shdma.c 31.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Renesas SuperH DMA Engine support
 *
 * base is drivers/dma/flsdma.c
 *
 * Copyright (C) 2009 Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>
 * Copyright (C) 2009 Renesas Solutions, Inc. All rights reserved.
 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
 *
 * This is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * - DMA of SuperH does not have Hardware DMA chain mode.
 * - MAX DMA size is 16MB.
 *
 */

#include <linux/init.h>
#include <linux/module.h>
22
#include <linux/slab.h>
23 24 25 26 27
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
28 29
#include <linux/pm_runtime.h>

30
#include <asm/dmaengine.h>
31

32 33 34
#include "shdma.h"

/* DMA descriptor control */
35 36 37 38 39 40 41
enum sh_dmae_desc_status {
	DESC_IDLE,
	DESC_PREPARED,
	DESC_SUBMITTED,
	DESC_COMPLETED,	/* completed, have to call callback */
	DESC_WAITING,	/* callback called, waiting for ack / re-submit */
};
42 43

#define NR_DESCS_PER_CHANNEL 32
44 45
/* Default MEMCPY transfer size = 2^2 = 4 bytes */
#define LOG2_DEFAULT_XFER_SIZE	2
46

47 48 49
/* A bitmask with bits enough for enum sh_dmae_slave_chan_id */
static unsigned long sh_dmae_slave_used[BITS_TO_LONGS(SHDMA_SLAVE_NUMBER)];

50 51
static void sh_dmae_chan_ld_cleanup(struct sh_dmae_chan *sh_chan, bool all);

52 53
static void sh_dmae_writel(struct sh_dmae_chan *sh_dc, u32 data, u32 reg)
{
54
	__raw_writel(data, sh_dc->base + reg / sizeof(u32));
55 56 57 58
}

static u32 sh_dmae_readl(struct sh_dmae_chan *sh_dc, u32 reg)
{
59 60 61 62 63 64 65 66 67 68 69
	return __raw_readl(sh_dc->base + reg / sizeof(u32));
}

static u16 dmaor_read(struct sh_dmae_device *shdev)
{
	return __raw_readw(shdev->chan_reg + DMAOR / sizeof(u32));
}

static void dmaor_write(struct sh_dmae_device *shdev, u16 data)
{
	__raw_writew(data, shdev->chan_reg + DMAOR / sizeof(u32));
70 71 72 73 74 75 76
}

/*
 * Reset DMA controller
 *
 * SH7780 has two DMAOR register
 */
77
static void sh_dmae_ctl_stop(struct sh_dmae_device *shdev)
78
{
79
	unsigned short dmaor = dmaor_read(shdev);
80

81
	dmaor_write(shdev, dmaor & ~(DMAOR_NMIF | DMAOR_AE | DMAOR_DME));
82 83
}

84
static int sh_dmae_rst(struct sh_dmae_device *shdev)
85 86 87
{
	unsigned short dmaor;

88
	sh_dmae_ctl_stop(shdev);
89
	dmaor = dmaor_read(shdev) | shdev->pdata->dmaor_init;
90

91 92
	dmaor_write(shdev, dmaor);
	if (dmaor_read(shdev) & (DMAOR_AE | DMAOR_NMIF)) {
93
		pr_warning("dma-sh: Can't initialize DMAOR.\n");
94 95 96 97 98
		return -EINVAL;
	}
	return 0;
}

