ebpf_jit.c 53.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
/*
 * Just-In-Time compiler for eBPF filters on MIPS
 *
 * Copyright (c) 2017 Cavium, Inc.
 *
 * Based on code from:
 *
 * Copyright (c) 2014 Imagination Technologies Ltd.
 * Author: Markos Chandras <markos.chandras@imgtec.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation; version 2 of the License.
 */

#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/filter.h>
#include <linux/bpf.h>
#include <linux/slab.h>
#include <asm/bitops.h>
#include <asm/byteorder.h>
#include <asm/cacheflush.h>
#include <asm/cpu-features.h>
#include <asm/uasm.h>

/* Registers used by JIT */
#define MIPS_R_ZERO	0
#define MIPS_R_AT	1
#define MIPS_R_V0	2	/* BPF_R0 */
#define MIPS_R_V1	3
#define MIPS_R_A0	4	/* BPF_R1 */
#define MIPS_R_A1	5	/* BPF_R2 */
#define MIPS_R_A2	6	/* BPF_R3 */
#define MIPS_R_A3	7	/* BPF_R4 */
#define MIPS_R_A4	8	/* BPF_R5 */
#define MIPS_R_T4	12	/* BPF_AX */
#define MIPS_R_T5	13
#define MIPS_R_T6	14
#define MIPS_R_T7	15
#define MIPS_R_S0	16	/* BPF_R6 */
#define MIPS_R_S1	17	/* BPF_R7 */
#define MIPS_R_S2	18	/* BPF_R8 */
#define MIPS_R_S3	19	/* BPF_R9 */
#define MIPS_R_S4	20	/* BPF_TCC */
#define MIPS_R_S5	21
#define MIPS_R_S6	22
#define MIPS_R_S7	23
#define MIPS_R_T8	24
#define MIPS_R_T9	25
#define MIPS_R_SP	29
#define MIPS_R_RA	31

/* eBPF flags */
#define EBPF_SAVE_S0	BIT(0)
#define EBPF_SAVE_S1	BIT(1)
#define EBPF_SAVE_S2	BIT(2)
#define EBPF_SAVE_S3	BIT(3)
#define EBPF_SAVE_S4	BIT(4)
#define EBPF_SAVE_RA	BIT(5)
#define EBPF_SEEN_FP	BIT(6)
#define EBPF_SEEN_TC	BIT(7)
#define EBPF_TCC_IN_V1	BIT(8)

/*
 * For the mips64 ISA, we need to track the value range or type for
 * each JIT register.  The BPF machine requires zero extended 32-bit
 * values, but the mips64 ISA requires sign extended 32-bit values.
 * At each point in the BPF program we track the state of every
 * register so that we can zero extend or sign extend as the BPF
 * semantics require.
 */
enum reg_val_type {
	/* uninitialized */
	REG_UNKNOWN,
	/* not known to be 32-bit compatible. */
	REG_64BIT,
	/* 32-bit compatible, no truncation needed for 64-bit ops. */
	REG_64BIT_32BIT,
	/* 32-bit compatible, need truncation for 64-bit ops. */
	REG_32BIT,
	/* 32-bit zero extended. */
	REG_32BIT_ZERO_EX,
	/* 32-bit no sign/zero extension needed. */
	REG_32BIT_POS
};

/*
 * high bit of offsets indicates if long branch conversion done at
 * this insn.
 */
#define OFFSETS_B_CONV	BIT(31)

/**
 * struct jit_ctx - JIT context
 * @skf:		The sk_filter
 * @stack_size:		eBPF stack size
 * @tmp_offset:		eBPF $sp offset to 8-byte temporary memory
 * @idx:		Instruction index
 * @flags:		JIT flags
 * @offsets:		Instruction offsets
 * @target:		Memory location for the compiled filter
 * @reg_val_types	Packed enum reg_val_type for each register.
 */
struct jit_ctx {
	const struct bpf_prog *skf;
	int stack_size;
	int tmp_offset;
	u32 idx;
	u32 flags;
	u32 *offsets;
	u32 *target;
	u64 *reg_val_types;
	unsigned int long_b_conversion:1;
	unsigned int gen_b_offsets:1;
116
	unsigned int use_bbit_insns:1;
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
};

static void set_reg_val_type(u64 *rvt, int reg, enum reg_val_type type)
{
	*rvt &= ~(7ull << (reg * 3));
	*rvt |= ((u64)type << (reg * 3));
}

static enum reg_val_type get_reg_val_type(const struct jit_ctx *ctx,
					  int index, int reg)
{
	return (ctx->reg_val_types[index] >> (reg * 3)) & 7;
}

/* Simply emit the instruction if the JIT memory space has been allocated */
#define emit_instr(ctx, func, ...)			\
do {							\
	if ((ctx)->target != NULL) {			\
		u32 *p = &(ctx)->target[ctx->idx];	\
		uasm_i_##func(&p, ##__VA_ARGS__);	\
	}						\
	(ctx)->idx++;					\
} while (0)

static unsigned int j_target(struct jit_ctx *ctx, int target_idx)
{
	unsigned long target_va, base_va;
	unsigned int r;

	if (!ctx->target)
		return 0;

	base_va = (unsigned long)ctx->target;
	target_va = base_va + (ctx->offsets[target_idx] & ~OFFSETS_B_CONV);

	if ((base_va & ~0x0ffffffful) != (target_va & ~0x0ffffffful))
		return (unsigned int)-1;
	r = target_va & 0x0ffffffful;
	return r;
}

/* Compute the immediate value for PC-relative branches. */
static u32 b_imm(unsigned int tgt, struct jit_ctx *ctx)
{
	if (!ctx->gen_b_offsets)
		return 0;

	/*
	 * We want a pc-relative branch.  tgt is the instruction offset
	 * we want to jump to.

	 * Branch on MIPS:
	 * I: target_offset <- sign_extend(offset)
	 * I+1: PC += target_offset (delay slot)
	 *
	 * ctx->idx currently points to the branch instruction
	 * but the offset is added to the delay slot so we need
	 * to subtract 4.
	 */
	return (ctx->offsets[tgt] & ~OFFSETS_B_CONV) -
		(ctx->idx * 4) - 4;
}

enum which_ebpf_reg {
	src_reg,
	src_reg_no_fp,
	dst_reg,
	dst_reg_fp_ok
};

/*
 * For eBPF, the register mapping naturally falls out of the
 * requirements of eBPF and the MIPS n64 ABI.  We don't maintain a
 * separate frame pointer, so BPF_REG_10 relative accesses are
 * adjusted to be $sp relative.
 */
int ebpf_to_mips_reg(struct jit_ctx *ctx, const struct bpf_insn *insn,
		     enum which_ebpf_reg w)
{
	int ebpf_reg = (w == src_reg || w == src_reg_no_fp) ?
		insn->src_reg : insn->dst_reg;

	switch (ebpf_reg) {
	case BPF_REG_0:
		return MIPS_R_V0;
	case BPF_REG_1:
		return MIPS_R_A0;
	case BPF_REG_2:
		return MIPS_R_A1;
	case BPF_REG_3:
		return MIPS_R_A2;
	case BPF_REG_4:
		return MIPS_R_A3;
	case BPF_REG_5:
		return MIPS_R_A4;
	case BPF_REG_6:
		ctx->flags |= EBPF_SAVE_S0;
		return MIPS_R_S0;
	case BPF_REG_7:
		ctx->flags |= EBPF_SAVE_S1;
		return MIPS_R_S1;
	case BPF_REG_8:
		ctx->flags |= EBPF_SAVE_S2;
		return MIPS_R_S2;
	case BPF_REG_9:
		ctx->flags |= EBPF_SAVE_S3;
		return MIPS_R_S3;
	case BPF_REG_10:
		if (w == dst_reg || w == src_reg_no_fp)
			goto bad_reg;
		ctx->flags |= EBPF_SEEN_FP;
		/*
		 * Needs special handling, return something that
		 * cannot be clobbered just in case.
		 */
		return MIPS_R_ZERO;
	case BPF_REG_AX:
		return MIPS_R_T4;
	default:
bad_reg:
		WARN(1, "Illegal bpf reg: %d\n", ebpf_reg);
		return -EINVAL;
	}
}
/*
 * eBPF stack frame will be something like:
 *
 *  Entry $sp ------>   +--------------------------------+
 *                      |   $ra  (optional)              |
 *                      +--------------------------------+
 *                      |   $s0  (optional)              |
 *                      +--------------------------------+
 *                      |   $s1  (optional)              |
 *                      +--------------------------------+
 *                      |   $s2  (optional)              |
 *                      +--------------------------------+
 *                      |   $s3  (optional)              |
 *                      +--------------------------------+
 *                      |   $s4  (optional)              |
 *                      +--------------------------------+
 *                      |   tmp-storage  (if $ra saved)  |
 * $sp + tmp_offset --> +--------------------------------+ <--BPF_REG_10
 *                      |   BPF_REG_10 relative storage  |
 *                      |    MAX_BPF_STACK (optional)    |
 *                      |      .                         |
 *                      |      .                         |
 *                      |      .                         |
 *     $sp -------->    +--------------------------------+
 *
 * If BPF_REG_10 is never referenced, then the MAX_BPF_STACK sized
 * area is not allocated.
 */
static int gen_int_prologue(struct jit_ctx *ctx)
{
	int stack_adjust = 0;
	int store_offset;
	int locals_size;

	if (ctx->flags & EBPF_SAVE_RA)
		/*
		 * If RA we are doing a function call and may need
		 * extra 8-byte tmp area.
		 */
		stack_adjust += 16;
	if (ctx->flags & EBPF_SAVE_S0)
		stack_adjust += 8;
	if (ctx->flags & EBPF_SAVE_S1)
		stack_adjust += 8;
	if (ctx->flags & EBPF_SAVE_S2)
		stack_adjust += 8;
	if (ctx->flags & EBPF_SAVE_S3)
		stack_adjust += 8;
	if (ctx->flags & EBPF_SAVE_S4)
		stack_adjust += 8;

