find_shared_dpll(struct intel_crtc *crtc,
205 206 207
		       struct intel_crtc_state *crtc_state,
		       enum intel_dpll_id range_min,
		       enum intel_dpll_id range_max)
208
{
209
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
210
	struct intel_shared_dpll *pll;
211
	struct intel_shared_dpll_state *shared_dpll;
212
	enum intel_dpll_id i;
213

214 215
	shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);

216
	for (i = range_min; i <= range_max; i++) {
217 218 219 220 221 222 223 224 225
		pll = &dev_priv->shared_dplls[i];

		/* Only want to check enabled timings first */
		if (shared_dpll[i].crtc_mask == 0)
			continue;

		if (memcmp(&crtc_state->dpll_hw_state,
			   &shared_dpll[i].hw_state,
			   sizeof(crtc_state->dpll_hw_state)) == 0) {
226 227
			DRM_DEBUG_KMS("[CRTC:%d:%s] sharing existing %s (crtc mask 0x%08x, active %x)\n",
				      crtc->base.base.id, crtc->base.name, pll->name,
228
				      shared_dpll[i].crtc_mask,
229
				      pll->active_mask);
230
			return pll;
231 232 233 234
		}
	}

	/* Ok no matching timings, maybe there's a free one? */
235
	for (i = range_min; i <= range_max; i++) {
236 237
		pll = &dev_priv->shared_dplls[i];
		if (shared_dpll[i].crtc_mask == 0) {
238 239
			DRM_DEBUG_KMS("[CRTC:%d:%s] allocated %s\n",
				      crtc->base.base.id, crtc->base.name, pll->name);
240
			return pll;
241 242 243
		}
	}

244
	return NULL;
245 246
}

247 248 249
static void
intel_reference_shared_dpll(struct intel_shared_dpll *pll,
			    struct intel_crtc_state *crtc_state)
250
{
251
	struct intel_shared_dpll_state *shared_dpll;
252 253
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
	enum intel_dpll_id i = pll->id;
254 255 256

	shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);

257 258 259 260
	if (shared_dpll[i].crtc_mask == 0)
		shared_dpll[i].hw_state =
			crtc_state->dpll_hw_state;

261
	crtc_state->shared_dpll = pll;
262 263 264
	DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
			 pipe_name(crtc->pipe));

265
	shared_dpll[pll->id].crtc_mask |= 1 << crtc->pipe;
266 267
}

268
void intel_shared_dpll_swap_state(struct drm_atomic_state *state)
269 270
{
	struct drm_i915_private *dev_priv = to_i915(state->dev);
271
	struct intel_shared_dpll_state *shared_dpll;
272 273 274 275 276 277 278 279
	struct intel_shared_dpll *pll;
	enum intel_dpll_id i;

	if (!to_intel_atomic_state(state)->dpll_set)
		return;

	shared_dpll = to_intel_atomic_state(state)->shared_dpll;
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
280
		struct intel_shared_dpll_state tmp;
281

282
		pll = &dev_priv->shared_dplls[i];
283

284 285
		tmp = pll->state;
		pll->state = shared_dpll[i];
286
		shared_dpll[i] = tmp;
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	}
}

static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
				      struct intel_shared_dpll *pll,
				      struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;

	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	val = I915_READ(PCH_DPLL(pll->id));
	hw_state->dpll = val;
	hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
	hw_state->fp1 = I915_READ(PCH_FP1(pll->id));

	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);

	return val & DPLL_VCO_ENABLE;
}

309 310
static void ibx_pch_dpll_prepare(struct drm_i915_private *dev_priv,
				 struct intel_shared_dpll *pll)
311
{
312 313
	I915_WRITE(PCH_FP0(pll->id), pll->state.hw_state.fp0);
	I915_WRITE(PCH_FP1(pll->id), pll->state.hw_state.fp1);
314 315 316 317 318 319 320
}

static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
{
	u32 val;
	bool enabled;

321
	I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
322 323 324 325 326 327 328 329 330 331 332 333 334

	val = I915_READ(PCH_DREF_CONTROL);
	enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
			    DREF_SUPERSPREAD_SOURCE_MASK));
	I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
}

static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	/* PCH refclock must be enabled first */
	ibx_assert_pch_refclk_enabled(dev_priv);

335
	I915_WRITE(PCH_DPLL(pll->id), pll->state.hw_state.dpll);
336 337 338 339 340 341 342 343 344 345

	/* Wait for the clocks to stabilize. */
	POSTING_READ(PCH_DPLL(pll->id));
	udelay(150);

	/* The pixel multiplier can only be updated once the
	 * DPLL is enabled and the clocks are stable.
	 *
	 * So write it again.
	 */
346
	I915_WRITE(PCH_DPLL(pll->id), pll->state.hw_state.dpll);
347 348 349 350 351 352 353
	POSTING_READ(PCH_DPLL(pll->id));
	udelay(200);
}

static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
				 struct intel_shared_dpll *pll)
{
354
	struct drm_device *dev = &dev_priv->drm;
355 356 357 358
	struct intel_crtc *crtc;

	/* Make sure no transcoder isn't still depending on us. */
	for_each_intel_crtc(dev, crtc) {
359
		if (crtc->config->shared_dpll == pll)
360 361 362 363 364 365 366 367
			assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
	}

	I915_WRITE(PCH_DPLL(pll->id), 0);
	POSTING_READ(PCH_DPLL(pll->id));
	udelay(200);
}

368
static struct intel_shared_dpll *
369 370
ibx_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
	     struct intel_encoder *encoder)
371 372 373 374 375 376 377 378 379 380
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_shared_dpll *pll;
	enum intel_dpll_id i;

	if (HAS_PCH_IBX(dev_priv)) {
		/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
		i = (enum intel_dpll_id) crtc->pipe;
		pll = &dev_priv->shared_dplls[i];

381 382
		DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
			      crtc->base.base.id, crtc->base.name, pll->name);
383 384 385 386 387 388
	} else {
		pll = intel_find_shared_dpll(crtc, crtc_state,
					     DPLL_ID_PCH_PLL_A,
					     DPLL_ID_PCH_PLL_B);
	}

389 390 391
	if (!pll)
		return NULL;

392 393 394 395 396 397
	/* reference the pll */
	intel_reference_shared_dpll(pll, crtc_state);

	return pll;
}

398
static const struct intel_shared_dpll_funcs ibx_pch_dpll_funcs = {
399
	.prepare = ibx_pch_dpll_prepare,
400 401 402
	.enable = ibx_pch_dpll_enable,
	.disable = ibx_pch_dpll_disable,
	.get_hw_state = ibx_pch_dpll_get_hw_state,
403 404
};

