sched.h 45.8 KB
Newer Older
1 2

#include <linux/sched.h>
3
#include <linux/sched/sysctl.h>
4
#include <linux/sched/rt.h>
5
#include <linux/sched/deadline.h>
6
#include <linux/binfmts.h>
7 8 9
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/stop_machine.h>
10
#include <linux/irq_work.h>
11
#include <linux/tick.h>
12
#include <linux/slab.h>
13

14
#include "cpupri.h"
15
#include "cpudeadline.h"
16
#include "cpuacct.h"
17

18
struct rq;
19
struct cpuidle_state;
20

21 22
/* task_struct::on_rq states: */
#define TASK_ON_RQ_QUEUED	1
23
#define TASK_ON_RQ_MIGRATING	2
24

25 26
extern __read_mostly int scheduler_running;

27 28 29
extern unsigned long calc_load_update;
extern atomic_long_t calc_load_tasks;

30
extern void calc_global_load_tick(struct rq *this_rq);
31
extern long calc_load_fold_active(struct rq *this_rq);
32 33

#ifdef CONFIG_SMP
34
extern void cpu_load_update_active(struct rq *this_rq);
35
#else
36
static inline void cpu_load_update_active(struct rq *this_rq) { }
37
#endif
38

39 40 41 42 43
/*
 * Helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
/*
 * Increase resolution of nice-level calculations for 64-bit architectures.
 * The extra resolution improves shares distribution and load balancing of
 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
 * hierarchies, especially on larger systems. This is not a user-visible change
 * and does not change the user-interface for setting shares/weights.
 *
 * We increase resolution only if we have enough bits to allow this increased
 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
 * increased costs.
 */
#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
# define SCHED_LOAD_RESOLUTION	10
# define scale_load(w)		((w) << SCHED_LOAD_RESOLUTION)
# define scale_load_down(w)	((w) >> SCHED_LOAD_RESOLUTION)
#else
# define SCHED_LOAD_RESOLUTION	0
# define scale_load(w)		(w)
# define scale_load_down(w)	(w)
#endif

#define SCHED_LOAD_SHIFT	(10 + SCHED_LOAD_RESOLUTION)
#define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)

69 70 71
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

72 73 74 75 76 77 78
/*
 * Single value that decides SCHED_DEADLINE internal math precision.
 * 10 -> just above 1us
 * 9  -> just above 0.5us
 */
#define DL_SCALE (10)

79 80 81 82 83 84 85 86 87
/*
 * These are the 'tuning knobs' of the scheduler:
 */

/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

88 89 90 91
static inline int idle_policy(int policy)
{
	return policy == SCHED_IDLE;
}
92 93 94 95 96
static inline int fair_policy(int policy)
{
	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
}

97 98
static inline int rt_policy(int policy)
{
99
	return policy == SCHED_FIFO || policy == SCHED_RR;
100 101
}

102 103 104 105
static inline int dl_policy(int policy)
{
	return policy == SCHED_DEADLINE;
}
106 107 108 109 110
static inline bool valid_policy(int policy)
{
	return idle_policy(policy) || fair_policy(policy) ||
		rt_policy(policy) || dl_policy(policy);
}
111

112 113 114 115 116
static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

117 118 119 120 121
static inline int task_has_dl_policy(struct task_struct *p)
{
	return dl_policy(p->policy);
}

122 123 124
/*
 * Tells if entity @a should preempt entity @b.
 */
125 126
static inline bool
dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
127 128 129 130
{
	return dl_time_before(a->deadline, b->deadline);
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144
/*
 * This is the priority-queue data structure of the RT scheduling class:
 */
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

struct rt_bandwidth {
	/* nests inside the rq lock: */
	raw_spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
P
Peter Zijlstra 已提交
145
	unsigned int		rt_period_active;
146
};
147 148 149

void __dl_clear_params(struct task_struct *p);

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/*
 * To keep the bandwidth of -deadline tasks and groups under control
 * we need some place where:
 *  - store the maximum -deadline bandwidth of the system (the group);
 *  - cache the fraction of that bandwidth that is currently allocated.
 *
 * This is all done in the data structure below. It is similar to the
 * one used for RT-throttling (rt_bandwidth), with the main difference
 * that, since here we are only interested in admission control, we
 * do not decrease any runtime while the group "executes", neither we
 * need a timer to replenish it.
 *
 * With respect to SMP, the bandwidth is given on a per-CPU basis,
 * meaning that:
 *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
 *  - dl_total_bw array contains, in the i-eth element, the currently
 *    allocated bandwidth on the i-eth CPU.
 * Moreover, groups consume bandwidth on each CPU, while tasks only
 * consume bandwidth on the CPU they're running on.
 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
 * that will be shown the next time the proc or cgroup controls will
 * be red. It on its turn can be changed by writing on its own
 * control.
 */
struct dl_bandwidth {
	raw_spinlock_t dl_runtime_lock;
	u64 dl_runtime;
	u64 dl_period;
};

static inline int dl_bandwidth_enabled(void)
{
182
	return sysctl_sched_rt_runtime >= 0;
183 184 185 186 187 188 189 190 191
}

extern struct dl_bw *dl_bw_of(int i);

struct dl_bw {
	raw_spinlock_t lock;
	u64 bw, total_bw;
};

