session.c 39.8 KB
Newer Older
1 2
#define _FILE_OFFSET_BITS 64

3 4
#include <linux/kernel.h>

5
#include <byteswap.h>
6 7
#include <unistd.h>
#include <sys/types.h>
8
#include <sys/mman.h>
9

10 11
#include "evlist.h"
#include "evsel.h"
12
#include "session.h"
13
#include "tool.h"
14
#include "sort.h"
15
#include "util.h"
16
#include "cpumap.h"
17 18 19 20 21

static int perf_session__open(struct perf_session *self, bool force)
{
	struct stat input_stat;

22 23 24 25
	if (!strcmp(self->filename, "-")) {
		self->fd_pipe = true;
		self->fd = STDIN_FILENO;

26
		if (perf_session__read_header(self, self->fd) < 0)
27
			pr_err("incompatible file format (rerun with -v to learn more)");
28 29 30 31

		return 0;
	}

32
	self->fd = open(self->filename, O_RDONLY);
33
	if (self->fd < 0) {
34 35 36 37
		int err = errno;

		pr_err("failed to open %s: %s", self->filename, strerror(err));
		if (err == ENOENT && !strcmp(self->filename, "perf.data"))
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
			pr_err("  (try 'perf record' first)");
		pr_err("\n");
		return -errno;
	}

	if (fstat(self->fd, &input_stat) < 0)
		goto out_close;

	if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
		pr_err("file %s not owned by current user or root\n",
		       self->filename);
		goto out_close;
	}

	if (!input_stat.st_size) {
		pr_info("zero-sized file (%s), nothing to do!\n",
			self->filename);
		goto out_close;
	}

58
	if (perf_session__read_header(self, self->fd) < 0) {
59
		pr_err("incompatible file format (rerun with -v to learn more)");
60 61 62
		goto out_close;
	}

63 64 65 66 67 68 69 70 71 72
	if (!perf_evlist__valid_sample_type(self->evlist)) {
		pr_err("non matching sample_type");
		goto out_close;
	}

	if (!perf_evlist__valid_sample_id_all(self->evlist)) {
		pr_err("non matching sample_id_all");
		goto out_close;
	}

73 74 75 76 77 78 79 80 81
	self->size = input_stat.st_size;
	return 0;

out_close:
	close(self->fd);
	self->fd = -1;
	return -1;
}

82 83
void perf_session__update_sample_type(struct perf_session *self)
{
84
	self->sample_type = perf_evlist__sample_type(self->evlist);
85
	self->sample_size = __perf_evsel__sample_size(self->sample_type);
86
	self->sample_id_all = perf_evlist__sample_id_all(self->evlist);
87
	self->id_hdr_size = perf_evlist__id_hdr_size(self->evlist);
88
	self->host_machine.id_hdr_size = self->id_hdr_size;
89 90
}

91 92
int perf_session__create_kernel_maps(struct perf_session *self)
{
93
	int ret = machine__create_kernel_maps(&self->host_machine);
94 95

	if (ret >= 0)
96
		ret = machines__create_guest_kernel_maps(&self->machines);
97 98 99
	return ret;
}

100 101 102 103 104 105
static void perf_session__destroy_kernel_maps(struct perf_session *self)
{
	machine__destroy_kernel_maps(&self->host_machine);
	machines__destroy_guest_kernel_maps(&self->machines);
}

106 107
struct perf_session *perf_session__new(const char *filename, int mode,
				       bool force, bool repipe,
108
				       struct perf_tool *tool)
109
{
110 111 112 113 114 115 116 117 118 119 120 121 122
	struct perf_session *self;
	struct stat st;
	size_t len;

	if (!filename || !strlen(filename)) {
		if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode))
			filename = "-";
		else
			filename = "perf.data";
	}

	len = strlen(filename);
	self = zalloc(sizeof(*self) + len);
123 124 125 126 127

	if (self == NULL)
		goto out;

	memcpy(self->filename, filename, len);
128 129 130 131 132 133 134 135 136
	/*
	 * On 64bit we can mmap the data file in one go. No need for tiny mmap
	 * slices. On 32bit we use 32MB.
	 */
#if BITS_PER_LONG == 64
	self->mmap_window = ULLONG_MAX;
#else
	self->mmap_window = 32 * 1024 * 1024ULL;
#endif
137
	self->machines = RB_ROOT;
T
Tom Zanussi 已提交
138
	self->repipe = repipe;
139
	INIT_LIST_HEAD(&self->ordered_samples.samples);
140
	INIT_LIST_HEAD(&self->ordered_samples.sample_cache);
141
	INIT_LIST_HEAD(&self->ordered_samples.to_free);
142
	machine__init(&self->host_machine, "", HOST_KERNEL_ID);
143
	hists__init(&self->hists);
144

145 146 147
	if (mode == O_RDONLY) {
		if (perf_session__open(self, force) < 0)
			goto out_delete;
148
		perf_session__update_sample_type(self);
149 150 151
	} else if (mode == O_WRONLY) {
		/*
		 * In O_RDONLY mode this will be performed when reading the
152
		 * kernel MMAP event, in perf_event__process_mmap().
153 154 155 156
		 */
		if (perf_session__create_kernel_maps(self) < 0)
			goto out_delete;
	}
157

158 159
	if (tool && tool->ordering_requires_timestamps &&
	    tool->ordered_samples && !self->sample_id_all) {
160
		dump_printf("WARNING: No sample_id_all support, falling back to unordered processing\n");
161
		tool->ordered_samples = false;
162 163
	}

164 165
out:
	return self;
166 167 168
out_delete:
	perf_session__delete(self);
	return NULL;
169 170
}

171
static void machine__delete_dead_threads(struct machine *machine)
172 173 174
{
	struct thread *n, *t;

175
	list_for_each_entry_safe(t, n, &machine->dead_threads, node) {
176 177 178 179 180
		list_del(&t->node);
		thread__delete(t);
	}
}

181 182 183 184 185 186
static void perf_session__delete_dead_threads(struct perf_session *session)
{
	machine__delete_dead_threads(&session->host_machine);
}

static void machine__delete_threads(struct machine *self)
187 188 189 190 191 192 193 194 195 196 197 198
{
	struct rb_node *nd = rb_first(&self->threads);

	while (nd) {
		struct thread *t = rb_entry(nd, struct thread, rb_node);

		rb_erase(&t->rb_node, &self->threads);
		nd = rb_next(nd);
		thread__delete(t);
	}
}

199 200 201 202 203
static void perf_session__delete_threads(struct perf_session *session)
{
	machine__delete_threads(&session->host_machine);
}

