i915_gem_tiling.c 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28 29 30 31
#include <linux/string.h>
#include <linux/bitops.h>
#include <drm/drmP.h>
#include <drm/i915_drm.h>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
#include "i915_drv.h"

/** @file i915_gem_tiling.c
 *
 * Support for managing tiling state of buffer objects.
 *
 * The idea behind tiling is to increase cache hit rates by rearranging
 * pixel data so that a group of pixel accesses are in the same cacheline.
 * Performance improvement from doing this on the back/depth buffer are on
 * the order of 30%.
 *
 * Intel architectures make this somewhat more complicated, though, by
 * adjustments made to addressing of data when the memory is in interleaved
 * mode (matched pairs of DIMMS) to improve memory bandwidth.
 * For interleaved memory, the CPU sends every sequential 64 bytes
 * to an alternate memory channel so it can get the bandwidth from both.
 *
 * The GPU also rearranges its accesses for increased bandwidth to interleaved
 * memory, and it matches what the CPU does for non-tiled.  However, when tiled
 * it does it a little differently, since one walks addresses not just in the
 * X direction but also Y.  So, along with alternating channels when bit
 * 6 of the address flips, it also alternates when other bits flip --  Bits 9
 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
 * are common to both the 915 and 965-class hardware.
 *
 * The CPU also sometimes XORs in higher bits as well, to improve
 * bandwidth doing strided access like we do so frequently in graphics.  This
 * is called "Channel XOR Randomization" in the MCH documentation.  The result
 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
 * decode.
 *
 * All of this bit 6 XORing has an effect on our memory management,
 * as we need to make sure that the 3d driver can correctly address object
 * contents.
 *
 * If we don't have interleaved memory, all tiling is safe and no swizzling is
 * required.
 *
 * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
 * 17 is not just a page offset, so as we page an objet out and back in,
 * individual pages in it will have different bit 17 addresses, resulting in
 * each 64 bytes being swapped with its neighbor!
 *
 * Otherwise, if interleaved, we have to tell the 3d driver what the address
 * swizzling it needs to do is, since it's writing with the CPU to the pages
 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
 * to match what the GPU expects.
 */

/**
 * Detects bit 6 swizzling of address lookup between IGD access and CPU
 * access through main memory.
 */
void
i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
{
90
	struct drm_i915_private *dev_priv = dev->dev_private;
91 92 93
	uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
	uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;

94 95 96 97
	if (IS_VALLEYVIEW(dev)) {
		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
	} else if (INTEL_INFO(dev)->gen >= 6) {
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
		uint32_t dimm_c0, dimm_c1;
		dimm_c0 = I915_READ(MAD_DIMM_C0);
		dimm_c1 = I915_READ(MAD_DIMM_C1);
		dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
		dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
		/* Enable swizzling when the channels are populated with
		 * identically sized dimms. We don't need to check the 3rd
		 * channel because no cpu with gpu attached ships in that
		 * configuration. Also, swizzling only makes sense for 2
		 * channels anyway. */
		if (dimm_c0 == dimm_c1) {
			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
			swizzle_y = I915_BIT_6_SWIZZLE_9;
		} else {
			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
		}
D
Daniel Vetter 已提交
115
	} else if (IS_GEN5(dev)) {
116
		/* On Ironlake whatever DRAM config, GPU always do
Z
Zhenyu Wang 已提交
117 118 119 120
		 * same swizzling setup.
		 */
		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
		swizzle_y = I915_BIT_6_SWIZZLE_9;
121
	} else if (IS_GEN2(dev)) {
122 123 124 125 126
		/* As far as we know, the 865 doesn't have these bit 6
		 * swizzling issues.
		 */
		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
127
	} else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
128 129
		uint32_t dcc;