99
static bool dmae_is_busy(struct sh_dmae_chan *sh_chan)
100 101
{
	u32 chcr = sh_dmae_readl(sh_chan, CHCR);
102 103 104 105 106

	if ((chcr & (CHCR_DE | CHCR_TE)) == CHCR_DE)
		return true; /* working */

	return false; /* waiting */
107 108
}

109
static unsigned int calc_xmit_shift(struct sh_dmae_chan *sh_chan, u32 chcr)
110
{
111 112 113 114 115 116 117 118
	struct sh_dmae_device *shdev = container_of(sh_chan->common.device,
						struct sh_dmae_device, common);
	struct sh_dmae_pdata *pdata = shdev->pdata;
	int cnt = ((chcr & pdata->ts_low_mask) >> pdata->ts_low_shift) |
		((chcr & pdata->ts_high_mask) >> pdata->ts_high_shift);

	if (cnt >= pdata->ts_shift_num)
		cnt = 0;
119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
	return pdata->ts_shift[cnt];
}

static u32 log2size_to_chcr(struct sh_dmae_chan *sh_chan, int l2size)
{
	struct sh_dmae_device *shdev = container_of(sh_chan->common.device,
						struct sh_dmae_device, common);
	struct sh_dmae_pdata *pdata = shdev->pdata;
	int i;

	for (i = 0; i < pdata->ts_shift_num; i++)
		if (pdata->ts_shift[i] == l2size)
			break;

	if (i == pdata->ts_shift_num)
		i = 0;

	return ((i << pdata->ts_low_shift) & pdata->ts_low_mask) |
		((i << pdata->ts_high_shift) & pdata->ts_high_mask);
139 140
}

141
static void dmae_set_reg(struct sh_dmae_chan *sh_chan, struct sh_dmae_regs *hw)
142
{
143 144
	sh_dmae_writel(sh_chan, hw->sar, SAR);
	sh_dmae_writel(sh_chan, hw->dar, DAR);
145
	sh_dmae_writel(sh_chan, hw->tcr >> sh_chan->xmit_shift, TCR);
146 147 148 149 150 151
}

static void dmae_start(struct sh_dmae_chan *sh_chan)
{
	u32 chcr = sh_dmae_readl(sh_chan, CHCR);

152
	chcr |= CHCR_DE | CHCR_IE;
153
	sh_dmae_writel(sh_chan, chcr & ~CHCR_TE, CHCR);
154 155 156 157 158 159 160 161 162 163
}

static void dmae_halt(struct sh_dmae_chan *sh_chan)
{
	u32 chcr = sh_dmae_readl(sh_chan, CHCR);

	chcr &= ~(CHCR_DE | CHCR_TE | CHCR_IE);
	sh_dmae_writel(sh_chan, chcr, CHCR);
}

164 165
static void dmae_init(struct sh_dmae_chan *sh_chan)
{
166 167 168 169 170 171 172
	/*
	 * Default configuration for dual address memory-memory transfer.
	 * 0x400 represents auto-request.
	 */
	u32 chcr = DM_INC | SM_INC | 0x400 | log2size_to_chcr(sh_chan,
						   LOG2_DEFAULT_XFER_SIZE);
	sh_chan->xmit_shift = calc_xmit_shift(sh_chan, chcr);
173 174 175
	sh_dmae_writel(sh_chan, chcr, CHCR);
}

176 177 178
static int dmae_set_chcr(struct sh_dmae_chan *sh_chan, u32 val)
{
	/* When DMA was working, can not set data to CHCR */
179 180
	if (dmae_is_busy(sh_chan))
		return -EBUSY;
181

182
	sh_chan->xmit_shift = calc_xmit_shift(sh_chan, val);
183
	sh_dmae_writel(sh_chan, val, CHCR);
184

185 186 187 188 189
	return 0;
}

static int dmae_set_dmars(struct sh_dmae_chan *sh_chan, u16 val)
{
190 191 192 193 194 195
	struct sh_dmae_device *shdev = container_of(sh_chan->common.device,
						struct sh_dmae_device, common);
	struct sh_dmae_pdata *pdata = shdev->pdata;
	struct sh_dmae_channel *chan_pdata = &pdata->channel[sh_chan->id];
	u16 __iomem *addr = shdev->dmars + chan_pdata->dmars / sizeof(u16);
	int shift = chan_pdata->dmars_bit;
196 197 198