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
static inline
void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw -= tsk_bw;
}

static inline
void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw += tsk_bw;
}

static inline
bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
{
	return dl_b->bw != -1 &&
	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
}

211 212 213 214 215 216 217 218 219
extern struct mutex sched_domains_mutex;

#ifdef CONFIG_CGROUP_SCHED

#include <linux/cgroup.h>

struct cfs_rq;
struct rt_rq;

220
extern struct list_head task_groups;
221 222 223 224 225 226

struct cfs_bandwidth {
#ifdef CONFIG_CFS_BANDWIDTH
	raw_spinlock_t lock;
	ktime_t period;
	u64 quota, runtime;
227
	s64 hierarchical_quota;
228 229
	u64 runtime_expires;

P
Peter Zijlstra 已提交
230
	int idle, period_active;
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
	struct hrtimer period_timer, slack_timer;
	struct list_head throttled_cfs_rq;

	/* statistics */
	int nr_periods, nr_throttled;
	u64 throttled_time;
#endif
};

/* task group related information */
struct task_group {
	struct cgroup_subsys_state css;

#ifdef CONFIG_FAIR_GROUP_SCHED
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;

251
#ifdef	CONFIG_SMP
252 253 254 255 256 257
	/*
	 * load_avg can be heavily contended at clock tick time, so put
	 * it in its own cacheline separated from the fields above which
	 * will also be accessed at each tick.
	 */
	atomic_long_t load_avg ____cacheline_aligned;
258
#endif
259
#endif
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

	struct rt_bandwidth rt_bandwidth;
#endif

	struct rcu_head rcu;
	struct list_head list;

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;

#ifdef CONFIG_SCHED_AUTOGROUP
	struct autogroup *autogroup;
#endif

	struct cfs_bandwidth cfs_bandwidth;
};

#ifdef CONFIG_FAIR_GROUP_SCHED
#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD

/*
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
#define MIN_SHARES	(1UL <<  1)
#define MAX_SHARES	(1UL << 18)
#endif

typedef int (*tg_visitor)(struct task_group *, void *);

extern int walk_tg_tree_from(struct task_group *from,
			     tg_visitor down, tg_visitor up, void *data);

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
 */
static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
{
	return walk_tg_tree_from(&root_task_group, down, up, data);
}

extern int tg_nop(struct task_group *tg, void *data);

extern void free_fair_sched_group(struct task_group *tg);
extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
317
extern void unregister_fair_sched_group(struct task_group *tg);
318 319 320 321 322 323
extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent);
extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);

extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
P
Peter Zijlstra 已提交
324
extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
325 326 327 328 329 330 331 332
extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);

extern void free_rt_sched_group(struct task_group *tg);
extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu,
		struct sched_rt_entity *parent);

333 334 335 336 337 338 339 340 341 342
extern struct task_group *sched_create_group(struct task_group *parent);
extern void sched_online_group(struct task_group *tg,
			       struct task_group *parent);
extern void sched_destroy_group(struct task_group *tg);
extern void sched_offline_group(struct task_group *tg);

extern void sched_move_task(struct task_struct *tsk);

#ifdef CONFIG_FAIR_GROUP_SCHED
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
343 344 345 346 347 348 349 350 351

#ifdef CONFIG_SMP
extern void set_task_rq_fair(struct sched_entity *se,
			     struct cfs_rq *prev, struct cfs_rq *next);
#else /* !CONFIG_SMP */
static inline void set_task_rq_fair(struct sched_entity *se,
			     struct cfs_rq *prev, struct cfs_rq *next) { }
#endif /* CONFIG_SMP */
#endif /* CONFIG_FAIR_GROUP_SCHED */
352

353 354 355 356 357 358 359 360 361
#else /* CONFIG_CGROUP_SCHED */

struct cfs_bandwidth { };

#endif	/* CONFIG_CGROUP_SCHED */

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
362
	unsigned int nr_running, h_nr_running;
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382

	u64 exec_clock;
	u64 min_vruntime;
#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
#endif

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr, *next, *last, *skip;

#ifdef	CONFIG_SCHED_DEBUG
	unsigned int nr_spread_over;
#endif

383 384
#ifdef CONFIG_SMP
	/*
385
	 * CFS load tracking
386
	 */
387
	struct sched_avg avg;
388 389
	u64 runnable_load_sum;
	unsigned long runnable_load_avg;
390
#ifdef CONFIG_FAIR_GROUP_SCHED
391 392 393 394 395 396
	unsigned long tg_load_avg_contrib;
#endif
	atomic_long_t removed_load_avg, removed_util_avg;
#ifndef CONFIG_64BIT
	u64 load_last_update_time_copy;
#endif
397

398
#ifdef CONFIG_FAIR_GROUP_SCHED
399 400 401 402 403 404 405
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
406 407 408
	u64 last_h_load_update;
	struct sched_entity *h_load_next;
#endif /* CONFIG_FAIR_GROUP_SCHED */
409 410
#endif /* CONFIG_SMP */

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	int on_list;
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */

#ifdef CONFIG_CFS_BANDWIDTH
	int runtime_enabled;
	u64 runtime_expires;
	s64 runtime_remaining;

431 432
	u64 throttled_clock, throttled_clock_task;
	u64 throttled_clock_task_time;
433 434 435 436 437 438 439 440 441 442 443
	int throttled, throttle_count;
	struct list_head throttled_list;
#endif /* CONFIG_CFS_BANDWIDTH */
#endif /* CONFIG_FAIR_GROUP_SCHED */
};

static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
}

444 445 446 447 448
/* RT IPI pull logic requires IRQ_WORK */
#ifdef CONFIG_IRQ_WORK
# define HAVE_RT_PUSH_IPI
#endif

449 450 451
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
452
	unsigned int rt_nr_running;
F
Frederic Weisbecker 已提交
453
	unsigned int rr_nr_running;
454 455 456 457 458 459 460 461 462 463 464 465 466
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
	struct {
		int curr; /* highest queued rt task prio */
#ifdef CONFIG_SMP
		int next; /* next highest */
#endif
	} highest_prio;
#endif
#ifdef CONFIG_SMP
	unsigned long rt_nr_migratory;
	unsigned long rt_nr_total;
	int overloaded;
	struct plist_head pushable_tasks;
467 468 469 470 471
#ifdef HAVE_RT_PUSH_IPI
	int push_flags;
	int push_cpu;
	struct irq_work push_work;
	raw_spinlock_t push_lock;
472
#endif
473
#endif /* CONFIG_SMP */
474 475
	int rt_queued;

476 477 478 479 480 481 482 483 484 485 486 487 488 489
	int rt_throttled;
	u64 rt_time;
	u64 rt_runtime;
	/* Nests inside the rq lock: */
	raw_spinlock_t rt_runtime_lock;

#ifdef CONFIG_RT_GROUP_SCHED
	unsigned long rt_nr_boosted;

	struct rq *rq;
	struct task_group *tg;
#endif
};

490 491 492 493 494 495 496
/* Deadline class' related fields in a runqueue */
struct dl_rq {
	/* runqueue is an rbtree, ordered by deadline */
	struct rb_root rb_root;
	struct rb_node *rb_leftmost;

	unsigned long dl_nr_running;
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519

#ifdef CONFIG_SMP
	/*
	 * Deadline values of the currently executing and the
	 * earliest ready task on this rq. Caching these facilitates
	 * the decision wether or not a ready but not running task
	 * should migrate somewhere else.
	 */
	struct {
		u64 curr;
		u64 next;
	} earliest_dl;

	unsigned long dl_nr_migratory;
	int overloaded;

	/*
	 * Tasks on this rq that can be pushed away. They are kept in
	 * an rb-tree, ordered by tasks' deadlines, with caching
	 * of the leftmost (earliest deadline) element.
	 */
	struct rb_root pushable_dl_tasks_root;
	struct rb_node *pushable_dl_tasks_leftmost;
520 521
#else
	struct dl_bw dl_bw;
522
#endif
523 524
};

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	atomic_t rto_count;
	struct rcu_head rcu;
	cpumask_var_t span;
	cpumask_var_t online;

542 543 544
	/* Indicate more than one runnable task for any CPU */
	bool overload;

545 546 547 548 549 550
	/*
	 * The bit corresponding to a CPU gets set here if such CPU has more
	 * than one runnable -deadline task (as it is below for RT tasks).
	 */
	cpumask_var_t dlo_mask;
	atomic_t dlo_count;
551
	struct dl_bw dl_bw;
552
	struct cpudl cpudl;
553

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
	/*
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_var_t rto_mask;
	struct cpupri cpupri;
};

extern struct root_domain def_root_domain;

#endif /* CONFIG_SMP */

/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
struct rq {
	/* runqueue lock: */
	raw_spinlock_t lock;

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
581
	unsigned int nr_running;
582 583 584 585
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
586 587
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
588
#ifdef CONFIG_NO_HZ_COMMON
589 590 591
#ifdef CONFIG_SMP
	unsigned long last_load_update_tick;
#endif /* CONFIG_SMP */
592
	u64 nohz_stamp;
593
	unsigned long nohz_flags;
594
#endif /* CONFIG_NO_HZ_COMMON */
595 596
#ifdef CONFIG_NO_HZ_FULL
	unsigned long last_sched_tick;
597 598 599 600 601 602 603 604
#endif
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
	struct rt_rq rt;
605
	struct dl_rq dl;
606 607 608 609

#ifdef CONFIG_FAIR_GROUP_SCHED
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
610 611
#endif /* CONFIG_FAIR_GROUP_SCHED */

612 613 614 615 616 617 618 619 620 621 622 623
	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

	struct task_struct *curr, *idle, *stop;
	unsigned long next_balance;
	struct mm_struct *prev_mm;

624
	unsigned int clock_skip_update;
625 626 627 628 629 630 631 632 633
	u64 clock;
	u64 clock_task;

	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct root_domain *rd;
	struct sched_domain *sd;

634
	unsigned long cpu_capacity;
635
	unsigned long cpu_capacity_orig;
636

637 638
	struct callback_head *balance_callback;