204 205
void perf_session__delete(struct perf_session *self)
{
206
	perf_session__destroy_kernel_maps(self);
207 208 209
	perf_session__delete_dead_threads(self);
	perf_session__delete_threads(self);
	machine__exit(&self->host_machine);
210 211 212
	close(self->fd);
	free(self);
}
213

214
void machine__remove_thread(struct machine *self, struct thread *th)
215
{
216
	self->last_match = NULL;
217 218 219 220 221 222 223 224
	rb_erase(&th->rb_node, &self->threads);
	/*
	 * We may have references to this thread, for instance in some hist_entry
	 * instances, so just move them to a separate list.
	 */
	list_add_tail(&th->node, &self->dead_threads);
}

225 226 227 228 229 230 231 232
static bool symbol__match_parent_regex(struct symbol *sym)
{
	if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
		return 1;

	return 0;
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
static const u8 cpumodes[] = {
	PERF_RECORD_MISC_USER,
	PERF_RECORD_MISC_KERNEL,
	PERF_RECORD_MISC_GUEST_USER,
	PERF_RECORD_MISC_GUEST_KERNEL
};
#define NCPUMODES (sizeof(cpumodes)/sizeof(u8))

static void ip__resolve_ams(struct machine *self, struct thread *thread,
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;
	size_t i;
	u8 m;

	memset(&al, 0, sizeof(al));

	for (i = 0; i < NCPUMODES; i++) {
		m = cpumodes[i];
		/*
		 * We cannot use the header.misc hint to determine whether a
		 * branch stack address is user, kernel, guest, hypervisor.
		 * Branches may straddle the kernel/user/hypervisor boundaries.
		 * Thus, we have to try consecutively until we find a match
		 * or else, the symbol is unknown
		 */
		thread__find_addr_location(thread, self, m, MAP__FUNCTION,
				ip, &al, NULL);
		if (al.sym)
			goto found;
	}
found:
	ams->addr = ip;
267
	ams->al_addr = al.addr;
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	ams->sym = al.sym;
	ams->map = al.map;
}

struct branch_info *machine__resolve_bstack(struct machine *self,
					    struct thread *thr,
					    struct branch_stack *bs)
{
	struct branch_info *bi;
	unsigned int i;

	bi = calloc(bs->nr, sizeof(struct branch_info));
	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
		ip__resolve_ams(self, thr, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(self, thr, &bi[i].from, bs->entries[i].from);
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

291 292 293 294
int machine__resolve_callchain(struct machine *self, struct perf_evsel *evsel,
			       struct thread *thread,
			       struct ip_callchain *chain,
			       struct symbol **parent)
295 296 297
{
	u8 cpumode = PERF_RECORD_MISC_USER;
	unsigned int i;
298
	int err;
299

300
	callchain_cursor_reset(&evsel->hists.callchain_cursor);
301 302

	for (i = 0; i < chain->nr; i++) {
303
		u64 ip;
304 305
		struct addr_location al;

306 307 308 309 310
		if (callchain_param.order == ORDER_CALLEE)
			ip = chain->ips[i];
		else
			ip = chain->ips[chain->nr - i - 1];

311 312 313 314 315 316 317 318 319 320 321 322 323 324
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
				cpumode = PERF_RECORD_MISC_HYPERVISOR;	break;
			case PERF_CONTEXT_KERNEL:
				cpumode = PERF_RECORD_MISC_KERNEL;	break;
			case PERF_CONTEXT_USER:
				cpumode = PERF_RECORD_MISC_USER;	break;
			default:
				break;
			}
			continue;
		}

325
		al.filtered = false;
326
		thread__find_addr_location(thread, self, cpumode,
327
					   MAP__FUNCTION, ip, &al, NULL);
328 329 330 331
		if (al.sym != NULL) {
			if (sort__has_parent && !*parent &&
			    symbol__match_parent_regex(al.sym))
				*parent = al.sym;
332
			if (!symbol_conf.use_callchain)
333 334
				break;
		}
335

336
		err = callchain_cursor_append(&evsel->hists.callchain_cursor,
337 338 339
					      ip, al.map, al.sym);
		if (err)
			return err;
340 341
	}

342
	return 0;
343
}
344

345 346 347 348 349 350 351
static int process_event_synth_tracing_data_stub(union perf_event *event __used,
						 struct perf_session *session __used)
{
	dump_printf(": unhandled!\n");
	return 0;
}

352 353 354 355 356 357 358
static int process_event_synth_attr_stub(union perf_event *event __used,
					 struct perf_evlist **pevlist __used)
{
	dump_printf(": unhandled!\n");
	return 0;
}

359
static int process_event_sample_stub(struct perf_tool *tool __used,
360
				     union perf_event *event __used,
361 362
				     struct perf_sample *sample __used,
				     struct perf_evsel *evsel __used,
363
				     struct machine *machine __used)
364 365 366 367 368
{
	dump_printf(": unhandled!\n");
	return 0;
}

369
static int process_event_stub(struct perf_tool *tool __used,
370
			      union perf_event *event __used,
371
			      struct perf_sample *sample __used,
372
			      struct machine *machine __used)
373 374 375 376 377
{
	dump_printf(": unhandled!\n");
	return 0;
}

378
static int process_finished_round_stub(struct perf_tool *tool __used,
379
				       union perf_event *event __used,
380 381 382 383 384 385
				       struct perf_session *perf_session __used)
{
	dump_printf(": unhandled!\n");
	return 0;
}

386
static int process_event_type_stub(struct perf_tool *tool __used,
387
				   union perf_event *event __used)
388 389 390 391 392
{
	dump_printf(": unhandled!\n");
	return 0;
}

393
static int process_finished_round(struct perf_tool *tool,
394 395
				  union perf_event *event,
				  struct perf_session *session);
396

397
static void perf_tool__fill_defaults(struct perf_tool *tool)
398
{
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	if (tool->sample == NULL)
		tool->sample = process_event_sample_stub;
	if (tool->mmap == NULL)
		tool->mmap = process_event_stub;
	if (tool->comm == NULL)
		tool->comm = process_event_stub;
	if (tool->fork == NULL)
		tool->fork = process_event_stub;
	if (tool->exit == NULL)
		tool->exit = process_event_stub;
	if (tool->lost == NULL)
		tool->lost = perf_event__process_lost;
	if (tool->read == NULL)
		tool->read = process_event_sample_stub;
	if (tool->throttle == NULL)
		tool->throttle = process_event_stub;
	if (tool->unthrottle == NULL)
		tool->unthrottle = process_event_stub;
	if (tool->attr == NULL)
		tool->attr = process_event_synth_attr_stub;
	if (tool->event_type == NULL)
		tool->event_type = process_event_type_stub;
	if (tool->tracing_data == NULL)
		tool->tracing_data = process_event_synth_tracing_data_stub;
	if (tool->build_id == NULL)
		tool->build_id = process_finished_round_stub;
	if (tool->finished_round == NULL) {
		if (tool->ordered_samples)
			tool->finished_round = process_finished_round;
428
		else
429
			tool->finished_round = process_finished_round_stub;
430
	}
431 432
}

