gup.c 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Lockless get_user_pages_fast for x86
 *
 * Copyright (C) 2008 Nick Piggin
 * Copyright (C) 2008 Novell Inc.
 */
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/vmstat.h>
#include <linux/highmem.h>

#include <asm/pgtable.h>

static inline pte_t gup_get_pte(pte_t *ptep)
{
#ifndef CONFIG_X86_PAE
17
	return ACCESS_ONCE(*ptep);
18 19 20
#else
	/*
	 * With get_user_pages_fast, we walk down the pagetables without taking
21
	 * any locks.  For this we would like to load the pointers atomically,
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
	 * but that is not possible (without expensive cmpxchg8b) on PAE.  What
	 * we do have is the guarantee that a pte will only either go from not
	 * present to present, or present to not present or both -- it will not
	 * switch to a completely different present page without a TLB flush in
	 * between; something that we are blocking by holding interrupts off.
	 *
	 * Setting ptes from not present to present goes:
	 * ptep->pte_high = h;
	 * smp_wmb();
	 * ptep->pte_low = l;
	 *
	 * And present to not present goes:
	 * ptep->pte_low = 0;
	 * smp_wmb();
	 * ptep->pte_high = 0;
	 *
	 * We must ensure here that the load of pte_low sees l iff pte_high
	 * sees h. We load pte_high *after* loading pte_low, which ensures we
	 * don't see an older value of pte_high.  *Then* we recheck pte_low,
	 * which ensures that we haven't picked up a changed pte high. We might
	 * have got rubbish values from pte_low and pte_high, but we are
	 * guaranteed that pte_low will not have the present bit set *unless*
	 * it is 'l'. And get_user_pages_fast only operates on present ptes, so
	 * we're safe.
	 *
	 * gup_get_pte should not be used or copied outside gup.c without being
	 * very careful -- it does not atomically load the pte or anything that
	 * is likely to be useful for you.
	 */
	pte_t pte;

retry:
	pte.pte_low = ptep->pte_low;
	smp_rmb();
	pte.pte_high = ptep->pte_high;
	smp_rmb();
	if (unlikely(pte.pte_low != ptep->pte_low))
		goto retry;

	return pte;
#endif
}

/*
 * The performance critical leaf functions are made noinline otherwise gcc
 * inlines everything into a single function which results in too much
 * register pressure.
 */
static noinline int gup_pte_range(pmd_t pmd, unsigned long addr,
		unsigned long end, int write, struct page **pages, int *nr)
{
	unsigned long mask;
	pte_t *ptep;

	mask = _PAGE_PRESENT|_PAGE_USER;
	if (write)
		mask |= _PAGE_RW;

	ptep = pte_offset_map(&pmd, addr);
	do {
		pte_t pte = gup_get_pte(ptep);
		struct page *page;

85
		if ((pte_flags(pte) & (mask | _PAGE_SPECIAL)) != mask) {
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
			pte_unmap(ptep);
			return 0;
		}
		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
		page = pte_page(pte);
		get_page(page);
		pages[*nr] = page;
		(*nr)++;

	} while (ptep++, addr += PAGE_SIZE, addr != end);
	pte_unmap(ptep - 1);

	return 1;
}

static inline void get_head_page_multiple(struct page *page, int nr)
{
	VM_BUG_ON(page != compound_head(page));
	VM_BUG_ON(page_count(page) == 0);
	atomic_add(nr, &page->_count);
}

static noinline int gup_huge_pmd(pmd_t pmd, unsigned long addr,
		unsigned long end, int write, struct page **pages, int *nr)
{
	unsigned long mask;
	pte_t pte = *(pte_t *)&pmd;
	struct page *head, *page;
	int refs;

	mask = _PAGE_PRESENT|_PAGE_USER;
	if (write)
		mask |= _PAGE_RW;
119
	if ((pte_flags(pte) & mask) != mask)
120 121
		return 0;
	/* hugepages are never "special" */
122
	VM_BUG_ON(pte_flags(pte) & _PAGE_SPECIAL);
123 124 125 126
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

	refs = 0;
	head = pte_page(pte);
127
	page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
	do {
		VM_BUG_ON(compound_head(page) != head);
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);
	get_head_page_multiple(head, refs);

	return 1;
}

static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
		int write, struct page **pages, int *nr)
{
	unsigned long next;
	pmd_t *pmdp;

	pmdp = pmd_offset(&pud, addr);
	do {
		pmd_t pmd = *pmdp;

		next = pmd_addr_end(addr, end);
		if (pmd_none(pmd))
			return 0;
		if (unlikely(pmd_large(pmd))) {
			if (!gup_huge_pmd(pmd, addr, next, write, pages, nr))
				return 0;
		} else {
			if (!gup_pte_range(pmd, addr, next, write, pages, nr))
				return 0;
		}
	} while (pmdp++, addr = next, addr != end);

	return 1;
}

165 166 167 168 169 170 171 172 173 174 175
static noinline int gup_huge_pud(pud_t pud, unsigned long addr,
		unsigned long end, int write, struct page **pages, int *nr)
{
	unsigned long mask;
	pte_t pte = *(pte_t *)&pud;
	struct page *head, *page;
	int refs;

	mask = _PAGE_PRESENT|_PAGE_USER;
	if (write)
		mask |= _PAGE_RW;
176
	if ((pte_flags(pte) & mask) != mask)
177 178
		return 0;
	/* hugepages are never "special" */
179
	VM_BUG_ON(pte_flags(pte) & _PAGE_SPECIAL);
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));