	BUILD_BUG_ON(MAX_BPF_STACK & 7);
	locals_size = (ctx->flags & EBPF_SEEN_FP) ? MAX_BPF_STACK : 0;

	stack_adjust += locals_size;
	ctx->tmp_offset = locals_size;

	ctx->stack_size = stack_adjust;

	/*
	 * First instruction initializes the tail call count (TCC).
	 * On tail call we skip this instruction, and the TCC is
	 * passed in $v1 from the caller.
	 */
	emit_instr(ctx, daddiu, MIPS_R_V1, MIPS_R_ZERO, MAX_TAIL_CALL_CNT);
	if (stack_adjust)
		emit_instr(ctx, daddiu, MIPS_R_SP, MIPS_R_SP, -stack_adjust);
	else
		return 0;

	store_offset = stack_adjust - 8;

	if (ctx->flags & EBPF_SAVE_RA) {
		emit_instr(ctx, sd, MIPS_R_RA, store_offset, MIPS_R_SP);
		store_offset -= 8;
	}
	if (ctx->flags & EBPF_SAVE_S0) {
		emit_instr(ctx, sd, MIPS_R_S0, store_offset, MIPS_R_SP);
		store_offset -= 8;
	}
	if (ctx->flags & EBPF_SAVE_S1) {
		emit_instr(ctx, sd, MIPS_R_S1, store_offset, MIPS_R_SP);
		store_offset -= 8;
	}
	if (ctx->flags & EBPF_SAVE_S2) {
		emit_instr(ctx, sd, MIPS_R_S2, store_offset, MIPS_R_SP);
		store_offset -= 8;
	}
	if (ctx->flags & EBPF_SAVE_S3) {
		emit_instr(ctx, sd, MIPS_R_S3, store_offset, MIPS_R_SP);
		store_offset -= 8;
	}
	if (ctx->flags & EBPF_SAVE_S4) {
		emit_instr(ctx, sd, MIPS_R_S4, store_offset, MIPS_R_SP);
		store_offset -= 8;
	}

	if ((ctx->flags & EBPF_SEEN_TC) && !(ctx->flags & EBPF_TCC_IN_V1))
		emit_instr(ctx, daddu, MIPS_R_S4, MIPS_R_V1, MIPS_R_ZERO);

	return 0;
}

static int build_int_epilogue(struct jit_ctx *ctx, int dest_reg)
{
	const struct bpf_prog *prog = ctx->skf;
	int stack_adjust = ctx->stack_size;
	int store_offset = stack_adjust - 8;
	int r0 = MIPS_R_V0;

	if (dest_reg == MIPS_R_RA &&
	    get_reg_val_type(ctx, prog->len, BPF_REG_0) == REG_32BIT_ZERO_EX)
		/* Don't let zero extended value escape. */
		emit_instr(ctx, sll, r0, r0, 0);

	if (ctx->flags & EBPF_SAVE_RA) {
		emit_instr(ctx, ld, MIPS_R_RA, store_offset, MIPS_R_SP);
		store_offset -= 8;
	}
	if (ctx->flags & EBPF_SAVE_S0) {
		emit_instr(ctx, ld, MIPS_R_S0, store_offset, MIPS_R_SP);
		store_offset -= 8;
	}
	if (ctx->flags & EBPF_SAVE_S1) {
		emit_instr(ctx, ld, MIPS_R_S1, store_offset, MIPS_R_SP);
		store_offset -= 8;
	}
	if (ctx->flags & EBPF_SAVE_S2) {
		emit_instr(ctx, ld, MIPS_R_S2, store_offset, MIPS_R_SP);
		store_offset -= 8;
	}
	if (ctx->flags & EBPF_SAVE_S3) {
		emit_instr(ctx, ld, MIPS_R_S3, store_offset, MIPS_R_SP);
		store_offset -= 8;
	}
	if (ctx->flags & EBPF_SAVE_S4) {
		emit_instr(ctx, ld, MIPS_R_S4, store_offset, MIPS_R_SP);
		store_offset -= 8;
	}
	emit_instr(ctx, jr, dest_reg);

	if (stack_adjust)
		emit_instr(ctx, daddiu, MIPS_R_SP, MIPS_R_SP, stack_adjust);
	else
		emit_instr(ctx, nop);

	return 0;
}

static void gen_imm_to_reg(const struct bpf_insn *insn, int reg,
			   struct jit_ctx *ctx)
{
	if (insn->imm >= S16_MIN && insn->imm <= S16_MAX) {
		emit_instr(ctx, addiu, reg, MIPS_R_ZERO, insn->imm);
	} else {
		int lower = (s16)(insn->imm & 0xffff);
		int upper = insn->imm - lower;

		emit_instr(ctx, lui, reg, upper >> 16);
		emit_instr(ctx, addiu, reg, reg, lower);
	}

}

static int gen_imm_insn(const struct bpf_insn *insn, struct jit_ctx *ctx,
			int idx)
{
	int upper_bound, lower_bound;
	int dst = ebpf_to_mips_reg(ctx, insn, dst_reg);

	if (dst < 0)
		return dst;

	switch (BPF_OP(insn->code)) {
	case BPF_MOV:
	case BPF_ADD:
		upper_bound = S16_MAX;
		lower_bound = S16_MIN;
		break;
	case BPF_SUB:
		upper_bound = -(int)S16_MIN;
		lower_bound = -(int)S16_MAX;
		break;
	case BPF_AND:
	case BPF_OR:
	case BPF_XOR:
		upper_bound = 0xffff;
		lower_bound = 0;
		break;
	case BPF_RSH:
	case BPF_LSH:
	case BPF_ARSH:
		/* Shift amounts are truncated, no need for bounds */
		upper_bound = S32_MAX;
		lower_bound = S32_MIN;
		break;
	default:
		return -EINVAL;
	}

	/*
	 * Immediate move clobbers the register, so no sign/zero
	 * extension needed.
	 */
	if (BPF_CLASS(insn->code) == BPF_ALU64 &&
	    BPF_OP(insn->code) != BPF_MOV &&
	    get_reg_val_type(ctx, idx, insn->dst_reg) == REG_32BIT)
		emit_instr(ctx, dinsu, dst, MIPS_R_ZERO, 32, 32);
	/* BPF_ALU | BPF_LSH doesn't need separate sign extension */
	if (BPF_CLASS(insn->code) == BPF_ALU &&
	    BPF_OP(insn->code) != BPF_LSH &&
	    BPF_OP(insn->code) != BPF_MOV &&
	    get_reg_val_type(ctx, idx, insn->dst_reg) != REG_32BIT)
		emit_instr(ctx, sll, dst, dst, 0);

	if (insn->imm >= lower_bound && insn->imm <= upper_bound) {
		/* single insn immediate case */
		switch (BPF_OP(insn->code) | BPF_CLASS(insn->code)) {
		case BPF_ALU64 | BPF_MOV:
			emit_instr(ctx, daddiu, dst, MIPS_R_ZERO, insn->imm);
			break;
		case BPF_ALU64 | BPF_AND:
		case BPF_ALU | BPF_AND:
			emit_instr(ctx, andi, dst, dst, insn->imm);
			break;
		case BPF_ALU64 | BPF_OR:
		case BPF_ALU | BPF_OR:
			emit_instr(ctx, ori, dst, dst, insn->imm);
			break;
		case BPF_ALU64 | BPF_XOR:
		case BPF_ALU | BPF_XOR:
			emit_instr(ctx, xori, dst, dst, insn->imm);
			break;
		case BPF_ALU64 | BPF_ADD:
			emit_instr(ctx, daddiu, dst, dst, insn->imm);
			break;
		case BPF_ALU64 | BPF_SUB:
			emit_instr(ctx, daddiu, dst, dst, -insn->imm);
			break;
		case BPF_ALU64 | BPF_RSH:
			emit_instr(ctx, dsrl_safe, dst, dst, insn->imm & 0x3f);
			break;
		case BPF_ALU | BPF_RSH:
			emit_instr(ctx, srl, dst, dst, insn->imm & 0x1f);
			break;
		case BPF_ALU64 | BPF_LSH:
			emit_instr(ctx, dsll_safe, dst, dst, insn->imm & 0x3f);
			break;
		case BPF_ALU | BPF_LSH:
			emit_instr(ctx, sll, dst, dst, insn->imm & 0x1f);
			break;
		case BPF_ALU64 | BPF_ARSH:
			emit_instr(ctx, dsra_safe, dst, dst, insn->imm & 0x3f);
			break;
		case BPF_ALU | BPF_ARSH:
			emit_instr(ctx, sra, dst, dst, insn->imm & 0x1f);
			break;
		case BPF_ALU | BPF_MOV:
			emit_instr(ctx, addiu, dst, MIPS_R_ZERO, insn->imm);
			break;
		case BPF_ALU | BPF_ADD:
			emit_instr(ctx, addiu, dst, dst, insn->imm);
			break;
		case BPF_ALU | BPF_SUB:
			emit_instr(ctx, addiu, dst, dst, -insn->imm);
			break;
		default:
			return -EINVAL;
		}
	} else {
		/* multi insn immediate case */
		if (BPF_OP(insn->code) == BPF_MOV) {
			gen_imm_to_reg(insn, dst, ctx);
		} else {
			gen_imm_to_reg(insn, MIPS_R_AT, ctx);
			switch (BPF_OP(insn->code) | BPF_CLASS(insn->code)) {
			case BPF_ALU64 | BPF_AND:
			case BPF_ALU | BPF_AND:
				emit_instr(ctx, and, dst, dst, MIPS_R_AT);
				break;
			case BPF_ALU64 | BPF_OR:
			case BPF_ALU | BPF_OR:
				emit_instr(ctx, or, dst, dst, MIPS_R_AT);
				break;
			case BPF_ALU64 | BPF_XOR:
			case BPF_ALU | BPF_XOR:
				emit_instr(ctx, xor, dst, dst, MIPS_R_AT);
				break;
			case BPF_ALU64 | BPF_ADD:
				emit_instr(ctx, daddu, dst, dst, MIPS_R_AT);
				break;
			case BPF_ALU64 | BPF_SUB:
				emit_instr(ctx, dsubu, dst, dst, MIPS_R_AT);
				break;
			case BPF_ALU | BPF_ADD:
				emit_instr(ctx, addu, dst, dst, MIPS_R_AT);
				break;
			case BPF_ALU | BPF_SUB:
				emit_instr(ctx, subu, dst, dst, MIPS_R_AT);
				break;
			default:
				return -EINVAL;
			}
		}
	}