639 640 641 642 643 644 645 646 647
	unsigned char idle_balance;
	/* For active balancing */
	int active_balance;
	int push_cpu;
	struct cpu_stop_work active_balance_work;
	/* cpu of this runqueue: */
	int cpu;
	int online;

648 649
	struct list_head cfs_tasks;

650 651 652 653
	u64 rt_avg;
	u64 age_stamp;
	u64 idle_stamp;
	u64 avg_idle;
654 655 656

	/* This is used to determine avg_idle's max value */
	u64 max_idle_balance_cost;
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
#endif

#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	u64 prev_irq_time;
#endif
#ifdef CONFIG_PARAVIRT
	u64 prev_steal_time;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	u64 prev_steal_time_rq;
#endif

	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

#ifdef CONFIG_SCHED_HRTICK
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
	struct hrtimer hrtick_timer;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */

	/* sys_sched_yield() stats */
	unsigned int yld_count;

	/* schedule() stats */
	unsigned int sched_count;
	unsigned int sched_goidle;

	/* try_to_wake_up() stats */
	unsigned int ttwu_count;
	unsigned int ttwu_local;
#endif

#ifdef CONFIG_SMP
	struct llist_head wake_list;
#endif
702 703 704 705 706

#ifdef CONFIG_CPU_IDLE
	/* Must be inspected within a rcu lock section */
	struct cpuidle_state *idle_state;
#endif
707 708 709 710 711 712 713 714 715 716 717
};

static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

718
DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
719

720
#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
721
#define this_rq()		this_cpu_ptr(&runqueues)
722 723
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
724
#define raw_rq()		raw_cpu_ptr(&runqueues)
725

726 727
static inline u64 __rq_clock_broken(struct rq *rq)
{
728
	return READ_ONCE(rq->clock);
729 730
}

731 732
static inline u64 rq_clock(struct rq *rq)
{
733
	lockdep_assert_held(&rq->lock);
734 735 736 737 738
	return rq->clock;
}

static inline u64 rq_clock_task(struct rq *rq)
{
739
	lockdep_assert_held(&rq->lock);
740 741 742
	return rq->clock_task;
}

743 744 745 746 747 748 749 750 751 752 753 754
#define RQCF_REQ_SKIP	0x01
#define RQCF_ACT_SKIP	0x02

static inline void rq_clock_skip_update(struct rq *rq, bool skip)
{
	lockdep_assert_held(&rq->lock);
	if (skip)
		rq->clock_skip_update |= RQCF_REQ_SKIP;
	else
		rq->clock_skip_update &= ~RQCF_REQ_SKIP;
}

755
#ifdef CONFIG_NUMA
756 757 758 759 760 761
enum numa_topology_type {
	NUMA_DIRECT,
	NUMA_GLUELESS_MESH,
	NUMA_BACKPLANE,
};
extern enum numa_topology_type sched_numa_topology_type;
762 763 764 765
extern int sched_max_numa_distance;
extern bool find_numa_distance(int distance);
#endif

766
#ifdef CONFIG_NUMA_BALANCING
767 768 769 770 771 772 773
/* The regions in numa_faults array from task_struct */
enum numa_faults_stats {
	NUMA_MEM = 0,
	NUMA_CPU,
	NUMA_MEMBUF,
	NUMA_CPUBUF
};
774
extern void sched_setnuma(struct task_struct *p, int node);
775
extern int migrate_task_to(struct task_struct *p, int cpu);
776
extern int migrate_swap(struct task_struct *, struct task_struct *);
777 778
#endif /* CONFIG_NUMA_BALANCING */

779 780
#ifdef CONFIG_SMP

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
static inline void
queue_balance_callback(struct rq *rq,
		       struct callback_head *head,
		       void (*func)(struct rq *rq))
{
	lockdep_assert_held(&rq->lock);

	if (unlikely(head->next))
		return;

	head->func = (void (*)(struct callback_head *))func;
	head->next = rq->balance_callback;
	rq->balance_callback = head;
}

796 797
extern void sched_ttwu_pending(void);

798 799 800 801 802 803 804 805 806 807 808 809
#define rcu_dereference_check_sched_domain(p) \
	rcu_dereference_check((p), \
			      lockdep_is_held(&sched_domains_mutex))

/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 * See detach_destroy_domains: synchronize_sched for details.
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
#define for_each_domain(cpu, __sd) \
810 811
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
			__sd; __sd = __sd->parent)
812

813 814
#define for_each_lower_domain(sd) for (; sd; sd = sd->child)

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
/**
 * highest_flag_domain - Return highest sched_domain containing flag.
 * @cpu:	The cpu whose highest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the highest sched_domain
 *		for the given cpu.
 *
 * Returns the highest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd, *hsd = NULL;

	for_each_domain(cpu, sd) {
		if (!(sd->flags & flag))
			break;
		hsd = sd;
	}

	return hsd;
}

837 838 839 840 841 842 843 844 845 846 847 848
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd) {
		if (sd->flags & flag)
			break;
	}

	return sd;
}

849
DECLARE_PER_CPU(struct sched_domain *, sd_llc);
850
DECLARE_PER_CPU(int, sd_llc_size);
851
DECLARE_PER_CPU(int, sd_llc_id);
852
DECLARE_PER_CPU(struct sched_domain *, sd_numa);
853 854
DECLARE_PER_CPU(struct sched_domain *, sd_busy);
DECLARE_PER_CPU(struct sched_domain *, sd_asym);
855