405 406 407
static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
			       struct intel_shared_dpll *pll)
{
408
	I915_WRITE(WRPLL_CTL(pll->id), pll->state.hw_state.wrpll);
409 410 411 412 413 414 415
	POSTING_READ(WRPLL_CTL(pll->id));
	udelay(20);
}

static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
416
	I915_WRITE(SPLL_CTL, pll->state.hw_state.spll);
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
	POSTING_READ(SPLL_CTL);
	udelay(20);
}

static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
				  struct intel_shared_dpll *pll)
{
	uint32_t val;

	val = I915_READ(WRPLL_CTL(pll->id));
	I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
	POSTING_READ(WRPLL_CTL(pll->id));
}

static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
				 struct intel_shared_dpll *pll)
{
	uint32_t val;

	val = I915_READ(SPLL_CTL);
	I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
	POSTING_READ(SPLL_CTL);
}

static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
				       struct intel_shared_dpll *pll,
				       struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;

	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	val = I915_READ(WRPLL_CTL(pll->id));
	hw_state->wrpll = val;

	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);

	return val & WRPLL_PLL_ENABLE;
}

static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
				      struct intel_shared_dpll *pll,
				      struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;

	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	val = I915_READ(SPLL_CTL);
	hw_state->spll = val;

	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);

	return val & SPLL_PLL_ENABLE;
}

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
#define LC_FREQ 2700
#define LC_FREQ_2K U64_C(LC_FREQ * 2000)

#define P_MIN 2
#define P_MAX 64
#define P_INC 2

/* Constraints for PLL good behavior */
#define REF_MIN 48
#define REF_MAX 400
#define VCO_MIN 2400
#define VCO_MAX 4800

struct hsw_wrpll_rnp {
	unsigned p, n2, r2;
};

static unsigned hsw_wrpll_get_budget_for_freq(int clock)
{
	unsigned budget;

	switch (clock) {
	case 25175000:
	case 25200000:
	case 27000000:
	case 27027000:
	case 37762500:
	case 37800000:
	case 40500000:
	case 40541000:
	case 54000000:
	case 54054000:
	case 59341000:
	case 59400000:
	case 72000000:
	case 74176000:
	case 74250000:
	case 81000000:
	case 81081000:
	case 89012000:
	case 89100000:
	case 108000000:
	case 108108000:
	case 111264000:
	case 111375000:
	case 148352000:
	case 148500000:
	case 162000000:
	case 162162000:
	case 222525000:
	case 222750000:
	case 296703000:
	case 297000000:
		budget = 0;
		break;
	case 233500000:
	case 245250000:
	case 247750000:
	case 253250000:
	case 298000000:
		budget = 1500;
		break;
	case 169128000:
	case 169500000:
	case 179500000:
	case 202000000:
		budget = 2000;
		break;
	case 256250000:
	case 262500000:
	case 270000000:
	case 272500000:
	case 273750000:
	case 280750000:
	case 281250000:
	case 286000000:
	case 291750000:
		budget = 4000;
		break;
	case 267250000:
	case 268500000:
		budget = 5000;
		break;
	default:
		budget = 1000;
		break;
	}

	return budget;
}

static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
				 unsigned r2, unsigned n2, unsigned p,
				 struct hsw_wrpll_rnp *best)
{
	uint64_t a, b, c, d, diff, diff_best;

	/* No best (r,n,p) yet */
	if (best->p == 0) {
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
		return;
	}

	/*
	 * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
	 * freq2k.
	 *
	 * delta = 1e6 *
	 *	   abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
	 *	   freq2k;
	 *
	 * and we would like delta <= budget.
	 *
	 * If the discrepancy is above the PPM-based budget, always prefer to
	 * improve upon the previous solution.  However, if you're within the
	 * budget, try to maximize Ref * VCO, that is N / (P * R^2).
	 */
	a = freq2k * budget * p * r2;
	b = freq2k * budget * best->p * best->r2;
	diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
	diff_best = abs_diff(freq2k * best->p * best->r2,
			     LC_FREQ_2K * best->n2);
	c = 1000000 * diff;
	d = 1000000 * diff_best;

	if (a < c && b < d) {
		/* If both are above the budget, pick the closer */
		if (best->p * best->r2 * diff < p * r2 * diff_best) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	} else if (a >= c && b < d) {
		/* If A is below the threshold but B is above it?  Update. */
		best->p = p;
		best->n2 = n2;
		best->r2 = r2;
	} else if (a >= c && b >= d) {
		/* Both are below the limit, so pick the higher n2/(r2*r2) */
		if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
			best->p = p;
			best->n2 = n2;
			best->r2 = r2;
		}
	}
	/* Otherwise a < c && b >= d, do nothing */
}

static void
hsw_ddi_calculate_wrpll(int clock /* in Hz */,
			unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
{
	uint64_t freq2k;
	unsigned p, n2, r2;
	struct hsw_wrpll_rnp best = { 0, 0, 0 };
	unsigned budget;

	freq2k = clock / 100;

	budget = hsw_wrpll_get_budget_for_freq(clock);

	/* Special case handling for 540 pixel clock: bypass WR PLL entirely
	 * and directly pass the LC PLL to it. */
	if (freq2k == 5400000) {
		*n2_out = 2;
		*p_out = 1;
		*r2_out = 2;
		return;
	}

	/*
	 * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
	 * the WR PLL.
	 *
	 * We want R so that REF_MIN <= Ref <= REF_MAX.
	 * Injecting R2 = 2 * R gives:
	 *   REF_MAX * r2 > LC_FREQ * 2 and
	 *   REF_MIN * r2 < LC_FREQ * 2
	 *
	 * Which means the desired boundaries for r2 are:
	 *  LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
	 *
	 */
	for (r2 = LC_FREQ * 2 / REF_MAX + 1;
	     r2 <= LC_FREQ * 2 / REF_MIN;
	     r2++) {

		/*
		 * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
		 *
		 * Once again we want VCO_MIN <= VCO <= VCO_MAX.
		 * Injecting R2 = 2 * R and N2 = 2 * N, we get:
		 *   VCO_MAX * r2 > n2 * LC_FREQ and
		 *   VCO_MIN * r2 < n2 * LC_FREQ)
		 *
		 * Which means the desired boundaries for n2 are:
		 * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
		 */
		for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
		     n2 <= VCO_MAX * r2 / LC_FREQ;
		     n2++) {

			for (p = P_MIN; p <= P_MAX; p += P_INC)
				hsw_wrpll_update_rnp(freq2k, budget,
						     r2, n2, p, &best);
		}
	}