	return 0;
}

static void * __must_check
ool_skb_header_pointer(const struct sk_buff *skb, int offset,
		       int len, void *buffer)
{
	return skb_header_pointer(skb, offset, len, buffer);
}

static int size_to_len(const struct bpf_insn *insn)
{
	switch (BPF_SIZE(insn->code)) {
	case BPF_B:
		return 1;
	case BPF_H:
		return 2;
	case BPF_W:
		return 4;
	case BPF_DW:
		return 8;
	}
	return 0;
}

static void emit_const_to_reg(struct jit_ctx *ctx, int dst, u64 value)
{
	if (value >= 0xffffffffffff8000ull || value < 0x8000ull) {
		emit_instr(ctx, daddiu, dst, MIPS_R_ZERO, (int)value);
	} else if (value >= 0xffffffff80000000ull ||
		   (value < 0x80000000 && value > 0xffff)) {
		emit_instr(ctx, lui, dst, (s32)(s16)(value >> 16));
		emit_instr(ctx, ori, dst, dst, (unsigned int)(value & 0xffff));
	} else {
		int i;
		bool seen_part = false;
		int needed_shift = 0;

		for (i = 0; i < 4; i++) {
			u64 part = (value >> (16 * (3 - i))) & 0xffff;

			if (seen_part && needed_shift > 0 && (part || i == 3)) {
				emit_instr(ctx, dsll_safe, dst, dst, needed_shift);
				needed_shift = 0;
			}
			if (part) {
				if (i == 0 || (!seen_part && i < 3 && part < 0x8000)) {
					emit_instr(ctx, lui, dst, (s32)(s16)part);
					needed_shift = -16;
				} else {
					emit_instr(ctx, ori, dst,
						   seen_part ? dst : MIPS_R_ZERO,
						   (unsigned int)part);
				}
				seen_part = true;
			}
			if (seen_part)
				needed_shift += 16;
		}
	}
}

static int emit_bpf_tail_call(struct jit_ctx *ctx, int this_idx)
{
	int off, b_off;

	ctx->flags |= EBPF_SEEN_TC;
	/*
	 * if (index >= array->map.max_entries)
	 *     goto out;
	 */
	off = offsetof(struct bpf_array, map.max_entries);
	emit_instr(ctx, lwu, MIPS_R_T5, off, MIPS_R_A1);
	emit_instr(ctx, sltu, MIPS_R_AT, MIPS_R_T5, MIPS_R_A2);
	b_off = b_imm(this_idx + 1, ctx);
	emit_instr(ctx, bne, MIPS_R_AT, MIPS_R_ZERO, b_off);
	/*
	 * if (--TCC < 0)
	 *     goto out;
	 */
	/* Delay slot */
	emit_instr(ctx, daddiu, MIPS_R_T5,
		   (ctx->flags & EBPF_TCC_IN_V1) ? MIPS_R_V1 : MIPS_R_S4, -1);
	b_off = b_imm(this_idx + 1, ctx);
	emit_instr(ctx, bltz, MIPS_R_T5, b_off);
	/*
	 * prog = array->ptrs[index];
	 * if (prog == NULL)
	 *     goto out;
	 */
	/* Delay slot */
	emit_instr(ctx, dsll, MIPS_R_T8, MIPS_R_A2, 3);
	emit_instr(ctx, daddu, MIPS_R_T8, MIPS_R_T8, MIPS_R_A1);
	off = offsetof(struct bpf_array, ptrs);
	emit_instr(ctx, ld, MIPS_R_AT, off, MIPS_R_T8);
	b_off = b_imm(this_idx + 1, ctx);
	emit_instr(ctx, beq, MIPS_R_AT, MIPS_R_ZERO, b_off);
	/* Delay slot */
	emit_instr(ctx, nop);

	/* goto *(prog->bpf_func + 4); */
	off = offsetof(struct bpf_prog, bpf_func);
	emit_instr(ctx, ld, MIPS_R_T9, off, MIPS_R_AT);
	/* All systems are go... propagate TCC */
	emit_instr(ctx, daddu, MIPS_R_V1, MIPS_R_T5, MIPS_R_ZERO);
	/* Skip first instruction (TCC initialization) */
	emit_instr(ctx, daddiu, MIPS_R_T9, MIPS_R_T9, 4);
	return build_int_epilogue(ctx, MIPS_R_T9);
}

static bool is_bad_offset(int b_off)
{
	return b_off > 0x1ffff || b_off < -0x20000;
}

/* Returns the number of insn slots consumed. */
static int build_one_insn(const struct bpf_insn *insn, struct jit_ctx *ctx,
			  int this_idx, int exit_idx)
{
	int src, dst, r, td, ts, mem_off, b_off;
	bool need_swap, did_move, cmp_eq;
668
	unsigned int target = 0;
669 670
	u64 t64;
	s64 t64s;
671
	int bpf_op = BPF_OP(insn->code);
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743

	switch (insn->code) {
	case BPF_ALU64 | BPF_ADD | BPF_K: /* ALU64_IMM */
	case BPF_ALU64 | BPF_SUB | BPF_K: /* ALU64_IMM */
	case BPF_ALU64 | BPF_OR | BPF_K: /* ALU64_IMM */
	case BPF_ALU64 | BPF_AND | BPF_K: /* ALU64_IMM */
	case BPF_ALU64 | BPF_LSH | BPF_K: /* ALU64_IMM */
	case BPF_ALU64 | BPF_RSH | BPF_K: /* ALU64_IMM */
	case BPF_ALU64 | BPF_XOR | BPF_K: /* ALU64_IMM */
	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ALU64_IMM */
	case BPF_ALU64 | BPF_MOV | BPF_K: /* ALU64_IMM */
	case BPF_ALU | BPF_MOV | BPF_K: /* ALU32_IMM */
	case BPF_ALU | BPF_ADD | BPF_K: /* ALU32_IMM */
	case BPF_ALU | BPF_SUB | BPF_K: /* ALU32_IMM */
	case BPF_ALU | BPF_OR | BPF_K: /* ALU64_IMM */
	case BPF_ALU | BPF_AND | BPF_K: /* ALU64_IMM */
	case BPF_ALU | BPF_LSH | BPF_K: /* ALU64_IMM */
	case BPF_ALU | BPF_RSH | BPF_K: /* ALU64_IMM */
	case BPF_ALU | BPF_XOR | BPF_K: /* ALU64_IMM */
	case BPF_ALU | BPF_ARSH | BPF_K: /* ALU64_IMM */
		r = gen_imm_insn(insn, ctx, this_idx);
		if (r < 0)
			return r;
		break;
	case BPF_ALU64 | BPF_MUL | BPF_K: /* ALU64_IMM */
		dst = ebpf_to_mips_reg(ctx, insn, dst_reg);
		if (dst < 0)
			return dst;
		if (get_reg_val_type(ctx, this_idx, insn->dst_reg) == REG_32BIT)
			emit_instr(ctx, dinsu, dst, MIPS_R_ZERO, 32, 32);
		if (insn->imm == 1) /* Mult by 1 is a nop */
			break;
		gen_imm_to_reg(insn, MIPS_R_AT, ctx);
		emit_instr(ctx, dmultu, MIPS_R_AT, dst);
		emit_instr(ctx, mflo, dst);
		break;
	case BPF_ALU64 | BPF_NEG | BPF_K: /* ALU64_IMM */
		dst = ebpf_to_mips_reg(ctx, insn, dst_reg);
		if (dst < 0)
			return dst;
		if (get_reg_val_type(ctx, this_idx, insn->dst_reg) == REG_32BIT)
			emit_instr(ctx, dinsu, dst, MIPS_R_ZERO, 32, 32);
		emit_instr(ctx, dsubu, dst, MIPS_R_ZERO, dst);
		break;
	case BPF_ALU | BPF_MUL | BPF_K: /* ALU_IMM */
		dst = ebpf_to_mips_reg(ctx, insn, dst_reg);
		if (dst < 0)
			return dst;
		td = get_reg_val_type(ctx, this_idx, insn->dst_reg);
		if (td == REG_64BIT || td == REG_32BIT_ZERO_EX) {
			/* sign extend */
			emit_instr(ctx, sll, dst, dst, 0);
		}
		if (insn->imm == 1) /* Mult by 1 is a nop */
			break;
		gen_imm_to_reg(insn, MIPS_R_AT, ctx);
		emit_instr(ctx, multu, dst, MIPS_R_AT);
		emit_instr(ctx, mflo, dst);
		break;
	case BPF_ALU | BPF_NEG | BPF_K: /* ALU_IMM */
		dst = ebpf_to_mips_reg(ctx, insn, dst_reg);
		if (dst < 0)
			return dst;
		td = get_reg_val_type(ctx, this_idx, insn->dst_reg);
		if (td == REG_64BIT || td == REG_32BIT_ZERO_EX) {
			/* sign extend */
			emit_instr(ctx, sll, dst, dst, 0);
		}
		emit_instr(ctx, subu, dst, MIPS_R_ZERO, dst);
		break;
	case BPF_ALU | BPF_DIV | BPF_K: /* ALU_IMM */
	case BPF_ALU | BPF_MOD | BPF_K: /* ALU_IMM */
744 745
		if (insn->imm == 0)
			return -EINVAL;
746 747 748 749 750 751 752 753 754
		dst = ebpf_to_mips_reg(ctx, insn, dst_reg);
		if (dst < 0)
			return dst;
		td = get_reg_val_type(ctx, this_idx, insn->dst_reg);
		if (td == REG_64BIT || td == REG_32BIT_ZERO_EX)
			/* sign extend */
			emit_instr(ctx, sll, dst, dst, 0);
		if (insn->imm == 1) {
			/* div by 1 is a nop, mod by 1 is zero */
755
			if (bpf_op == BPF_MOD)
756 757 758 759 760
				emit_instr(ctx, addu, dst, MIPS_R_ZERO, MIPS_R_ZERO);
			break;
		}
		gen_imm_to_reg(insn, MIPS_R_AT, ctx);
		emit_instr(ctx, divu, dst, MIPS_R_AT);
761
		if (bpf_op == BPF_DIV)
762 763 764 765 766 767
			emit_instr(ctx, mflo, dst);
		else
			emit_instr(ctx, mfhi, dst);
		break;
	case BPF_ALU64 | BPF_DIV | BPF_K: /* ALU_IMM */
	case BPF_ALU64 | BPF_MOD | BPF_K: /* ALU_IMM */
768 769
		if (insn->imm == 0)
			return -EINVAL;
770 771 772 773 774 775 776
		dst = ebpf_to_mips_reg(ctx, insn, dst_reg);
		if (dst < 0)
			return dst;
		if (get_reg_val_type(ctx, this_idx, insn->dst_reg) == REG_32BIT)
			emit_instr(ctx, dinsu, dst, MIPS_R_ZERO, 32, 32);
		if (insn->imm == 1) {
			/* div by 1 is a nop, mod by 1 is zero */
777
			if (bpf_op == BPF_MOD)
778 779 780 781 782
				emit_instr(ctx, addu, dst, MIPS_R_ZERO, MIPS_R_ZERO);
			break;
		}
		gen_imm_to_reg(insn, MIPS_R_AT, ctx);
		emit_instr(ctx, ddivu, dst, MIPS_R_AT);
783
		if (bpf_op == BPF_DIV)
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
			emit_instr(ctx, mflo, dst);
		else
			emit_instr(ctx, mfhi, dst);
		break;
	case BPF_ALU64 | BPF_MOV | BPF_X: /* ALU64_REG */
	case BPF_ALU64 | BPF_ADD | BPF_X: /* ALU64_REG */
	case BPF_ALU64 | BPF_SUB | BPF_X: /* ALU64_REG */
	case BPF_ALU64 | BPF_XOR | BPF_X: /* ALU64_REG */
	case BPF_ALU64 | BPF_OR | BPF_X: /* ALU64_REG */
	case BPF_ALU64 | BPF_AND | BPF_X: /* ALU64_REG */
	case BPF_ALU64 | BPF_MUL | BPF_X: /* ALU64_REG */
	case BPF_ALU64 | BPF_DIV | BPF_X: /* ALU64_REG */
	case BPF_ALU64 | BPF_MOD | BPF_X: /* ALU64_REG */
	case BPF_ALU64 | BPF_LSH | BPF_X: /* ALU64_REG */
	case BPF_ALU64 | BPF_RSH | BPF_X: /* ALU64_REG */
	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ALU64_REG */
		src = ebpf_to_mips_reg(ctx, insn, src_reg);
		dst = ebpf_to_mips_reg(ctx, insn, dst_reg);
		if (src < 0 || dst < 0)
			return -EINVAL;
		if (get_reg_val_type(ctx, this_idx, insn->dst_reg) == REG_32BIT)
			emit_instr(ctx, dinsu, dst, MIPS_R_ZERO, 32, 32);
		did_move = false;
		if (insn->src_reg == BPF_REG_10) {
808
			if (bpf_op == BPF_MOV) {
809 810 811 812 813 814 815 816 817
				emit_instr(ctx, daddiu, dst, MIPS_R_SP, MAX_BPF_STACK);
				did_move = true;
			} else {
				emit_instr(ctx, daddiu, MIPS_R_AT, MIPS_R_SP, MAX_BPF_STACK);
				src = MIPS_R_AT;
			}
		} else if (get_reg_val_type(ctx, this_idx, insn->src_reg) == REG_32BIT) {
			int tmp_reg = MIPS_R_AT;