856
struct sched_group_capacity {
857 858
	atomic_t ref;
	/*
859 860
	 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
	 * for a single CPU.
861
	 */
862
	unsigned int capacity;
863
	unsigned long next_update;
864
	int imbalance; /* XXX unrelated to capacity but shared group state */
865 866 867 868 869 870 871 872 873 874 875 876 877
	/*
	 * Number of busy cpus in this group.
	 */
	atomic_t nr_busy_cpus;

	unsigned long cpumask[0]; /* iteration mask */
};

struct sched_group {
	struct sched_group *next;	/* Must be a circular list */
	atomic_t ref;

	unsigned int group_weight;
878
	struct sched_group_capacity *sgc;
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900

	/*
	 * The CPUs this group covers.
	 *
	 * NOTE: this field is variable length. (Allocated dynamically
	 * by attaching extra space to the end of the structure,
	 * depending on how many CPUs the kernel has booted up with)
	 */
	unsigned long cpumask[0];
};

static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
{
	return to_cpumask(sg->cpumask);
}

/*
 * cpumask masking which cpus in the group are allowed to iterate up the domain
 * tree.
 */
static inline struct cpumask *sched_group_mask(struct sched_group *sg)
{
901
	return to_cpumask(sg->sgc->cpumask);
902 903 904 905 906 907 908 909 910 911 912
}

/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

P
Peter Zijlstra 已提交
913 914
extern int group_balance_cpu(struct sched_group *sg);

915 916 917 918 919 920 921 922 923 924 925 926
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
void register_sched_domain_sysctl(void);
void unregister_sched_domain_sysctl(void);
#else
static inline void register_sched_domain_sysctl(void)
{
}
static inline void unregister_sched_domain_sysctl(void)
{
}
#endif

927 928 929 930
#else

static inline void sched_ttwu_pending(void) { }

931
#endif /* CONFIG_SMP */
932

933 934
#include "stats.h"
#include "auto_group.h"
935 936 937 938 939 940

#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
941 942 943
 * We cannot use task_css() and friends because the cgroup subsystem
 * changes that value before the cgroup_subsys::attach() method is called,
 * therefore we cannot pin it and might observe the wrong value.
P
Peter Zijlstra 已提交
944 945 946 947 948 949
 *
 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
 * core changes this before calling sched_move_task().
 *
 * Instead we use a 'copy' which is updated from sched_move_task() while
 * holding both task_struct::pi_lock and rq::lock.
950 951 952
 */
static inline struct task_group *task_group(struct task_struct *p)
{
P
Peter Zijlstra 已提交
953
	return p->sched_task_group;
954 955 956 957 958 959 960 961 962 963
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
	struct task_group *tg = task_group(p);
#endif

#ifdef CONFIG_FAIR_GROUP_SCHED
964
	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	p->se.cfs_rq = tg->cfs_rq[cpu];
	p->se.parent = tg->se[cpu];
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	p->rt.rt_rq  = tg->rt_rq[cpu];
	p->rt.parent = tg->rt_se[cpu];
#endif
}

#else /* CONFIG_CGROUP_SCHED */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* CONFIG_CGROUP_SCHED */

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
996
	p->wake_cpu = cpu;
997 998 999 1000 1001 1002 1003
#endif
}

/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
1004
# include <linux/static_key.h>
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
# define const_debug __read_mostly
#else
# define const_debug const
#endif

extern const_debug unsigned int sysctl_sched_features;

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

enum {
1016
#include "features.h"
1017
	__SCHED_FEAT_NR,
1018 1019 1020 1021
};

#undef SCHED_FEAT

1022 1023
#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
#define SCHED_FEAT(name, enabled)					\
1024
static __always_inline bool static_branch_##name(struct static_key *key) \
1025
{									\
1026
	return static_key_##enabled(key);				\
1027 1028 1029 1030 1031 1032
}

#include "features.h"

#undef SCHED_FEAT

1033
extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1034 1035
#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1036
#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1037
#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1038

1039
extern struct static_key_false sched_numa_balancing;
1040
extern struct static_key_false sched_schedstats;
1041

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_runtime < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}

static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

static inline int task_running(struct rq *rq, struct task_struct *p)
{
#ifdef CONFIG_SMP
	return p->on_cpu;
#else
	return task_current(rq, p);
#endif
}

1069 1070 1071 1072
static inline int task_on_rq_queued(struct task_struct *p)
{
	return p->on_rq == TASK_ON_RQ_QUEUED;
}
1073

1074 1075 1076 1077 1078
static inline int task_on_rq_migrating(struct task_struct *p)
{
	return p->on_rq == TASK_ON_RQ_MIGRATING;
}