130
		/* On 9xx chipsets, channel interleave by the CPU is
131 132 133 134 135 136
		 * determined by DCC.  For single-channel, neither the CPU
		 * nor the GPU do swizzling.  For dual channel interleaved,
		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
		 * 9 for Y tiled.  The CPU's interleave is independent, and
		 * can be based on either bit 11 (haven't seen this yet) or
		 * bit 17 (common).
137 138 139 140 141 142 143 144 145
		 */
		dcc = I915_READ(DCC);
		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
			break;
		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
146 147 148 149
			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
				/* This is the base swizzling by the GPU for
				 * tiled buffers.
				 */
150 151
				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
				swizzle_y = I915_BIT_6_SWIZZLE_9;
152 153
			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
				/* Bit 11 swizzling by the CPU in addition. */
154 155 156
				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
			} else {
157
				/* Bit 17 swizzling by the CPU in addition. */
158 159
				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
			}
			break;
		}
		if (dcc == 0xffffffff) {
			DRM_ERROR("Couldn't read from MCHBAR.  "
				  "Disabling tiling.\n");
			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
		}
	} else {
		/* The 965, G33, and newer, have a very flexible memory
		 * configuration.  It will enable dual-channel mode
		 * (interleaving) on as much memory as it can, and the GPU
		 * will additionally sometimes enable different bit 6
		 * swizzling for tiled objects from the CPU.
		 *
		 * Here's what I found on the G965:
		 *    slot fill         memory size  swizzling
		 * 0A   0B   1A   1B    1-ch   2-ch
		 * 512  0    0    0     512    0     O
		 * 512  0    512  0     16     1008  X
		 * 512  0    0    512   16     1008  X
		 * 0    512  0    512   16     1008  X
		 * 1024 1024 1024 0     2048   1024  O
		 *
		 * We could probably detect this based on either the DRB
		 * matching, which was the case for the swizzling required in
		 * the table above, or from the 1-ch value being less than
		 * the minimum size of a rank.
		 */
		if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
		} else {
			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
			swizzle_y = I915_BIT_6_SWIZZLE_9;
		}
	}

	dev_priv->mm.bit_6_swizzle_x = swizzle_x;
	dev_priv->mm.bit_6_swizzle_y = swizzle_y;
}

203
/* Check pitch constriants for all chips & tiling formats */
204
static bool
205 206
i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
{
207
	int tile_width;
208 209 210 211 212

	/* Linear is always fine */
	if (tiling_mode == I915_TILING_NONE)
		return true;

213
	if (IS_GEN2(dev) ||
214
	    (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
215 216 217 218
		tile_width = 128;
	else
		tile_width = 512;

219
	/* check maximum stride & object size */
220 221 222 223 224 225
	/* i965+ stores the end address of the gtt mapping in the fence
	 * reg, so dont bother to check the size */
	if (INTEL_INFO(dev)->gen >= 7) {
		if (stride / 128 > GEN7_FENCE_MAX_PITCH_VAL)
			return false;
	} else if (INTEL_INFO(dev)->gen >= 4) {
226 227
		if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
			return false;
228
	} else {
229
		if (stride > 8192)
230
			return false;
231

232 233 234 235 236 237 238
		if (IS_GEN3(dev)) {
			if (size > I830_FENCE_MAX_SIZE_VAL << 20)
				return false;
		} else {
			if (size > I830_FENCE_MAX_SIZE_VAL << 19)
				return false;
		}
239 240
	}

241 242 243
	if (stride < tile_width)
		return false;

244
	/* 965+ just needs multiples of tile width */
245
	if (INTEL_INFO(dev)->gen >= 4) {
246 247 248 249 250 251 252 253 254 255 256 257
		if (stride & (tile_width - 1))
			return false;
		return true;
	}

	/* Pre-965 needs power of two tile widths */
	if (stride & (stride - 1))
		return false;

	return true;
}

258 259
/* Is the current GTT allocation valid for the change in tiling? */
static bool
260
i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
261
{
262
	u32 size;
263 264 265 266

	if (tiling_mode == I915_TILING_NONE)
		return true;

267
	if (INTEL_INFO(obj->base.dev)->gen >= 4)
268 269
		return true;

270
	if (INTEL_INFO(obj->base.dev)->gen == 3) {
271
		if (i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK)
272 273
			return false;
	} else {
274
		if (i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK)
275 276 277
			return false;
	}