818
			if (bpf_op == BPF_MOV) {
819 820 821 822 823 824 825
				tmp_reg = dst;
				did_move = true;
			}
			emit_instr(ctx, daddu, tmp_reg, src, MIPS_R_ZERO);
			emit_instr(ctx, dinsu, tmp_reg, MIPS_R_ZERO, 32, 32);
			src = MIPS_R_AT;
		}
826
		switch (bpf_op) {
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
		case BPF_MOV:
			if (!did_move)
				emit_instr(ctx, daddu, dst, src, MIPS_R_ZERO);
			break;
		case BPF_ADD:
			emit_instr(ctx, daddu, dst, dst, src);
			break;
		case BPF_SUB:
			emit_instr(ctx, dsubu, dst, dst, src);
			break;
		case BPF_XOR:
			emit_instr(ctx, xor, dst, dst, src);
			break;
		case BPF_OR:
			emit_instr(ctx, or, dst, dst, src);
			break;
		case BPF_AND:
			emit_instr(ctx, and, dst, dst, src);
			break;
		case BPF_MUL:
			emit_instr(ctx, dmultu, dst, src);
			emit_instr(ctx, mflo, dst);
			break;
		case BPF_DIV:
		case BPF_MOD:
			emit_instr(ctx, ddivu, dst, src);
853
			if (bpf_op == BPF_DIV)
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
				emit_instr(ctx, mflo, dst);
			else
				emit_instr(ctx, mfhi, dst);
			break;
		case BPF_LSH:
			emit_instr(ctx, dsllv, dst, dst, src);
			break;
		case BPF_RSH:
			emit_instr(ctx, dsrlv, dst, dst, src);
			break;
		case BPF_ARSH:
			emit_instr(ctx, dsrav, dst, dst, src);
			break;
		default:
			pr_err("ALU64_REG NOT HANDLED\n");
			return -EINVAL;
		}
		break;
	case BPF_ALU | BPF_MOV | BPF_X: /* ALU_REG */
	case BPF_ALU | BPF_ADD | BPF_X: /* ALU_REG */
	case BPF_ALU | BPF_SUB | BPF_X: /* ALU_REG */
	case BPF_ALU | BPF_XOR | BPF_X: /* ALU_REG */
	case BPF_ALU | BPF_OR | BPF_X: /* ALU_REG */
	case BPF_ALU | BPF_AND | BPF_X: /* ALU_REG */
	case BPF_ALU | BPF_MUL | BPF_X: /* ALU_REG */
	case BPF_ALU | BPF_DIV | BPF_X: /* ALU_REG */
	case BPF_ALU | BPF_MOD | BPF_X: /* ALU_REG */
	case BPF_ALU | BPF_LSH | BPF_X: /* ALU_REG */
	case BPF_ALU | BPF_RSH | BPF_X: /* ALU_REG */
		src = ebpf_to_mips_reg(ctx, insn, src_reg_no_fp);
		dst = ebpf_to_mips_reg(ctx, insn, dst_reg);
		if (src < 0 || dst < 0)
			return -EINVAL;
		td = get_reg_val_type(ctx, this_idx, insn->dst_reg);
		if (td == REG_64BIT || td == REG_32BIT_ZERO_EX) {
			/* sign extend */
			emit_instr(ctx, sll, dst, dst, 0);
		}
		did_move = false;
		ts = get_reg_val_type(ctx, this_idx, insn->src_reg);
		if (ts == REG_64BIT || ts == REG_32BIT_ZERO_EX) {
			int tmp_reg = MIPS_R_AT;