	*n2_out = best.n2;
	*p_out = best.p;
	*r2_out = best.r2;
}

M
Manasi Navare 已提交
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
static struct intel_shared_dpll *hsw_ddi_hdmi_get_dpll(int clock,
						       struct intel_crtc *crtc,
						       struct intel_crtc_state *crtc_state)
{
	struct intel_shared_dpll *pll;
	uint32_t val;
	unsigned int p, n2, r2;

	hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);

	val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
	      WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
	      WRPLL_DIVIDER_POST(p);

	crtc_state->dpll_hw_state.wrpll = val;

	pll = intel_find_shared_dpll(crtc, crtc_state,
				     DPLL_ID_WRPLL1, DPLL_ID_WRPLL2);

	if (!pll)
		return NULL;

	return pll;
}

struct intel_shared_dpll *hsw_ddi_dp_get_dpll(struct intel_encoder *encoder,
					      int clock)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_shared_dpll *pll;
	enum intel_dpll_id pll_id;

	switch (clock / 2) {
	case 81000:
		pll_id = DPLL_ID_LCPLL_810;
		break;
	case 135000:
		pll_id = DPLL_ID_LCPLL_1350;
		break;
	case 270000:
		pll_id = DPLL_ID_LCPLL_2700;
		break;
	default:
		DRM_DEBUG_KMS("Invalid clock for DP: %d\n", clock);
		return NULL;
	}

	pll = intel_get_shared_dpll_by_id(dev_priv, pll_id);

	if (!pll)
		return NULL;

	return pll;
}

745
static struct intel_shared_dpll *
746 747
hsw_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
	     struct intel_encoder *encoder)
748 749
{
	struct intel_shared_dpll *pll;
750
	int clock = crtc_state->port_clock;
751

752 753 754
	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));

755
	if (encoder->type == INTEL_OUTPUT_HDMI) {
M
Manasi Navare 已提交
756
		pll = hsw_ddi_hdmi_get_dpll(clock, crtc, crtc_state);
757

758
	} else if (encoder->type == INTEL_OUTPUT_DP ||
759 760
		   encoder->type == INTEL_OUTPUT_DP_MST ||
		   encoder->type == INTEL_OUTPUT_EDP) {
M
Manasi Navare 已提交
761
		pll = hsw_ddi_dp_get_dpll(encoder, clock);
762

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
	} else if (encoder->type == INTEL_OUTPUT_ANALOG) {
		if (WARN_ON(crtc_state->port_clock / 2 != 135000))
			return NULL;

		crtc_state->dpll_hw_state.spll =
			SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;

		pll = intel_find_shared_dpll(crtc, crtc_state,
					     DPLL_ID_SPLL, DPLL_ID_SPLL);
	} else {
		return NULL;
	}

	if (!pll)
		return NULL;

	intel_reference_shared_dpll(pll, crtc_state);
780 781 782 783

	return pll;
}

784 785 786 787
static const struct intel_shared_dpll_funcs hsw_ddi_wrpll_funcs = {
	.enable = hsw_ddi_wrpll_enable,
	.disable = hsw_ddi_wrpll_disable,
	.get_hw_state = hsw_ddi_wrpll_get_hw_state,
788 789
};

790 791 792 793
static const struct intel_shared_dpll_funcs hsw_ddi_spll_funcs = {
	.enable = hsw_ddi_spll_enable,
	.disable = hsw_ddi_spll_disable,
	.get_hw_state = hsw_ddi_spll_get_hw_state,
794 795
};

796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
static void hsw_ddi_lcpll_enable(struct drm_i915_private *dev_priv,
				 struct intel_shared_dpll *pll)
{
}

static void hsw_ddi_lcpll_disable(struct drm_i915_private *dev_priv,
				  struct intel_shared_dpll *pll)
{
}

static bool hsw_ddi_lcpll_get_hw_state(struct drm_i915_private *dev_priv,
				       struct intel_shared_dpll *pll,
				       struct intel_dpll_hw_state *hw_state)
{
	return true;
}

static const struct intel_shared_dpll_funcs hsw_ddi_lcpll_funcs = {
	.enable = hsw_ddi_lcpll_enable,
	.disable = hsw_ddi_lcpll_disable,
	.get_hw_state = hsw_ddi_lcpll_get_hw_state,
};

819 820 821 822 823
struct skl_dpll_regs {
	i915_reg_t ctl, cfgcr1, cfgcr2;
};

/* this array is indexed by the *shared* pll id */
824 825 826 827 828 829
static const struct skl_dpll_regs skl_dpll_regs[4] = {
	{
		/* DPLL 0 */
		.ctl = LCPLL1_CTL,
		/* DPLL 0 doesn't support HDMI mode */
	},
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
	{
		/* DPLL 1 */
		.ctl = LCPLL2_CTL,
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
	},
	{
		/* DPLL 2 */
		.ctl = WRPLL_CTL(0),
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
	},
	{
		/* DPLL 3 */
		.ctl = WRPLL_CTL(1),
		.cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
		.cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
	},
};

850 851
static void skl_ddi_pll_write_ctrl1(struct drm_i915_private *dev_priv,
				    struct intel_shared_dpll *pll)
852 853 854 855 856
{
	uint32_t val;

	val = I915_READ(DPLL_CTRL1);

857 858
	val &= ~(DPLL_CTRL1_HDMI_MODE(pll->id) | DPLL_CTRL1_SSC(pll->id) |
		 DPLL_CTRL1_LINK_RATE_MASK(pll->id));
859
	val |= pll->state.hw_state.ctrl1 << (pll->id * 6);
860 861 862

	I915_WRITE(DPLL_CTRL1, val);
	POSTING_READ(DPLL_CTRL1);
863 864 865 866 867 868 869 870
}

static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
			       struct intel_shared_dpll *pll)
{
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	skl_ddi_pll_write_ctrl1(dev_priv, pll);
871

872 873
	I915_WRITE(regs[pll->id].cfgcr1, pll->state.hw_state.cfgcr1);
	I915_WRITE(regs[pll->id].cfgcr2, pll->state.hw_state.cfgcr2);
874 875 876 877 878 879 880
	POSTING_READ(regs[pll->id].cfgcr1);
	POSTING_READ(regs[pll->id].cfgcr2);

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);

881 882 883 884 885
	if (intel_wait_for_register(dev_priv,
				    DPLL_STATUS,
				    DPLL_LOCK(pll->id),
				    DPLL_LOCK(pll->id),
				    5))
886 887 888 889 890 891 892
		DRM_ERROR("DPLL %d not locked\n", pll->id);
}

static void skl_ddi_dpll0_enable(struct drm_i915_private *dev_priv,
				 struct intel_shared_dpll *pll)
{
	skl_ddi_pll_write_ctrl1(dev_priv, pll);
893 894 895 896 897 898 899 900 901 902 903 904 905
}

static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	const struct skl_dpll_regs *regs = skl_dpll_regs;

	/* the enable bit is always bit 31 */
	I915_WRITE(regs[pll->id].ctl,
		   I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
	POSTING_READ(regs[pll->id].ctl);
}

906 907 908 909 910
static void skl_ddi_dpll0_disable(struct drm_i915_private *dev_priv,
				  struct intel_shared_dpll *pll)
{
}

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
				     struct intel_shared_dpll *pll,
				     struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;
	const struct skl_dpll_regs *regs = skl_dpll_regs;
	bool ret;

	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	ret = false;

	val = I915_READ(regs[pll->id].ctl);
	if (!(val & LCPLL_PLL_ENABLE))
		goto out;

	val = I915_READ(DPLL_CTRL1);
929
	hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f;
930 931