278
	size = i915_gem_get_gtt_size(obj->base.dev, obj->base.size, tiling_mode);
279
	if (i915_gem_obj_ggtt_size(obj) != size)
280 281
		return false;

282
	if (i915_gem_obj_ggtt_offset(obj) & (size - 1))
283
		return false;
284 285 286 287

	return true;
}

288 289 290 291 292 293
/**
 * Sets the tiling mode of an object, returning the required swizzling of
 * bit 6 of addresses in the object.
 */
int
i915_gem_set_tiling(struct drm_device *dev, void *data,
294
		   struct drm_file *file)
295 296
{
	struct drm_i915_gem_set_tiling *args = data;
297
	struct drm_i915_private *dev_priv = dev->dev_private;
298
	struct drm_i915_gem_object *obj;
299
	int ret = 0;
300

301
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
302
	if (&obj->base == NULL)
303
		return -ENOENT;
304

305 306 307
	if (!i915_tiling_ok(dev,
			    args->stride, obj->base.size, args->tiling_mode)) {
		drm_gem_object_unreference_unlocked(&obj->base);
308
		return -EINVAL;
309
	}
310

B
Ben Widawsky 已提交
311
	if (i915_gem_obj_is_pinned(obj) || obj->framebuffer_references) {
312
		drm_gem_object_unreference_unlocked(&obj->base);
313 314 315
		return -EBUSY;
	}

316 317
	if (args->tiling_mode == I915_TILING_NONE) {
		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
318
		args->stride = 0;
319 320 321 322 323
	} else {
		if (args->tiling_mode == I915_TILING_X)
			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
		else
			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
324 325 326 327 328 329 330 331 332 333 334 335 336

		/* Hide bit 17 swizzling from the user.  This prevents old Mesa
		 * from aborting the application on sw fallbacks to bit 17,
		 * and we use the pread/pwrite bit17 paths to swizzle for it.
		 * If there was a user that was relying on the swizzle
		 * information for drm_intel_bo_map()ed reads/writes this would
		 * break it, but we don't have any of those.
		 */
		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
			args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
			args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;

337 338 339 340
		/* If we can't handle the swizzling, make it untiled. */
		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
			args->tiling_mode = I915_TILING_NONE;
			args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
341
			args->stride = 0;
342 343
		}
	}
344

345
	mutex_lock(&dev->struct_mutex);
346 347
	if (args->tiling_mode != obj->tiling_mode ||
	    args->stride != obj->stride) {
348 349 350
		/* We need to rebind the object if its current allocation
		 * no longer meets the alignment restrictions for its new
		 * tiling mode. Otherwise we can just leave it alone, but
351 352 353
		 * need to ensure that any fence register is updated before
		 * the next fenced (either through the GTT or by the BLT unit
		 * on older GPUs) access.
354 355 356 357 358
		 *
		 * After updating the tiling parameters, we then flag whether
		 * we need to update an associated fence register. Note this
		 * has to also include the unfenced register the GPU uses
		 * whilst executing a fenced command for an untiled object.
359
		 */
360

361
		obj->map_and_fenceable =
362
			!i915_gem_obj_ggtt_bound(obj) ||
363 364
			(i915_gem_obj_ggtt_offset(obj) +
			 obj->base.size <= dev_priv->gtt.mappable_end &&
365
			 i915_gem_object_fence_ok(obj, args->tiling_mode));
366

367 368
		/* Rebind if we need a change of alignment */
		if (!obj->map_and_fenceable) {
369
			u32 unfenced_align =
370 371 372
				i915_gem_get_gtt_alignment(dev, obj->base.size,
							    args->tiling_mode,
							    false);
373 374
			if (i915_gem_obj_ggtt_offset(obj) & (unfenced_align - 1))
				ret = i915_gem_object_ggtt_unbind(obj);
375 376 377
		}

		if (ret == 0) {
378 379 380 381
			obj->fence_dirty =
				obj->fenced_gpu_access ||
				obj->fence_reg != I915_FENCE_REG_NONE;

382 383
			obj->tiling_mode = args->tiling_mode;
			obj->stride = args->stride;
384 385 386

