snapshot.c 32.8 KB
Newer Older
1
/*
2
 * linux/kernel/power/snapshot.c
3
 *
4
 * This file provide system snapshot/restore functionality.
5 6 7 8 9 10 11 12
 *
 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
 *
 * This file is released under the GPLv2, and is based on swsusp.c.
 *
 */


13
#include <linux/version.h>
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/smp_lock.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/pm.h>
#include <linux/device.h>
#include <linux/bootmem.h>
#include <linux/syscalls.h>
#include <linux/console.h>
#include <linux/highmem.h>

#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/tlbflush.h>
#include <asm/io.h>

#include "power.h"

37 38 39
/* List of PBEs used for creating and restoring the suspend image */
struct pbe *restore_pblist;

40 41
static unsigned int nr_copy_pages;
static unsigned int nr_meta_pages;
42
static void *buffer;
43

44
#ifdef CONFIG_HIGHMEM
45
unsigned int count_highmem_pages(void)
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
{
	struct zone *zone;
	unsigned long zone_pfn;
	unsigned int n = 0;

	for_each_zone (zone)
		if (is_highmem(zone)) {
			mark_free_pages(zone);
			for (zone_pfn = 0; zone_pfn < zone->spanned_pages; zone_pfn++) {
				struct page *page;
				unsigned long pfn = zone_pfn + zone->zone_start_pfn;
				if (!pfn_valid(pfn))
					continue;
				page = pfn_to_page(pfn);
				if (PageReserved(page))
					continue;
				if (PageNosaveFree(page))
					continue;
				n++;
			}
		}
	return n;
}

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
struct highmem_page {
	char *data;
	struct page *page;
	struct highmem_page *next;
};

static struct highmem_page *highmem_copy;

static int save_highmem_zone(struct zone *zone)
{
	unsigned long zone_pfn;
	mark_free_pages(zone);
	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
		struct page *page;
		struct highmem_page *save;
		void *kaddr;
		unsigned long pfn = zone_pfn + zone->zone_start_pfn;

88
		if (!(pfn%10000))
89 90 91 92 93 94 95 96 97 98
			printk(".");
		if (!pfn_valid(pfn))
			continue;
		page = pfn_to_page(pfn);
		/*
		 * This condition results from rvmalloc() sans vmalloc_32()
		 * and architectural memory reservations. This should be
		 * corrected eventually when the cases giving rise to this
		 * are better understood.
		 */
99
		if (PageReserved(page))
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
			continue;
		BUG_ON(PageNosave(page));
		if (PageNosaveFree(page))
			continue;
		save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC);
		if (!save)
			return -ENOMEM;
		save->next = highmem_copy;
		save->page = page;
		save->data = (void *) get_zeroed_page(GFP_ATOMIC);
		if (!save->data) {
			kfree(save);
			return -ENOMEM;
		}
		kaddr = kmap_atomic(page, KM_USER0);
		memcpy(save->data, kaddr, PAGE_SIZE);
		kunmap_atomic(kaddr, KM_USER0);
		highmem_copy = save;
	}
	return 0;
}

122
int save_highmem(void)
123 124 125 126
{
	struct zone *zone;
	int res = 0;

127
	pr_debug("swsusp: Saving Highmem");
128
	drain_local_pages();
129 130 131 132 133 134
	for_each_zone (zone) {
		if (is_highmem(zone))
			res = save_highmem_zone(zone);
		if (res)
			return res;
	}
135
	printk("\n");
136 137 138
	return 0;
}

139
int restore_highmem(void)
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
{
	printk("swsusp: Restoring Highmem\n");
	while (highmem_copy) {
		struct highmem_page *save = highmem_copy;
		void *kaddr;
		highmem_copy = save->next;

		kaddr = kmap_atomic(save->page, KM_USER0);
		memcpy(kaddr, save->data, PAGE_SIZE);
		kunmap_atomic(kaddr, KM_USER0);
		free_page((long) save->data);
		kfree(save);
	}
	return 0;
}
155
#else
156 157 158
static inline unsigned int count_highmem_pages(void) {return 0;}
static inline int save_highmem(void) {return 0;}
static inline int restore_highmem(void) {return 0;}
159
#endif
160

161 162 163 164 165 166 167 168 169
/**
 *	@safe_needed - on resume, for storing the PBE list and the image,
 *	we can only use memory pages that do not conflict with the pages
 *	used before suspend.
 *
 *	The unsafe pages are marked with the PG_nosave_free flag
 *	and we count them using unsafe_pages
 */

170 171 172 173 174
#define PG_ANY		0
#define PG_SAFE		1
#define PG_UNSAFE_CLEAR	1
#define PG_UNSAFE_KEEP	0