1079 1080 1081
#ifndef prepare_arch_switch
# define prepare_arch_switch(next)	do { } while (0)
#endif
1082 1083 1084
#ifndef finish_arch_post_lock_switch
# define finish_arch_post_lock_switch()	do { } while (0)
#endif
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->on_cpu = 1;
#endif
}

static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
{
#ifdef CONFIG_SMP
	/*
	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
1105
	 *
1106 1107 1108
	 * In particular, the load of prev->state in finish_task_switch() must
	 * happen before this.
	 *
1109
	 * Pairs with the smp_cond_acquire() in try_to_wake_up().
1110
	 */
1111
	smp_store_release(&prev->on_cpu, 0);
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
#endif
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

	raw_spin_unlock_irq(&rq->lock);
}

1127 1128 1129 1130 1131 1132 1133
/*
 * wake flags
 */
#define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
#define WF_FORK		0x02		/* child wakeup after fork */
#define WF_MIGRATED	0x4		/* internal use, task got migrated */

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765

1146 1147
extern const int sched_prio_to_weight[40];
extern const u32 sched_prio_to_wmult[40];
1148

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
/*
 * {de,en}queue flags:
 *
 * DEQUEUE_SLEEP  - task is no longer runnable
 * ENQUEUE_WAKEUP - task just became runnable
 *
 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
 *                are in a known state which allows modification. Such pairs
 *                should preserve as much state as possible.
 *
 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
 *        in the runqueue.
 *
 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
 * ENQUEUE_WAKING    - sched_class::task_waking was called
 *
 */

#define DEQUEUE_SLEEP		0x01
#define DEQUEUE_SAVE		0x02 /* matches ENQUEUE_RESTORE */
#define DEQUEUE_MOVE		0x04 /* matches ENQUEUE_MOVE */

1172
#define ENQUEUE_WAKEUP		0x01
1173 1174 1175 1176 1177
#define ENQUEUE_RESTORE		0x02
#define ENQUEUE_MOVE		0x04

#define ENQUEUE_HEAD		0x08
#define ENQUEUE_REPLENISH	0x10
1178
#ifdef CONFIG_SMP
1179
#define ENQUEUE_WAKING		0x20
1180
#else
1181
#define ENQUEUE_WAKING		0x00
1182 1183
#endif

1184 1185
#define RETRY_TASK		((void *)-1UL)

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
struct sched_class {
	const struct sched_class *next;

	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
	void (*yield_task) (struct rq *rq);
	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);

	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);

1196 1197 1198 1199
	/*
	 * It is the responsibility of the pick_next_task() method that will
	 * return the next task to call put_prev_task() on the @prev task or
	 * something equivalent.
1200 1201 1202
	 *
	 * May return RETRY_TASK when it finds a higher prio class has runnable
	 * tasks.
1203 1204
	 */
	struct task_struct * (*pick_next_task) (struct rq *rq,
1205 1206
						struct task_struct *prev,
						struct pin_cookie cookie);
1207 1208 1209
	void (*put_prev_task) (struct rq *rq, struct task_struct *p);

#ifdef CONFIG_SMP
1210
	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1211
	void (*migrate_task_rq)(struct task_struct *p);
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

	void (*task_waking) (struct task_struct *task);
	void (*task_woken) (struct rq *this_rq, struct task_struct *task);

	void (*set_cpus_allowed)(struct task_struct *p,
				 const struct cpumask *newmask);

	void (*rq_online)(struct rq *rq);
	void (*rq_offline)(struct rq *rq);
#endif

	void (*set_curr_task) (struct rq *rq);
	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
	void (*task_fork) (struct task_struct *p);
1226
	void (*task_dead) (struct task_struct *p);
1227

1228 1229 1230 1231 1232
	/*
	 * The switched_from() call is allowed to drop rq->lock, therefore we
	 * cannot assume the switched_from/switched_to pair is serliazed by
	 * rq->lock. They are however serialized by p->pi_lock.
	 */
1233 1234 1235 1236 1237 1238 1239 1240
	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
			     int oldprio);

	unsigned int (*get_rr_interval) (struct rq *rq,
					 struct task_struct *task);

1241 1242
	void (*update_curr) (struct rq *rq);

1243
#ifdef CONFIG_FAIR_GROUP_SCHED
1244
	void (*task_move_group) (struct task_struct *p);
1245 1246
#endif
};
1247

1248 1249 1250 1251 1252
static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	prev->sched_class->put_prev_task(rq, prev);
}

1253 1254 1255 1256 1257
#define sched_class_highest (&stop_sched_class)
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)

extern const struct sched_class stop_sched_class;
1258
extern const struct sched_class dl_sched_class;
1259 1260 1261 1262 1263 1264 1265
extern const struct sched_class rt_sched_class;
extern const struct sched_class fair_sched_class;
extern const struct sched_class idle_sched_class;


#ifdef CONFIG_SMP

1266
extern void update_group_capacity(struct sched_domain *sd, int cpu);
1267

1268
extern void trigger_load_balance(struct rq *rq);
1269

1270 1271
extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);

1272 1273
#endif

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
#ifdef CONFIG_CPU_IDLE
static inline void idle_set_state(struct rq *rq,
				  struct cpuidle_state *idle_state)
{
	rq->idle_state = idle_state;
}

static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
	WARN_ON(!rcu_read_lock_held());
	return rq->idle_state;
}
#else
static inline void idle_set_state(struct rq *rq,
				  struct cpuidle_state *idle_state)
{
}

static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
	return NULL;
}
#endif