	refs = 0;
	head = pte_page(pte);
	page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
	do {
		VM_BUG_ON(compound_head(page) != head);
		pages[*nr] = page;
		(*nr)++;
		page++;
		refs++;
	} while (addr += PAGE_SIZE, addr != end);
	get_head_page_multiple(head, refs);

	return 1;
}

197 198 199 200 201 202 203 204 205 206 207 208 209
static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
			int write, struct page **pages, int *nr)
{
	unsigned long next;
	pud_t *pudp;

	pudp = pud_offset(&pgd, addr);
	do {
		pud_t pud = *pudp;

		next = pud_addr_end(addr, end);
		if (pud_none(pud))
			return 0;
210 211 212 213 214 215 216
		if (unlikely(pud_large(pud))) {
			if (!gup_huge_pud(pud, addr, next, write, pages, nr))
				return 0;
		} else {
			if (!gup_pmd_range(pud, addr, next, write, pages, nr))
				return 0;
		}
217 218 219 220 221
	} while (pudp++, addr = next, addr != end);

	return 1;
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
/*
 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
 * back to the regular GUP.
 */
int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
			  struct page **pages)
{
	struct mm_struct *mm = current->mm;
	unsigned long addr, len, end;
	unsigned long next;
	unsigned long flags;
	pgd_t *pgdp;
	int nr = 0;

	start &= PAGE_MASK;
	addr = start;
	len = (unsigned long) nr_pages << PAGE_SHIFT;
	end = start + len;
	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
					(void __user *)start, len)))
		return 0;

	/*
	 * XXX: batch / limit 'nr', to avoid large irq off latency
	 * needs some instrumenting to determine the common sizes used by
	 * important workloads (eg. DB2), and whether limiting the batch size
	 * will decrease performance.
	 *
	 * It seems like we're in the clear for the moment. Direct-IO is
	 * the main guy that batches up lots of get_user_pages, and even
	 * they are limited to 64-at-a-time which is not so many.
	 */
	/*
	 * This doesn't prevent pagetable teardown, but does prevent
	 * the pagetables and pages from being freed on x86.
	 *
	 * So long as we atomically load page table pointers versus teardown
	 * (which we do on x86, with the above PAE exception), we can follow the
	 * address down to the the page and take a ref on it.
	 */
	local_irq_save(flags);
	pgdp = pgd_offset(mm, addr);
	do {
		pgd_t pgd = *pgdp;

		next = pgd_addr_end(addr, end);
		if (pgd_none(pgd))
			break;
		if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
			break;
	} while (pgdp++, addr = next, addr != end);
	local_irq_restore(flags);

	return nr;
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
/**
 * get_user_pages_fast() - pin user pages in memory
 * @start:	starting user address
 * @nr_pages:	number of pages from start to pin
 * @write:	whether pages will be written to
 * @pages:	array that receives pointers to the pages pinned.
 * 		Should be at least nr_pages long.
 *
 * Attempt to pin user pages in memory without taking mm->mmap_sem.
 * If not successful, it will fall back to taking the lock and
 * calling get_user_pages().
 *
 * Returns number of pages pinned. This may be fewer than the number
 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 * were pinned, returns -errno.
 */
294 295 296 297
int get_user_pages_fast(unsigned long start, int nr_pages, int write,
			struct page **pages)
{
	struct mm_struct *mm = current->mm;
298
	unsigned long addr, len, end;
299 300 301 302
	unsigned long next;
	pgd_t *pgdp;
	int nr = 0;

303 304 305
	start &= PAGE_MASK;
	addr = start;
	len = (unsigned long) nr_pages << PAGE_SHIFT;
306

307
	end = start + len;
308 309 310 311 312
	if (end < start)
		goto slow_irqon;

#ifdef CONFIG_X86_64
	if (end >> __VIRTUAL_MASK_SHIFT)
313
		goto slow_irqon;
314
#endif
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375

	/*
	 * XXX: batch / limit 'nr', to avoid large irq off latency
	 * needs some instrumenting to determine the common sizes used by
	 * important workloads (eg. DB2), and whether limiting the batch size
	 * will decrease performance.
	 *
	 * It seems like we're in the clear for the moment. Direct-IO is
	 * the main guy that batches up lots of get_user_pages, and even
	 * they are limited to 64-at-a-time which is not so many.
	 */
	/*
	 * This doesn't prevent pagetable teardown, but does prevent
	 * the pagetables and pages from being freed on x86.
	 *
	 * So long as we atomically load page table pointers versus teardown
	 * (which we do on x86, with the above PAE exception), we can follow the
	 * address down to the the page and take a ref on it.
	 */
	local_irq_disable();
	pgdp = pgd_offset(mm, addr);
	do {
		pgd_t pgd = *pgdp;

		next = pgd_addr_end(addr, end);
		if (pgd_none(pgd))
			goto slow;
		if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
			goto slow;
	} while (pgdp++, addr = next, addr != end);
	local_irq_enable();

	VM_BUG_ON(nr != (end - start) >> PAGE_SHIFT);
	return nr;

	{
		int ret;

slow:
		local_irq_enable();
slow_irqon:
		/* Try to get the remaining pages with get_user_pages */
		start += nr << PAGE_SHIFT;
		pages += nr;

		down_read(&mm->mmap_sem);
		ret = get_user_pages(current, mm, start,
			(end - start) >> PAGE_SHIFT, write, 0, pages, NULL);
		up_read(&mm->mmap_sem);

		/* Have to be a bit careful with return values */
		if (nr > 0) {
			if (ret < 0)
				ret = nr;
			else
				ret += nr;
		}

		return ret;
	}
}