175
static unsigned int allocated_unsafe_pages;
176 177 178 179 180 181 182 183 184 185

static void *alloc_image_page(gfp_t gfp_mask, int safe_needed)
{
	void *res;

	res = (void *)get_zeroed_page(gfp_mask);
	if (safe_needed)
		while (res && PageNosaveFree(virt_to_page(res))) {
			/* The page is unsafe, mark it for swsusp_free() */
			SetPageNosave(virt_to_page(res));
186
			allocated_unsafe_pages++;
187 188 189 190 191 192 193 194 195 196 197
			res = (void *)get_zeroed_page(gfp_mask);
		}
	if (res) {
		SetPageNosave(virt_to_page(res));
		SetPageNosaveFree(virt_to_page(res));
	}
	return res;
}

unsigned long get_safe_page(gfp_t gfp_mask)
{
198
	return (unsigned long)alloc_image_page(gfp_mask, PG_SAFE);
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
}

/**
 *	free_image_page - free page represented by @addr, allocated with
 *	alloc_image_page (page flags set by it must be cleared)
 */

static inline void free_image_page(void *addr, int clear_nosave_free)
{
	ClearPageNosave(virt_to_page(addr));
	if (clear_nosave_free)
		ClearPageNosaveFree(virt_to_page(addr));
	free_page((unsigned long)addr);
}

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
/* struct linked_page is used to build chains of pages */

#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))

struct linked_page {
	struct linked_page *next;
	char data[LINKED_PAGE_DATA_SIZE];
} __attribute__((packed));

static inline void
free_list_of_pages(struct linked_page *list, int clear_page_nosave)
{
	while (list) {
		struct linked_page *lp = list->next;

		free_image_page(list, clear_page_nosave);
		list = lp;
	}
}

/**
  *	struct chain_allocator is used for allocating small objects out of
  *	a linked list of pages called 'the chain'.
  *
  *	The chain grows each time when there is no room for a new object in
  *	the current page.  The allocated objects cannot be freed individually.
  *	It is only possible to free them all at once, by freeing the entire
  *	chain.
  *
  *	NOTE: The chain allocator may be inefficient if the allocated objects
  *	are not much smaller than PAGE_SIZE.
  */

struct chain_allocator {
	struct linked_page *chain;	/* the chain */
	unsigned int used_space;	/* total size of objects allocated out
					 * of the current page
					 */
	gfp_t gfp_mask;		/* mask for allocating pages */
	int safe_needed;	/* if set, only "safe" pages are allocated */
};

static void
chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
{
	ca->chain = NULL;
	ca->used_space = LINKED_PAGE_DATA_SIZE;
	ca->gfp_mask = gfp_mask;
	ca->safe_needed = safe_needed;
}

static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
{
	void *ret;

	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
		struct linked_page *lp;

		lp = alloc_image_page(ca->gfp_mask, ca->safe_needed);
		if (!lp)
			return NULL;

		lp->next = ca->chain;
		ca->chain = lp;
		ca->used_space = 0;
	}
	ret = ca->chain->data + ca->used_space;
	ca->used_space += size;
	return ret;
}

static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
{
	free_list_of_pages(ca->chain, clear_page_nosave);
	memset(ca, 0, sizeof(struct chain_allocator));
}

/**
 *	Data types related to memory bitmaps.
 *
 *	Memory bitmap is a structure consiting of many linked lists of
 *	objects.  The main list's elements are of type struct zone_bitmap
 *	and each of them corresonds to one zone.  For each zone bitmap
 *	object there is a list of objects of type struct bm_block that
 *	represent each blocks of bit chunks in which information is
 *	stored.
 *
 *	struct memory_bitmap contains a pointer to the main list of zone
 *	bitmap objects, a struct bm_position used for browsing the bitmap,
 *	and a pointer to the list of pages used for allocating all of the
 *	zone bitmap objects and bitmap block objects.
 *
 *	NOTE: It has to be possible to lay out the bitmap in memory
 *	using only allocations of order 0.  Additionally, the bitmap is
 *	designed to work with arbitrary number of zones (this is over the
 *	top for now, but let's avoid making unnecessary assumptions ;-).
 *
 *	struct zone_bitmap contains a pointer to a list of bitmap block
 *	objects and a pointer to the bitmap block object that has been
 *	most recently used for setting bits.  Additionally, it contains the
 *	pfns that correspond to the start and end of the represented zone.
 *
 *	struct bm_block contains a pointer to the memory page in which
 *	information is stored (in the form of a block of bit chunks
 *	of type unsigned long each).  It also contains the pfns that
 *	correspond to the start and end of the represented memory area and
 *	the number of bit chunks in the block.
 *
 *	NOTE: Memory bitmaps are used for two types of operations only:
 *	"set a bit" and "find the next bit set".  Moreover, the searching
 *	is always carried out after all of the "set a bit" operations
 *	on given bitmap.
 */

#define BM_END_OF_MAP	(~0UL)