897
			if (bpf_op == BPF_MOV) {
898 899 900 901 902 903 904
				tmp_reg = dst;
				did_move = true;
			}
			/* sign extend */
			emit_instr(ctx, sll, tmp_reg, src, 0);
			src = MIPS_R_AT;
		}
905
		switch (bpf_op) {
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
		case BPF_MOV:
			if (!did_move)
				emit_instr(ctx, addu, dst, src, MIPS_R_ZERO);
			break;
		case BPF_ADD:
			emit_instr(ctx, addu, dst, dst, src);
			break;
		case BPF_SUB:
			emit_instr(ctx, subu, dst, dst, src);
			break;
		case BPF_XOR:
			emit_instr(ctx, xor, dst, dst, src);
			break;
		case BPF_OR:
			emit_instr(ctx, or, dst, dst, src);
			break;
		case BPF_AND:
			emit_instr(ctx, and, dst, dst, src);
			break;
		case BPF_MUL:
			emit_instr(ctx, mul, dst, dst, src);
			break;
		case BPF_DIV:
		case BPF_MOD:
			emit_instr(ctx, divu, dst, src);
931
			if (bpf_op == BPF_DIV)
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
				emit_instr(ctx, mflo, dst);
			else
				emit_instr(ctx, mfhi, dst);
			break;
		case BPF_LSH:
			emit_instr(ctx, sllv, dst, dst, src);
			break;
		case BPF_RSH:
			emit_instr(ctx, srlv, dst, dst, src);
			break;
		default:
			pr_err("ALU_REG NOT HANDLED\n");
			return -EINVAL;
		}
		break;
	case BPF_JMP | BPF_EXIT:
		if (this_idx + 1 < exit_idx) {
			b_off = b_imm(exit_idx, ctx);
			if (is_bad_offset(b_off))
				return -E2BIG;
			emit_instr(ctx, beq, MIPS_R_ZERO, MIPS_R_ZERO, b_off);
			emit_instr(ctx, nop);
		}
		break;
	case BPF_JMP | BPF_JEQ | BPF_K: /* JMP_IMM */
	case BPF_JMP | BPF_JNE | BPF_K: /* JMP_IMM */
958
		cmp_eq = (bpf_op == BPF_JEQ);
959 960 961 962 963 964 965 966 967 968 969 970
		dst = ebpf_to_mips_reg(ctx, insn, dst_reg_fp_ok);
		if (dst < 0)
			return dst;
		if (insn->imm == 0) {
			src = MIPS_R_ZERO;
		} else {
			gen_imm_to_reg(insn, MIPS_R_AT, ctx);
			src = MIPS_R_AT;
		}
		goto jeq_common;
	case BPF_JMP | BPF_JEQ | BPF_X: /* JMP_REG */
	case BPF_JMP | BPF_JNE | BPF_X:
971 972
	case BPF_JMP | BPF_JSLT | BPF_X:
	case BPF_JMP | BPF_JSLE | BPF_X:
973 974
	case BPF_JMP | BPF_JSGT | BPF_X:
	case BPF_JMP | BPF_JSGE | BPF_X:
975 976
	case BPF_JMP | BPF_JLT | BPF_X:
	case BPF_JMP | BPF_JLE | BPF_X:
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
	case BPF_JMP | BPF_JGT | BPF_X:
	case BPF_JMP | BPF_JGE | BPF_X:
	case BPF_JMP | BPF_JSET | BPF_X:
		src = ebpf_to_mips_reg(ctx, insn, src_reg_no_fp);
		dst = ebpf_to_mips_reg(ctx, insn, dst_reg);
		if (src < 0 || dst < 0)
			return -EINVAL;
		td = get_reg_val_type(ctx, this_idx, insn->dst_reg);
		ts = get_reg_val_type(ctx, this_idx, insn->src_reg);
		if (td == REG_32BIT && ts != REG_32BIT) {
			emit_instr(ctx, sll, MIPS_R_AT, src, 0);
			src = MIPS_R_AT;
		} else if (ts == REG_32BIT && td != REG_32BIT) {
			emit_instr(ctx, sll, MIPS_R_AT, dst, 0);
			dst = MIPS_R_AT;
		}
993
		if (bpf_op == BPF_JSET) {
994 995 996 997
			emit_instr(ctx, and, MIPS_R_AT, dst, src);
			cmp_eq = false;
			dst = MIPS_R_AT;
			src = MIPS_R_ZERO;
998
		} else if (bpf_op == BPF_JSGT || bpf_op == BPF_JSLE) {
999 1000 1001 1002 1003
			emit_instr(ctx, dsubu, MIPS_R_AT, dst, src);
			if ((insn + 1)->code == (BPF_JMP | BPF_EXIT) && insn->off == 1) {
				b_off = b_imm(exit_idx, ctx);
				if (is_bad_offset(b_off))
					return -E2BIG;
1004
				if (bpf_op == BPF_JSGT)
1005 1006 1007
					emit_instr(ctx, blez, MIPS_R_AT, b_off);
				else
					emit_instr(ctx, bgtz, MIPS_R_AT, b_off);
1008 1009 1010 1011 1012 1013
				emit_instr(ctx, nop);
				return 2; /* We consumed the exit. */
			}
			b_off = b_imm(this_idx + insn->off + 1, ctx);
			if (is_bad_offset(b_off))
				return -E2BIG;
1014
			if (bpf_op == BPF_JSGT)
1015 1016 1017
				emit_instr(ctx, bgtz, MIPS_R_AT, b_off);
			else
				emit_instr(ctx, blez, MIPS_R_AT, b_off);
1018 1019
			emit_instr(ctx, nop);
			break;
1020
		} else if (bpf_op == BPF_JSGE || bpf_op == BPF_JSLT) {
1021
			emit_instr(ctx, slt, MIPS_R_AT, dst, src);
1022
			cmp_eq = bpf_op == BPF_JSGE;
1023 1024
			dst = MIPS_R_AT;
			src = MIPS_R_ZERO;
1025
		} else if (bpf_op == BPF_JGT || bpf_op == BPF_JLE) {
1026 1027 1028 1029 1030 1031 1032
			/* dst or src could be AT */
			emit_instr(ctx, dsubu, MIPS_R_T8, dst, src);
			emit_instr(ctx, sltu, MIPS_R_AT, dst, src);
			/* SP known to be non-zero, movz becomes boolean not */
			emit_instr(ctx, movz, MIPS_R_T9, MIPS_R_SP, MIPS_R_T8);
			emit_instr(ctx, movn, MIPS_R_T9, MIPS_R_ZERO, MIPS_R_T8);
			emit_instr(ctx, or, MIPS_R_AT, MIPS_R_T9, MIPS_R_AT);
1033
			cmp_eq = bpf_op == BPF_JGT;
1034 1035
			dst = MIPS_R_AT;
			src = MIPS_R_ZERO;
1036
		} else if (bpf_op == BPF_JGE || bpf_op == BPF_JLT) {
1037
			emit_instr(ctx, sltu, MIPS_R_AT, dst, src);
1038
			cmp_eq = bpf_op == BPF_JGE;
1039 1040 1041
			dst = MIPS_R_AT;
			src = MIPS_R_ZERO;
		} else { /* JNE/JEQ case */
1042
			cmp_eq = (bpf_op == BPF_JEQ);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		}
jeq_common:
		/*
		 * If the next insn is EXIT and we are jumping arround
		 * only it, invert the sense of the compare and
		 * conditionally jump to the exit.  Poor man's branch
		 * chaining.
		 */
		if ((insn + 1)->code == (BPF_JMP | BPF_EXIT) && insn->off == 1) {
			b_off = b_imm(exit_idx, ctx);
			if (is_bad_offset(b_off)) {
				target = j_target(ctx, exit_idx);
				if (target == (unsigned int)-1)
					return -E2BIG;
				cmp_eq = !cmp_eq;
				b_off = 4 * 3;
				if (!(ctx->offsets[this_idx] & OFFSETS_B_CONV)) {
					ctx->offsets[this_idx] |= OFFSETS_B_CONV;
					ctx->long_b_conversion = 1;
				}
			}

			if (cmp_eq)
				emit_instr(ctx, bne, dst, src, b_off);
			else
				emit_instr(ctx, beq, dst, src, b_off);
			emit_instr(ctx, nop);
			if (ctx->offsets[this_idx] & OFFSETS_B_CONV) {
				emit_instr(ctx, j, target);
				emit_instr(ctx, nop);
			}
			return 2; /* We consumed the exit. */
		}
		b_off = b_imm(this_idx + insn->off + 1, ctx);
		if (is_bad_offset(b_off)) {
			target = j_target(ctx, this_idx + insn->off + 1);
			if (target == (unsigned int)-1)
				return -E2BIG;
			cmp_eq = !cmp_eq;
			b_off = 4 * 3;
			if (!(ctx->offsets[this_idx] & OFFSETS_B_CONV)) {
				ctx->offsets[this_idx] |= OFFSETS_B_CONV;
				ctx->long_b_conversion = 1;
			}
		}

		if (cmp_eq)
			emit_instr(ctx, beq, dst, src, b_off);
		else
			emit_instr(ctx, bne, dst, src, b_off);
		emit_instr(ctx, nop);
		if (ctx->offsets[this_idx] & OFFSETS_B_CONV) {
			emit_instr(ctx, j, target);
			emit_instr(ctx, nop);
		}
		break;
	case BPF_JMP | BPF_JSGT | BPF_K: /* JMP_IMM */
	case BPF_JMP | BPF_JSGE | BPF_K: /* JMP_IMM */
1101 1102
	case BPF_JMP | BPF_JSLT | BPF_K: /* JMP_IMM */
	case BPF_JMP | BPF_JSLE | BPF_K: /* JMP_IMM */
1103
		cmp_eq = (bpf_op == BPF_JSGE);
1104 1105 1106 1107 1108 1109 1110 1111 1112
		dst = ebpf_to_mips_reg(ctx, insn, dst_reg_fp_ok);
		if (dst < 0)
			return dst;

		if (insn->imm == 0) {
			if ((insn + 1)->code == (BPF_JMP | BPF_EXIT) && insn->off == 1) {
				b_off = b_imm(exit_idx, ctx);
				if (is_bad_offset(b_off))
					return -E2BIG;
1113
				switch (bpf_op) {
1114
				case BPF_JSGT:
1115
					emit_instr(ctx, blez, dst, b_off);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
					break;
				case BPF_JSGE:
					emit_instr(ctx, bltz, dst, b_off);
					break;
				case BPF_JSLT:
					emit_instr(ctx, bgez, dst, b_off);
					break;
				case BPF_JSLE:
					emit_instr(ctx, bgtz, dst, b_off);
					break;
				}
1127 1128 1129 1130 1131 1132
				emit_instr(ctx, nop);
				return 2; /* We consumed the exit. */
			}
			b_off = b_imm(this_idx + insn->off + 1, ctx);
			if (is_bad_offset(b_off))
				return -E2BIG;
1133
			switch (bpf_op) {
1134
			case BPF_JSGT:
1135
				emit_instr(ctx, bgtz, dst, b_off);
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
				break;
			case BPF_JSGE:
				emit_instr(ctx, bgez, dst, b_off);
				break;
			case BPF_JSLT:
				emit_instr(ctx, bltz, dst, b_off);
				break;
			case BPF_JSLE:
				emit_instr(ctx, blez, dst, b_off);
				break;
			}
1147 1148 1149 1150 1151
			emit_instr(ctx, nop);
			break;
		}
		/*
		 * only "LT" compare available, so we must use imm + 1
1152
		 * to generate "GT" and imm -1 to generate LE
1153
		 */
1154
		if (bpf_op == BPF_JSGT)
1155
			t64s = insn->imm + 1;
1156
		else if (bpf_op == BPF_JSLE)
1157 1158 1159 1160
			t64s = insn->imm + 1;
		else
			t64s = insn->imm;

1161
		cmp_eq = bpf_op == BPF_JSGT || bpf_op == BPF_JSGE;
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
		if (t64s >= S16_MIN && t64s <= S16_MAX) {
			emit_instr(ctx, slti, MIPS_R_AT, dst, (int)t64s);
			src = MIPS_R_AT;
			dst = MIPS_R_ZERO;
			goto jeq_common;
		}
		emit_const_to_reg(ctx, MIPS_R_AT, (u64)t64s);
		emit_instr(ctx, slt, MIPS_R_AT, dst, MIPS_R_AT);
		src = MIPS_R_AT;
		dst = MIPS_R_ZERO;
		goto jeq_common;

	case BPF_JMP | BPF_JGT | BPF_K:
	case BPF_JMP | BPF_JGE | BPF_K:
1176 1177
	case BPF_JMP | BPF_JLT | BPF_K:
	case BPF_JMP | BPF_JLE | BPF_K:
1178
		cmp_eq = (bpf_op == BPF_JGE);
1179 1180 1181 1182 1183
		dst = ebpf_to_mips_reg(ctx, insn, dst_reg_fp_ok);
		if (dst < 0)
			return dst;
		/*
		 * only "LT" compare available, so we must use imm + 1
1184
		 * to generate "GT" and imm -1 to generate LE
1185
		 */
1186
		if (bpf_op == BPF_JGT)
1187
			t64s = (u64)(u32)(insn->imm) + 1;
1188
		else if (bpf_op == BPF_JLE)
1189 1190 1191 1192
			t64s = (u64)(u32)(insn->imm) + 1;
		else
			t64s = (u64)(u32)(insn->imm);

