kvm-ia64.c 44.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 * kvm_ia64.c: Basic KVM suppport On Itanium series processors
 *
 *
 * 	Copyright (C) 2007, Intel Corporation.
 *  	Xiantao Zhang  (xiantao.zhang@intel.com)
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
 */

#include <linux/module.h>
#include <linux/errno.h>
#include <linux/percpu.h>
#include <linux/gfp.h>
#include <linux/fs.h>
#include <linux/smp.h>
#include <linux/kvm_host.h>
#include <linux/kvm.h>
#include <linux/bitops.h>
#include <linux/hrtimer.h>
#include <linux/uaccess.h>
J
Joerg Roedel 已提交
34
#include <linux/iommu.h>
35
#include <linux/intel-iommu.h>
36 37 38 39 40 41 42

#include <asm/pgtable.h>
#include <asm/gcc_intrin.h>
#include <asm/pal.h>
#include <asm/cacheflush.h>
#include <asm/div64.h>
#include <asm/tlb.h>
43
#include <asm/elf.h>
44 45 46
#include <asm/sn/addrs.h>
#include <asm/sn/clksupport.h>
#include <asm/sn/shub_mmr.h>
47 48 49 50 51 52

#include "misc.h"
#include "vti.h"
#include "iodev.h"
#include "ioapic.h"
#include "lapic.h"
53
#include "irq.h"
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

static unsigned long kvm_vmm_base;
static unsigned long kvm_vsa_base;
static unsigned long kvm_vm_buffer;
static unsigned long kvm_vm_buffer_size;
unsigned long kvm_vmm_gp;

static long vp_env_info;

static struct kvm_vmm_info *kvm_vmm_info;

static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ NULL }
};

71 72 73 74 75 76 77 78 79 80
static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
{
#if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
	if (vcpu->kvm->arch.is_sn2)
		return rtc_time();
	else
#endif
		return ia64_getreg(_IA64_REG_AR_ITC);
}

81 82 83 84 85
static void kvm_flush_icache(unsigned long start, unsigned long len)
{
	int l;

	for (l = 0; l < (len + 32); l += 32)
I
Isaku Yamahata 已提交
86
		ia64_fc((void *)(start + l));
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

	ia64_sync_i();
	ia64_srlz_i();
}

static void kvm_flush_tlb_all(void)
{
	unsigned long i, j, count0, count1, stride0, stride1, addr;
	long flags;

	addr    = local_cpu_data->ptce_base;
	count0  = local_cpu_data->ptce_count[0];
	count1  = local_cpu_data->ptce_count[1];
	stride0 = local_cpu_data->ptce_stride[0];
	stride1 = local_cpu_data->ptce_stride[1];

	local_irq_save(flags);
	for (i = 0; i < count0; ++i) {
		for (j = 0; j < count1; ++j) {
			ia64_ptce(addr);
			addr += stride1;
		}
		addr += stride0;
	}
	local_irq_restore(flags);
	ia64_srlz_i();			/* srlz.i implies srlz.d */
}

long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
{
	struct ia64_pal_retval iprv;

	PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
			(u64)opt_handler);

	return iprv.status;
}

static  DEFINE_SPINLOCK(vp_lock);

127
int kvm_arch_hardware_enable(void *garbage)
128 129 130 131 132 133 134
{
	long  status;
	long  tmp_base;
	unsigned long pte;
	unsigned long saved_psr;
	int slot;

135
	pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
136 137
	local_irq_save(saved_psr);
	slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
138
	local_irq_restore(saved_psr);
139
	if (slot < 0)
140
		return -EINVAL;
141 142 143 144 145 146 147

	spin_lock(&vp_lock);
	status = ia64_pal_vp_init_env(kvm_vsa_base ?
				VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
			__pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
	if (status != 0) {
		printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
148
		return -EINVAL;
149 150 151 152 153 154 155 156
	}

	if (!kvm_vsa_base) {
		kvm_vsa_base = tmp_base;
		printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
	}
	spin_unlock(&vp_lock);
	ia64_ptr_entry(0x3, slot);
157 158

	return 0;
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
}

void kvm_arch_hardware_disable(void *garbage)
{

	long status;
	int slot;
	unsigned long pte;
	unsigned long saved_psr;
	unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);

	pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
				PAGE_KERNEL));

	local_irq_save(saved_psr);
	slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
175
	local_irq_restore(saved_psr);
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
	if (slot < 0)
		return;

	status = ia64_pal_vp_exit_env(host_iva);
	if (status)
		printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
				status);
	ia64_ptr_entry(0x3, slot);
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}

int kvm_dev_ioctl_check_extension(long ext)
{

	int r;

	switch (ext) {
	case KVM_CAP_IRQCHIP:
198
	case KVM_CAP_MP_STATE:
199
	case KVM_CAP_IRQ_INJECT_STATUS:
200 201
		r = 1;
		break;
202 203 204
	case KVM_CAP_COALESCED_MMIO:
		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
		break;
205
	case KVM_CAP_IOMMU:
J
Joerg Roedel 已提交
206
		r = iommu_found();
207
		break;
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
	default:
		r = 0;
	}
	return r;

}

static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
	kvm_run->hw.hardware_exit_reason = 1;
	return 0;
}

static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	struct kvm_mmio_req *p;
	struct kvm_io_device *mmio_dev;
226
	int r;
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

	p = kvm_get_vcpu_ioreq(vcpu);

	if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
		goto mmio;
	vcpu->mmio_needed = 1;
	vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
	vcpu->mmio_size = kvm_run->mmio.len = p->size;
	vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;

	if (vcpu->mmio_is_write)
		memcpy(vcpu->mmio_data, &p->data, p->size);
	memcpy(kvm_run->mmio.data, &p->data, p->size);
	kvm_run->exit_reason = KVM_EXIT_MMIO;
	return 0;
mmio:
243
	if (p->dir)
M
Marcelo Tosatti 已提交
244
		r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr,
245 246
				    p->size, &p->data);
	else
M
Marcelo Tosatti 已提交
247
		r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr,
248 249
				     p->size, &p->data);
	if (r)
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
		printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
	p->state = STATE_IORESP_READY;

	return 1;
}

static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	struct exit_ctl_data *p;

	p = kvm_get_exit_data(vcpu);

	if (p->exit_reason == EXIT_REASON_PAL_CALL)
		return kvm_pal_emul(vcpu, kvm_run);
	else {
		kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
		kvm_run->hw.hardware_exit_reason = 2;
		return 0;
	}
}

static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	struct exit_ctl_data *p;

	p = kvm_get_exit_data(vcpu);

	if (p->exit_reason == EXIT_REASON_SAL_CALL) {
		kvm_sal_emul(vcpu);
		return 1;
	} else {
		kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
		kvm_run->hw.hardware_exit_reason = 3;
		return 0;
	}