#define BM_CHUNKS_PER_BLOCK	(PAGE_SIZE / sizeof(long))
#define BM_BITS_PER_CHUNK	(sizeof(long) << 3)
#define BM_BITS_PER_BLOCK	(PAGE_SIZE << 3)

struct bm_block {
	struct bm_block *next;		/* next element of the list */
	unsigned long start_pfn;	/* pfn represented by the first bit */
	unsigned long end_pfn;	/* pfn represented by the last bit plus 1 */
	unsigned int size;	/* number of bit chunks */
	unsigned long *data;	/* chunks of bits representing pages */
};

struct zone_bitmap {
	struct zone_bitmap *next;	/* next element of the list */
	unsigned long start_pfn;	/* minimal pfn in this zone */
	unsigned long end_pfn;		/* maximal pfn in this zone plus 1 */
	struct bm_block *bm_blocks;	/* list of bitmap blocks */
	struct bm_block *cur_block;	/* recently used bitmap block */
};

/* strcut bm_position is used for browsing memory bitmaps */

struct bm_position {
	struct zone_bitmap *zone_bm;
	struct bm_block *block;
	int chunk;
	int bit;
};

struct memory_bitmap {
	struct zone_bitmap *zone_bm_list;	/* list of zone bitmaps */
	struct linked_page *p_list;	/* list of pages used to store zone
					 * bitmap objects and bitmap block
					 * objects
					 */
	struct bm_position cur;	/* most recently used bit position */
};

/* Functions that operate on memory bitmaps */

static inline void memory_bm_reset_chunk(struct memory_bitmap *bm)
{
	bm->cur.chunk = 0;
	bm->cur.bit = -1;
}

static void memory_bm_position_reset(struct memory_bitmap *bm)
{
	struct zone_bitmap *zone_bm;

	zone_bm = bm->zone_bm_list;
	bm->cur.zone_bm = zone_bm;
	bm->cur.block = zone_bm->bm_blocks;
	memory_bm_reset_chunk(bm);
}

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);

/**
 *	create_bm_block_list - create a list of block bitmap objects
 */

static inline struct bm_block *
create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
{
	struct bm_block *bblist = NULL;

	while (nr_blocks-- > 0) {
		struct bm_block *bb;

		bb = chain_alloc(ca, sizeof(struct bm_block));
		if (!bb)
			return NULL;

		bb->next = bblist;
		bblist = bb;
	}
	return bblist;
}

/**
 *	create_zone_bm_list - create a list of zone bitmap objects
 */

static inline struct zone_bitmap *
create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
{
	struct zone_bitmap *zbmlist = NULL;

	while (nr_zones-- > 0) {
		struct zone_bitmap *zbm;

		zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
		if (!zbm)
			return NULL;

		zbm->next = zbmlist;
		zbmlist = zbm;
	}
	return zbmlist;
}

/**
  *	memory_bm_create - allocate memory for a memory bitmap
  */

static int
memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
{
	struct chain_allocator ca;
	struct zone *zone;
	struct zone_bitmap *zone_bm;
	struct bm_block *bb;
	unsigned int nr;

	chain_init(&ca, gfp_mask, safe_needed);

	/* Compute the number of zones */
	nr = 0;
	for_each_zone (zone)
		if (populated_zone(zone) && !is_highmem(zone))
			nr++;

	/* Allocate the list of zones bitmap objects */
	zone_bm = create_zone_bm_list(nr, &ca);
	bm->zone_bm_list = zone_bm;
	if (!zone_bm) {
		chain_free(&ca, PG_UNSAFE_CLEAR);
		return -ENOMEM;
	}

	/* Initialize the zone bitmap objects */
	for_each_zone (zone) {
		unsigned long pfn;

		if (!populated_zone(zone) || is_highmem(zone))
			continue;

		zone_bm->start_pfn = zone->zone_start_pfn;
		zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
		/* Allocate the list of bitmap block objects */
		nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
		bb = create_bm_block_list(nr, &ca);
		zone_bm->bm_blocks = bb;
		zone_bm->cur_block = bb;
		if (!bb)
			goto Free;

		nr = zone->spanned_pages;
		pfn = zone->zone_start_pfn;
		/* Initialize the bitmap block objects */
		while (bb) {
			unsigned long *ptr;

			ptr = alloc_image_page(gfp_mask, safe_needed);
			bb->data = ptr;
			if (!ptr)
				goto Free;

			bb->start_pfn = pfn;
			if (nr >= BM_BITS_PER_BLOCK) {
				pfn += BM_BITS_PER_BLOCK;
				bb->size = BM_CHUNKS_PER_BLOCK;
				nr -= BM_BITS_PER_BLOCK;
			} else {
				/* This is executed only once in the loop */
				pfn += nr;
				bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK);
			}
			bb->end_pfn = pfn;
			bb = bb->next;
		}
		zone_bm = zone_bm->next;
	}
	bm->p_list = ca.chain;
	memory_bm_position_reset(bm);
	return 0;