	if (dmae_is_busy(sh_chan))
		return -EBUSY;
199

200 201
	__raw_writew((__raw_readw(addr) & (0xff00 >> shift)) | (val << shift),
		     addr);
202 203 204 205 206 207

	return 0;
}

static dma_cookie_t sh_dmae_tx_submit(struct dma_async_tx_descriptor *tx)
{
208
	struct sh_desc *desc = tx_to_sh_desc(tx), *chunk, *last = desc, *c;
209
	struct sh_dmae_chan *sh_chan = to_sh_chan(tx->chan);
210
	dma_async_tx_callback callback = tx->callback;
211 212 213 214 215 216 217 218 219
	dma_cookie_t cookie;

	spin_lock_bh(&sh_chan->desc_lock);

	cookie = sh_chan->common.cookie;
	cookie++;
	if (cookie < 0)
		cookie = 1;

220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
	sh_chan->common.cookie = cookie;
	tx->cookie = cookie;

	/* Mark all chunks of this descriptor as submitted, move to the queue */
	list_for_each_entry_safe(chunk, c, desc->node.prev, node) {
		/*
		 * All chunks are on the global ld_free, so, we have to find
		 * the end of the chain ourselves
		 */
		if (chunk != desc && (chunk->mark == DESC_IDLE ||
				      chunk->async_tx.cookie > 0 ||
				      chunk->async_tx.cookie == -EBUSY ||
				      &chunk->node == &sh_chan->ld_free))
			break;
		chunk->mark = DESC_SUBMITTED;
		/* Callback goes to the last chunk */
		chunk->async_tx.callback = NULL;
		chunk->cookie = cookie;
		list_move_tail(&chunk->node, &sh_chan->ld_queue);
		last = chunk;
	}
241

242 243 244 245 246 247
	last->async_tx.callback = callback;
	last->async_tx.callback_param = tx->callback_param;

	dev_dbg(sh_chan->dev, "submit #%d@%p on %d: %x[%d] -> %x\n",
		tx->cookie, &last->async_tx, sh_chan->id,
		desc->hw.sar, desc->hw.tcr, desc->hw.dar);
248 249 250 251 252 253

	spin_unlock_bh(&sh_chan->desc_lock);

	return cookie;
}

254
/* Called with desc_lock held */
255 256
static struct sh_desc *sh_dmae_get_desc(struct sh_dmae_chan *sh_chan)
{
257
	struct sh_desc *desc;
258

259 260 261
	list_for_each_entry(desc, &sh_chan->ld_free, node)
		if (desc->mark != DESC_PREPARED) {
			BUG_ON(desc->mark != DESC_IDLE);
262
			list_del(&desc->node);
263
			return desc;
264 265
		}

266
	return NULL;
267 268
}

269 270 271 272 273 274
static struct sh_dmae_slave_config *sh_dmae_find_slave(
	struct sh_dmae_chan *sh_chan, enum sh_dmae_slave_chan_id slave_id)
{
	struct dma_device *dma_dev = sh_chan->common.device;
	struct sh_dmae_device *shdev = container_of(dma_dev,
					struct sh_dmae_device, common);
275
	struct sh_dmae_pdata *pdata = shdev->pdata;
276 277 278 279 280
	int i;

	if ((unsigned)slave_id >= SHDMA_SLAVE_NUMBER)
		return NULL;

281 282 283
	for (i = 0; i < pdata->slave_num; i++)
		if (pdata->slave[i].slave_id == slave_id)
			return pdata->slave + i;
284 285 286 287

	return NULL;
}

288 289 290 291
static int sh_dmae_alloc_chan_resources(struct dma_chan *chan)
{
	struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
	struct sh_desc *desc;
292 293
	struct sh_dmae_slave *param = chan->private;

294 295
	pm_runtime_get_sync(sh_chan->dev);