}

288 289 290 291 292 293 294 295 296 297 298 299
static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
{
	struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);

	if (!test_and_set_bit(vector, &vpd->irr[0])) {
		vcpu->arch.irq_new_pending = 1;
		kvm_vcpu_kick(vcpu);
		return 1;
	}
	return 0;
}

300 301 302 303 304 305 306 307 308 309 310
/*
 *  offset: address offset to IPI space.
 *  value:  deliver value.
 */
static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
				uint64_t vector)
{
	switch (dm) {
	case SAPIC_FIXED:
		break;
	case SAPIC_NMI:
311
		vector = 2;
312 313
		break;
	case SAPIC_EXTINT:
314
		vector = 0;
315 316 317 318 319
		break;
	case SAPIC_INIT:
	case SAPIC_PMI:
	default:
		printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
320
		return;
321
	}
322
	__apic_accept_irq(vcpu, vector);
323 324 325 326 327 328 329
}

static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
			unsigned long eid)
{
	union ia64_lid lid;
	int i;
330
	struct kvm_vcpu *vcpu;
331

332 333 334 335
	kvm_for_each_vcpu(i, vcpu, kvm) {
		lid.val = VCPU_LID(vcpu);
		if (lid.id == id && lid.eid == eid)
			return vcpu;
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	}

	return NULL;
}

static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
	struct kvm_vcpu *target_vcpu;
	struct kvm_pt_regs *regs;
	union ia64_ipi_a addr = p->u.ipi_data.addr;
	union ia64_ipi_d data = p->u.ipi_data.data;

	target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
	if (!target_vcpu)
		return handle_vm_error(vcpu, kvm_run);

	if (!target_vcpu->arch.launched) {
		regs = vcpu_regs(target_vcpu);

		regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
		regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;

359
		target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
		if (waitqueue_active(&target_vcpu->wq))
			wake_up_interruptible(&target_vcpu->wq);
	} else {
		vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
		if (target_vcpu != vcpu)
			kvm_vcpu_kick(target_vcpu);
	}

	return 1;
}

struct call_data {
	struct kvm_ptc_g ptc_g_data;
	struct kvm_vcpu *vcpu;
};

static void vcpu_global_purge(void *info)
{
	struct call_data *p = (struct call_data *)info;
	struct kvm_vcpu *vcpu = p->vcpu;

	if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
		return;

	set_bit(KVM_REQ_PTC_G, &vcpu->requests);
	if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
		vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
							p->ptc_g_data;
	} else {
		clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
		vcpu->arch.ptc_g_count = 0;
		set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
	}
}

static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
	struct kvm *kvm = vcpu->kvm;
	struct call_data call_data;
	int i;
401
	struct kvm_vcpu *vcpui;
402

403 404
	call_data.ptc_g_data = p->u.ptc_g_data;

405 406 407
	kvm_for_each_vcpu(i, vcpui, kvm) {
		if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
				vcpu == vcpui)
408 409
			continue;

410 411
		if (waitqueue_active(&vcpui->wq))
			wake_up_interruptible(&vcpui->wq);
412

413 414 415
		if (vcpui->cpu != -1) {
			call_data.vcpu = vcpui;
			smp_call_function_single(vcpui->cpu,
416
					vcpu_global_purge, &call_data, 1);
417 418 419 420 421 422 423 424 425 426 427 428
		} else
			printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");

	}
	return 1;
}

static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	return 1;
}

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
{
	unsigned long pte, rtc_phys_addr, map_addr;
	int slot;

	map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
	rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
	pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
	slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
	vcpu->arch.sn_rtc_tr_slot = slot;
	if (slot < 0) {
		printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
		slot = 0;
	}
	return slot;
}

446 447 448 449 450 451 452 453 454 455 456
int kvm_emulate_halt(struct kvm_vcpu *vcpu)
{

	ktime_t kt;
	long itc_diff;
	unsigned long vcpu_now_itc;
	unsigned long expires;
	struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
	unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
	struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);

457
	if (irqchip_in_kernel(vcpu->kvm)) {
458

459
		vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
460

461 462 463 464 465 466 467 468 469 470 471 472 473
		if (time_after(vcpu_now_itc, vpd->itm)) {
			vcpu->arch.timer_check = 1;
			return 1;
		}
		itc_diff = vpd->itm - vcpu_now_itc;
		if (itc_diff < 0)
			itc_diff = -itc_diff;

		expires = div64_u64(itc_diff, cyc_per_usec);
		kt = ktime_set(0, 1000 * expires);

		vcpu->arch.ht_active = 1;
		hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
474

475
		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
476 477 478 479
		kvm_vcpu_block(vcpu);
		hrtimer_cancel(p_ht);
		vcpu->arch.ht_active = 0;

480 481
		if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
				kvm_cpu_has_pending_timer(vcpu))
482
			if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
483
				vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
484

485
		if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
			return -EINTR;
		return 1;
	} else {
		printk(KERN_ERR"kvm: Unsupported userspace halt!");
		return 0;
	}
}

static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
		struct kvm_run *kvm_run)
{
	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
	return 0;
}

static int handle_external_interrupt(struct kvm_vcpu *vcpu,
		struct kvm_run *kvm_run)
{
	return 1;
}

507 508 509 510 511 512 513
static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
				struct kvm_run *kvm_run)
{
	printk("VMM: %s", vcpu->arch.log_buf);
	return 1;
}