1298 1299 1300
extern void sysrq_sched_debug_show(void);
extern void sched_init_granularity(void);
extern void update_max_interval(void);
1301 1302

extern void init_sched_dl_class(void);
1303 1304 1305
extern void init_sched_rt_class(void);
extern void init_sched_fair_class(void);

1306
extern void resched_curr(struct rq *rq);
1307 1308 1309 1310 1311
extern void resched_cpu(int cpu);

extern struct rt_bandwidth def_rt_bandwidth;
extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);

1312 1313
extern struct dl_bandwidth def_dl_bandwidth;
extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1314 1315
extern void init_dl_task_timer(struct sched_dl_entity *dl_se);

1316 1317
unsigned long to_ratio(u64 period, u64 runtime);

1318
extern void init_entity_runnable_average(struct sched_entity *se);
1319
extern void post_init_entity_util_avg(struct sched_entity *se);
1320

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
#ifdef CONFIG_NO_HZ_FULL
extern bool sched_can_stop_tick(struct rq *rq);

/*
 * Tick may be needed by tasks in the runqueue depending on their policy and
 * requirements. If tick is needed, lets send the target an IPI to kick it out of
 * nohz mode if necessary.
 */
static inline void sched_update_tick_dependency(struct rq *rq)
{
	int cpu;

	if (!tick_nohz_full_enabled())
		return;

	cpu = cpu_of(rq);

	if (!tick_nohz_full_cpu(cpu))
		return;

	if (sched_can_stop_tick(rq))
		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
	else
		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
}
#else
static inline void sched_update_tick_dependency(struct rq *rq) { }
#endif

1350
static inline void add_nr_running(struct rq *rq, unsigned count)
1351
{
1352 1353 1354
	unsigned prev_nr = rq->nr_running;

	rq->nr_running = prev_nr + count;
1355

1356
	if (prev_nr < 2 && rq->nr_running >= 2) {
1357 1358 1359 1360 1361
#ifdef CONFIG_SMP
		if (!rq->rd->overload)
			rq->rd->overload = true;
#endif
	}
1362 1363

	sched_update_tick_dependency(rq);
1364 1365
}

1366
static inline void sub_nr_running(struct rq *rq, unsigned count)
1367
{
1368
	rq->nr_running -= count;
1369 1370
	/* Check if we still need preemption */
	sched_update_tick_dependency(rq);
1371 1372
}

1373 1374 1375 1376 1377 1378 1379
static inline void rq_last_tick_reset(struct rq *rq)
{
#ifdef CONFIG_NO_HZ_FULL
	rq->last_sched_tick = jiffies;
#endif
}

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
extern void update_rq_clock(struct rq *rq);

extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);

extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);

extern const_debug unsigned int sysctl_sched_time_avg;
extern const_debug unsigned int sysctl_sched_nr_migrate;
extern const_debug unsigned int sysctl_sched_migration_cost;

static inline u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

#ifdef CONFIG_SCHED_HRTICK

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
	if (!cpu_active(cpu_of(rq)))
		return 0;
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

void hrtick_start(struct rq *rq, u64 delay);

1414 1415 1416 1417 1418 1419 1420
#else

static inline int hrtick_enabled(struct rq *rq)
{
	return 0;
}

1421 1422 1423 1424
#endif /* CONFIG_SCHED_HRTICK */

#ifdef CONFIG_SMP
extern void sched_avg_update(struct rq *rq);
1425 1426 1427 1428 1429 1430 1431 1432

#ifndef arch_scale_freq_capacity
static __always_inline
unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
{
	return SCHED_CAPACITY_SCALE;
}
#endif
1433

1434 1435 1436 1437
#ifndef arch_scale_cpu_capacity
static __always_inline
unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
{
1438
	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1439 1440 1441 1442 1443 1444
		return sd->smt_gain / sd->span_weight;

	return SCHED_CAPACITY_SCALE;
}
#endif

1445 1446
static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
1447
	rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1448 1449 1450 1451 1452 1453 1454
	sched_avg_update(rq);
}
#else
static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
static inline void sched_avg_update(struct rq *rq) { }
#endif

1455 1456
struct rq_flags {
	unsigned long flags;
1457
	struct pin_cookie cookie;
1458 1459 1460
};

struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1461
	__acquires(rq->lock);
1462
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1463
	__acquires(p->pi_lock)
1464
	__acquires(rq->lock);
1465

1466
static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1467 1468
	__releases(rq->lock)
{
1469
	lockdep_unpin_lock(&rq->lock, rf->cookie);
1470 1471 1472 1473
	raw_spin_unlock(&rq->lock);
}

static inline void
1474
task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1475 1476 1477
	__releases(rq->lock)
	__releases(p->pi_lock)
{
1478
	lockdep_unpin_lock(&rq->lock, rf->cookie);
1479
	raw_spin_unlock(&rq->lock);
1480
	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1481 1482
}

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
#ifdef CONFIG_SMP
#ifdef CONFIG_PREEMPT

static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);