433 434 435 436 437 438 439 440 441 442 443
void mem_bswap_64(void *src, int byte_size)
{
	u64 *m = src;

	while (byte_size > 0) {
		*m = bswap_64(*m);
		byte_size -= sizeof(u64);
		++m;
	}
}

444
static void perf_event__all64_swap(union perf_event *event)
445
{
446 447
	struct perf_event_header *hdr = &event->header;
	mem_bswap_64(hdr + 1, event->header.size - sizeof(*hdr));
448 449
}

450
static void perf_event__comm_swap(union perf_event *event)
451
{
452 453
	event->comm.pid = bswap_32(event->comm.pid);
	event->comm.tid = bswap_32(event->comm.tid);
454 455
}

456
static void perf_event__mmap_swap(union perf_event *event)
457
{
458 459 460 461 462
	event->mmap.pid	  = bswap_32(event->mmap.pid);
	event->mmap.tid	  = bswap_32(event->mmap.tid);
	event->mmap.start = bswap_64(event->mmap.start);
	event->mmap.len	  = bswap_64(event->mmap.len);
	event->mmap.pgoff = bswap_64(event->mmap.pgoff);
463 464
}

465
static void perf_event__task_swap(union perf_event *event)
466
{
467 468 469 470 471
	event->fork.pid	 = bswap_32(event->fork.pid);
	event->fork.tid	 = bswap_32(event->fork.tid);
	event->fork.ppid = bswap_32(event->fork.ppid);
	event->fork.ptid = bswap_32(event->fork.ptid);
	event->fork.time = bswap_64(event->fork.time);
472 473
}

474
static void perf_event__read_swap(union perf_event *event)
475
{
476 477 478 479 480 481
	event->read.pid		 = bswap_32(event->read.pid);
	event->read.tid		 = bswap_32(event->read.tid);
	event->read.value	 = bswap_64(event->read.value);
	event->read.time_enabled = bswap_64(event->read.time_enabled);
	event->read.time_running = bswap_64(event->read.time_running);
	event->read.id		 = bswap_64(event->read.id);
482 483
}

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
static u8 revbyte(u8 b)
{
	int rev = (b >> 4) | ((b & 0xf) << 4);
	rev = ((rev & 0xcc) >> 2) | ((rev & 0x33) << 2);
	rev = ((rev & 0xaa) >> 1) | ((rev & 0x55) << 1);
	return (u8) rev;
}

/*
 * XXX this is hack in attempt to carry flags bitfield
 * throught endian village. ABI says:
 *
 * Bit-fields are allocated from right to left (least to most significant)
 * on little-endian implementations and from left to right (most to least
 * significant) on big-endian implementations.
 *
 * The above seems to be byte specific, so we need to reverse each
 * byte of the bitfield. 'Internet' also says this might be implementation
 * specific and we probably need proper fix and carry perf_event_attr
 * bitfield flags in separate data file FEAT_ section. Thought this seems
 * to work for now.
 */
static void swap_bitfield(u8 *p, unsigned len)
{
	unsigned i;

	for (i = 0; i < len; i++) {
		*p = revbyte(*p);
		p++;
	}
}

516 517 518 519 520 521 522 523 524 525 526 527 528
/* exported for swapping attributes in file header */
void perf_event__attr_swap(struct perf_event_attr *attr)
{
	attr->type		= bswap_32(attr->type);
	attr->size		= bswap_32(attr->size);
	attr->config		= bswap_64(attr->config);
	attr->sample_period	= bswap_64(attr->sample_period);
	attr->sample_type	= bswap_64(attr->sample_type);
	attr->read_format	= bswap_64(attr->read_format);
	attr->wakeup_events	= bswap_32(attr->wakeup_events);
	attr->bp_type		= bswap_32(attr->bp_type);
	attr->bp_addr		= bswap_64(attr->bp_addr);
	attr->bp_len		= bswap_64(attr->bp_len);
529 530

	swap_bitfield((u8 *) (&attr->read_format + 1), sizeof(u64));
531 532 533
}

static void perf_event__hdr_attr_swap(union perf_event *event)
534 535 536
{
	size_t size;

537
	perf_event__attr_swap(&event->attr.attr);
538

539 540 541
	size = event->header.size;
	size -= (void *)&event->attr.id - (void *)event;
	mem_bswap_64(event->attr.id, size);
542 543
}

544
static void perf_event__event_type_swap(union perf_event *event)
545
{
546 547
	event->event_type.event_type.event_id =
		bswap_64(event->event_type.event_type.event_id);
548 549
}

550
static void perf_event__tracing_data_swap(union perf_event *event)
551
{
552
	event->tracing_data.size = bswap_32(event->tracing_data.size);
553 554
}

555
typedef void (*perf_event__swap_op)(union perf_event *event);
556

557 558 559 560 561 562 563 564
static perf_event__swap_op perf_event__swap_ops[] = {
	[PERF_RECORD_MMAP]		  = perf_event__mmap_swap,
	[PERF_RECORD_COMM]		  = perf_event__comm_swap,
	[PERF_RECORD_FORK]		  = perf_event__task_swap,
	[PERF_RECORD_EXIT]		  = perf_event__task_swap,
	[PERF_RECORD_LOST]		  = perf_event__all64_swap,
	[PERF_RECORD_READ]		  = perf_event__read_swap,
	[PERF_RECORD_SAMPLE]		  = perf_event__all64_swap,
565
	[PERF_RECORD_HEADER_ATTR]	  = perf_event__hdr_attr_swap,
566 567 568 569
	[PERF_RECORD_HEADER_EVENT_TYPE]	  = perf_event__event_type_swap,
	[PERF_RECORD_HEADER_TRACING_DATA] = perf_event__tracing_data_swap,
	[PERF_RECORD_HEADER_BUILD_ID]	  = NULL,
	[PERF_RECORD_HEADER_MAX]	  = NULL,
570 571
};

572 573
struct sample_queue {
	u64			timestamp;
574
	u64			file_offset;
575
	union perf_event	*event;
576 577 578
	struct list_head	list;
};