514 515 516 517 518 519 520 521 522 523 524
static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
		struct kvm_run *kvm_run) = {
	[EXIT_REASON_VM_PANIC]              = handle_vm_error,
	[EXIT_REASON_MMIO_INSTRUCTION]      = handle_mmio,
	[EXIT_REASON_PAL_CALL]              = handle_pal_call,
	[EXIT_REASON_SAL_CALL]              = handle_sal_call,
	[EXIT_REASON_SWITCH_RR6]            = handle_switch_rr6,
	[EXIT_REASON_VM_DESTROY]            = handle_vm_shutdown,
	[EXIT_REASON_EXTERNAL_INTERRUPT]    = handle_external_interrupt,
	[EXIT_REASON_IPI]		    = handle_ipi,
	[EXIT_REASON_PTC_G]		    = handle_global_purge,
525
	[EXIT_REASON_DEBUG]		    = handle_vcpu_debug,
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583

};

static const int kvm_vti_max_exit_handlers =
		sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);

static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
{
	struct exit_ctl_data *p_exit_data;

	p_exit_data = kvm_get_exit_data(vcpu);
	return p_exit_data->exit_reason;
}

/*
 * The guest has exited.  See if we can fix it or if we need userspace
 * assistance.
 */
static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
	u32 exit_reason = kvm_get_exit_reason(vcpu);
	vcpu->arch.last_exit = exit_reason;

	if (exit_reason < kvm_vti_max_exit_handlers
			&& kvm_vti_exit_handlers[exit_reason])
		return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
	else {
		kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
		kvm_run->hw.hardware_exit_reason = exit_reason;
	}
	return 0;
}

static inline void vti_set_rr6(unsigned long rr6)
{
	ia64_set_rr(RR6, rr6);
	ia64_srlz_i();
}

static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
{
	unsigned long pte;
	struct kvm *kvm = vcpu->kvm;
	int r;

	/*Insert a pair of tr to map vmm*/
	pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
	r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
	if (r < 0)
		goto out;
	vcpu->arch.vmm_tr_slot = r;
	/*Insert a pairt of tr to map data of vm*/
	pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
	r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
					pte, KVM_VM_DATA_SHIFT);
	if (r < 0)
		goto out;
	vcpu->arch.vm_tr_slot = r;
584 585 586 587 588 589 590 591 592

#if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
	if (kvm->arch.is_sn2) {
		r = kvm_sn2_setup_mappings(vcpu);
		if (r < 0)
			goto out;
	}
#endif

593 594 595 596 597 598 599
	r = 0;
out:
	return r;
}

static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
{
600
	struct kvm *kvm = vcpu->kvm;
601 602
	ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
	ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
603 604 605 606
#if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
	if (kvm->arch.is_sn2)
		ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
#endif
607 608 609 610
}

static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
{
611 612
	unsigned long psr;
	int r;
613 614 615 616 617 618 619 620 621 622 623
	int cpu = smp_processor_id();

	if (vcpu->arch.last_run_cpu != cpu ||
			per_cpu(last_vcpu, cpu) != vcpu) {
		per_cpu(last_vcpu, cpu) = vcpu;
		vcpu->arch.last_run_cpu = cpu;
		kvm_flush_tlb_all();
	}

	vcpu->arch.host_rr6 = ia64_get_rr(RR6);
	vti_set_rr6(vcpu->arch.vmm_rr);
624 625 626 627
	local_irq_save(psr);
	r = kvm_insert_vmm_mapping(vcpu);
	local_irq_restore(psr);
	return r;
628
}
629

630 631 632 633 634 635
static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
{
	kvm_purge_vmm_mapping(vcpu);
	vti_set_rr6(vcpu->arch.host_rr6);
}

636
static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
637 638 639 640
{
	union context *host_ctx, *guest_ctx;
	int r;

641 642 643 644
	/*
	 * down_read() may sleep and return with interrupts enabled
	 */
	down_read(&vcpu->kvm->slots_lock);
645 646 647 648 649 650 651 652

again:
	if (signal_pending(current)) {
		r = -EINTR;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		goto out;
	}

653 654 655
	preempt_disable();
	local_irq_disable();

656 657 658 659
	/*Get host and guest context with guest address space.*/
	host_ctx = kvm_get_host_context(vcpu);
	guest_ctx = kvm_get_guest_context(vcpu);

660
	clear_bit(KVM_REQ_KICK, &vcpu->requests);
661 662 663 664 665 666

	r = kvm_vcpu_pre_transition(vcpu);
	if (r < 0)
		goto vcpu_run_fail;

	up_read(&vcpu->kvm->slots_lock);
667
	kvm_guest_enter();
668 669 670 671 672 673 674

	/*
	 * Transition to the guest
	 */
	kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);

	kvm_vcpu_post_transition(vcpu);
675 676

	vcpu->arch.launched = 1;
677
	set_bit(KVM_REQ_KICK, &vcpu->requests);
678 679 680 681 682 683 684 685 686 687 688 689
	local_irq_enable();

	/*
	 * We must have an instruction between local_irq_enable() and
	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
	 * the interrupt shadow.  The stat.exits increment will do nicely.
	 * But we need to prevent reordering, hence this barrier():
	 */
	barrier();
	kvm_guest_exit();
	preempt_enable();

690 691
	down_read(&vcpu->kvm->slots_lock);

692 693 694 695 696 697 698 699
	r = kvm_handle_exit(kvm_run, vcpu);

	if (r > 0) {
		if (!need_resched())
			goto again;
	}

out:
700
	up_read(&vcpu->kvm->slots_lock);
701 702
	if (r > 0) {
		kvm_resched(vcpu);
703
		down_read(&vcpu->kvm->slots_lock);
704 705 706 707
		goto again;
	}

	return r;
708 709 710 711 712 713

vcpu_run_fail:
	local_irq_enable();
	preempt_enable();
	kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
	goto out;
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
}

static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
{
	struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);

	if (!vcpu->mmio_is_write)
		memcpy(&p->data, vcpu->mmio_data, 8);
	p->state = STATE_IORESP_READY;
}

int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	int r;
	sigset_t sigsaved;

	vcpu_load(vcpu);

732 733 734
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

735
	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
736
		kvm_vcpu_block(vcpu);
737
		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
738 739
		r = -EAGAIN;
		goto out;
740 741 742 743 744 745 746 747 748
	}

	if (vcpu->mmio_needed) {
		memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
		kvm_set_mmio_data(vcpu);
		vcpu->mmio_read_completed = 1;
		vcpu->mmio_needed = 0;
	}
	r = __vcpu_run(vcpu, kvm_run);
749
out:
750 751 752 753 754 755 756 757 758 759 760 761 762
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu_put(vcpu);
	return r;
}

static struct kvm *kvm_alloc_kvm(void)
{

	struct kvm *kvm;
	uint64_t  vm_base;