Free:
	bm->p_list = ca.chain;
	memory_bm_free(bm, PG_UNSAFE_CLEAR);
	return -ENOMEM;
}

/**
  *	memory_bm_free - free memory occupied by the memory bitmap @bm
  */

static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
{
	struct zone_bitmap *zone_bm;

	/* Free the list of bit blocks for each zone_bitmap object */
	zone_bm = bm->zone_bm_list;
	while (zone_bm) {
		struct bm_block *bb;

		bb = zone_bm->bm_blocks;
		while (bb) {
			if (bb->data)
				free_image_page(bb->data, clear_nosave_free);
			bb = bb->next;
		}
		zone_bm = zone_bm->next;
	}
	free_list_of_pages(bm->p_list, clear_nosave_free);
	bm->zone_bm_list = NULL;
}

/**
 *	memory_bm_set_bit - set the bit in the bitmap @bm that corresponds
 *	to given pfn.  The cur_zone_bm member of @bm and the cur_block member
 *	of @bm->cur_zone_bm are updated.
 *
 *	If the bit cannot be set, the function returns -EINVAL .
 */

static int
memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
{
	struct zone_bitmap *zone_bm;
	struct bm_block *bb;

	/* Check if the pfn is from the current zone */
	zone_bm = bm->cur.zone_bm;
	if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
		zone_bm = bm->zone_bm_list;
		/* We don't assume that the zones are sorted by pfns */
		while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
			zone_bm = zone_bm->next;
			if (unlikely(!zone_bm))
				return -EINVAL;
		}
		bm->cur.zone_bm = zone_bm;
	}
	/* Check if the pfn corresponds to the current bitmap block */
	bb = zone_bm->cur_block;
	if (pfn < bb->start_pfn)
		bb = zone_bm->bm_blocks;

	while (pfn >= bb->end_pfn) {
		bb = bb->next;
		if (unlikely(!bb))
			return -EINVAL;
	}
	zone_bm->cur_block = bb;
	pfn -= bb->start_pfn;
	set_bit(pfn % BM_BITS_PER_CHUNK, bb->data + pfn / BM_BITS_PER_CHUNK);
	return 0;
}

/* Two auxiliary functions for memory_bm_next_pfn */

/* Find the first set bit in the given chunk, if there is one */

static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p)
{
	bit++;
	while (bit < BM_BITS_PER_CHUNK) {
		if (test_bit(bit, chunk_p))
			return bit;

		bit++;
	}
	return -1;
}

/* Find a chunk containing some bits set in given block of bits */

static inline int next_chunk_in_block(int n, struct bm_block *bb)
{
	n++;
	while (n < bb->size) {
		if (bb->data[n])
			return n;

		n++;
	}
	return -1;
}

/**
 *	memory_bm_next_pfn - find the pfn that corresponds to the next set bit
 *	in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
 *	returned.
 *
 *	It is required to run memory_bm_position_reset() before the first call to
 *	this function.
 */

static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
{
	struct zone_bitmap *zone_bm;
	struct bm_block *bb;
	int chunk;
	int bit;

	do {
		bb = bm->cur.block;
		do {
			chunk = bm->cur.chunk;
			bit = bm->cur.bit;
			do {
				bit = next_bit_in_chunk(bit, bb->data + chunk);
				if (bit >= 0)
					goto Return_pfn;

				chunk = next_chunk_in_block(chunk, bb);
				bit = -1;
			} while (chunk >= 0);
			bb = bb->next;
			bm->cur.block = bb;
			memory_bm_reset_chunk(bm);
		} while (bb);
		zone_bm = bm->cur.zone_bm->next;
		if (zone_bm) {
			bm->cur.zone_bm = zone_bm;
			bm->cur.block = zone_bm->bm_blocks;
			memory_bm_reset_chunk(bm);
		}
	} while (zone_bm);
	memory_bm_position_reset(bm);
	return BM_END_OF_MAP;

Return_pfn:
	bm->cur.chunk = chunk;
	bm->cur.bit = bit;
	return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
}

/**
 *	snapshot_additional_pages - estimate the number of additional pages
 *	be needed for setting up the suspend image data structures for given
 *	zone (usually the returned value is greater than the exact number)
 */

unsigned int snapshot_additional_pages(struct zone *zone)
{
	unsigned int res;

	res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
	res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
	return res;
}

675 676 677 678
/**
 *	pfn_is_nosave - check if given pfn is in the 'nosave' section
 */

679
static inline int pfn_is_nosave(unsigned long pfn)
680 681 682 683 684 685 686 687 688 689
{
	unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
	unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
	return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
}

/**
 *	saveable - Determine whether a page should be cloned or not.
 *	@pfn:	The page
 *
690 691 692
 *	We save a page if it isn't Nosave, and is not in the range of pages
 *	statically defined as 'unsaveable', and it
 *	isn't a part of a free chunk of pages.
693 694
 */