	/* avoid reading back stale values if HDMI mode is not enabled */
932
	if (val & DPLL_CTRL1_HDMI_MODE(pll->id)) {
933 934 935 936 937 938 939 940 941 942 943
		hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
		hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
	}
	ret = true;

out:
	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);

	return ret;
}

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
static bool skl_ddi_dpll0_get_hw_state(struct drm_i915_private *dev_priv,
				       struct intel_shared_dpll *pll,
				       struct intel_dpll_hw_state *hw_state)
{
	uint32_t val;
	const struct skl_dpll_regs *regs = skl_dpll_regs;
	bool ret;

	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	ret = false;

	/* DPLL0 is always enabled since it drives CDCLK */
	val = I915_READ(regs[pll->id].ctl);
	if (WARN_ON(!(val & LCPLL_PLL_ENABLE)))
		goto out;

	val = I915_READ(DPLL_CTRL1);
	hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f;

	ret = true;

out:
	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);

	return ret;
}

973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
struct skl_wrpll_context {
	uint64_t min_deviation;		/* current minimal deviation */
	uint64_t central_freq;		/* chosen central freq */
	uint64_t dco_freq;		/* chosen dco freq */
	unsigned int p;			/* chosen divider */
};

static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
{
	memset(ctx, 0, sizeof(*ctx));

	ctx->min_deviation = U64_MAX;
}

/* DCO freq must be within +1%/-6%  of the DCO central freq */
#define SKL_DCO_MAX_PDEVIATION	100
#define SKL_DCO_MAX_NDEVIATION	600

static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
				  uint64_t central_freq,
				  uint64_t dco_freq,
				  unsigned int divider)
{
	uint64_t deviation;

	deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
			      central_freq);

	/* positive deviation */
	if (dco_freq >= central_freq) {
		if (deviation < SKL_DCO_MAX_PDEVIATION &&
		    deviation < ctx->min_deviation) {
			ctx->min_deviation = deviation;
			ctx->central_freq = central_freq;
			ctx->dco_freq = dco_freq;
			ctx->p = divider;
		}
	/* negative deviation */
	} else if (deviation < SKL_DCO_MAX_NDEVIATION &&
		   deviation < ctx->min_deviation) {
		ctx->min_deviation = deviation;
		ctx->central_freq = central_freq;
		ctx->dco_freq = dco_freq;
		ctx->p = divider;
	}
}

static void skl_wrpll_get_multipliers(unsigned int p,
				      unsigned int *p0 /* out */,
				      unsigned int *p1 /* out */,
				      unsigned int *p2 /* out */)
{
	/* even dividers */
	if (p % 2 == 0) {
		unsigned int half = p / 2;

		if (half == 1 || half == 2 || half == 3 || half == 5) {
			*p0 = 2;
			*p1 = 1;
			*p2 = half;
		} else if (half % 2 == 0) {
			*p0 = 2;
			*p1 = half / 2;
			*p2 = 2;
		} else if (half % 3 == 0) {
			*p0 = 3;
			*p1 = half / 3;
			*p2 = 2;
		} else if (half % 7 == 0) {
			*p0 = 7;
			*p1 = half / 7;
			*p2 = 2;
		}
	} else if (p == 3 || p == 9) {  /* 3, 5, 7, 9, 15, 21, 35 */
		*p0 = 3;
		*p1 = 1;
		*p2 = p / 3;
	} else if (p == 5 || p == 7) {
		*p0 = p;
		*p1 = 1;
		*p2 = 1;
	} else if (p == 15) {
		*p0 = 3;
		*p1 = 1;
		*p2 = 5;
	} else if (p == 21) {
		*p0 = 7;
		*p1 = 1;
		*p2 = 3;
	} else if (p == 35) {
		*p0 = 7;
		*p1 = 1;
		*p2 = 5;
	}
}

struct skl_wrpll_params {
	uint32_t        dco_fraction;
	uint32_t        dco_integer;
	uint32_t        qdiv_ratio;
	uint32_t        qdiv_mode;
	uint32_t        kdiv;
	uint32_t        pdiv;
	uint32_t        central_freq;
};

static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
				      uint64_t afe_clock,
				      uint64_t central_freq,
				      uint32_t p0, uint32_t p1, uint32_t p2)
{
	uint64_t dco_freq;

	switch (central_freq) {
	case 9600000000ULL:
		params->central_freq = 0;
		break;
	case 9000000000ULL:
		params->central_freq = 1;
		break;
	case 8400000000ULL:
		params->central_freq = 3;
	}

	switch (p0) {
	case 1:
		params->pdiv = 0;
		break;
	case 2:
		params->pdiv = 1;
		break;
	case 3:
		params->pdiv = 2;
		break;
	case 7:
		params->pdiv = 4;
		break;
	default:
		WARN(1, "Incorrect PDiv\n");
	}

	switch (p2) {
	case 5:
		params->kdiv = 0;
		break;
	case 2:
		params->kdiv = 1;
		break;
	case 3:
		params->kdiv = 2;
		break;
	case 1:
		params->kdiv = 3;
		break;
	default:
		WARN(1, "Incorrect KDiv\n");
	}

	params->qdiv_ratio = p1;
	params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;

	dco_freq = p0 * p1 * p2 * afe_clock;

	/*
	 * Intermediate values are in Hz.
	 * Divide by MHz to match bsepc
	 */
	params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
	params->dco_fraction =
		div_u64((div_u64(dco_freq, 24) -
			 params->dco_integer * MHz(1)) * 0x8000, MHz(1));
}

static bool
skl_ddi_calculate_wrpll(int clock /* in Hz */,
			struct skl_wrpll_params *wrpll_params)
{
	uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
	uint64_t dco_central_freq[3] = {8400000000ULL,
					9000000000ULL,
					9600000000ULL};
	static const int even_dividers[] = {  4,  6,  8, 10, 12, 14, 16, 18, 20,
					     24, 28, 30, 32, 36, 40, 42, 44,
					     48, 52, 54, 56, 60, 64, 66, 68,
					     70, 72, 76, 78, 80, 84, 88, 90,
					     92, 96, 98 };
	static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
	static const struct {
		const int *list;
		int n_dividers;
	} dividers[] = {
		{ even_dividers, ARRAY_SIZE(even_dividers) },
		{ odd_dividers, ARRAY_SIZE(odd_dividers) },
	};
	struct skl_wrpll_context ctx;
	unsigned int dco, d, i;
	unsigned int p0, p1, p2;

	skl_wrpll_context_init(&ctx);

	for (d = 0; d < ARRAY_SIZE(dividers); d++) {
		for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
			for (i = 0; i < dividers[d].n_dividers; i++) {
				unsigned int p = dividers[d].list[i];
				uint64_t dco_freq = p * afe_clock;

				skl_wrpll_try_divider(&ctx,
						      dco_central_freq[dco],
						      dco_freq,
						      p);
				/*
				 * Skip the remaining dividers if we're sure to
				 * have found the definitive divider, we can't
				 * improve a 0 deviation.
				 */
				if (ctx.min_deviation == 0)
					goto skip_remaining_dividers;
			}
		}

skip_remaining_dividers:
		/*
		 * If a solution is found with an even divider, prefer
		 * this one.
		 */
		if (d == 0 && ctx.p)
			break;
	}

	if (!ctx.p) {
		DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
		return false;
	}