763 764
	BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);

765 766 767 768 769 770
	vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));

	if (!vm_base)
		return ERR_PTR(-ENOMEM);

	memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
771 772
	kvm = (struct kvm *)(vm_base +
			offsetof(struct kvm_vm_data, kvm_vm_struct));
773
	kvm->arch.vm_base = vm_base;
774
	printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

	return kvm;
}

struct kvm_io_range {
	unsigned long start;
	unsigned long size;
	unsigned long type;
};

static const struct kvm_io_range io_ranges[] = {
	{VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
	{MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
	{LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
	{IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
	{PIB_START, PIB_SIZE, GPFN_PIB},
};

static void kvm_build_io_pmt(struct kvm *kvm)
{
	unsigned long i, j;

	/* Mark I/O ranges */
	for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
							i++) {
		for (j = io_ranges[i].start;
				j < io_ranges[i].start + io_ranges[i].size;
				j += PAGE_SIZE)
			kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
					io_ranges[i].type, 0);
	}

}

/*Use unused rids to virtualize guest rid.*/
#define GUEST_PHYSICAL_RR0	0x1739
#define GUEST_PHYSICAL_RR4	0x2739
#define VMM_INIT_RR		0x1660

static void kvm_init_vm(struct kvm *kvm)
{
	BUG_ON(!kvm);

	kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
	kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
	kvm->arch.vmm_init_rr = VMM_INIT_RR;

	/*
	 *Fill P2M entries for MMIO/IO ranges
	 */
	kvm_build_io_pmt(kvm);

827
	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
828 829 830

	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
831 832 833 834 835 836 837 838
}

struct  kvm *kvm_arch_create_vm(void)
{
	struct kvm *kvm = kvm_alloc_kvm();

	if (IS_ERR(kvm))
		return ERR_PTR(-ENOMEM);
839 840 841

	kvm->arch.is_sn2 = ia64_platform_is("sn2");

842 843 844 845 846 847 848 849 850 851 852 853 854 855
	kvm_init_vm(kvm);

	return kvm;

}

static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
					struct kvm_irqchip *chip)
{
	int r;

	r = 0;
	switch (chip->chip_id) {
	case KVM_IRQCHIP_IOAPIC:
G
Gleb Natapov 已提交
856
		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
		break;
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
{
	int r;

	r = 0;
	switch (chip->chip_id) {
	case KVM_IRQCHIP_IOAPIC:
G
Gleb Natapov 已提交
872
		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
873 874 875 876 877 878 879 880 881 882 883 884 885
		break;
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

#define RESTORE_REGS(_x) vcpu->arch._x = regs->_x

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
886
	int i;
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902

	vcpu_load(vcpu);

	for (i = 0; i < 16; i++) {
		vpd->vgr[i] = regs->vpd.vgr[i];
		vpd->vbgr[i] = regs->vpd.vbgr[i];
	}
	for (i = 0; i < 128; i++)
		vpd->vcr[i] = regs->vpd.vcr[i];
	vpd->vhpi = regs->vpd.vhpi;
	vpd->vnat = regs->vpd.vnat;
	vpd->vbnat = regs->vpd.vbnat;
	vpd->vpsr = regs->vpd.vpsr;

	vpd->vpr = regs->vpd.vpr;

903
	memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932

	RESTORE_REGS(mp_state);
	RESTORE_REGS(vmm_rr);
	memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
	memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
	RESTORE_REGS(itr_regions);
	RESTORE_REGS(dtr_regions);
	RESTORE_REGS(tc_regions);
	RESTORE_REGS(irq_check);
	RESTORE_REGS(itc_check);
	RESTORE_REGS(timer_check);
	RESTORE_REGS(timer_pending);
	RESTORE_REGS(last_itc);
	for (i = 0; i < 8; i++) {
		vcpu->arch.vrr[i] = regs->vrr[i];
		vcpu->arch.ibr[i] = regs->ibr[i];
		vcpu->arch.dbr[i] = regs->dbr[i];
	}
	for (i = 0; i < 4; i++)
		vcpu->arch.insvc[i] = regs->insvc[i];
	RESTORE_REGS(xtp);
	RESTORE_REGS(metaphysical_rr0);
	RESTORE_REGS(metaphysical_rr4);
	RESTORE_REGS(metaphysical_saved_rr0);
	RESTORE_REGS(metaphysical_saved_rr4);
	RESTORE_REGS(fp_psr);
	RESTORE_REGS(saved_gp);

	vcpu->arch.irq_new_pending = 1;
933
	vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
934 935 936
	set_bit(KVM_REQ_RESUME, &vcpu->requests);

	vcpu_put(vcpu);
937 938

	return 0;
939 940 941 942 943 944 945
}

long kvm_arch_vm_ioctl(struct file *filp,
		unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
946
	int r = -ENOTTY;
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971

	switch (ioctl) {
	case KVM_SET_MEMORY_REGION: {
		struct kvm_memory_region kvm_mem;
		struct kvm_userspace_memory_region kvm_userspace_mem;

		r = -EFAULT;
		if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
			goto out;
		kvm_userspace_mem.slot = kvm_mem.slot;
		kvm_userspace_mem.flags = kvm_mem.flags;
		kvm_userspace_mem.guest_phys_addr =
					kvm_mem.guest_phys_addr;
		kvm_userspace_mem.memory_size = kvm_mem.memory_size;
		r = kvm_vm_ioctl_set_memory_region(kvm,
					&kvm_userspace_mem, 0);
		if (r)
			goto out;
		break;
		}
	case KVM_CREATE_IRQCHIP:
		r = -EFAULT;
		r = kvm_ioapic_init(kvm);
		if (r)
			goto out;
972 973 974 975 976
		r = kvm_setup_default_irq_routing(kvm);
		if (r) {
			kfree(kvm->arch.vioapic);
			goto out;
		}
977
		break;
978
	case KVM_IRQ_LINE_STATUS:
979 980 981 982 983 984 985
	case KVM_IRQ_LINE: {
		struct kvm_irq_level irq_event;