695
static struct page *saveable_page(unsigned long pfn)
696
{
P
Pavel Machek 已提交
697
	struct page *page;
698 699

	if (!pfn_valid(pfn))
700
		return NULL;
701 702

	page = pfn_to_page(pfn);
703

704
	if (PageNosave(page))
705
		return NULL;
706
	if (PageReserved(page) && pfn_is_nosave(pfn))
707
		return NULL;
708
	if (PageNosaveFree(page))
709
		return NULL;
710

711
	return page;
712 713
}

714
unsigned int count_data_pages(void)
715 716
{
	struct zone *zone;
717
	unsigned long pfn, max_zone_pfn;
P
Pavel Machek 已提交
718
	unsigned int n = 0;
719 720 721 722 723

	for_each_zone (zone) {
		if (is_highmem(zone))
			continue;
		mark_free_pages(zone);
724 725 726
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
			n += !!saveable_page(pfn);
727
	}
728
	return n;
729 730
}

731 732 733 734 735 736 737 738 739
static inline void copy_data_page(long *dst, long *src)
{
	int n;

	/* copy_page and memcpy are not usable for copying task structs. */
	for (n = PAGE_SIZE / sizeof(long); n; n--)
		*dst++ = *src++;
}

740 741
static void
copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
742 743
{
	struct zone *zone;
744
	unsigned long pfn;
745 746

	for_each_zone (zone) {
747 748
		unsigned long max_zone_pfn;

749 750
		if (is_highmem(zone))
			continue;
751

752
		mark_free_pages(zone);
753
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
754 755 756
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
			if (saveable_page(pfn))
				memory_bm_set_bit(orig_bm, pfn);
757
	}
758 759 760 761 762 763 764 765 766 767 768 769 770 771
	memory_bm_position_reset(orig_bm);
	memory_bm_position_reset(copy_bm);
	do {
		pfn = memory_bm_next_pfn(orig_bm);
		if (likely(pfn != BM_END_OF_MAP)) {
			struct page *page;
			void *src;

			page = pfn_to_page(pfn);
			src = page_address(page);
			page = pfn_to_page(memory_bm_next_pfn(copy_bm));
			copy_data_page(page_address(page), src);
		}
	} while (pfn != BM_END_OF_MAP);
772 773 774
}

/**
775
 *	swsusp_free - free pages allocated for the suspend.
776
 *
777 778
 *	Suspend pages are alocated before the atomic copy is made, so we
 *	need to release them after the resume.
779 780 781 782 783
 */

void swsusp_free(void)
{
	struct zone *zone;
784
	unsigned long pfn, max_zone_pfn;
785 786

	for_each_zone(zone) {
787 788 789 790 791
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
			if (pfn_valid(pfn)) {
				struct page *page = pfn_to_page(pfn);

792 793 794 795 796 797 798
				if (PageNosave(page) && PageNosaveFree(page)) {
					ClearPageNosave(page);
					ClearPageNosaveFree(page);
					free_page((long) page_address(page));
				}
			}
	}
799 800
	nr_copy_pages = 0;
	nr_meta_pages = 0;
801
	restore_pblist = NULL;
802
	buffer = NULL;
803 804 805 806 807 808 809 810 811 812
}


/**
 *	enough_free_mem - Make sure we enough free memory to snapshot.
 *
 *	Returns TRUE or FALSE after checking the number of available
 *	free pages.
 */

P
Pavel Machek 已提交
813
static int enough_free_mem(unsigned int nr_pages)
814
{
815
	struct zone *zone;
816
	unsigned int free = 0, meta = 0;
817 818

	for_each_zone (zone)
819 820 821 822 823 824 825 826 827
		if (!is_highmem(zone)) {
			free += zone->free_pages;
			meta += snapshot_additional_pages(zone);
		}

	pr_debug("swsusp: pages needed: %u + %u + %u, available pages: %u\n",
		nr_pages, PAGES_FOR_IO, meta, free);

	return free > nr_pages + PAGES_FOR_IO + meta;
828 829
}

830 831 832
static int
swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
		unsigned int nr_pages)
833
{
834
	int error;
835

836 837 838
	error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
	if (error)
		goto Free;
839

840 841 842
	error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
	if (error)
		goto Free;
843

844 845 846 847
	while (nr_pages-- > 0) {
		struct page *page = alloc_page(GFP_ATOMIC | __GFP_COLD);
		if (!page)
			goto Free;
848

849 850 851
		SetPageNosave(page);
		SetPageNosaveFree(page);
		memory_bm_set_bit(copy_bm, page_to_pfn(page));
852
	}
853
	return 0;
854

855 856 857
Free:
	swsusp_free();
	return -ENOMEM;
858 859
}

860 861 862 863 864 865 866
/* Memory bitmap used for marking saveable pages */
static struct memory_bitmap orig_bm;
/* Memory bitmap used for marking allocated pages that will contain the copies
 * of saveable pages
 */
static struct memory_bitmap copy_bm;