579 580 581 582
static void perf_session_free_sample_buffers(struct perf_session *session)
{
	struct ordered_samples *os = &session->ordered_samples;

583
	while (!list_empty(&os->to_free)) {
584 585
		struct sample_queue *sq;

586
		sq = list_entry(os->to_free.next, struct sample_queue, list);
587 588 589 590 591
		list_del(&sq->list);
		free(sq);
	}
}

592
static int perf_session_deliver_event(struct perf_session *session,
593
				      union perf_event *event,
594
				      struct perf_sample *sample,
595
				      struct perf_tool *tool,
596
				      u64 file_offset);
597

598
static void flush_sample_queue(struct perf_session *s,
599
			       struct perf_tool *tool)
600
{
601 602
	struct ordered_samples *os = &s->ordered_samples;
	struct list_head *head = &os->samples;
603
	struct sample_queue *tmp, *iter;
604
	struct perf_sample sample;
605 606
	u64 limit = os->next_flush;
	u64 last_ts = os->last_sample ? os->last_sample->timestamp : 0ULL;
607
	unsigned idx = 0, progress_next = os->nr_samples / 16;
608
	int ret;
609

610
	if (!tool->ordered_samples || !limit)
611 612 613 614
		return;

	list_for_each_entry_safe(iter, tmp, head, list) {
		if (iter->timestamp > limit)
615
			break;
616

617 618 619 620
		ret = perf_session__parse_sample(s, iter->event, &sample);
		if (ret)
			pr_err("Can't parse sample, err = %d\n", ret);
		else
621
			perf_session_deliver_event(s, iter->event, &sample, tool,
622
						   iter->file_offset);
623

624
		os->last_flush = iter->timestamp;
625
		list_del(&iter->list);
626
		list_add(&iter->list, &os->sample_cache);
627 628 629 630 631
		if (++idx >= progress_next) {
			progress_next += os->nr_samples / 16;
			ui_progress__update(idx, os->nr_samples,
					    "Processing time ordered events...");
		}
632
	}
633 634 635 636 637 638 639

	if (list_empty(head)) {
		os->last_sample = NULL;
	} else if (last_ts <= limit) {
		os->last_sample =
			list_entry(head->prev, struct sample_queue, list);
	}
640 641

	os->nr_samples = 0;
642 643
}

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
/*
 * When perf record finishes a pass on every buffers, it records this pseudo
 * event.
 * We record the max timestamp t found in the pass n.
 * Assuming these timestamps are monotonic across cpus, we know that if
 * a buffer still has events with timestamps below t, they will be all
 * available and then read in the pass n + 1.
 * Hence when we start to read the pass n + 2, we can safely flush every
 * events with timestamps below t.
 *
 *    ============ PASS n =================
 *       CPU 0         |   CPU 1
 *                     |
 *    cnt1 timestamps  |   cnt2 timestamps
 *          1          |         2
 *          2          |         3
 *          -          |         4  <--- max recorded
 *
 *    ============ PASS n + 1 ==============
 *       CPU 0         |   CPU 1
 *                     |
 *    cnt1 timestamps  |   cnt2 timestamps
 *          3          |         5
 *          4          |         6
 *          5          |         7 <---- max recorded
 *
 *      Flush every events below timestamp 4
 *
 *    ============ PASS n + 2 ==============
 *       CPU 0         |   CPU 1
 *                     |
 *    cnt1 timestamps  |   cnt2 timestamps
 *          6          |         8
 *          7          |         9
 *          -          |         10
 *
 *      Flush every events below timestamp 7
 *      etc...
 */
683
static int process_finished_round(struct perf_tool *tool,
684 685
				  union perf_event *event __used,
				  struct perf_session *session)
686
{
687
	flush_sample_queue(session, tool);
688 689 690 691 692
	session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;

	return 0;
}

693
/* The queue is ordered by time */
694
static void __queue_event(struct sample_queue *new, struct perf_session *s)
695
{
696 697 698 699
	struct ordered_samples *os = &s->ordered_samples;
	struct sample_queue *sample = os->last_sample;
	u64 timestamp = new->timestamp;
	struct list_head *p;
700

701
	++os->nr_samples;
702
	os->last_sample = new;
703

704 705 706
	if (!sample) {
		list_add(&new->list, &os->samples);
		os->max_timestamp = timestamp;
707 708 709 710
		return;
	}

	/*
711 712 713
	 * last_sample might point to some random place in the list as it's
	 * the last queued event. We expect that the new event is close to
	 * this.
714
	 */
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
	if (sample->timestamp <= timestamp) {
		while (sample->timestamp <= timestamp) {
			p = sample->list.next;
			if (p == &os->samples) {
				list_add_tail(&new->list, &os->samples);
				os->max_timestamp = timestamp;
				return;
			}
			sample = list_entry(p, struct sample_queue, list);
		}
		list_add_tail(&new->list, &sample->list);
	} else {
		while (sample->timestamp > timestamp) {
			p = sample->list.prev;
			if (p == &os->samples) {
				list_add(&new->list, &os->samples);
				return;
			}
			sample = list_entry(p, struct sample_queue, list);
		}
		list_add(&new->list, &sample->list);
	}
737 738
}

739 740
#define MAX_SAMPLE_BUFFER	(64 * 1024 / sizeof(struct sample_queue))

741
static int perf_session_queue_event(struct perf_session *s, union perf_event *event,
742
				    struct perf_sample *sample, u64 file_offset)
743
{
744 745
	struct ordered_samples *os = &s->ordered_samples;
	struct list_head *sc = &os->sample_cache;
746
	u64 timestamp = sample->time;
747 748
	struct sample_queue *new;

749
	if (!timestamp || timestamp == ~0ULL)
750 751
		return -ETIME;

752 753 754 755 756
	if (timestamp < s->ordered_samples.last_flush) {
		printf("Warning: Timestamp below last timeslice flush\n");
		return -EINVAL;
	}

757 758 759
	if (!list_empty(sc)) {
		new = list_entry(sc->next, struct sample_queue, list);
		list_del(&new->list);
760 761 762 763
	} else if (os->sample_buffer) {
		new = os->sample_buffer + os->sample_buffer_idx;
		if (++os->sample_buffer_idx == MAX_SAMPLE_BUFFER)
			os->sample_buffer = NULL;
764
	} else {
765 766
		os->sample_buffer = malloc(MAX_SAMPLE_BUFFER * sizeof(*new));
		if (!os->sample_buffer)
767
			return -ENOMEM;
768 769 770
		list_add(&os->sample_buffer->list, &os->to_free);
		os->sample_buffer_idx = 2;
		new = os->sample_buffer + 1;
771
	}
772 773

	new->timestamp = timestamp;
774
	new->file_offset = file_offset;
775
	new->event = event;
776