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
	/*
	 * This relies on the guarantee from dmaengine that alloc_chan_resources
	 * never runs concurrently with itself or free_chan_resources.
	 */
	if (param) {
		struct sh_dmae_slave_config *cfg;

		cfg = sh_dmae_find_slave(sh_chan, param->slave_id);
		if (!cfg)
			return -EINVAL;

		if (test_and_set_bit(param->slave_id, sh_dmae_slave_used))
			return -EBUSY;

		param->config = cfg;

		dmae_set_dmars(sh_chan, cfg->mid_rid);
		dmae_set_chcr(sh_chan, cfg->chcr);
314 315
	} else if ((sh_dmae_readl(sh_chan, CHCR) & 0xf00) != 0x400) {
		dmae_init(sh_chan);
316
	}
317 318 319 320 321 322 323 324 325 326 327 328

	spin_lock_bh(&sh_chan->desc_lock);
	while (sh_chan->descs_allocated < NR_DESCS_PER_CHANNEL) {
		spin_unlock_bh(&sh_chan->desc_lock);
		desc = kzalloc(sizeof(struct sh_desc), GFP_KERNEL);
		if (!desc) {
			spin_lock_bh(&sh_chan->desc_lock);
			break;
		}
		dma_async_tx_descriptor_init(&desc->async_tx,
					&sh_chan->common);
		desc->async_tx.tx_submit = sh_dmae_tx_submit;
329
		desc->mark = DESC_IDLE;
330 331

		spin_lock_bh(&sh_chan->desc_lock);
332
		list_add(&desc->node, &sh_chan->ld_free);
333 334 335 336
		sh_chan->descs_allocated++;
	}
	spin_unlock_bh(&sh_chan->desc_lock);

337 338 339
	if (!sh_chan->descs_allocated)
		pm_runtime_put(sh_chan->dev);

340 341 342 343 344 345 346 347 348 349 350
	return sh_chan->descs_allocated;
}

/*
 * sh_dma_free_chan_resources - Free all resources of the channel.
 */
static void sh_dmae_free_chan_resources(struct dma_chan *chan)
{
	struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
	struct sh_desc *desc, *_desc;
	LIST_HEAD(list);
351
	int descs = sh_chan->descs_allocated;
352

353 354
	dmae_halt(sh_chan);

355 356 357 358
	/* Prepared and not submitted descriptors can still be on the queue */
	if (!list_empty(&sh_chan->ld_queue))
		sh_dmae_chan_ld_cleanup(sh_chan, true);

359 360 361 362 363 364
	if (chan->private) {
		/* The caller is holding dma_list_mutex */
		struct sh_dmae_slave *param = chan->private;
		clear_bit(param->slave_id, sh_dmae_slave_used);
	}

365 366 367 368 369 370 371
	spin_lock_bh(&sh_chan->desc_lock);

	list_splice_init(&sh_chan->ld_free, &list);
	sh_chan->descs_allocated = 0;

	spin_unlock_bh(&sh_chan->desc_lock);

372 373 374
	if (descs > 0)
		pm_runtime_put(sh_chan->dev);

375 376 377 378
	list_for_each_entry_safe(desc, _desc, &list, node)
		kfree(desc);
}

379
/**
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
 * sh_dmae_add_desc - get, set up and return one transfer descriptor
 * @sh_chan:	DMA channel
 * @flags:	DMA transfer flags
 * @dest:	destination DMA address, incremented when direction equals
 *		DMA_FROM_DEVICE or DMA_BIDIRECTIONAL
 * @src:	source DMA address, incremented when direction equals
 *		DMA_TO_DEVICE or DMA_BIDIRECTIONAL
 * @len:	DMA transfer length
 * @first:	if NULL, set to the current descriptor and cookie set to -EBUSY
 * @direction:	needed for slave DMA to decide which address to keep constant,
 *		equals DMA_BIDIRECTIONAL for MEMCPY
 * Returns 0 or an error
 * Locks: called with desc_lock held
 */
static struct sh_desc *sh_dmae_add_desc(struct sh_dmae_chan *sh_chan,
	unsigned long flags, dma_addr_t *dest, dma_addr_t *src, size_t *len,
	struct sh_desc **first, enum dma_data_direction direction)
397
{
398
	struct sh_desc *new;
399 400
	size_t copy_size;