867
asmlinkage int swsusp_save(void)
868
{
P
Pavel Machek 已提交
869
	unsigned int nr_pages;
870 871 872 873

	pr_debug("swsusp: critical section: \n");

	drain_local_pages();
874 875
	nr_pages = count_data_pages();
	printk("swsusp: Need to copy %u pages\n", nr_pages);
876

877
	if (!enough_free_mem(nr_pages)) {
878 879 880 881
		printk(KERN_ERR "swsusp: Not enough free memory\n");
		return -ENOMEM;
	}

882
	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages))
883
		return -ENOMEM;
884 885 886 887 888

	/* During allocating of suspend pagedir, new cold pages may appear.
	 * Kill them.
	 */
	drain_local_pages();
889
	copy_data_pages(&copy_bm, &orig_bm);
890 891 892 893 894 895 896

	/*
	 * End of critical section. From now on, we can write to memory,
	 * but we should not touch disk. This specially means we must _not_
	 * touch swap space! Except we must write out our image of course.
	 */

897
	nr_copy_pages = nr_pages;
898
	nr_meta_pages = (nr_pages * sizeof(long) + PAGE_SIZE - 1) >> PAGE_SHIFT;
899 900

	printk("swsusp: critical section/: done (%d pages copied)\n", nr_pages);
901 902
	return 0;
}
903 904 905 906 907 908 909 910 911 912

static void init_header(struct swsusp_info *info)
{
	memset(info, 0, sizeof(struct swsusp_info));
	info->version_code = LINUX_VERSION_CODE;
	info->num_physpages = num_physpages;
	memcpy(&info->uts, &system_utsname, sizeof(system_utsname));
	info->cpus = num_online_cpus();
	info->image_pages = nr_copy_pages;
	info->pages = nr_copy_pages + nr_meta_pages + 1;
913 914
	info->size = info->pages;
	info->size <<= PAGE_SHIFT;
915 916 917
}

/**
918 919
 *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
 *	are stored in the array @buf[] (1 page at a time)
920 921
 */

922
static inline void
923
pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
924 925 926
{
	int j;

927
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
928 929
		buf[j] = memory_bm_next_pfn(bm);
		if (unlikely(buf[j] == BM_END_OF_MAP))
930
			break;
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
	}
}

/**
 *	snapshot_read_next - used for reading the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	The @count parameter should contain the number of bytes the caller
 *	wants to read from the snapshot.  It must not be zero.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to read up to the returned number of bytes from the memory
 *	location computed by the data_of() macro.  The number returned
 *	may be smaller than @count, but this only happens if the read would
 *	cross a page boundary otherwise.
 *
 *	The function returns 0 to indicate the end of data stream condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

int snapshot_read_next(struct snapshot_handle *handle, size_t count)
{
958
	if (handle->cur > nr_meta_pages + nr_copy_pages)
959
		return 0;
960

961 962
	if (!buffer) {
		/* This makes the buffer be freed by swsusp_free() */
963
		buffer = alloc_image_page(GFP_ATOMIC, PG_ANY);
964 965 966 967 968 969
		if (!buffer)
			return -ENOMEM;
	}
	if (!handle->offset) {
		init_header((struct swsusp_info *)buffer);
		handle->buffer = buffer;
970 971
		memory_bm_position_reset(&orig_bm);
		memory_bm_position_reset(&copy_bm);
972
	}
973 974
	if (handle->prev < handle->cur) {
		if (handle->cur <= nr_meta_pages) {
975
			memset(buffer, 0, PAGE_SIZE);
976
			pack_pfns(buffer, &orig_bm);
977
		} else {
978 979 980
			unsigned long pfn = memory_bm_next_pfn(&copy_bm);

			handle->buffer = page_address(pfn_to_page(pfn));
981
		}
982
		handle->prev = handle->cur;
983
	}
984 985 986 987 988
	handle->buf_offset = handle->cur_offset;
	if (handle->cur_offset + count >= PAGE_SIZE) {
		count = PAGE_SIZE - handle->cur_offset;
		handle->cur_offset = 0;
		handle->cur++;
989
	} else {
990
		handle->cur_offset += count;
991 992 993 994 995 996 997 998 999 1000 1001
	}
	handle->offset += count;
	return count;
}

/**
 *	mark_unsafe_pages - mark the pages that cannot be used for storing
 *	the image during resume, because they conflict with the pages that
 *	had been used before suspend
 */

1002
static int mark_unsafe_pages(struct memory_bitmap *bm)
1003 1004
{
	struct zone *zone;
1005
	unsigned long pfn, max_zone_pfn;
1006 1007 1008

	/* Clear page flags */
	for_each_zone (zone) {
1009 1010 1011 1012
		max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
			if (pfn_valid(pfn))
				ClearPageNosaveFree(pfn_to_page(pfn));
1013 1014
	}