		r = -EFAULT;
		if (copy_from_user(&irq_event, argp, sizeof irq_event))
			goto out;
		if (irqchip_in_kernel(kvm)) {
986 987
			__s32 status;
			status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
988
				    irq_event.irq, irq_event.level);
989 990 991 992 993 994
			if (ioctl == KVM_IRQ_LINE_STATUS) {
				irq_event.status = status;
				if (copy_to_user(argp, &irq_event,
							sizeof irq_event))
					goto out;
			}
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
			r = 0;
		}
		break;
		}
	case KVM_GET_IRQCHIP: {
		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
		struct kvm_irqchip chip;

		r = -EFAULT;
		if (copy_from_user(&chip, argp, sizeof chip))
				goto out;
		r = -ENXIO;
		if (!irqchip_in_kernel(kvm))
			goto out;
		r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
		if (r)
			goto out;
		r = -EFAULT;
		if (copy_to_user(argp, &chip, sizeof chip))
				goto out;
		r = 0;
		break;
		}
	case KVM_SET_IRQCHIP: {
		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
		struct kvm_irqchip chip;

		r = -EFAULT;
		if (copy_from_user(&chip, argp, sizeof chip))
				goto out;
		r = -ENXIO;
		if (!irqchip_in_kernel(kvm))
			goto out;
		r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
		if (r)
			goto out;
		r = 0;
		break;
		}
	default:
		;
	}
out:
	return r;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
		struct kvm_sregs *sregs)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
		struct kvm_sregs *sregs)
{
	return -EINVAL;

}
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
		struct kvm_translation *tr)
{

	return -EINVAL;
}

static int kvm_alloc_vmm_area(void)
{
	if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
		kvm_vmm_base = __get_free_pages(GFP_KERNEL,
				get_order(KVM_VMM_SIZE));
		if (!kvm_vmm_base)
			return -ENOMEM;

		memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
		kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;

		printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
				kvm_vmm_base, kvm_vm_buffer);
	}

	return 0;
}

static void kvm_free_vmm_area(void)
{
	if (kvm_vmm_base) {
		/*Zero this area before free to avoid bits leak!!*/
		memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
		free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
		kvm_vmm_base  = 0;
		kvm_vm_buffer = 0;
		kvm_vsa_base = 0;
	}
}

static int vti_init_vpd(struct kvm_vcpu *vcpu)
{
	int i;
	union cpuid3_t cpuid3;
	struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);

	if (IS_ERR(vpd))
		return PTR_ERR(vpd);

	/* CPUID init */
	for (i = 0; i < 5; i++)
		vpd->vcpuid[i] = ia64_get_cpuid(i);

	/* Limit the CPUID number to 5 */
	cpuid3.value = vpd->vcpuid[3];
	cpuid3.number = 4;	/* 5 - 1 */
	vpd->vcpuid[3] = cpuid3.value;

	/*Set vac and vdc fields*/
	vpd->vac.a_from_int_cr = 1;
	vpd->vac.a_to_int_cr = 1;
	vpd->vac.a_from_psr = 1;
	vpd->vac.a_from_cpuid = 1;
	vpd->vac.a_cover = 1;
	vpd->vac.a_bsw = 1;
	vpd->vac.a_int = 1;
	vpd->vdc.d_vmsw = 1;

	/*Set virtual buffer*/
	vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;

	return 0;
}

static int vti_create_vp(struct kvm_vcpu *vcpu)
{
	long ret;
	struct vpd *vpd = vcpu->arch.vpd;
	unsigned long  vmm_ivt;

	vmm_ivt = kvm_vmm_info->vmm_ivt;

	printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);

	ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);

	if (ret) {
		printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
		return -EINVAL;
	}
	return 0;
}

static void init_ptce_info(struct kvm_vcpu *vcpu)
{
	ia64_ptce_info_t ptce = {0};

	ia64_get_ptce(&ptce);
	vcpu->arch.ptce_base = ptce.base;
	vcpu->arch.ptce_count[0] = ptce.count[0];
	vcpu->arch.ptce_count[1] = ptce.count[1];
	vcpu->arch.ptce_stride[0] = ptce.stride[0];
	vcpu->arch.ptce_stride[1] = ptce.stride[1];
}

static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
{
	struct hrtimer *p_ht = &vcpu->arch.hlt_timer;

	if (hrtimer_cancel(p_ht))
1160
		hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1161 1162 1163 1164 1165 1166 1167 1168
}

static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
{
	struct kvm_vcpu *vcpu;
	wait_queue_head_t *q;

	vcpu  = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1169 1170
	q = &vcpu->wq;

1171
	if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1172 1173
		goto out;

1174
	if (waitqueue_active(q))
1175
		wake_up_interruptible(q);
1176

1177
out:
1178
	vcpu->arch.timer_fired = 1;
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	vcpu->arch.timer_check = 1;
	return HRTIMER_NORESTART;
}

#define PALE_RESET_ENTRY    0x80000000ffffffb0UL

int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu *v;
	int r;
	int i;
	long itc_offset;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_pt_regs *regs = vcpu_regs(vcpu);

	union context *p_ctx = &vcpu->arch.guest;
	struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);

	/*Init vcpu context for first run.*/
	if (IS_ERR(vmm_vcpu))
		return PTR_ERR(vmm_vcpu);

1201
	if (kvm_vcpu_is_bsp(vcpu)) {
1202
		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1203 1204 1205 1206

		/*Set entry address for first run.*/
		regs->cr_iip = PALE_RESET_ENTRY;

1207
		/*Initialize itc offset for vcpus*/
1208
		itc_offset = 0UL - kvm_get_itc(vcpu);
1209
		for (i = 0; i < KVM_MAX_VCPUS; i++) {
1210 1211
			v = (struct kvm_vcpu *)((char *)vcpu +
					sizeof(struct kvm_vcpu_data) * i);
1212 1213 1214 1215
			v->arch.itc_offset = itc_offset;
			v->arch.last_itc = 0;
		}
	} else
1216
		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1217 1218 1219 1220 1221 1222 1223 1224

	r = -ENOMEM;
	vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
	if (!vcpu->arch.apic)
		goto out;
	vcpu->arch.apic->vcpu = vcpu;

	p_ctx->gr[1] = 0;
1225
	p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
	p_ctx->gr[13] = (unsigned long)vmm_vcpu;
	p_ctx->psr = 0x1008522000UL;
	p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
	p_ctx->caller_unat = 0;
	p_ctx->pr = 0x0;
	p_ctx->ar[36] = 0x0; /*unat*/
	p_ctx->ar[19] = 0x0; /*rnat*/
	p_ctx->ar[18] = (unsigned long)vmm_vcpu +
				((sizeof(struct kvm_vcpu)+15) & ~15);
	p_ctx->ar[64] = 0x0; /*pfs*/
	p_ctx->cr[0] = 0x7e04UL;
	p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
	p_ctx->cr[8] = 0x3c;