401
	if (!*len)
402 403
		return NULL;

404 405 406 407
	/* Allocate the link descriptor from the free list */
	new = sh_dmae_get_desc(sh_chan);
	if (!new) {
		dev_err(sh_chan->dev, "No free link descriptor available\n");
408
		return NULL;
409
	}
410

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
	copy_size = min(*len, (size_t)SH_DMA_TCR_MAX + 1);

	new->hw.sar = *src;
	new->hw.dar = *dest;
	new->hw.tcr = copy_size;

	if (!*first) {
		/* First desc */
		new->async_tx.cookie = -EBUSY;
		*first = new;
	} else {
		/* Other desc - invisible to the user */
		new->async_tx.cookie = -EINVAL;
	}

426 427
	dev_dbg(sh_chan->dev,
		"chaining (%u/%u)@%x -> %x with %p, cookie %d, shift %d\n",
428
		copy_size, *len, *src, *dest, &new->async_tx,
429
		new->async_tx.cookie, sh_chan->xmit_shift);
430 431 432

	new->mark = DESC_PREPARED;
	new->async_tx.flags = flags;
433
	new->direction = direction;
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

	*len -= copy_size;
	if (direction == DMA_BIDIRECTIONAL || direction == DMA_TO_DEVICE)
		*src += copy_size;
	if (direction == DMA_BIDIRECTIONAL || direction == DMA_FROM_DEVICE)
		*dest += copy_size;

	return new;
}

/*
 * sh_dmae_prep_sg - prepare transfer descriptors from an SG list
 *
 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
 * converted to scatter-gather to guarantee consistent locking and a correct
 * list manipulation. For slave DMA direction carries the usual meaning, and,
 * logically, the SG list is RAM and the addr variable contains slave address,
 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_BIDIRECTIONAL
 * and the SG list contains only one element and points at the source buffer.
 */
static struct dma_async_tx_descriptor *sh_dmae_prep_sg(struct sh_dmae_chan *sh_chan,
	struct scatterlist *sgl, unsigned int sg_len, dma_addr_t *addr,
	enum dma_data_direction direction, unsigned long flags)
{
	struct scatterlist *sg;
	struct sh_desc *first = NULL, *new = NULL /* compiler... */;
	LIST_HEAD(tx_list);
	int chunks = 0;
	int i;

	if (!sg_len)
		return NULL;

	for_each_sg(sgl, sg, sg_len, i)
		chunks += (sg_dma_len(sg) + SH_DMA_TCR_MAX) /
			(SH_DMA_TCR_MAX + 1);
470

471 472 473 474 475 476 477 478 479 480 481 482 483 484
	/* Have to lock the whole loop to protect against concurrent release */
	spin_lock_bh(&sh_chan->desc_lock);

	/*
	 * Chaining:
	 * first descriptor is what user is dealing with in all API calls, its
	 *	cookie is at first set to -EBUSY, at tx-submit to a positive
	 *	number
	 * if more than one chunk is needed further chunks have cookie = -EINVAL
	 * the last chunk, if not equal to the first, has cookie = -ENOSPC
	 * all chunks are linked onto the tx_list head with their .node heads
	 *	only during this function, then they are immediately spliced
	 *	back onto the free list in form of a chain
	 */
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
	for_each_sg(sgl, sg, sg_len, i) {
		dma_addr_t sg_addr = sg_dma_address(sg);
		size_t len = sg_dma_len(sg);

		if (!len)
			goto err_get_desc;

		do {
			dev_dbg(sh_chan->dev, "Add SG #%d@%p[%d], dma %llx\n",
				i, sg, len, (unsigned long long)sg_addr);

			if (direction == DMA_FROM_DEVICE)
				new = sh_dmae_add_desc(sh_chan, flags,
						&sg_addr, addr, &len, &first,
						direction);
			else
				new = sh_dmae_add_desc(sh_chan, flags,
						addr, &sg_addr, &len, &first,
						direction);
			if (!new)
				goto err_get_desc;

			new->chunks = chunks--;
			list_add_tail(&new->node, &tx_list);
		} while (len);
	}
511