			/* Force the fence to be reacquired for GTT access */
			i915_gem_release_mmap(obj);
387
		}
388
	}
389 390 391
	/* we have to maintain this existing ABI... */
	args->stride = obj->stride;
	args->tiling_mode = obj->tiling_mode;
392 393 394 395

	/* Try to preallocate memory required to save swizzling on put-pages */
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
		if (obj->bit_17 == NULL) {
D
Daniel Vetter 已提交
396
			obj->bit_17 = kcalloc(BITS_TO_LONGS(obj->base.size >> PAGE_SHIFT),
397 398 399 400 401 402 403
					      sizeof(long), GFP_KERNEL);
		}
	} else {
		kfree(obj->bit_17);
		obj->bit_17 = NULL;
	}

404
	drm_gem_object_unreference(&obj->base);
405
	mutex_unlock(&dev->struct_mutex);
406

407
	return ret;
408 409 410 411 412 413 414
}

/**
 * Returns the current tiling mode and required bit 6 swizzling for the object.
 */
int
i915_gem_get_tiling(struct drm_device *dev, void *data,
415
		   struct drm_file *file)
416 417
{
	struct drm_i915_gem_get_tiling *args = data;
418
	struct drm_i915_private *dev_priv = dev->dev_private;
419
	struct drm_i915_gem_object *obj;
420

421
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
422
	if (&obj->base == NULL)
423
		return -ENOENT;
424 425 426

	mutex_lock(&dev->struct_mutex);

427 428
	args->tiling_mode = obj->tiling_mode;
	switch (obj->tiling_mode) {
429 430 431 432 433 434 435 436 437 438 439 440 441
	case I915_TILING_X:
		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
		break;
	case I915_TILING_Y:
		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
		break;
	case I915_TILING_NONE:
		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
		break;
	default:
		DRM_ERROR("unknown tiling mode\n");
	}

442 443 444 445 446 447
	/* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
		args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
		args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;

448
	drm_gem_object_unreference(&obj->base);
449
	mutex_unlock(&dev->struct_mutex);
450 451 452

	return 0;
}
453 454 455 456 457 458

/**
 * Swap every 64 bytes of this page around, to account for it having a new
 * bit 17 of its physical address and therefore being interpreted differently
 * by the GPU.
 */
459
static void
460 461
i915_gem_swizzle_page(struct page *page)
{
462
	char temp[64];
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
	char *vaddr;
	int i;

	vaddr = kmap(page);

	for (i = 0; i < PAGE_SIZE; i += 128) {
		memcpy(temp, &vaddr[i], 64);
		memcpy(&vaddr[i], &vaddr[i + 64], 64);
		memcpy(&vaddr[i + 64], temp, 64);
	}

	kunmap(page);
}

void
478
i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
479
{
480
	struct sg_page_iter sg_iter;
481 482
	int i;

483
	if (obj->bit_17 == NULL)
484 485
		return;

486 487
	i = 0;
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
488
		struct page *page = sg_page_iter_page(&sg_iter);
489
		char new_bit_17 = page_to_phys(page) >> 17;
490
		if ((new_bit_17 & 0x1) !=
491
		    (test_bit(i, obj->bit_17) != 0)) {
492 493
			i915_gem_swizzle_page(page);
			set_page_dirty(page);
494
		}
495
		i++;
496 497 498 499
	}
}

void
500
i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
501
{
502
	struct sg_page_iter sg_iter;
503
	int page_count = obj->base.size >> PAGE_SHIFT;
504 505
	int i;

506
	if (obj->bit_17 == NULL) {
D
Daniel Vetter 已提交
507 508
		obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
				      sizeof(long), GFP_KERNEL);
509
		if (obj->bit_17 == NULL) {
510 511 512 513 514 515
			DRM_ERROR("Failed to allocate memory for bit 17 "
				  "record\n");
			return;
		}
	}

516 517
	i = 0;
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
518
		if (page_to_phys(sg_page_iter_page(&sg_iter)) & (1 << 17))
519
			__set_bit(i, obj->bit_17);
520
		else
521
			__clear_bit(i, obj->bit_17);
522
		i++;
523 524
	}
}