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	/* Mark pages that correspond to the "original" pfns as "unsafe" */
	memory_bm_position_reset(bm);
	do {
		pfn = memory_bm_next_pfn(bm);
		if (likely(pfn != BM_END_OF_MAP)) {
			if (likely(pfn_valid(pfn)))
				SetPageNosaveFree(pfn_to_page(pfn));
			else
				return -EFAULT;
		}
	} while (pfn != BM_END_OF_MAP);
1026

1027
	allocated_unsafe_pages = 0;
1028

1029 1030 1031
	return 0;
}

1032 1033
static void
duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1034
{
1035 1036 1037 1038 1039 1040 1041
	unsigned long pfn;

	memory_bm_position_reset(src);
	pfn = memory_bm_next_pfn(src);
	while (pfn != BM_END_OF_MAP) {
		memory_bm_set_bit(dst, pfn);
		pfn = memory_bm_next_pfn(src);
1042 1043 1044
	}
}

1045
static inline int check_header(struct swsusp_info *info)
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
{
	char *reason = NULL;

	if (info->version_code != LINUX_VERSION_CODE)
		reason = "kernel version";
	if (info->num_physpages != num_physpages)
		reason = "memory size";
	if (strcmp(info->uts.sysname,system_utsname.sysname))
		reason = "system type";
	if (strcmp(info->uts.release,system_utsname.release))
		reason = "kernel release";
	if (strcmp(info->uts.version,system_utsname.version))
		reason = "version";
	if (strcmp(info->uts.machine,system_utsname.machine))
		reason = "machine";
	if (reason) {
		printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason);
		return -EPERM;
	}
	return 0;
}

/**
 *	load header - check the image header and copy data from it
 */

1072 1073
static int
load_header(struct swsusp_info *info)
1074 1075 1076
{
	int error;

1077
	restore_pblist = NULL;
1078 1079 1080 1081 1082 1083 1084 1085 1086
	error = check_header(info);
	if (!error) {
		nr_copy_pages = info->image_pages;
		nr_meta_pages = info->pages - info->image_pages - 1;
	}
	return error;
}

/**
1087 1088
 *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
 *	the corresponding bit in the memory bitmap @bm
1089 1090
 */

1091 1092
static inline void
unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1093 1094 1095
{
	int j;

1096 1097 1098 1099 1100
	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
		if (unlikely(buf[j] == BM_END_OF_MAP))
			break;

		memory_bm_set_bit(bm, buf[j]);
1101 1102 1103 1104
	}
}

/**
1105 1106 1107 1108
 *	prepare_image - use the memory bitmap @bm to mark the pages that will
 *	be overwritten in the process of restoring the system memory state
 *	from the suspend image ("unsafe" pages) and allocate memory for the
 *	image.
1109
 *
1110 1111 1112 1113
 *	The idea is to allocate a new memory bitmap first and then allocate
 *	as many pages as needed for the image data, but not to assign these
 *	pages to specific tasks initially.  Instead, we just mark them as
 *	allocated and create a list of "safe" pages that will be used later.
1114 1115
 */

1116 1117 1118
#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))

static struct linked_page *safe_pages_list;
1119

1120 1121
static int
prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1122
{
1123 1124 1125
	unsigned int nr_pages;
	struct linked_page *sp_list, *lp;
	int error;
1126

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	error = mark_unsafe_pages(bm);
	if (error)
		goto Free;

	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
	if (error)
		goto Free;

	duplicate_memory_bitmap(new_bm, bm);
	memory_bm_free(bm, PG_UNSAFE_KEEP);
	/* Reserve some safe pages for potential later use.
	 *
	 * NOTE: This way we make sure there will be enough safe pages for the
	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
	 */
	sp_list = NULL;
	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
	nr_pages = nr_copy_pages - allocated_unsafe_pages;
	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
	while (nr_pages > 0) {
		lp = alloc_image_page(GFP_ATOMIC, PG_SAFE);
		if (!lp) {
1150
			error = -ENOMEM;
1151 1152 1153 1154 1155
			goto Free;
		}
		lp->next = sp_list;
		sp_list = lp;
		nr_pages--;
1156
	}
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
	/* Preallocate memory for the image */
	safe_pages_list = NULL;
	nr_pages = nr_copy_pages - allocated_unsafe_pages;
	while (nr_pages > 0) {
		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
		if (!lp) {
			error = -ENOMEM;
			goto Free;
		}
		if (!PageNosaveFree(virt_to_page(lp))) {
			/* The page is "safe", add it to the list */
			lp->next = safe_pages_list;
			safe_pages_list = lp;
1170
		}
1171 1172 1173 1174
		/* Mark the page as allocated */
		SetPageNosave(virt_to_page(lp));
		SetPageNosaveFree(virt_to_page(lp));
		nr_pages--;
1175
	}
1176 1177 1178 1179 1180
	/* Free the reserved safe pages so that chain_alloc() can use them */
	while (sp_list) {
		lp = sp_list->next;
		free_image_page(sp_list, PG_UNSAFE_CLEAR);
		sp_list = lp;
1181
	}
1182 1183 1184 1185
	return 0;