512 513
	if (new != first)
		new->async_tx.cookie = -ENOSPC;
514

515 516
	/* Put them back on the free list, so, they don't get lost */
	list_splice_tail(&tx_list, &sh_chan->ld_free);
517

518
	spin_unlock_bh(&sh_chan->desc_lock);
519

520
	return &first->async_tx;
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

err_get_desc:
	list_for_each_entry(new, &tx_list, node)
		new->mark = DESC_IDLE;
	list_splice(&tx_list, &sh_chan->ld_free);

	spin_unlock_bh(&sh_chan->desc_lock);

	return NULL;
}

static struct dma_async_tx_descriptor *sh_dmae_prep_memcpy(
	struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src,
	size_t len, unsigned long flags)
{
	struct sh_dmae_chan *sh_chan;
	struct scatterlist sg;

	if (!chan || !len)
		return NULL;

542 543
	chan->private = NULL;

544 545 546 547 548 549 550 551 552 553
	sh_chan = to_sh_chan(chan);

	sg_init_table(&sg, 1);
	sg_set_page(&sg, pfn_to_page(PFN_DOWN(dma_src)), len,
		    offset_in_page(dma_src));
	sg_dma_address(&sg) = dma_src;
	sg_dma_len(&sg) = len;

	return sh_dmae_prep_sg(sh_chan, &sg, 1, &dma_dest, DMA_BIDIRECTIONAL,
			       flags);
554 555
}

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
static struct dma_async_tx_descriptor *sh_dmae_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
	enum dma_data_direction direction, unsigned long flags)
{
	struct sh_dmae_slave *param;
	struct sh_dmae_chan *sh_chan;

	if (!chan)
		return NULL;

	sh_chan = to_sh_chan(chan);
	param = chan->private;

	/* Someone calling slave DMA on a public channel? */
	if (!param || !sg_len) {
		dev_warn(sh_chan->dev, "%s: bad parameter: %p, %d, %d\n",
			 __func__, param, sg_len, param ? param->slave_id : -1);
		return NULL;
	}

	/*
	 * if (param != NULL), this is a successfully requested slave channel,
	 * therefore param->config != NULL too.
	 */
	return sh_dmae_prep_sg(sh_chan, sgl, sg_len, &param->config->addr,
			       direction, flags);
}

static void sh_dmae_terminate_all(struct dma_chan *chan)
{
	struct sh_dmae_chan *sh_chan = to_sh_chan(chan);

	if (!chan)
		return;

591 592 593 594 595 596 597 598 599 600 601 602 603
	dmae_halt(sh_chan);

	spin_lock_bh(&sh_chan->desc_lock);
	if (!list_empty(&sh_chan->ld_queue)) {
		/* Record partial transfer */
		struct sh_desc *desc = list_entry(sh_chan->ld_queue.next,
						  struct sh_desc, node);
		desc->partial = (desc->hw.tcr - sh_dmae_readl(sh_chan, TCR)) <<
			sh_chan->xmit_shift;

	}
	spin_unlock_bh(&sh_chan->desc_lock);