	/*Initilize region register*/
	p_ctx->rr[0] = 0x30;
	p_ctx->rr[1] = 0x30;
	p_ctx->rr[2] = 0x30;
	p_ctx->rr[3] = 0x30;
	p_ctx->rr[4] = 0x30;
	p_ctx->rr[5] = 0x30;
	p_ctx->rr[7] = 0x30;

	/*Initilize branch register 0*/
	p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;

	vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
	vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
	vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;

	hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	vcpu->arch.hlt_timer.function = hlt_timer_fn;

	vcpu->arch.last_run_cpu = -1;
1260
	vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1261 1262 1263
	vcpu->arch.vsa_base = kvm_vsa_base;
	vcpu->arch.__gp = kvm_vmm_gp;
	vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1264 1265
	vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
	vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	init_ptce_info(vcpu);

	r = 0;
out:
	return r;
}

static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
{
	unsigned long psr;
	int r;

	local_irq_save(psr);
	r = kvm_insert_vmm_mapping(vcpu);
1280
	local_irq_restore(psr);
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	if (r)
		goto fail;
	r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
	if (r)
		goto fail;

	r = vti_init_vpd(vcpu);
	if (r) {
		printk(KERN_DEBUG"kvm: vpd init error!!\n");
		goto uninit;
	}

	r = vti_create_vp(vcpu);
	if (r)
		goto uninit;

	kvm_purge_vmm_mapping(vcpu);

	return 0;
uninit:
	kvm_vcpu_uninit(vcpu);
fail:
	return r;
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
		unsigned int id)
{
	struct kvm_vcpu *vcpu;
	unsigned long vm_base = kvm->arch.vm_base;
	int r;
	int cpu;

1314 1315 1316 1317 1318 1319 1320 1321 1322
	BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);

	r = -EINVAL;
	if (id >= KVM_MAX_VCPUS) {
		printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
				KVM_MAX_VCPUS);
		goto fail;
	}

1323 1324 1325 1326 1327
	r = -ENOMEM;
	if (!vm_base) {
		printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
		goto fail;
	}
1328 1329
	vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
					vcpu_data[id].vcpu_struct));
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
	vcpu->kvm = kvm;

	cpu = get_cpu();
	r = vti_vcpu_setup(vcpu, id);
	put_cpu();

	if (r) {
		printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
		goto fail;
	}

	return vcpu;
fail:
	return ERR_PTR(r);
}

int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
	return -EINVAL;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
	return -EINVAL;
}

J
Jan Kiszka 已提交
1361 1362
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
{
	return -EINVAL;
}

static void free_kvm(struct kvm *kvm)
{
	unsigned long vm_base = kvm->arch.vm_base;

	if (vm_base) {
		memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
		free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
	}

}

static void kvm_release_vm_pages(struct kvm *kvm)
{
1380
	struct kvm_memslots *slots;
1381 1382 1383 1384
	struct kvm_memory_slot *memslot;
	int i, j;
	unsigned long base_gfn;

1385
	slots = rcu_dereference(kvm->memslots);
1386 1387
	for (i = 0; i < slots->nmemslots; i++) {
		memslot = &slots->memslots[i];
1388 1389 1390 1391 1392 1393 1394 1395 1396
		base_gfn = memslot->base_gfn;

		for (j = 0; j < memslot->npages; j++) {
			if (memslot->rmap[j])
				put_page((struct page *)memslot->rmap[j]);
		}
	}
}

1397 1398 1399 1400
void kvm_arch_sync_events(struct kvm *kvm)
{
}

1401 1402
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1403 1404 1405 1406
	kvm_iommu_unmap_guest(kvm);
#ifdef  KVM_CAP_DEVICE_ASSIGNMENT
	kvm_free_all_assigned_devices(kvm);
#endif
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	kfree(kvm->arch.vioapic);
	kvm_release_vm_pages(kvm);
	kvm_free_physmem(kvm);
	free_kvm(kvm);
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
	if (cpu != vcpu->cpu) {
		vcpu->cpu = cpu;
		if (vcpu->arch.ht_active)
			kvm_migrate_hlt_timer(vcpu);
	}
}

#define SAVE_REGS(_x) 	regs->_x = vcpu->arch._x

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1431 1432
	int i;

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	vcpu_load(vcpu);

	for (i = 0; i < 16; i++) {
		regs->vpd.vgr[i] = vpd->vgr[i];
		regs->vpd.vbgr[i] = vpd->vbgr[i];
	}
	for (i = 0; i < 128; i++)
		regs->vpd.vcr[i] = vpd->vcr[i];
	regs->vpd.vhpi = vpd->vhpi;
	regs->vpd.vnat = vpd->vnat;
	regs->vpd.vbnat = vpd->vbnat;
	regs->vpd.vpsr = vpd->vpsr;
	regs->vpd.vpr = vpd->vpr;

1447 1448
	memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	SAVE_REGS(mp_state);
	SAVE_REGS(vmm_rr);
	memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
	memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
	SAVE_REGS(itr_regions);
	SAVE_REGS(dtr_regions);
	SAVE_REGS(tc_regions);
	SAVE_REGS(irq_check);
	SAVE_REGS(itc_check);
	SAVE_REGS(timer_check);
	SAVE_REGS(timer_pending);
	SAVE_REGS(last_itc);
	for (i = 0; i < 8; i++) {
		regs->vrr[i] = vcpu->arch.vrr[i];
		regs->ibr[i] = vcpu->arch.ibr[i];
		regs->dbr[i] = vcpu->arch.dbr[i];
	}
	for (i = 0; i < 4; i++)
		regs->insvc[i] = vcpu->arch.insvc[i];
1468
	regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
1469 1470 1471 1472 1473 1474 1475
	SAVE_REGS(xtp);
	SAVE_REGS(metaphysical_rr0);
	SAVE_REGS(metaphysical_rr4);
	SAVE_REGS(metaphysical_saved_rr0);
	SAVE_REGS(metaphysical_saved_rr4);
	SAVE_REGS(fp_psr);
	SAVE_REGS(saved_gp);
1476