Free:
	swsusp_free();
1186 1187 1188
	return error;
}

1189 1190 1191 1192 1193 1194
/**
 *	get_buffer - compute the address that snapshot_write_next() should
 *	set for its caller to write to.
 */

static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1195
{
1196 1197
	struct pbe *pbe;
	struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
1198

1199 1200 1201
	if (PageNosave(page) && PageNosaveFree(page))
		/* We have allocated the "original" page frame and we can
		 * use it directly to store the loaded page.
1202
		 */
1203 1204 1205 1206
		return page_address(page);

	/* The "original" page frame has not been allocated and we have to
	 * use a "safe" page frame to store the loaded page.
1207
	 */
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	pbe = chain_alloc(ca, sizeof(struct pbe));
	if (!pbe) {
		swsusp_free();
		return NULL;
	}
	pbe->orig_address = (unsigned long)page_address(page);
	pbe->address = (unsigned long)safe_pages_list;
	safe_pages_list = safe_pages_list->next;
	pbe->next = restore_pblist;
	restore_pblist = pbe;
1218 1219 1220
	return (void *)pbe->address;
}

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
/**
 *	snapshot_write_next - used for writing the system memory snapshot.
 *
 *	On the first call to it @handle should point to a zeroed
 *	snapshot_handle structure.  The structure gets updated and a pointer
 *	to it should be passed to this function every next time.
 *
 *	The @count parameter should contain the number of bytes the caller
 *	wants to write to the image.  It must not be zero.
 *
 *	On success the function returns a positive number.  Then, the caller
 *	is allowed to write up to the returned number of bytes to the memory
 *	location computed by the data_of() macro.  The number returned
 *	may be smaller than @count, but this only happens if the write would
 *	cross a page boundary otherwise.
 *
 *	The function returns 0 to indicate the "end of file" condition,
 *	and a negative number is returned on error.  In such cases the
 *	structure pointed to by @handle is not updated and should not be used
 *	any more.
 */

int snapshot_write_next(struct snapshot_handle *handle, size_t count)
{
1245
	static struct chain_allocator ca;
1246 1247
	int error = 0;

1248
	/* Check if we have already loaded the entire image */
1249
	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1250
		return 0;
1251

1252 1253
	if (!buffer) {
		/* This makes the buffer be freed by swsusp_free() */
1254
		buffer = alloc_image_page(GFP_ATOMIC, PG_ANY);
1255 1256 1257 1258 1259
		if (!buffer)
			return -ENOMEM;
	}
	if (!handle->offset)
		handle->buffer = buffer;
A
Andrew Morton 已提交
1260
	handle->sync_read = 1;
1261
	if (handle->prev < handle->cur) {
1262 1263 1264 1265 1266 1267
		if (handle->prev == 0) {
			error = load_header(buffer);
			if (error)
				return error;

			error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
1268 1269
			if (error)
				return error;
1270

1271
		} else if (handle->prev <= nr_meta_pages) {
1272 1273 1274
			unpack_orig_pfns(buffer, &copy_bm);
			if (handle->prev == nr_meta_pages) {
				error = prepare_image(&orig_bm, &copy_bm);
1275 1276
				if (error)
					return error;
1277 1278 1279 1280 1281

				chain_init(&ca, GFP_ATOMIC, PG_SAFE);
				memory_bm_position_reset(&orig_bm);
				restore_pblist = NULL;
				handle->buffer = get_buffer(&orig_bm, &ca);
A
Andrew Morton 已提交
1282
				handle->sync_read = 0;
1283 1284
				if (!handle->buffer)
					return -ENOMEM;
1285 1286
			}
		} else {
1287
			handle->buffer = get_buffer(&orig_bm, &ca);
A
Andrew Morton 已提交
1288
			handle->sync_read = 0;
1289
		}
1290
		handle->prev = handle->cur;
1291
	}
1292 1293 1294 1295 1296
	handle->buf_offset = handle->cur_offset;
	if (handle->cur_offset + count >= PAGE_SIZE) {
		count = PAGE_SIZE - handle->cur_offset;
		handle->cur_offset = 0;
		handle->cur++;
1297
	} else {
1298
		handle->cur_offset += count;
1299 1300 1301 1302 1303 1304 1305
	}
	handle->offset += count;
	return count;
}

int snapshot_image_loaded(struct snapshot_handle *handle)
{
1306 1307 1308 1309 1310 1311 1312 1313 1314
	return !(!nr_copy_pages ||
			handle->cur <= nr_meta_pages + nr_copy_pages);
}

void snapshot_free_unused_memory(struct snapshot_handle *handle)
{
	/* Free only if we have loaded the image entirely */
	if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
1315
}