	/*
	 * gcc incorrectly analyses that these can be used without being
	 * initialized. To be fair, it's hard to guess.
	 */
	p0 = p1 = p2 = 0;
	skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
	skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
				  p0, p1, p2);

	return true;
}

J
Jim Bride 已提交
1219 1220 1221
static bool skl_ddi_hdmi_pll_dividers(struct intel_crtc *crtc,
				      struct intel_crtc_state *crtc_state,
				      int clock)
1222
{
1223
	uint32_t ctrl1, cfgcr1, cfgcr2;
J
Jim Bride 已提交
1224
	struct skl_wrpll_params wrpll_params = { 0, };
1225 1226 1227 1228 1229 1230 1231

	/*
	 * See comment in intel_dpll_hw_state to understand why we always use 0
	 * as the DPLL id in this function.
	 */
	ctrl1 = DPLL_CTRL1_OVERRIDE(0);

J
Jim Bride 已提交
1232
	ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
1233

J
Jim Bride 已提交
1234 1235
	if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
		return false;
1236

J
Jim Bride 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
		DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
		wrpll_params.dco_integer;

	cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
		DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
		DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
		DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
		wrpll_params.central_freq;

	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));

	crtc_state->dpll_hw_state.ctrl1 = ctrl1;
	crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
	crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
	return true;
}


bool skl_ddi_dp_set_dpll_hw_state(int clock,
				  struct intel_dpll_hw_state *dpll_hw_state)
{
	uint32_t ctrl1;

	/*
	 * See comment in intel_dpll_hw_state to understand why we always use 0
	 * as the DPLL id in this function.
	 */
	ctrl1 = DPLL_CTRL1_OVERRIDE(0);
	switch (clock / 2) {
	case 81000:
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
		break;
	case 135000:
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
		break;
	case 270000:
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
		break;
		/* eDP 1.4 rates */
	case 162000:
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, 0);
		break;
	case 108000:
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 0);
		break;
	case 216000:
		ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, 0);
		break;
	}
1288

J
Jim Bride 已提交
1289 1290 1291
	dpll_hw_state->ctrl1 = ctrl1;
	return true;
}
1292

J
Jim Bride 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
static struct intel_shared_dpll *
skl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
	     struct intel_encoder *encoder)
{
	struct intel_shared_dpll *pll;
	int clock = crtc_state->port_clock;
	bool bret;
	struct intel_dpll_hw_state dpll_hw_state;

	memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));

	if (encoder->type == INTEL_OUTPUT_HDMI) {
		bret = skl_ddi_hdmi_pll_dividers(crtc, crtc_state, clock);
		if (!bret) {
			DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n");
			return NULL;
		}
1310
	} else if (encoder->type == INTEL_OUTPUT_DP ||
1311 1312
		   encoder->type == INTEL_OUTPUT_DP_MST ||
		   encoder->type == INTEL_OUTPUT_EDP) {
J
Jim Bride 已提交
1313 1314 1315 1316
		bret = skl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state);
		if (!bret) {
			DRM_DEBUG_KMS("Could not set DP dpll HW state.\n");
			return NULL;
1317
		}
J
Jim Bride 已提交
1318
		crtc_state->dpll_hw_state = dpll_hw_state;
1319 1320 1321 1322
	} else {
		return NULL;
	}

1323 1324 1325 1326 1327 1328 1329 1330
	if (encoder->type == INTEL_OUTPUT_EDP)
		pll = intel_find_shared_dpll(crtc, crtc_state,
					     DPLL_ID_SKL_DPLL0,
					     DPLL_ID_SKL_DPLL0);
	else
		pll = intel_find_shared_dpll(crtc, crtc_state,
					     DPLL_ID_SKL_DPLL1,
					     DPLL_ID_SKL_DPLL3);
1331 1332 1333 1334
	if (!pll)
		return NULL;

	intel_reference_shared_dpll(pll, crtc_state);
1335 1336 1337 1338

	return pll;
}

1339 1340 1341 1342
static const struct intel_shared_dpll_funcs skl_ddi_pll_funcs = {
	.enable = skl_ddi_pll_enable,
	.disable = skl_ddi_pll_disable,
	.get_hw_state = skl_ddi_pll_get_hw_state,
1343 1344
};

1345 1346 1347 1348 1349 1350
static const struct intel_shared_dpll_funcs skl_ddi_dpll0_funcs = {
	.enable = skl_ddi_dpll0_enable,
	.disable = skl_ddi_dpll0_disable,
	.get_hw_state = skl_ddi_dpll0_get_hw_state,
};

1351 1352 1353 1354 1355
static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
				struct intel_shared_dpll *pll)
{
	uint32_t temp;
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
1356 1357 1358
	enum dpio_phy phy;
	enum dpio_channel ch;

1359
	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
1360 1361

	/* Non-SSC reference */
1362 1363
	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp |= PORT_PLL_REF_SEL;
1364 1365
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	if (IS_GEMINILAKE(dev_priv)) {
		temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
		temp |= PORT_PLL_POWER_ENABLE;
		I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);

		if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
				 PORT_PLL_POWER_STATE), 200))
			DRM_ERROR("Power state not set for PLL:%d\n", port);
	}

1376
	/* Disable 10 bit clock */
1377
	temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
1378
	temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
1379
	I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
1380 1381

	/* Write P1 & P2 */
1382
	temp = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch));
1383
	temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
1384
	temp |= pll->state.hw_state.ebb0;
1385
	I915_WRITE(BXT_PORT_PLL_EBB_0(phy, ch), temp);
1386 1387

	/* Write M2 integer */
1388
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 0));
1389
	temp &= ~PORT_PLL_M2_MASK;
1390
	temp |= pll->state.hw_state.pll0;
1391
	I915_WRITE(BXT_PORT_PLL(phy, ch, 0), temp);
1392 1393

	/* Write N */
1394
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 1));
1395
	temp &= ~PORT_PLL_N_MASK;
1396
	temp |= pll->state.hw_state.pll1;
1397
	I915_WRITE(BXT_PORT_PLL(phy, ch, 1), temp);
1398 1399

	/* Write M2 fraction */
1400
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 2));
1401
	temp &= ~PORT_PLL_M2_FRAC_MASK;
1402
	temp |= pll->state.hw_state.pll2;
1403
	I915_WRITE(BXT_PORT_PLL(phy, ch, 2), temp);
1404 1405

	/* Write M2 fraction enable */
1406
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 3));
1407
	temp &= ~PORT_PLL_M2_FRAC_ENABLE;
1408
	temp |= pll->state.hw_state.pll3;
1409
	I915_WRITE(BXT_PORT_PLL(phy, ch, 3), temp);
1410 1411