/*
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
 */
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	raw_spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
	}
	return ret;
}

#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		raw_spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	raw_spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}

1559 1560 1561 1562 1563 1564 1565 1566 1567
static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
{
	if (l1 > l2)
		swap(l1, l2);

	spin_lock(l1);
	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}

1568 1569 1570 1571 1572 1573 1574 1575 1576
static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
{
	if (l1 > l2)
		swap(l1, l2);

	spin_lock_irq(l1);
	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}

1577 1578 1579 1580 1581 1582 1583 1584 1585
static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
{
	if (l1 > l2)
		swap(l1, l2);

	raw_spin_lock(l1);
	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

#else /* CONFIG_SMP */

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	BUG_ON(rq1 != rq2);
	raw_spin_lock(&rq1->lock);
	__acquire(rq2->lock);	/* Fake it out ;) */
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	BUG_ON(rq1 != rq2);
	raw_spin_unlock(&rq1->lock);
	__release(rq2->lock);
}

#endif

extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1665 1666

#ifdef	CONFIG_SCHED_DEBUG
1667 1668
extern void print_cfs_stats(struct seq_file *m, int cpu);
extern void print_rt_stats(struct seq_file *m, int cpu);
1669
extern void print_dl_stats(struct seq_file *m, int cpu);
1670 1671
extern void
print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1672 1673 1674 1675 1676 1677 1678 1679 1680

#ifdef CONFIG_NUMA_BALANCING
extern void
show_numa_stats(struct task_struct *p, struct seq_file *m);
extern void
print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
	unsigned long tpf, unsigned long gsf, unsigned long gpf);
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
1681 1682

extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1683 1684
extern void init_rt_rq(struct rt_rq *rt_rq);
extern void init_dl_rq(struct dl_rq *dl_rq);
1685

1686 1687
extern void cfs_bandwidth_usage_inc(void);
extern void cfs_bandwidth_usage_dec(void);
1688

1689
#ifdef CONFIG_NO_HZ_COMMON
1690 1691 1692 1693 1694 1695 1696
enum rq_nohz_flag_bits {
	NOHZ_TICK_STOPPED,
	NOHZ_BALANCE_KICK,
};

#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
#endif
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745

#ifdef CONFIG_IRQ_TIME_ACCOUNTING

DECLARE_PER_CPU(u64, cpu_hardirq_time);
DECLARE_PER_CPU(u64, cpu_softirq_time);

#ifndef CONFIG_64BIT
DECLARE_PER_CPU(seqcount_t, irq_time_seq);

static inline void irq_time_write_begin(void)
{
	__this_cpu_inc(irq_time_seq.sequence);
	smp_wmb();
}

static inline void irq_time_write_end(void)
{
	smp_wmb();
	__this_cpu_inc(irq_time_seq.sequence);
}

static inline u64 irq_time_read(int cpu)
{
	u64 irq_time;
	unsigned seq;

	do {
		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
		irq_time = per_cpu(cpu_softirq_time, cpu) +
			   per_cpu(cpu_hardirq_time, cpu);
	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));

	return irq_time;
}
#else /* CONFIG_64BIT */
static inline void irq_time_write_begin(void)
{
}

static inline void irq_time_write_end(void)
{
}

static inline u64 irq_time_read(int cpu)
{
	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
}
#endif /* CONFIG_64BIT */
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793

#ifdef CONFIG_CPU_FREQ
DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);

/**
 * cpufreq_update_util - Take a note about CPU utilization changes.
 * @time: Current time.
 * @util: Current utilization.
 * @max: Utilization ceiling.
 *
 * This function is called by the scheduler on every invocation of
 * update_load_avg() on the CPU whose utilization is being updated.
 *
 * It can only be called from RCU-sched read-side critical sections.
 */
static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max)
{
       struct update_util_data *data;

       data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
       if (data)
               data->func(data, time, util, max);
}

/**
 * cpufreq_trigger_update - Trigger CPU performance state evaluation if needed.
 * @time: Current time.
 *
 * The way cpufreq is currently arranged requires it to evaluate the CPU
 * performance state (frequency/voltage) on a regular basis to prevent it from
 * being stuck in a completely inadequate performance level for too long.
 * That is not guaranteed to happen if the updates are only triggered from CFS,
 * though, because they may not be coming in if RT or deadline tasks are active
 * all the time (or there are RT and DL tasks only).
 *
 * As a workaround for that issue, this function is called by the RT and DL
 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
 * but that really is a band-aid.  Going forward it should be replaced with
 * solutions targeted more specifically at RT and DL tasks.
 */
static inline void cpufreq_trigger_update(u64 time)
{
	cpufreq_update_util(time, ULONG_MAX, 0);
}
#else
static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max) {}
static inline void cpufreq_trigger_update(u64 time) {}
#endif /* CONFIG_CPU_FREQ */
1794

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
static inline void account_reset_rq(struct rq *rq)
{
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
	rq->prev_irq_time = 0;
#endif
#ifdef CONFIG_PARAVIRT
	rq->prev_steal_time = 0;
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
	rq->prev_steal_time_rq = 0;
#endif
}