1193
		cmp_eq = bpf_op == BPF_JGT || bpf_op == BPF_JGE;
1194

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
		emit_const_to_reg(ctx, MIPS_R_AT, (u64)t64s);
		emit_instr(ctx, sltu, MIPS_R_AT, dst, MIPS_R_AT);
		src = MIPS_R_AT;
		dst = MIPS_R_ZERO;
		goto jeq_common;

	case BPF_JMP | BPF_JSET | BPF_K: /* JMP_IMM */
		dst = ebpf_to_mips_reg(ctx, insn, dst_reg_fp_ok);
		if (dst < 0)
			return dst;

1206
		if (ctx->use_bbit_insns && hweight32((u32)insn->imm) == 1) {
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
			if ((insn + 1)->code == (BPF_JMP | BPF_EXIT) && insn->off == 1) {
				b_off = b_imm(exit_idx, ctx);
				if (is_bad_offset(b_off))
					return -E2BIG;
				emit_instr(ctx, bbit0, dst, ffs((u32)insn->imm) - 1, b_off);
				emit_instr(ctx, nop);
				return 2; /* We consumed the exit. */
			}
			b_off = b_imm(this_idx + insn->off + 1, ctx);
			if (is_bad_offset(b_off))
				return -E2BIG;
			emit_instr(ctx, bbit1, dst, ffs((u32)insn->imm) - 1, b_off);
			emit_instr(ctx, nop);
			break;
		}
		t64 = (u32)insn->imm;
		emit_const_to_reg(ctx, MIPS_R_AT, t64);
		emit_instr(ctx, and, MIPS_R_AT, dst, MIPS_R_AT);
		src = MIPS_R_AT;
		dst = MIPS_R_ZERO;
		cmp_eq = false;
		goto jeq_common;

	case BPF_JMP | BPF_JA:
		/*
		 * Prefer relative branch for easier debugging, but
		 * fall back if needed.
		 */
		b_off = b_imm(this_idx + insn->off + 1, ctx);
		if (is_bad_offset(b_off)) {
			target = j_target(ctx, this_idx + insn->off + 1);
			if (target == (unsigned int)-1)
				return -E2BIG;
			emit_instr(ctx, j, target);
		} else {
			emit_instr(ctx, b, b_off);
		}
		emit_instr(ctx, nop);
		break;
	case BPF_LD | BPF_DW | BPF_IMM:
		if (insn->src_reg != 0)
			return -EINVAL;
		dst = ebpf_to_mips_reg(ctx, insn, dst_reg);
		if (dst < 0)
			return dst;
		t64 = ((u64)(u32)insn->imm) | ((u64)(insn + 1)->imm << 32);
		emit_const_to_reg(ctx, dst, t64);
		return 2; /* Double slot insn */

	case BPF_JMP | BPF_CALL:
		ctx->flags |= EBPF_SAVE_RA;
		t64s = (s64)insn->imm + (s64)__bpf_call_base;
		emit_const_to_reg(ctx, MIPS_R_T9, (u64)t64s);
		emit_instr(ctx, jalr, MIPS_R_RA, MIPS_R_T9);
		/* delay slot */
		emit_instr(ctx, nop);
		break;

	case BPF_JMP | BPF_TAIL_CALL:
		if (emit_bpf_tail_call(ctx, this_idx))
			return -EINVAL;
		break;

	case BPF_LD | BPF_B | BPF_ABS:
	case BPF_LD | BPF_H | BPF_ABS:
	case BPF_LD | BPF_W | BPF_ABS:
	case BPF_LD | BPF_DW | BPF_ABS:
		ctx->flags |= EBPF_SAVE_RA;

		gen_imm_to_reg(insn, MIPS_R_A1, ctx);
		emit_instr(ctx, addiu, MIPS_R_A2, MIPS_R_ZERO, size_to_len(insn));

		if (insn->imm < 0) {
			emit_const_to_reg(ctx, MIPS_R_T9, (u64)bpf_internal_load_pointer_neg_helper);
		} else {
			emit_const_to_reg(ctx, MIPS_R_T9, (u64)ool_skb_header_pointer);
			emit_instr(ctx, daddiu, MIPS_R_A3, MIPS_R_SP, ctx->tmp_offset);
		}
		goto ld_skb_common;

	case BPF_LD | BPF_B | BPF_IND:
	case BPF_LD | BPF_H | BPF_IND:
	case BPF_LD | BPF_W | BPF_IND:
	case BPF_LD | BPF_DW | BPF_IND:
		ctx->flags |= EBPF_SAVE_RA;
		src = ebpf_to_mips_reg(ctx, insn, src_reg_no_fp);
		if (src < 0)
			return src;
		ts = get_reg_val_type(ctx, this_idx, insn->src_reg);
		if (ts == REG_32BIT_ZERO_EX) {
			/* sign extend */
			emit_instr(ctx, sll, MIPS_R_A1, src, 0);
			src = MIPS_R_A1;
		}
		if (insn->imm >= S16_MIN && insn->imm <= S16_MAX) {
			emit_instr(ctx, daddiu, MIPS_R_A1, src, insn->imm);
		} else {
			gen_imm_to_reg(insn, MIPS_R_AT, ctx);
			emit_instr(ctx, daddu, MIPS_R_A1, MIPS_R_AT, src);
		}
		/* truncate to 32-bit int */
		emit_instr(ctx, sll, MIPS_R_A1, MIPS_R_A1, 0);
		emit_instr(ctx, daddiu, MIPS_R_A3, MIPS_R_SP, ctx->tmp_offset);
		emit_instr(ctx, slt, MIPS_R_AT, MIPS_R_A1, MIPS_R_ZERO);

		emit_const_to_reg(ctx, MIPS_R_T8, (u64)bpf_internal_load_pointer_neg_helper);
		emit_const_to_reg(ctx, MIPS_R_T9, (u64)ool_skb_header_pointer);
		emit_instr(ctx, addiu, MIPS_R_A2, MIPS_R_ZERO, size_to_len(insn));
		emit_instr(ctx, movn, MIPS_R_T9, MIPS_R_T8, MIPS_R_AT);

ld_skb_common:
		emit_instr(ctx, jalr, MIPS_R_RA, MIPS_R_T9);
		/* delay slot move */
		emit_instr(ctx, daddu, MIPS_R_A0, MIPS_R_S0, MIPS_R_ZERO);

		/* Check the error value */
		b_off = b_imm(exit_idx, ctx);
		if (is_bad_offset(b_off)) {
			target = j_target(ctx, exit_idx);
			if (target == (unsigned int)-1)
				return -E2BIG;

			if (!(ctx->offsets[this_idx] & OFFSETS_B_CONV)) {
				ctx->offsets[this_idx] |= OFFSETS_B_CONV;
				ctx->long_b_conversion = 1;
			}
			emit_instr(ctx, bne, MIPS_R_V0, MIPS_R_ZERO, 4 * 3);
			emit_instr(ctx, nop);
			emit_instr(ctx, j, target);
			emit_instr(ctx, nop);
		} else {
			emit_instr(ctx, beq, MIPS_R_V0, MIPS_R_ZERO, b_off);
			emit_instr(ctx, nop);
		}

#ifdef __BIG_ENDIAN
		need_swap = false;
#else
		need_swap = true;
#endif
		dst = MIPS_R_V0;
		switch (BPF_SIZE(insn->code)) {
		case BPF_B:
			emit_instr(ctx, lbu, dst, 0, MIPS_R_V0);
			break;
		case BPF_H:
			emit_instr(ctx, lhu, dst, 0, MIPS_R_V0);
			if (need_swap)
				emit_instr(ctx, wsbh, dst, dst);
			break;
		case BPF_W:
			emit_instr(ctx, lw, dst, 0, MIPS_R_V0);
			if (need_swap) {
				emit_instr(ctx, wsbh, dst, dst);
				emit_instr(ctx, rotr, dst, dst, 16);
			}
			break;
		case BPF_DW:
			emit_instr(ctx, ld, dst, 0, MIPS_R_V0);
			if (need_swap) {
				emit_instr(ctx, dsbh, dst, dst);
				emit_instr(ctx, dshd, dst, dst);
			}
			break;
		}

		break;
	case BPF_ALU | BPF_END | BPF_FROM_BE:
	case BPF_ALU | BPF_END | BPF_FROM_LE:
		dst = ebpf_to_mips_reg(ctx, insn, dst_reg);
		if (dst < 0)
			return dst;
		td = get_reg_val_type(ctx, this_idx, insn->dst_reg);
		if (insn->imm == 64 && td == REG_32BIT)
			emit_instr(ctx, dinsu, dst, MIPS_R_ZERO, 32, 32);

		if (insn->imm != 64 &&
		    (td == REG_64BIT || td == REG_32BIT_ZERO_EX)) {
			/* sign extend */
			emit_instr(ctx, sll, dst, dst, 0);
		}