	/* Write coeff */
1412
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 6));
1413 1414 1415
	temp &= ~PORT_PLL_PROP_COEFF_MASK;
	temp &= ~PORT_PLL_INT_COEFF_MASK;
	temp &= ~PORT_PLL_GAIN_CTL_MASK;
1416
	temp |= pll->state.hw_state.pll6;
1417
	I915_WRITE(BXT_PORT_PLL(phy, ch, 6), temp);
1418 1419

	/* Write calibration val */
1420
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 8));
1421
	temp &= ~PORT_PLL_TARGET_CNT_MASK;
1422
	temp |= pll->state.hw_state.pll8;
1423
	I915_WRITE(BXT_PORT_PLL(phy, ch, 8), temp);
1424

1425
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 9));
1426
	temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
1427
	temp |= pll->state.hw_state.pll9;
1428
	I915_WRITE(BXT_PORT_PLL(phy, ch, 9), temp);
1429

1430
	temp = I915_READ(BXT_PORT_PLL(phy, ch, 10));
1431 1432
	temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
	temp &= ~PORT_PLL_DCO_AMP_MASK;
1433
	temp |= pll->state.hw_state.pll10;
1434
	I915_WRITE(BXT_PORT_PLL(phy, ch, 10), temp);
1435 1436

	/* Recalibrate with new settings */
1437
	temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
1438
	temp |= PORT_PLL_RECALIBRATE;
1439
	I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
1440
	temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
1441
	temp |= pll->state.hw_state.ebb4;
1442
	I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
1443 1444 1445 1446 1447 1448 1449

	/* Enable PLL */
	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp |= PORT_PLL_ENABLE;
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
	POSTING_READ(BXT_PORT_PLL_ENABLE(port));

1450 1451
	if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_LOCK),
			200))
1452 1453
		DRM_ERROR("PLL %d not locked\n", port);

1454 1455 1456 1457 1458 1459
	if (IS_GEMINILAKE(dev_priv)) {
		temp = I915_READ(BXT_PORT_TX_DW5_LN0(phy, ch));
		temp |= DCC_DELAY_RANGE_2;
		I915_WRITE(BXT_PORT_TX_DW5_GRP(phy, ch), temp);
	}

1460 1461 1462 1463
	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers and we pick lanes 0/1 for that.
	 */
1464
	temp = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch));
1465 1466
	temp &= ~LANE_STAGGER_MASK;
	temp &= ~LANESTAGGER_STRAP_OVRD;
1467
	temp |= pll->state.hw_state.pcsdw12;
1468
	I915_WRITE(BXT_PORT_PCS_DW12_GRP(phy, ch), temp);
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
}

static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
					struct intel_shared_dpll *pll)
{
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
	uint32_t temp;

	temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
	temp &= ~PORT_PLL_ENABLE;
	I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
	POSTING_READ(BXT_PORT_PLL_ENABLE(port));
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490

	if (IS_GEMINILAKE(dev_priv)) {
		temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
		temp &= ~PORT_PLL_POWER_ENABLE;
		I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);

		if (wait_for_us(!(I915_READ(BXT_PORT_PLL_ENABLE(port)) &
				PORT_PLL_POWER_STATE), 200))
			DRM_ERROR("Power state not reset for PLL:%d\n", port);
	}
1491 1492 1493 1494 1495 1496 1497 1498 1499
}

static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
					struct intel_shared_dpll *pll,
					struct intel_dpll_hw_state *hw_state)
{
	enum port port = (enum port)pll->id;	/* 1:1 port->PLL mapping */
	uint32_t val;
	bool ret;
1500 1501 1502
	enum dpio_phy phy;
	enum dpio_channel ch;

1503
	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
		return false;

	ret = false;

	val = I915_READ(BXT_PORT_PLL_ENABLE(port));
	if (!(val & PORT_PLL_ENABLE))
		goto out;

1514
	hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch));
1515 1516
	hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;

1517
	hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
1518 1519
	hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;

1520
	hw_state->pll0 = I915_READ(BXT_PORT_PLL(phy, ch, 0));
1521 1522
	hw_state->pll0 &= PORT_PLL_M2_MASK;

1523
	hw_state->pll1 = I915_READ(BXT_PORT_PLL(phy, ch, 1));
1524 1525
	hw_state->pll1 &= PORT_PLL_N_MASK;

1526
	hw_state->pll2 = I915_READ(BXT_PORT_PLL(phy, ch, 2));
1527 1528
	hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;

1529
	hw_state->pll3 = I915_READ(BXT_PORT_PLL(phy, ch, 3));
1530 1531
	hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;

1532
	hw_state->pll6 = I915_READ(BXT_PORT_PLL(phy, ch, 6));
1533 1534 1535 1536
	hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
			  PORT_PLL_INT_COEFF_MASK |
			  PORT_PLL_GAIN_CTL_MASK;

1537
	hw_state->pll8 = I915_READ(BXT_PORT_PLL(phy, ch, 8));
1538 1539
	hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;

1540
	hw_state->pll9 = I915_READ(BXT_PORT_PLL(phy, ch, 9));
1541 1542
	hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;

1543
	hw_state->pll10 = I915_READ(BXT_PORT_PLL(phy, ch, 10));
1544 1545 1546 1547 1548 1549 1550 1551
	hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
			   PORT_PLL_DCO_AMP_MASK;

	/*
	 * While we write to the group register to program all lanes at once we
	 * can read only lane registers. We configure all lanes the same way, so
	 * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
	 */
1552 1553
	hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch));
	if (I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)) != hw_state->pcsdw12)
1554 1555
		DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
				 hw_state->pcsdw12,
1556
				 I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)));
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;

	ret = true;

out:
	intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);

	return ret;
}

1567 1568 1569 1570 1571 1572 1573 1574 1575
/* bxt clock parameters */
struct bxt_clk_div {
	int clock;
	uint32_t p1;
	uint32_t p2;
	uint32_t m2_int;
	uint32_t m2_frac;
	bool m2_frac_en;
	uint32_t n;
1576 1577

	int vco;
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
};

/* pre-calculated values for DP linkrates */
static const struct bxt_clk_div bxt_dp_clk_val[] = {
	{162000, 4, 2, 32, 1677722, 1, 1},
	{270000, 4, 1, 27,       0, 0, 1},
	{540000, 2, 1, 27,       0, 0, 1},
	{216000, 3, 2, 32, 1677722, 1, 1},
	{243000, 4, 1, 24, 1258291, 1, 1},
	{324000, 4, 1, 32, 1677722, 1, 1},
	{432000, 3, 1, 32, 1677722, 1, 1}
};

1591 1592 1593 1594
static bool
bxt_ddi_hdmi_pll_dividers(struct intel_crtc *intel_crtc,
			  struct intel_crtc_state *crtc_state, int clock,
			  struct bxt_clk_div *clk_div)
1595
{
1596
	struct dpll best_clock;
1597