777
	__queue_event(new, s);
778 779 780

	return 0;
}
781

782
static void callchain__printf(struct perf_sample *sample)
783 784
{
	unsigned int i;
785

786
	printf("... chain: nr:%" PRIu64 "\n", sample->callchain->nr);
787 788

	for (i = 0; i < sample->callchain->nr; i++)
789 790
		printf("..... %2d: %016" PRIx64 "\n",
		       i, sample->callchain->ips[i]);
791 792
}

793 794 795 796 797 798 799 800 801 802 803 804
static void branch_stack__printf(struct perf_sample *sample)
{
	uint64_t i;

	printf("... branch stack: nr:%" PRIu64 "\n", sample->branch_stack->nr);

	for (i = 0; i < sample->branch_stack->nr; i++)
		printf("..... %2"PRIu64": %016" PRIx64 " -> %016" PRIx64 "\n",
			i, sample->branch_stack->entries[i].from,
			sample->branch_stack->entries[i].to);
}

805
static void perf_session__print_tstamp(struct perf_session *session,
806
				       union perf_event *event,
807
				       struct perf_sample *sample)
808 809 810 811 812 813 814 815 816 817 818
{
	if (event->header.type != PERF_RECORD_SAMPLE &&
	    !session->sample_id_all) {
		fputs("-1 -1 ", stdout);
		return;
	}

	if ((session->sample_type & PERF_SAMPLE_CPU))
		printf("%u ", sample->cpu);

	if (session->sample_type & PERF_SAMPLE_TIME)
819
		printf("%" PRIu64 " ", sample->time);
820 821
}

822
static void dump_event(struct perf_session *session, union perf_event *event,
823
		       u64 file_offset, struct perf_sample *sample)
824 825 826 827
{
	if (!dump_trace)
		return;

828 829
	printf("\n%#" PRIx64 " [%#x]: event: %d\n",
	       file_offset, event->header.size, event->header.type);
830 831 832 833 834 835

	trace_event(event);

	if (sample)
		perf_session__print_tstamp(session, event, sample);

836
	printf("%#" PRIx64 " [%#x]: PERF_RECORD_%s", file_offset,
837
	       event->header.size, perf_event__name(event->header.type));
838 839
}

840
static void dump_sample(struct perf_session *session, union perf_event *event,
841
			struct perf_sample *sample)
842
{
843 844 845
	if (!dump_trace)
		return;

846
	printf("(IP, %d): %d/%d: %#" PRIx64 " period: %" PRIu64 " addr: %#" PRIx64 "\n",
847
	       event->header.misc, sample->pid, sample->tid, sample->ip,
848
	       sample->period, sample->addr);
849 850

	if (session->sample_type & PERF_SAMPLE_CALLCHAIN)
851
		callchain__printf(sample);
852 853 854

	if (session->sample_type & PERF_SAMPLE_BRANCH_STACK)
		branch_stack__printf(sample);
855 856
}

857 858 859 860 861 862
static struct machine *
	perf_session__find_machine_for_cpumode(struct perf_session *session,
					       union perf_event *event)
{
	const u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;

863 864 865 866 867 868 869 870 871 872
	if (cpumode == PERF_RECORD_MISC_GUEST_KERNEL && perf_guest) {
		u32 pid;

		if (event->header.type == PERF_RECORD_MMAP)
			pid = event->mmap.pid;
		else
			pid = event->ip.pid;

		return perf_session__find_machine(session, pid);
	}
873 874 875 876

	return perf_session__find_host_machine(session);
}

877
static int perf_session_deliver_event(struct perf_session *session,
878
				      union perf_event *event,
879
				      struct perf_sample *sample,
880
				      struct perf_tool *tool,
881
				      u64 file_offset)
882
{
883
	struct perf_evsel *evsel;
884
	struct machine *machine;
885

886 887
	dump_event(session, event, file_offset, sample);

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
	evsel = perf_evlist__id2evsel(session->evlist, sample->id);
	if (evsel != NULL && event->header.type != PERF_RECORD_SAMPLE) {
		/*
		 * XXX We're leaving PERF_RECORD_SAMPLE unnacounted here
		 * because the tools right now may apply filters, discarding
		 * some of the samples. For consistency, in the future we
		 * should have something like nr_filtered_samples and remove
		 * the sample->period from total_sample_period, etc, KISS for
		 * now tho.
		 *
		 * Also testing against NULL allows us to handle files without
		 * attr.sample_id_all and/or without PERF_SAMPLE_ID. In the
		 * future probably it'll be a good idea to restrict event
		 * processing via perf_session to files with both set.
		 */
		hists__inc_nr_events(&evsel->hists, event->header.type);
	}

906 907
	machine = perf_session__find_machine_for_cpumode(session, event);

908 909
	switch (event->header.type) {
	case PERF_RECORD_SAMPLE:
910
		dump_sample(session, event, sample);
911 912
		if (evsel == NULL) {
			++session->hists.stats.nr_unknown_id;
913
			return 0;
914
		}
915 916
		if (machine == NULL) {
			++session->hists.stats.nr_unprocessable_samples;
917
			return 0;
918
		}
919
		return tool->sample(tool, event, sample, evsel, machine);
920
	case PERF_RECORD_MMAP:
921
		return tool->mmap(tool, event, sample, machine);
922
	case PERF_RECORD_COMM:
923
		return tool->comm(tool, event, sample, machine);
924
	case PERF_RECORD_FORK:
925
		return tool->fork(tool, event, sample, machine);
926
	case PERF_RECORD_EXIT:
927
		return tool->exit(tool, event, sample, machine);
928
	case PERF_RECORD_LOST:
929
		if (tool->lost == perf_event__process_lost)
930
			session->hists.stats.total_lost += event->lost.lost;
931
		return tool->lost(tool, event, sample, machine);
932
	case PERF_RECORD_READ:
933
		return tool->read(tool, event, sample, evsel, machine);
934
	case PERF_RECORD_THROTTLE:
935
		return tool->throttle(tool, event, sample, machine);
936
	case PERF_RECORD_UNTHROTTLE:
937
		return tool->unthrottle(tool, event, sample, machine);
938 939 940 941 942 943
	default:
		++session->hists.stats.nr_unknown_events;
		return -1;
	}
}