1477
	vcpu_put(vcpu);
1478
	return 0;
1479 1480
}

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
				  struct kvm_ia64_vcpu_stack *stack)
{
	memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
				  struct kvm_ia64_vcpu_stack *stack)
{
	memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
	       sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));

	vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
	return 0;
}

1498 1499 1500 1501 1502 1503 1504 1505 1506
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
{

	hrtimer_cancel(&vcpu->arch.hlt_timer);
	kfree(vcpu->arch.apic);
}


long kvm_arch_vcpu_ioctl(struct file *filp,
1507
			 unsigned int ioctl, unsigned long arg)
1508
{
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
	struct kvm_ia64_vcpu_stack *stack = NULL;
	long r;

	switch (ioctl) {
	case KVM_IA64_VCPU_GET_STACK: {
		struct kvm_ia64_vcpu_stack __user *user_stack;
	        void __user *first_p = argp;

		r = -EFAULT;
		if (copy_from_user(&user_stack, first_p, sizeof(void *)))
			goto out;

		if (!access_ok(VERIFY_WRITE, user_stack,
			       sizeof(struct kvm_ia64_vcpu_stack))) {
			printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
			       "Illegal user destination address for stack\n");
			goto out;
		}
		stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
		if (!stack) {
			r = -ENOMEM;
			goto out;
		}

		r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
		if (r)
			goto out;

		if (copy_to_user(user_stack, stack,
				 sizeof(struct kvm_ia64_vcpu_stack)))
			goto out;

		break;
	}
	case KVM_IA64_VCPU_SET_STACK: {
		struct kvm_ia64_vcpu_stack __user *user_stack;
	        void __user *first_p = argp;

		r = -EFAULT;
		if (copy_from_user(&user_stack, first_p, sizeof(void *)))
			goto out;

		if (!access_ok(VERIFY_READ, user_stack,
			    sizeof(struct kvm_ia64_vcpu_stack))) {
			printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
			       "Illegal user address for stack\n");
			goto out;
		}
		stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
		if (!stack) {
			r = -ENOMEM;
			goto out;
		}
		if (copy_from_user(stack, user_stack,
				   sizeof(struct kvm_ia64_vcpu_stack)))
			goto out;

		r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
		break;
	}

	default:
		r = -EINVAL;
	}

out:
	kfree(stack);
	return r;
1579 1580
}

1581 1582
int kvm_arch_prepare_memory_region(struct kvm *kvm,
		struct kvm_memory_slot *memslot,
1583
		struct kvm_memory_slot old,
1584
		struct kvm_userspace_memory_region *mem,
1585 1586 1587
		int user_alloc)
{
	unsigned long i;
1588
	unsigned long pfn;
1589
	int npages = memslot->npages;
1590 1591
	unsigned long base_gfn = memslot->base_gfn;

1592 1593 1594
	if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
		return -ENOMEM;

1595
	for (i = 0; i < npages; i++) {
1596 1597 1598 1599
		pfn = gfn_to_pfn(kvm, base_gfn + i);
		if (!kvm_is_mmio_pfn(pfn)) {
			kvm_set_pmt_entry(kvm, base_gfn + i,
					pfn << PAGE_SHIFT,
1600
				_PAGE_AR_RWX | _PAGE_MA_WB);
1601 1602 1603
			memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
		} else {
			kvm_set_pmt_entry(kvm, base_gfn + i,
1604
					GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1605 1606 1607
					_PAGE_MA_UC);
			memslot->rmap[i] = 0;
			}
1608 1609 1610 1611 1612
	}

	return 0;
}

1613 1614 1615 1616 1617 1618 1619 1620
void kvm_arch_commit_memory_region(struct kvm *kvm,
		struct kvm_userspace_memory_region *mem,
		struct kvm_memory_slot old,
		int user_alloc)
{
	return;
}

1621 1622
void kvm_arch_flush_shadow(struct kvm *kvm)
{
1623
	kvm_flush_remote_tlbs(kvm);
1624
}
1625 1626

long kvm_arch_dev_ioctl(struct file *filp,
1627
			unsigned int ioctl, unsigned long arg)
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
{
	return -EINVAL;
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_vcpu_uninit(vcpu);
}

static int vti_cpu_has_kvm_support(void)
{
	long  avail = 1, status = 1, control = 1;
	long ret;

	ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
	if (ret)
		goto out;

	if (!(avail & PAL_PROC_VM_BIT))
		goto out;

	printk(KERN_DEBUG"kvm: Hardware Supports VT\n");

	ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
	if (ret)
		goto out;
	printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);

	if (!(vp_env_info & VP_OPCODE)) {
		printk(KERN_WARNING"kvm: No opcode ability on hardware, "
				"vm_env_info:0x%lx\n", vp_env_info);
	}

	return 1;
out:
	return 0;
}

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694

/*
 * On SN2, the ITC isn't stable, so copy in fast path code to use the
 * SN2 RTC, replacing the ITC based default verion.
 */
static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
			  struct module *module)
{
	unsigned long new_ar, new_ar_sn2;
	unsigned long module_base;

	if (!ia64_platform_is("sn2"))
		return;

	module_base = (unsigned long)module->module_core;

	new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
	new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;

	printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
	       "as source\n");

	/*
	 * Copy the SN2 version of mov_ar into place. They are both
	 * the same size, so 6 bundles is sufficient (6 * 0x10).
	 */
	memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
}

1695
static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1696
			    struct module *module)
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
{
	unsigned long module_base;
	unsigned long vmm_size;

	unsigned long vmm_offset, func_offset, fdesc_offset;
	struct fdesc *p_fdesc;

	BUG_ON(!module);

	if (!kvm_vmm_base) {
		printk("kvm: kvm area hasn't been initilized yet!!\n");
		return -EFAULT;
	}