#ifdef __BIG_ENDIAN
		need_swap = (BPF_SRC(insn->code) == BPF_FROM_LE);
#else
		need_swap = (BPF_SRC(insn->code) == BPF_FROM_BE);
#endif
		if (insn->imm == 16) {
			if (need_swap)
				emit_instr(ctx, wsbh, dst, dst);
			emit_instr(ctx, andi, dst, dst, 0xffff);
		} else if (insn->imm == 32) {
			if (need_swap) {
				emit_instr(ctx, wsbh, dst, dst);
				emit_instr(ctx, rotr, dst, dst, 16);
			}
		} else { /* 64-bit*/
			if (need_swap) {
				emit_instr(ctx, dsbh, dst, dst);
				emit_instr(ctx, dshd, dst, dst);
			}
		}
		break;

	case BPF_ST | BPF_B | BPF_MEM:
	case BPF_ST | BPF_H | BPF_MEM:
	case BPF_ST | BPF_W | BPF_MEM:
	case BPF_ST | BPF_DW | BPF_MEM:
		if (insn->dst_reg == BPF_REG_10) {
			ctx->flags |= EBPF_SEEN_FP;
			dst = MIPS_R_SP;
			mem_off = insn->off + MAX_BPF_STACK;
		} else {
			dst = ebpf_to_mips_reg(ctx, insn, dst_reg);
			if (dst < 0)
				return dst;
			mem_off = insn->off;
		}
		gen_imm_to_reg(insn, MIPS_R_AT, ctx);
		switch (BPF_SIZE(insn->code)) {
		case BPF_B:
			emit_instr(ctx, sb, MIPS_R_AT, mem_off, dst);
			break;
		case BPF_H:
			emit_instr(ctx, sh, MIPS_R_AT, mem_off, dst);
			break;
		case BPF_W:
			emit_instr(ctx, sw, MIPS_R_AT, mem_off, dst);
			break;
		case BPF_DW:
			emit_instr(ctx, sd, MIPS_R_AT, mem_off, dst);
			break;
		}
		break;

	case BPF_LDX | BPF_B | BPF_MEM:
	case BPF_LDX | BPF_H | BPF_MEM:
	case BPF_LDX | BPF_W | BPF_MEM:
	case BPF_LDX | BPF_DW | BPF_MEM:
		if (insn->src_reg == BPF_REG_10) {
			ctx->flags |= EBPF_SEEN_FP;
			src = MIPS_R_SP;
			mem_off = insn->off + MAX_BPF_STACK;
		} else {
			src = ebpf_to_mips_reg(ctx, insn, src_reg_no_fp);
			if (src < 0)
				return src;
			mem_off = insn->off;
		}
		dst = ebpf_to_mips_reg(ctx, insn, dst_reg);
		if (dst < 0)
			return dst;
		switch (BPF_SIZE(insn->code)) {
		case BPF_B:
			emit_instr(ctx, lbu, dst, mem_off, src);
			break;
		case BPF_H:
			emit_instr(ctx, lhu, dst, mem_off, src);
			break;
		case BPF_W:
			emit_instr(ctx, lw, dst, mem_off, src);
			break;
		case BPF_DW:
			emit_instr(ctx, ld, dst, mem_off, src);
			break;
		}
		break;

	case BPF_STX | BPF_B | BPF_MEM:
	case BPF_STX | BPF_H | BPF_MEM:
	case BPF_STX | BPF_W | BPF_MEM:
	case BPF_STX | BPF_DW | BPF_MEM:
	case BPF_STX | BPF_W | BPF_XADD:
	case BPF_STX | BPF_DW | BPF_XADD:
		if (insn->dst_reg == BPF_REG_10) {
			ctx->flags |= EBPF_SEEN_FP;
			dst = MIPS_R_SP;
			mem_off = insn->off + MAX_BPF_STACK;
		} else {
			dst = ebpf_to_mips_reg(ctx, insn, dst_reg);
			if (dst < 0)
				return dst;
			mem_off = insn->off;
		}
		src = ebpf_to_mips_reg(ctx, insn, src_reg_no_fp);
		if (src < 0)
1493
			return src;
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
		if (BPF_MODE(insn->code) == BPF_XADD) {
			switch (BPF_SIZE(insn->code)) {
			case BPF_W:
				if (get_reg_val_type(ctx, this_idx, insn->src_reg) == REG_32BIT) {
					emit_instr(ctx, sll, MIPS_R_AT, src, 0);
					src = MIPS_R_AT;
				}
				emit_instr(ctx, ll, MIPS_R_T8, mem_off, dst);
				emit_instr(ctx, addu, MIPS_R_T8, MIPS_R_T8, src);
				emit_instr(ctx, sc, MIPS_R_T8, mem_off, dst);
				/*
				 * On failure back up to LL (-4
				 * instructions of 4 bytes each
				 */
				emit_instr(ctx, beq, MIPS_R_T8, MIPS_R_ZERO, -4 * 4);
				emit_instr(ctx, nop);
				break;
			case BPF_DW:
				if (get_reg_val_type(ctx, this_idx, insn->src_reg) == REG_32BIT) {
					emit_instr(ctx, daddu, MIPS_R_AT, src, MIPS_R_ZERO);
					emit_instr(ctx, dinsu, MIPS_R_AT, MIPS_R_ZERO, 32, 32);
					src = MIPS_R_AT;
				}
				emit_instr(ctx, lld, MIPS_R_T8, mem_off, dst);
				emit_instr(ctx, daddu, MIPS_R_T8, MIPS_R_T8, src);
				emit_instr(ctx, scd, MIPS_R_T8, mem_off, dst);
				emit_instr(ctx, beq, MIPS_R_T8, MIPS_R_ZERO, -4 * 4);
				emit_instr(ctx, nop);
				break;
			}
		} else { /* BPF_MEM */
			switch (BPF_SIZE(insn->code)) {
			case BPF_B:
				emit_instr(ctx, sb, src, mem_off, dst);
				break;
			case BPF_H:
				emit_instr(ctx, sh, src, mem_off, dst);
				break;
			case BPF_W:
				emit_instr(ctx, sw, src, mem_off, dst);
				break;
			case BPF_DW:
				if (get_reg_val_type(ctx, this_idx, insn->src_reg) == REG_32BIT) {
					emit_instr(ctx, daddu, MIPS_R_AT, src, MIPS_R_ZERO);
					emit_instr(ctx, dinsu, MIPS_R_AT, MIPS_R_ZERO, 32, 32);
					src = MIPS_R_AT;
				}
				emit_instr(ctx, sd, src, mem_off, dst);
				break;
			}
		}
		break;

	default:
		pr_err("NOT HANDLED %d - (%02x)\n",
		       this_idx, (unsigned int)insn->code);
		return -EINVAL;
	}
	return 1;
}

#define RVT_VISITED_MASK 0xc000000000000000ull
#define RVT_FALL_THROUGH 0x4000000000000000ull
#define RVT_BRANCH_TAKEN 0x8000000000000000ull
#define RVT_DONE (RVT_FALL_THROUGH | RVT_BRANCH_TAKEN)

static int build_int_body(struct jit_ctx *ctx)
{
	const struct bpf_prog *prog = ctx->skf;
	const struct bpf_insn *insn;
	int i, r;

	for (i = 0; i < prog->len; ) {
		insn = prog->insnsi + i;
		if ((ctx->reg_val_types[i] & RVT_VISITED_MASK) == 0) {
			/* dead instruction, don't emit it. */
			i++;
			continue;
		}

		if (ctx->target == NULL)
			ctx->offsets[i] = (ctx->offsets[i] & OFFSETS_B_CONV) | (ctx->idx * 4);

		r = build_one_insn(insn, ctx, i, prog->len);
		if (r < 0)
			return r;
		i += r;
	}
	/* epilogue offset */
	if (ctx->target == NULL)
		ctx->offsets[i] = ctx->idx * 4;

	/*
	 * All exits have an offset of the epilogue, some offsets may
	 * not have been set due to banch-around threading, so set
	 * them now.
	 */
	if (ctx->target == NULL)
		for (i = 0; i < prog->len; i++) {
			insn = prog->insnsi + i;
			if (insn->code == (BPF_JMP | BPF_EXIT))
				ctx->offsets[i] = ctx->idx * 4;
		}
	return 0;
}

/* return the last idx processed, or negative for error */
static int reg_val_propagate_range(struct jit_ctx *ctx, u64 initial_rvt,
				   int start_idx, bool follow_taken)
{
	const struct bpf_prog *prog = ctx->skf;
	const struct bpf_insn *insn;
	u64 exit_rvt = initial_rvt;
	u64 *rvt = ctx->reg_val_types;
	int idx;
	int reg;

	for (idx = start_idx; idx < prog->len; idx++) {
		rvt[idx] = (rvt[idx] & RVT_VISITED_MASK) | exit_rvt;
		insn = prog->insnsi + idx;
		switch (BPF_CLASS(insn->code)) {
		case BPF_ALU:
			switch (BPF_OP(insn->code)) {
			case BPF_ADD:
			case BPF_SUB:
			case BPF_MUL:
			case BPF_DIV:
			case BPF_OR:
			case BPF_AND:
			case BPF_LSH:
			case BPF_RSH:
			case BPF_NEG:
			case BPF_MOD:
			case BPF_XOR:
				set_reg_val_type(&exit_rvt, insn->dst_reg, REG_32BIT);
				break;
			case BPF_MOV:
				if (BPF_SRC(insn->code)) {
					set_reg_val_type(&exit_rvt, insn->dst_reg, REG_32BIT);
				} else {
					/* IMM to REG move*/
					if (insn->imm >= 0)
						set_reg_val_type(&exit_rvt, insn->dst_reg, REG_32BIT_POS);
					else
						set_reg_val_type(&exit_rvt, insn->dst_reg, REG_32BIT);
				}
				break;
			case BPF_END:
				if (insn->imm == 64)
					set_reg_val_type(&exit_rvt, insn->dst_reg, REG_64BIT);
				else if (insn->imm == 32)
					set_reg_val_type(&exit_rvt, insn->dst_reg, REG_32BIT);
				else /* insn->imm == 16 */
					set_reg_val_type(&exit_rvt, insn->dst_reg, REG_32BIT_POS);
				break;
			}
			rvt[idx] |= RVT_DONE;
			break;
		case BPF_ALU64:
			switch (BPF_OP(insn->code)) {
			case BPF_MOV:
				if (BPF_SRC(insn->code)) {
					/* REG to REG move*/
					set_reg_val_type(&exit_rvt, insn->dst_reg, REG_64BIT);
				} else {
					/* IMM to REG move*/
					if (insn->imm >= 0)
						set_reg_val_type(&exit_rvt, insn->dst_reg, REG_32BIT_POS);
					else
						set_reg_val_type(&exit_rvt, insn->dst_reg, REG_64BIT_32BIT);
				}
				break;
			default:
				set_reg_val_type(&exit_rvt, insn->dst_reg, REG_64BIT);
			}
			rvt[idx] |= RVT_DONE;
			break;
		case BPF_LD:
			switch (BPF_SIZE(insn->code)) {
			case BPF_DW:
				if (BPF_MODE(insn->code) == BPF_IMM) {
					s64 val;