944
static int perf_session__preprocess_sample(struct perf_session *session,
945
					   union perf_event *event, struct perf_sample *sample)
946 947 948 949 950 951 952 953 954 955 956 957 958 959
{
	if (event->header.type != PERF_RECORD_SAMPLE ||
	    !(session->sample_type & PERF_SAMPLE_CALLCHAIN))
		return 0;

	if (!ip_callchain__valid(sample->callchain, event)) {
		pr_debug("call-chain problem with event, skipping it.\n");
		++session->hists.stats.nr_invalid_chains;
		session->hists.stats.total_invalid_chains += sample->period;
		return -EINVAL;
	}
	return 0;
}

960
static int perf_session__process_user_event(struct perf_session *session, union perf_event *event,
961
					    struct perf_tool *tool, u64 file_offset)
962
{
963 964
	int err;

965
	dump_event(session, event, file_offset, NULL);
966

967
	/* These events are processed right away */
968
	switch (event->header.type) {
969
	case PERF_RECORD_HEADER_ATTR:
970
		err = tool->attr(event, &session->evlist);
971 972 973
		if (err == 0)
			perf_session__update_sample_type(session);
		return err;
974
	case PERF_RECORD_HEADER_EVENT_TYPE:
975
		return tool->event_type(tool, event);
976 977
	case PERF_RECORD_HEADER_TRACING_DATA:
		/* setup for reading amidst mmap */
978
		lseek(session->fd, file_offset, SEEK_SET);
979
		return tool->tracing_data(event, session);
980
	case PERF_RECORD_HEADER_BUILD_ID:
981
		return tool->build_id(tool, event, session);
982
	case PERF_RECORD_FINISHED_ROUND:
983
		return tool->finished_round(tool, event, session);
984
	default:
985
		return -EINVAL;
986
	}
987 988 989
}

static int perf_session__process_event(struct perf_session *session,
990
				       union perf_event *event,
991
				       struct perf_tool *tool,
992 993
				       u64 file_offset)
{
994
	struct perf_sample sample;
995 996
	int ret;

997 998 999
	if (session->header.needs_swap &&
	    perf_event__swap_ops[event->header.type])
		perf_event__swap_ops[event->header.type](event);
1000 1001 1002 1003 1004 1005 1006

	if (event->header.type >= PERF_RECORD_HEADER_MAX)
		return -EINVAL;

	hists__inc_nr_events(&session->hists, event->header.type);

	if (event->header.type >= PERF_RECORD_USER_TYPE_START)
1007
		return perf_session__process_user_event(session, event, tool, file_offset);
1008

1009 1010 1011
	/*
	 * For all kernel events we get the sample data
	 */
1012 1013 1014
	ret = perf_session__parse_sample(session, event, &sample);
	if (ret)
		return ret;
1015 1016 1017 1018 1019

	/* Preprocess sample records - precheck callchains */
	if (perf_session__preprocess_sample(session, event, &sample))
		return 0;

1020
	if (tool->ordered_samples) {
1021 1022
		ret = perf_session_queue_event(session, event, &sample,
					       file_offset);
1023 1024 1025 1026
		if (ret != -ETIME)
			return ret;
	}

1027
	return perf_session_deliver_event(session, event, &sample, tool,
1028
					  file_offset);
1029 1030
}

1031 1032 1033 1034 1035 1036 1037
void perf_event_header__bswap(struct perf_event_header *self)
{
	self->type = bswap_32(self->type);
	self->misc = bswap_16(self->misc);
	self->size = bswap_16(self->size);
}

1038 1039 1040 1041 1042
struct thread *perf_session__findnew(struct perf_session *session, pid_t pid)
{
	return machine__findnew_thread(&session->host_machine, pid);
}

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
static struct thread *perf_session__register_idle_thread(struct perf_session *self)
{
	struct thread *thread = perf_session__findnew(self, 0);

	if (thread == NULL || thread__set_comm(thread, "swapper")) {
		pr_err("problem inserting idle task.\n");
		thread = NULL;
	}

	return thread;
}

1055
static void perf_session__warn_about_errors(const struct perf_session *session,
1056
					    const struct perf_tool *tool)
1057
{
1058
	if (tool->lost == perf_event__process_lost &&
1059 1060 1061 1062 1063
	    session->hists.stats.nr_events[PERF_RECORD_LOST] != 0) {
		ui__warning("Processed %d events and lost %d chunks!\n\n"
			    "Check IO/CPU overload!\n\n",
			    session->hists.stats.nr_events[0],
			    session->hists.stats.nr_events[PERF_RECORD_LOST]);
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	}

	if (session->hists.stats.nr_unknown_events != 0) {
		ui__warning("Found %u unknown events!\n\n"
			    "Is this an older tool processing a perf.data "
			    "file generated by a more recent tool?\n\n"
			    "If that is not the case, consider "
			    "reporting to linux-kernel@vger.kernel.org.\n\n",
			    session->hists.stats.nr_unknown_events);
	}

1075 1076 1077 1078 1079
	if (session->hists.stats.nr_unknown_id != 0) {
		ui__warning("%u samples with id not present in the header\n",
			    session->hists.stats.nr_unknown_id);
	}

1080 1081 1082 1083 1084 1085 1086
 	if (session->hists.stats.nr_invalid_chains != 0) {
 		ui__warning("Found invalid callchains!\n\n"
 			    "%u out of %u events were discarded for this reason.\n\n"
 			    "Consider reporting to linux-kernel@vger.kernel.org.\n\n",
 			    session->hists.stats.nr_invalid_chains,
 			    session->hists.stats.nr_events[PERF_RECORD_SAMPLE]);
 	}
1087 1088 1089 1090 1091 1092

	if (session->hists.stats.nr_unprocessable_samples != 0) {
		ui__warning("%u unprocessable samples recorded.\n"
			    "Do you have a KVM guest running and not using 'perf kvm'?\n",
			    session->hists.stats.nr_unprocessable_samples);
	}
1093 1094
}

1095 1096 1097 1098
#define session_done()	(*(volatile int *)(&session_done))
volatile int session_done;

static int __perf_session__process_pipe_events(struct perf_session *self,
1099
					       struct perf_tool *tool)
1100
{
1101 1102 1103
	union perf_event *event;
	uint32_t size, cur_size = 0;
	void *buf = NULL;
1104 1105 1106 1107 1108
	int skip = 0;
	u64 head;
	int err;
	void *p;