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	/* Calculate HDMI div */
	/*
	 * FIXME: tie the following calculation into
	 * i9xx_crtc_compute_clock
	 */
	if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
		DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
				 clock, pipe_name(intel_crtc->pipe));
		return false;
	}
1608

1609 1610 1611 1612 1613 1614 1615
	clk_div->p1 = best_clock.p1;
	clk_div->p2 = best_clock.p2;
	WARN_ON(best_clock.m1 != 2);
	clk_div->n = best_clock.n;
	clk_div->m2_int = best_clock.m2 >> 22;
	clk_div->m2_frac = best_clock.m2 & ((1 << 22) - 1);
	clk_div->m2_frac_en = clk_div->m2_frac != 0;
1616

1617
	clk_div->vco = best_clock.vco;
1618

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
	return true;
}

static void bxt_ddi_dp_pll_dividers(int clock, struct bxt_clk_div *clk_div)
{
	int i;

	*clk_div = bxt_dp_clk_val[0];
	for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
		if (bxt_dp_clk_val[i].clock == clock) {
			*clk_div = bxt_dp_clk_val[i];
			break;
1631 1632 1633
		}
	}

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
	clk_div->vco = clock * 10 / 2 * clk_div->p1 * clk_div->p2;
}

static bool bxt_ddi_set_dpll_hw_state(int clock,
			  struct bxt_clk_div *clk_div,
			  struct intel_dpll_hw_state *dpll_hw_state)
{
	int vco = clk_div->vco;
	uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
	uint32_t lanestagger;

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	if (vco >= 6200000 && vco <= 6700000) {
		prop_coef = 4;
		int_coef = 9;
		gain_ctl = 3;
		targ_cnt = 8;
	} else if ((vco > 5400000 && vco < 6200000) ||
			(vco >= 4800000 && vco < 5400000)) {
		prop_coef = 5;
		int_coef = 11;
		gain_ctl = 3;
		targ_cnt = 9;
	} else if (vco == 5400000) {
		prop_coef = 3;
		int_coef = 8;
		gain_ctl = 1;
		targ_cnt = 9;
	} else {
		DRM_ERROR("Invalid VCO\n");
1663
		return false;
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	}

	if (clock > 270000)
		lanestagger = 0x18;
	else if (clock > 135000)
		lanestagger = 0x0d;
	else if (clock > 67000)
		lanestagger = 0x07;
	else if (clock > 33000)
		lanestagger = 0x04;
	else
		lanestagger = 0x02;

1677 1678 1679 1680
	dpll_hw_state->ebb0 = PORT_PLL_P1(clk_div->p1) | PORT_PLL_P2(clk_div->p2);
	dpll_hw_state->pll0 = clk_div->m2_int;
	dpll_hw_state->pll1 = PORT_PLL_N(clk_div->n);
	dpll_hw_state->pll2 = clk_div->m2_frac;
1681

1682 1683
	if (clk_div->m2_frac_en)
		dpll_hw_state->pll3 = PORT_PLL_M2_FRAC_ENABLE;
1684

1685 1686
	dpll_hw_state->pll6 = prop_coef | PORT_PLL_INT_COEFF(int_coef);
	dpll_hw_state->pll6 |= PORT_PLL_GAIN_CTL(gain_ctl);
1687

1688
	dpll_hw_state->pll8 = targ_cnt;
1689

1690
	dpll_hw_state->pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
1691

1692
	dpll_hw_state->pll10 =
1693 1694 1695
		PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
		| PORT_PLL_DCO_AMP_OVR_EN_H;

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	dpll_hw_state->ebb4 = PORT_PLL_10BIT_CLK_ENABLE;

	dpll_hw_state->pcsdw12 = LANESTAGGER_STRAP_OVRD | lanestagger;

	return true;
}

bool bxt_ddi_dp_set_dpll_hw_state(int clock,
			  struct intel_dpll_hw_state *dpll_hw_state)
{
	struct bxt_clk_div clk_div = {0};

	bxt_ddi_dp_pll_dividers(clock, &clk_div);

	return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
}

1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
static bool
bxt_ddi_hdmi_set_dpll_hw_state(struct intel_crtc *intel_crtc,
			       struct intel_crtc_state *crtc_state, int clock,
			       struct intel_dpll_hw_state *dpll_hw_state)
{
	struct bxt_clk_div clk_div = { };

	bxt_ddi_hdmi_pll_dividers(intel_crtc, crtc_state, clock, &clk_div);

	return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
}

1725 1726 1727 1728 1729
static struct intel_shared_dpll *
bxt_get_dpll(struct intel_crtc *crtc,
		struct intel_crtc_state *crtc_state,
		struct intel_encoder *encoder)
{
1730
	struct intel_dpll_hw_state dpll_hw_state = { };
1731 1732 1733 1734 1735
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	struct intel_digital_port *intel_dig_port;
	struct intel_shared_dpll *pll;
	int i, clock = crtc_state->port_clock;

1736 1737 1738
	if (encoder->type == INTEL_OUTPUT_HDMI &&
	    !bxt_ddi_hdmi_set_dpll_hw_state(crtc, crtc_state, clock,
					    &dpll_hw_state))
1739
		return NULL;
1740 1741 1742 1743

	if ((encoder->type == INTEL_OUTPUT_DP ||
	     encoder->type == INTEL_OUTPUT_EDP) &&
	    !bxt_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state))
1744
		return NULL;
1745 1746 1747

	memset(&crtc_state->dpll_hw_state, 0,
	       sizeof(crtc_state->dpll_hw_state));
1748

1749
	crtc_state->dpll_hw_state = dpll_hw_state;
1750

1751 1752 1753 1754 1755 1756
	if (encoder->type == INTEL_OUTPUT_DP_MST) {
		struct intel_dp_mst_encoder *intel_mst = enc_to_mst(&encoder->base);

		intel_dig_port = intel_mst->primary;
	} else
		intel_dig_port = enc_to_dig_port(&encoder->base);
1757

1758
	/* 1:1 mapping between ports and PLLs */
1759 1760 1761
	i = (enum intel_dpll_id) intel_dig_port->port;
	pll = intel_get_shared_dpll_by_id(dev_priv, i);

1762 1763
	DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
		      crtc->base.base.id, crtc->base.name, pll->name);
1764 1765 1766 1767 1768 1769

	intel_reference_shared_dpll(pll, crtc_state);

	return pll;
}

1770 1771 1772 1773 1774
static const struct intel_shared_dpll_funcs bxt_ddi_pll_funcs = {
	.enable = bxt_ddi_pll_enable,
	.disable = bxt_ddi_pll_disable,
	.get_hw_state = bxt_ddi_pll_get_hw_state,
};
1775 1776 1777

static void intel_ddi_pll_init(struct drm_device *dev)
{
1778
	struct drm_i915_private *dev_priv = to_i915(dev);
1779

1780 1781
	if (INTEL_GEN(dev_priv) < 9) {
		uint32_t val = I915_READ(LCPLL_CTL);
1782