	/*Calculate new position of relocated vmm module.*/
	module_base = (unsigned long)module->module_core;
	vmm_size = module->core_size;
	if (unlikely(vmm_size > KVM_VMM_SIZE))
		return -EFAULT;

	memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1718
	kvm_patch_vmm(vmm_info, module);
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	kvm_flush_icache(kvm_vmm_base, vmm_size);

	/*Recalculate kvm_vmm_info based on new VMM*/
	vmm_offset = vmm_info->vmm_ivt - module_base;
	kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
	printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
			kvm_vmm_info->vmm_ivt);

	fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
	kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
							fdesc_offset);
	func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
	p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
	p_fdesc->ip = KVM_VMM_BASE + func_offset;
	p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);

	printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
			KVM_VMM_BASE+func_offset);

	fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
	kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
			fdesc_offset);
	func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
	p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
	p_fdesc->ip = KVM_VMM_BASE + func_offset;
	p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);

	kvm_vmm_gp = p_fdesc->gp;

	printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
						kvm_vmm_info->vmm_entry);
	printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
						KVM_VMM_BASE + func_offset);

	return 0;
}

int kvm_arch_init(void *opaque)
{
	int r;
	struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;

	if (!vti_cpu_has_kvm_support()) {
		printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
		r = -EOPNOTSUPP;
		goto out;
	}

	if (kvm_vmm_info) {
		printk(KERN_ERR "kvm: Already loaded VMM module!\n");
		r = -EEXIST;
		goto out;
	}

	r = -ENOMEM;
	kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
	if (!kvm_vmm_info)
		goto out;

	if (kvm_alloc_vmm_area())
		goto out_free0;

	r = kvm_relocate_vmm(vmm_info, vmm_info->module);
	if (r)
		goto out_free1;

	return 0;

out_free1:
	kvm_free_vmm_area();
out_free0:
	kfree(kvm_vmm_info);
out:
	return r;
}

void kvm_arch_exit(void)
{
	kvm_free_vmm_area();
	kfree(kvm_vmm_info);
	kvm_vmm_info = NULL;
}

static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
		struct kvm_dirty_log *log)
{
	struct kvm_memory_slot *memslot;
	int r, i;
	long n, base;
1808 1809
	unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
			offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1810 1811 1812 1813 1814

	r = -EINVAL;
	if (log->slot >= KVM_MEMORY_SLOTS)
		goto out;

1815
	memslot = &kvm->memslots->memslots[log->slot];
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
	base = memslot->base_gfn / BITS_PER_LONG;

	for (i = 0; i < n/sizeof(long); ++i) {
		memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
		dirty_bitmap[base + i] = 0;
	}
	r = 0;
out:
	return r;
}

int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
		struct kvm_dirty_log *log)
{
	int r;
	int n;
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

1840
	down_write(&kvm->slots_lock);
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	spin_lock(&kvm->arch.dirty_log_lock);

	r = kvm_ia64_sync_dirty_log(kvm, log);
	if (r)
		goto out;

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
		kvm_flush_remote_tlbs(kvm);
1854
		memslot = &kvm->memslots->memslots[log->slot];
1855 1856 1857 1858 1859
		n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
1860
	up_write(&kvm->slots_lock);
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	spin_unlock(&kvm->arch.dirty_log_lock);
	return r;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
}

void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
{
1876 1877
	int me;
	int cpu = vcpu->cpu;
1878 1879 1880 1881

	if (waitqueue_active(&vcpu->wq))
		wake_up_interruptible(&vcpu->wq);

1882 1883 1884 1885
	me = get_cpu();
	if (cpu != me && (unsigned) cpu < nr_cpu_ids && cpu_online(cpu))
		if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
			smp_send_reschedule(cpu);
1886
	put_cpu();
1887 1888
}

1889
int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1890
{
1891
	return __apic_accept_irq(vcpu, irq->vector);
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
}

int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
{
	return apic->vcpu->vcpu_id == dest;
}

int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
{
	return 0;
}

1904
int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1905
{
1906
	return vcpu1->arch.xtp - vcpu2->arch.xtp;
1907 1908
}

1909 1910 1911
int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
		int short_hand, int dest, int dest_mode)
{
1912
	struct kvm_lapic *target = vcpu->arch.apic;
1913 1914 1915 1916 1917
	return (dest_mode == 0) ?
		kvm_apic_match_physical_addr(target, dest) :
		kvm_apic_match_logical_addr(target, dest);
}

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
static int find_highest_bits(int *dat)
{
	u32  bits, bitnum;
	int i;

	/* loop for all 256 bits */
	for (i = 7; i >= 0 ; i--) {
		bits = dat[i];
		if (bits) {
			bitnum = fls(bits);
			return i * 32 + bitnum - 1;
		}
	}

	return -1;
}

int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
{
    struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);

    if (vpd->irr[0] & (1UL << NMI_VECTOR))
		return NMI_VECTOR;
    if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
		return ExtINT_VECTOR;

    return find_highest_bits((int *)&vpd->irr[0]);
}

1947 1948
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
1949
	return vcpu->arch.timer_fired;
1950 1951
}

1952 1953 1954 1955 1956 1957 1958
gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
{
	return gfn;
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1959 1960
	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
		(kvm_highest_pending_irq(vcpu) != -1);
1961
}
1962 1963 1964 1965

int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	vcpu_load(vcpu);
	mp_state->mp_state = vcpu->arch.mp_state;
	vcpu_put(vcpu);
	return 0;
}

static int vcpu_reset(struct kvm_vcpu *vcpu)
{
	int r;
	long psr;
	local_irq_save(psr);
	r = kvm_insert_vmm_mapping(vcpu);
1978
	local_irq_restore(psr);
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
	if (r)
		goto fail;

	vcpu->arch.launched = 0;
	kvm_arch_vcpu_uninit(vcpu);
	r = kvm_arch_vcpu_init(vcpu);
	if (r)
		goto fail;

	kvm_purge_vmm_mapping(vcpu);
	r = 0;
fail:
	return r;
1992 1993 1994 1995 1996
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
1997 1998 1999 2000 2001 2002 2003 2004
	int r = 0;

	vcpu_load(vcpu);
	vcpu->arch.mp_state = mp_state->mp_state;
	if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
		r = vcpu_reset(vcpu);
	vcpu_put(vcpu);
	return r;
2005
}