1109
	perf_tool__fill_defaults(tool);
1110 1111

	head = 0;
1112 1113 1114 1115 1116
	cur_size = sizeof(union perf_event);

	buf = malloc(cur_size);
	if (!buf)
		return -errno;
1117
more:
1118 1119
	event = buf;
	err = readn(self->fd, event, sizeof(struct perf_event_header));
1120 1121 1122 1123 1124 1125 1126 1127 1128
	if (err <= 0) {
		if (err == 0)
			goto done;

		pr_err("failed to read event header\n");
		goto out_err;
	}

	if (self->header.needs_swap)
1129
		perf_event_header__bswap(&event->header);
1130

1131
	size = event->header.size;
1132 1133 1134
	if (size == 0)
		size = 8;

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	if (size > cur_size) {
		void *new = realloc(buf, size);
		if (!new) {
			pr_err("failed to allocate memory to read event\n");
			goto out_err;
		}
		buf = new;
		cur_size = size;
		event = buf;
	}
	p = event;
1146 1147
	p += sizeof(struct perf_event_header);

1148
	if (size - sizeof(struct perf_event_header)) {
1149
		err = readn(self->fd, p, size - sizeof(struct perf_event_header));
1150 1151 1152 1153 1154
		if (err <= 0) {
			if (err == 0) {
				pr_err("unexpected end of event stream\n");
				goto done;
			}
1155

1156 1157 1158
			pr_err("failed to read event data\n");
			goto out_err;
		}
1159 1160
	}

1161
	if ((skip = perf_session__process_event(self, event, tool, head)) < 0) {
1162
		pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
1163
		       head, event->header.size, event->header.type);
1164 1165
		err = -EINVAL;
		goto out_err;
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	}

	head += size;

	if (skip > 0)
		head += skip;

	if (!session_done())
		goto more;
done:
	err = 0;
out_err:
1178
	free(buf);
1179
	perf_session__warn_about_errors(self, tool);
1180
	perf_session_free_sample_buffers(self);
1181 1182 1183
	return err;
}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
static union perf_event *
fetch_mmaped_event(struct perf_session *session,
		   u64 head, size_t mmap_size, char *buf)
{
	union perf_event *event;

	/*
	 * Ensure we have enough space remaining to read
	 * the size of the event in the headers.
	 */
	if (head + sizeof(event->header) > mmap_size)
		return NULL;

	event = (union perf_event *)(buf + head);

	if (session->header.needs_swap)
		perf_event_header__bswap(&event->header);

	if (head + event->header.size > mmap_size)
		return NULL;

	return event;
}

1208
int __perf_session__process_events(struct perf_session *session,
1209
				   u64 data_offset, u64 data_size,
1210
				   u64 file_size, struct perf_tool *tool)
1211
{
1212
	u64 head, page_offset, file_offset, file_pos, progress_next;
1213
	int err, mmap_prot, mmap_flags, map_idx = 0;
1214
	size_t	page_size, mmap_size;
1215
	char *buf, *mmaps[8];
1216
	union perf_event *event;
1217
	uint32_t size;
1218

1219
	perf_tool__fill_defaults(tool);
1220

1221
	page_size = sysconf(_SC_PAGESIZE);
1222

1223 1224 1225
	page_offset = page_size * (data_offset / page_size);
	file_offset = page_offset;
	head = data_offset - page_offset;
1226

1227 1228 1229
	if (data_offset + data_size < file_size)
		file_size = data_offset + data_size;

1230 1231 1232 1233 1234 1235
	progress_next = file_size / 16;

	mmap_size = session->mmap_window;
	if (mmap_size > file_size)
		mmap_size = file_size;

1236 1237
	memset(mmaps, 0, sizeof(mmaps));

1238 1239 1240
	mmap_prot  = PROT_READ;
	mmap_flags = MAP_SHARED;

1241
	if (session->header.needs_swap) {
1242 1243 1244
		mmap_prot  |= PROT_WRITE;
		mmap_flags = MAP_PRIVATE;
	}
1245
remap:
1246 1247
	buf = mmap(NULL, mmap_size, mmap_prot, mmap_flags, session->fd,
		   file_offset);
1248 1249 1250 1251 1252
	if (buf == MAP_FAILED) {
		pr_err("failed to mmap file\n");
		err = -errno;
		goto out_err;
	}
1253 1254
	mmaps[map_idx] = buf;
	map_idx = (map_idx + 1) & (ARRAY_SIZE(mmaps) - 1);
1255
	file_pos = file_offset + head;
1256 1257

more:
1258 1259
	event = fetch_mmaped_event(session, head, mmap_size, buf);
	if (!event) {
1260 1261 1262 1263
		if (mmaps[map_idx]) {
			munmap(mmaps[map_idx], mmap_size);
			mmaps[map_idx] = NULL;
		}
1264

1265 1266 1267
		page_offset = page_size * (head / page_size);
		file_offset += page_offset;
		head -= page_offset;
1268 1269 1270 1271 1272
		goto remap;
	}

	size = event->header.size;

1273
	if (size == 0 ||
1274
	    perf_session__process_event(session, event, tool, file_pos) < 0) {
1275 1276 1277 1278 1279
		pr_err("%#" PRIx64 " [%#x]: failed to process type: %d\n",
		       file_offset + head, event->header.size,
		       event->header.type);
		err = -EINVAL;
		goto out_err;
1280 1281 1282
	}

	head += size;
1283
	file_pos += size;
1284

1285 1286
	if (file_pos >= progress_next) {
		progress_next += file_size / 16;
1287 1288
		ui_progress__update(file_pos, file_size,
				    "Processing events...");
1289 1290
	}

1291
	if (file_pos < file_size)
1292
		goto more;
1293

1294
	err = 0;
1295
	/* do the final flush for ordered samples */
1296
	session->ordered_samples.next_flush = ULLONG_MAX;
1297
	flush_sample_queue(session, tool);
1298
out_err:
1299
	perf_session__warn_about_errors(session, tool);
1300
	perf_session_free_sample_buffers(session);
1301 1302
	return err;
}
1303

1304
int perf_session__process_events(struct perf_session *self,
1305
				 struct perf_tool *tool)
1306 1307 1308 1309 1310 1311
{
	int err;

	if (perf_session__register_idle_thread(self) == NULL)
		return -ENOMEM;

1312 1313 1314 1315
	if (!self->fd_pipe)
		err = __perf_session__process_events(self,
						     self->header.data_offset,
						     self->header.data_size,
1316
						     self->size, tool);
1317
	else
1318
		err = __perf_session__process_pipe_events(self, tool);
1319

1320 1321 1322
	return err;
}

1323
bool perf_session__has_traces(struct perf_session *self, const char *msg)
1324 1325
{
	if (!(self->sample_type & PERF_SAMPLE_RAW)) {
1326 1327
		pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
		return false;
1328 1329
	}