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
		/*
		 * The LCPLL register should be turned on by the BIOS. For now
		 * let's just check its state and print errors in case
		 * something is wrong.  Don't even try to turn it on.
		 */

		if (val & LCPLL_CD_SOURCE_FCLK)
			DRM_ERROR("CDCLK source is not LCPLL\n");

		if (val & LCPLL_PLL_DISABLE)
			DRM_ERROR("LCPLL is disabled\n");
	}
}

1797 1798 1799 1800
struct dpll_info {
	const char *name;
	const int id;
	const struct intel_shared_dpll_funcs *funcs;
1801
	uint32_t flags;
1802 1803
};

1804 1805 1806 1807
struct intel_dpll_mgr {
	const struct dpll_info *dpll_info;

	struct intel_shared_dpll *(*get_dpll)(struct intel_crtc *crtc,
1808 1809
					      struct intel_crtc_state *crtc_state,
					      struct intel_encoder *encoder);
1810 1811
};

1812
static const struct dpll_info pch_plls[] = {
1813 1814 1815
	{ "PCH DPLL A", DPLL_ID_PCH_PLL_A, &ibx_pch_dpll_funcs, 0 },
	{ "PCH DPLL B", DPLL_ID_PCH_PLL_B, &ibx_pch_dpll_funcs, 0 },
	{ NULL, -1, NULL, 0 },
1816 1817
};

1818 1819 1820 1821 1822
static const struct intel_dpll_mgr pch_pll_mgr = {
	.dpll_info = pch_plls,
	.get_dpll = ibx_get_dpll,
};

1823
static const struct dpll_info hsw_plls[] = {
1824 1825 1826 1827 1828 1829
	{ "WRPLL 1",    DPLL_ID_WRPLL1,     &hsw_ddi_wrpll_funcs, 0 },
	{ "WRPLL 2",    DPLL_ID_WRPLL2,     &hsw_ddi_wrpll_funcs, 0 },
	{ "SPLL",       DPLL_ID_SPLL,       &hsw_ddi_spll_funcs,  0 },
	{ "LCPLL 810",  DPLL_ID_LCPLL_810,  &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
	{ "LCPLL 1350", DPLL_ID_LCPLL_1350, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
	{ "LCPLL 2700", DPLL_ID_LCPLL_2700, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
1830 1831 1832
	{ NULL, -1, NULL, },
};

1833 1834 1835 1836 1837
static const struct intel_dpll_mgr hsw_pll_mgr = {
	.dpll_info = hsw_plls,
	.get_dpll = hsw_get_dpll,
};

1838
static const struct dpll_info skl_plls[] = {
1839
	{ "DPLL 0", DPLL_ID_SKL_DPLL0, &skl_ddi_dpll0_funcs, INTEL_DPLL_ALWAYS_ON },
1840 1841 1842
	{ "DPLL 1", DPLL_ID_SKL_DPLL1, &skl_ddi_pll_funcs,   0 },
	{ "DPLL 2", DPLL_ID_SKL_DPLL2, &skl_ddi_pll_funcs,   0 },
	{ "DPLL 3", DPLL_ID_SKL_DPLL3, &skl_ddi_pll_funcs,   0 },
1843 1844 1845
	{ NULL, -1, NULL, },
};

1846 1847 1848 1849 1850
static const struct intel_dpll_mgr skl_pll_mgr = {
	.dpll_info = skl_plls,
	.get_dpll = skl_get_dpll,
};

1851
static const struct dpll_info bxt_plls[] = {
1852 1853 1854
	{ "PORT PLL A", DPLL_ID_SKL_DPLL0, &bxt_ddi_pll_funcs, 0 },
	{ "PORT PLL B", DPLL_ID_SKL_DPLL1, &bxt_ddi_pll_funcs, 0 },
	{ "PORT PLL C", DPLL_ID_SKL_DPLL2, &bxt_ddi_pll_funcs, 0 },
1855 1856 1857
	{ NULL, -1, NULL, },
};

1858 1859 1860 1861 1862
static const struct intel_dpll_mgr bxt_pll_mgr = {
	.dpll_info = bxt_plls,
	.get_dpll = bxt_get_dpll,
};

1863 1864
void intel_shared_dpll_init(struct drm_device *dev)
{
1865
	struct drm_i915_private *dev_priv = to_i915(dev);
1866 1867
	const struct intel_dpll_mgr *dpll_mgr = NULL;
	const struct dpll_info *dpll_info;
1868
	int i;
1869

1870
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
1871
		dpll_mgr = &skl_pll_mgr;
1872
	else if (IS_GEN9_LP(dev_priv))
1873
		dpll_mgr = &bxt_pll_mgr;
1874
	else if (HAS_DDI(dev_priv))
1875
		dpll_mgr = &hsw_pll_mgr;
1876
	else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
1877
		dpll_mgr = &pch_pll_mgr;
1878

1879
	if (!dpll_mgr) {
1880
		dev_priv->num_shared_dpll = 0;
1881 1882 1883
		return;
	}

1884 1885
	dpll_info = dpll_mgr->dpll_info;

1886 1887 1888 1889 1890 1891
	for (i = 0; dpll_info[i].id >= 0; i++) {
		WARN_ON(i != dpll_info[i].id);

		dev_priv->shared_dplls[i].id = dpll_info[i].id;
		dev_priv->shared_dplls[i].name = dpll_info[i].name;
		dev_priv->shared_dplls[i].funcs = *dpll_info[i].funcs;
1892
		dev_priv->shared_dplls[i].flags = dpll_info[i].flags;
1893 1894
	}

1895
	dev_priv->dpll_mgr = dpll_mgr;
1896
	dev_priv->num_shared_dpll = i;
1897
	mutex_init(&dev_priv->dpll_lock);
1898 1899

	BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
1900 1901

	/* FIXME: Move this to a more suitable place */
1902
	if (HAS_DDI(dev_priv))
1903
		intel_ddi_pll_init(dev);
1904
}
1905 1906 1907

struct intel_shared_dpll *
intel_get_shared_dpll(struct intel_crtc *crtc,
1908 1909
		      struct intel_crtc_state *crtc_state,
		      struct intel_encoder *encoder)
1910 1911 1912 1913 1914 1915 1916
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll_mgr;

	if (WARN_ON(!dpll_mgr))
		return NULL;

1917
	return dpll_mgr->get_dpll(crtc, crtc_state, encoder);
1918
}
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930

/**
 * intel_release_shared_dpll - end use of DPLL by CRTC in atomic state
 * @dpll: dpll in use by @crtc
 * @crtc: crtc
 * @state: atomic state
 *
 */
void intel_release_shared_dpll(struct intel_shared_dpll *dpll,
			       struct intel_crtc *crtc,
			       struct drm_atomic_state *state)
{
1931
	struct intel_shared_dpll_state *shared_dpll_state;
1932

1933 1934
	shared_dpll_state = intel_atomic_get_shared_dpll_state(state);
	shared_dpll_state[dpll->id].crtc_mask &= ~(1 << crtc->pipe);
1935
}