					val = (s64)((u32)insn->imm | ((u64)(insn + 1)->imm << 32));
					if (val > 0 && val <= S32_MAX)
						set_reg_val_type(&exit_rvt, insn->dst_reg, REG_32BIT_POS);
					else if (val >= S32_MIN && val <= S32_MAX)
						set_reg_val_type(&exit_rvt, insn->dst_reg, REG_64BIT_32BIT);
					else
						set_reg_val_type(&exit_rvt, insn->dst_reg, REG_64BIT);
					rvt[idx] |= RVT_DONE;
					idx++;
				} else {
					set_reg_val_type(&exit_rvt, insn->dst_reg, REG_64BIT);
				}
				break;
			case BPF_B:
			case BPF_H:
				set_reg_val_type(&exit_rvt, insn->dst_reg, REG_32BIT_POS);
				break;
			case BPF_W:
				if (BPF_MODE(insn->code) == BPF_IMM)
					set_reg_val_type(&exit_rvt, insn->dst_reg,
							 insn->imm >= 0 ? REG_32BIT_POS : REG_32BIT);
				else
					set_reg_val_type(&exit_rvt, insn->dst_reg, REG_32BIT);
				break;
			}
			rvt[idx] |= RVT_DONE;
			break;
		case BPF_LDX:
			switch (BPF_SIZE(insn->code)) {
			case BPF_DW:
				set_reg_val_type(&exit_rvt, insn->dst_reg, REG_64BIT);
				break;
			case BPF_B:
			case BPF_H:
				set_reg_val_type(&exit_rvt, insn->dst_reg, REG_32BIT_POS);
				break;
			case BPF_W:
				set_reg_val_type(&exit_rvt, insn->dst_reg, REG_32BIT);
				break;
			}
			rvt[idx] |= RVT_DONE;
			break;
		case BPF_JMP:
			switch (BPF_OP(insn->code)) {
			case BPF_EXIT:
				rvt[idx] = RVT_DONE | exit_rvt;
				rvt[prog->len] = exit_rvt;
				return idx;
			case BPF_JA:
				rvt[idx] |= RVT_DONE;
				idx += insn->off;
				break;
			case BPF_JEQ:
			case BPF_JGT:
			case BPF_JGE:
1732 1733
			case BPF_JLT:
			case BPF_JLE:
1734 1735 1736 1737
			case BPF_JSET:
			case BPF_JNE:
			case BPF_JSGT:
			case BPF_JSGE:
1738 1739
			case BPF_JSLT:
			case BPF_JSLE:
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
				if (follow_taken) {
					rvt[idx] |= RVT_BRANCH_TAKEN;
					idx += insn->off;
					follow_taken = false;
				} else {
					rvt[idx] |= RVT_FALL_THROUGH;
				}
				break;
			case BPF_CALL:
				set_reg_val_type(&exit_rvt, BPF_REG_0, REG_64BIT);
				/* Upon call return, argument registers are clobbered. */
				for (reg = BPF_REG_0; reg <= BPF_REG_5; reg++)
					set_reg_val_type(&exit_rvt, reg, REG_64BIT);

				rvt[idx] |= RVT_DONE;
				break;
			default:
				WARN(1, "Unhandled BPF_JMP case.\n");
				rvt[idx] |= RVT_DONE;
				break;
			}
			break;
		default:
			rvt[idx] |= RVT_DONE;
			break;
		}
	}
	return idx;
}

/*
 * Track the value range (i.e. 32-bit vs. 64-bit) of each register at
 * each eBPF insn.  This allows unneeded sign and zero extension
 * operations to be omitted.
 *
 * Doesn't handle yet confluence of control paths with conflicting
 * ranges, but it is good enough for most sane code.
 */
static int reg_val_propagate(struct jit_ctx *ctx)
{
	const struct bpf_prog *prog = ctx->skf;
	u64 exit_rvt;
	int reg;
	int i;

	/*
	 * 11 registers * 3 bits/reg leaves top bits free for other
	 * uses.  Bit-62..63 used to see if we have visited an insn.
	 */
	exit_rvt = 0;

	/* Upon entry, argument registers are 64-bit. */
	for (reg = BPF_REG_1; reg <= BPF_REG_5; reg++)
		set_reg_val_type(&exit_rvt, reg, REG_64BIT);

	/*
	 * First follow all conditional branches on the fall-through
	 * edge of control flow..
	 */
	reg_val_propagate_range(ctx, exit_rvt, 0, false);
restart_search:
	/*
	 * Then repeatedly find the first conditional branch where
	 * both edges of control flow have not been taken, and follow
	 * the branch taken edge.  We will end up restarting the
	 * search once per conditional branch insn.
	 */
	for (i = 0; i < prog->len; i++) {
		u64 rvt = ctx->reg_val_types[i];

		if ((rvt & RVT_VISITED_MASK) == RVT_DONE ||
		    (rvt & RVT_VISITED_MASK) == 0)
			continue;
		if ((rvt & RVT_VISITED_MASK) == RVT_FALL_THROUGH) {
			reg_val_propagate_range(ctx, rvt & ~RVT_VISITED_MASK, i, true);
		} else { /* RVT_BRANCH_TAKEN */
			WARN(1, "Unexpected RVT_BRANCH_TAKEN case.\n");
			reg_val_propagate_range(ctx, rvt & ~RVT_VISITED_MASK, i, false);
		}
		goto restart_search;
	}
	/*
	 * Eventually all conditional branches have been followed on
	 * both branches and we are done.  Any insn that has not been
	 * visited at this point is dead.
	 */

	return 0;
}

static void jit_fill_hole(void *area, unsigned int size)
{
	u32 *p;

	/* We are guaranteed to have aligned memory. */
	for (p = area; size >= sizeof(u32); size -= sizeof(u32))
		uasm_i_break(&p, BRK_BUG); /* Increments p */
}

struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
{
	struct bpf_prog *orig_prog = prog;
	bool tmp_blinded = false;
	struct bpf_prog *tmp;
	struct bpf_binary_header *header = NULL;
	struct jit_ctx ctx;
	unsigned int image_size;
	u8 *image_ptr;

1849
	if (!prog->jit_requested || !cpu_has_mips64r2)
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
		return prog;

	tmp = bpf_jit_blind_constants(prog);
	/* If blinding was requested and we failed during blinding,
	 * we must fall back to the interpreter.
	 */
	if (IS_ERR(tmp))
		return orig_prog;
	if (tmp != prog) {
		tmp_blinded = true;
		prog = tmp;
	}

	memset(&ctx, 0, sizeof(ctx));

1865 1866 1867 1868 1869 1870 1871
	preempt_disable();
	switch (current_cpu_type()) {
	case CPU_CAVIUM_OCTEON:
	case CPU_CAVIUM_OCTEON_PLUS:
	case CPU_CAVIUM_OCTEON2:
	case CPU_CAVIUM_OCTEON3:
		ctx.use_bbit_insns = 1;
1872
		break;
1873 1874 1875 1876 1877
	default:
		ctx.use_bbit_insns = 0;
	}
	preempt_enable();

1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	ctx.offsets = kcalloc(prog->len + 1, sizeof(*ctx.offsets), GFP_KERNEL);
	if (ctx.offsets == NULL)
		goto out_err;

	ctx.reg_val_types = kcalloc(prog->len + 1, sizeof(*ctx.reg_val_types), GFP_KERNEL);
	if (ctx.reg_val_types == NULL)
		goto out_err;

	ctx.skf = prog;

	if (reg_val_propagate(&ctx))
		goto out_err;

	/*
	 * First pass discovers used resources and instruction offsets
	 * assuming short branches are used.
	 */
	if (build_int_body(&ctx))
		goto out_err;

	/*
	 * If no calls are made (EBPF_SAVE_RA), then tail call count
	 * in $v1, else we must save in n$s4.
	 */
	if (ctx.flags & EBPF_SEEN_TC) {
		if (ctx.flags & EBPF_SAVE_RA)
			ctx.flags |= EBPF_SAVE_S4;
		else
			ctx.flags |= EBPF_TCC_IN_V1;
	}

	/*
	 * Second pass generates offsets, if any branches are out of
	 * range a jump-around long sequence is generated, and we have
	 * to try again from the beginning to generate the new
	 * offsets.  This is done until no additional conversions are
	 * necessary.
	 */
	do {
		ctx.idx = 0;
		ctx.gen_b_offsets = 1;
		ctx.long_b_conversion = 0;
		if (gen_int_prologue(&ctx))
			goto out_err;
		if (build_int_body(&ctx))
			goto out_err;
		if (build_int_epilogue(&ctx, MIPS_R_RA))
			goto out_err;
	} while (ctx.long_b_conversion);

	image_size = 4 * ctx.idx;

	header = bpf_jit_binary_alloc(image_size, &image_ptr,
				      sizeof(u32), jit_fill_hole);
	if (header == NULL)
		goto out_err;

	ctx.target = (u32 *)image_ptr;

	/* Third pass generates the code */
	ctx.idx = 0;
	if (gen_int_prologue(&ctx))
		goto out_err;
	if (build_int_body(&ctx))
		goto out_err;
	if (build_int_epilogue(&ctx, MIPS_R_RA))
		goto out_err;

	/* Update the icache */
	flush_icache_range((unsigned long)ctx.target,
			   (unsigned long)(ctx.target + ctx.idx * sizeof(u32)));

	if (bpf_jit_enable > 1)
		/* Dump JIT code */
		bpf_jit_dump(prog->len, image_size, 2, ctx.target);

	bpf_jit_binary_lock_ro(header);
	prog->bpf_func = (void *)ctx.target;
	prog->jited = 1;
	prog->jited_len = image_size;
out_normal:
	if (tmp_blinded)
		bpf_jit_prog_release_other(prog, prog == orig_prog ?
					   tmp : orig_prog);
	kfree(ctx.offsets);
	kfree(ctx.reg_val_types);

	return prog;

out_err:
	prog = orig_prog;
	if (header)
		bpf_jit_binary_free(header);
	goto out_normal;
}