1330
	return true;
1331
}
1332

1333 1334
int maps__set_kallsyms_ref_reloc_sym(struct map **maps,
				     const char *symbol_name, u64 addr)
1335 1336
{
	char *bracket;
1337
	enum map_type i;
1338 1339 1340 1341 1342
	struct ref_reloc_sym *ref;

	ref = zalloc(sizeof(struct ref_reloc_sym));
	if (ref == NULL)
		return -ENOMEM;
1343

1344 1345 1346
	ref->name = strdup(symbol_name);
	if (ref->name == NULL) {
		free(ref);
1347
		return -ENOMEM;
1348
	}
1349

1350
	bracket = strchr(ref->name, ']');
1351 1352 1353
	if (bracket)
		*bracket = '\0';

1354
	ref->addr = addr;
1355 1356

	for (i = 0; i < MAP__NR_TYPES; ++i) {
1357 1358
		struct kmap *kmap = map__kmap(maps[i]);
		kmap->ref_reloc_sym = ref;
1359 1360
	}

1361 1362
	return 0;
}
1363 1364 1365 1366 1367 1368 1369

size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
{
	return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
	       __dsos__fprintf(&self->host_machine.user_dsos, fp) +
	       machines__fprintf_dsos(&self->machines, fp);
}
1370 1371 1372 1373 1374 1375 1376

size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
					  bool with_hits)
{
	size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
	return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
}
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391

size_t perf_session__fprintf_nr_events(struct perf_session *session, FILE *fp)
{
	struct perf_evsel *pos;
	size_t ret = fprintf(fp, "Aggregated stats:\n");

	ret += hists__fprintf_nr_events(&session->hists, fp);

	list_for_each_entry(pos, &session->evlist->entries, node) {
		ret += fprintf(fp, "%s stats:\n", event_name(pos));
		ret += hists__fprintf_nr_events(&pos->hists, fp);
	}

	return ret;
}
1392

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
size_t perf_session__fprintf(struct perf_session *session, FILE *fp)
{
	/*
	 * FIXME: Here we have to actually print all the machines in this
	 * session, not just the host...
	 */
	return machine__fprintf(&session->host_machine, fp);
}

void perf_session__remove_thread(struct perf_session *session,
				 struct thread *th)
{
	/*
	 * FIXME: This one makes no sense, we need to remove the thread from
	 * the machine it belongs to, perf_session can have many machines, so
	 * doing it always on ->host_machine is wrong.  Fix when auditing all
	 * the 'perf kvm' code.
	 */
	machine__remove_thread(&session->host_machine, th);
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
struct perf_evsel *perf_session__find_first_evtype(struct perf_session *session,
					      unsigned int type)
{
	struct perf_evsel *pos;

	list_for_each_entry(pos, &session->evlist->entries, node) {
		if (pos->attr.type == type)
			return pos;
	}
	return NULL;
}

1426 1427
void perf_event__print_ip(union perf_event *event, struct perf_sample *sample,
			  struct machine *machine, struct perf_evsel *evsel,
1428
			  int print_sym, int print_dso, int print_symoffset)
1429 1430
{
	struct addr_location al;
1431
	struct callchain_cursor *cursor = &evsel->hists.callchain_cursor;
1432 1433
	struct callchain_cursor_node *node;

1434
	if (perf_event__preprocess_sample(event, machine, &al, sample,
1435 1436 1437 1438 1439 1440 1441 1442
					  NULL) < 0) {
		error("problem processing %d event, skipping it.\n",
			event->header.type);
		return;
	}

	if (symbol_conf.use_callchain && sample->callchain) {

1443
		if (machine__resolve_callchain(machine, evsel, al.thread,
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
						sample->callchain, NULL) != 0) {
			if (verbose)
				error("Failed to resolve callchain. Skipping\n");
			return;
		}
		callchain_cursor_commit(cursor);

		while (1) {
			node = callchain_cursor_current(cursor);
			if (!node)
				break;

1456 1457
			printf("\t%16" PRIx64, node->ip);
			if (print_sym) {
1458 1459
				printf(" ");
				symbol__fprintf_symname(node->sym, stdout);
1460 1461
			}
			if (print_dso) {
1462
				printf(" (");
1463
				map__fprintf_dsoname(node->map, stdout);
1464
				printf(")");
1465 1466
			}
			printf("\n");
1467 1468 1469 1470 1471

			callchain_cursor_advance(cursor);
		}

	} else {
1472
		printf("%16" PRIx64, sample->ip);
1473
		if (print_sym) {
1474
			printf(" ");
1475 1476 1477 1478 1479
			if (print_symoffset)
				symbol__fprintf_symname_offs(al.sym, &al,
							     stdout);
			else
				symbol__fprintf_symname(al.sym, stdout);
1480 1481 1482
		}

		if (print_dso) {
1483 1484 1485
			printf(" (");
			map__fprintf_dsoname(al.map, stdout);
			printf(")");
1486
		}
1487 1488
	}
}
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

int perf_session__cpu_bitmap(struct perf_session *session,
			     const char *cpu_list, unsigned long *cpu_bitmap)
{
	int i;
	struct cpu_map *map;

	for (i = 0; i < PERF_TYPE_MAX; ++i) {
		struct perf_evsel *evsel;

		evsel = perf_session__find_first_evtype(session, i);
		if (!evsel)
			continue;

		if (!(evsel->attr.sample_type & PERF_SAMPLE_CPU)) {
			pr_err("File does not contain CPU events. "
			       "Remove -c option to proceed.\n");
			return -1;
		}
	}

	map = cpu_map__new(cpu_list);
1511 1512 1513 1514
	if (map == NULL) {
		pr_err("Invalid cpu_list\n");
		return -1;
	}
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529

	for (i = 0; i < map->nr; i++) {
		int cpu = map->map[i];

		if (cpu >= MAX_NR_CPUS) {
			pr_err("Requested CPU %d too large. "
			       "Consider raising MAX_NR_CPUS\n", cpu);
			return -1;
		}

		set_bit(cpu, cpu_bitmap);
	}

	return 0;
}
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548

void perf_session__fprintf_info(struct perf_session *session, FILE *fp,
				bool full)
{
	struct stat st;
	int ret;

	if (session == NULL || fp == NULL)
		return;

	ret = fstat(session->fd, &st);
	if (ret == -1)
		return;

	fprintf(fp, "# ========\n");
	fprintf(fp, "# captured on: %s", ctime(&st.st_ctime));
	perf_header__fprintf_info(session, fp, full);
	fprintf(fp, "# ========\n#\n");
}