604 605 606
	sh_dmae_chan_ld_cleanup(sh_chan, true);
}

607
static dma_async_tx_callback __ld_cleanup(struct sh_dmae_chan *sh_chan, bool all)
608 609
{
	struct sh_desc *desc, *_desc;
610 611 612 613 614
	/* Is the "exposed" head of a chain acked? */
	bool head_acked = false;
	dma_cookie_t cookie = 0;
	dma_async_tx_callback callback = NULL;
	void *param = NULL;
615 616 617

	spin_lock_bh(&sh_chan->desc_lock);
	list_for_each_entry_safe(desc, _desc, &sh_chan->ld_queue, node) {
618 619 620 621 622 623 624 625 626 627 628 629 630 631
		struct dma_async_tx_descriptor *tx = &desc->async_tx;

		BUG_ON(tx->cookie > 0 && tx->cookie != desc->cookie);
		BUG_ON(desc->mark != DESC_SUBMITTED &&
		       desc->mark != DESC_COMPLETED &&
		       desc->mark != DESC_WAITING);

		/*
		 * queue is ordered, and we use this loop to (1) clean up all
		 * completed descriptors, and to (2) update descriptor flags of
		 * any chunks in a (partially) completed chain
		 */
		if (!all && desc->mark == DESC_SUBMITTED &&
		    desc->cookie != cookie)
632 633
			break;

634 635
		if (tx->cookie > 0)
			cookie = tx->cookie;
636

637
		if (desc->mark == DESC_COMPLETED && desc->chunks == 1) {
638 639 640 641 642
			if (sh_chan->completed_cookie != desc->cookie - 1)
				dev_dbg(sh_chan->dev,
					"Completing cookie %d, expected %d\n",
					desc->cookie,
					sh_chan->completed_cookie + 1);
643 644
			sh_chan->completed_cookie = desc->cookie;
		}
645

646 647 648 649 650 651 652 653 654 655
		/* Call callback on the last chunk */
		if (desc->mark == DESC_COMPLETED && tx->callback) {
			desc->mark = DESC_WAITING;
			callback = tx->callback;
			param = tx->callback_param;
			dev_dbg(sh_chan->dev, "descriptor #%d@%p on %d callback\n",
				tx->cookie, tx, sh_chan->id);
			BUG_ON(desc->chunks != 1);
			break;
		}
656

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
		if (tx->cookie > 0 || tx->cookie == -EBUSY) {
			if (desc->mark == DESC_COMPLETED) {
				BUG_ON(tx->cookie < 0);
				desc->mark = DESC_WAITING;
			}
			head_acked = async_tx_test_ack(tx);
		} else {
			switch (desc->mark) {
			case DESC_COMPLETED:
				desc->mark = DESC_WAITING;
				/* Fall through */
			case DESC_WAITING:
				if (head_acked)
					async_tx_ack(&desc->async_tx);
			}
		}

		dev_dbg(sh_chan->dev, "descriptor %p #%d completed.\n",
			tx, tx->cookie);

		if (((desc->mark == DESC_COMPLETED ||
		      desc->mark == DESC_WAITING) &&
		     async_tx_test_ack(&desc->async_tx)) || all) {
			/* Remove from ld_queue list */
			desc->mark = DESC_IDLE;
			list_move(&desc->node, &sh_chan->ld_free);
683 684 685
		}
	}
	spin_unlock_bh(&sh_chan->desc_lock);
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701

	if (callback)
		callback(param);

	return callback;
}

/*
 * sh_chan_ld_cleanup - Clean up link descriptors
 *
 * This function cleans up the ld_queue of DMA channel.
 */
static void sh_dmae_chan_ld_cleanup(struct sh_dmae_chan *sh_chan, bool all)
{
	while (__ld_cleanup(sh_chan, all))
		;
702 703 704 705
}

static void sh_chan_xfer_ld_queue(struct sh_dmae_chan *sh_chan)
{
706
	struct sh_desc *desc;
707

708
	spin_lock_bh(&sh_chan->desc_lock);
709
	/* DMA work check */
710 711
	if (dmae_is_busy(sh_chan)) {
		spin_unlock_bh(&sh_chan->desc_lock);
712
		return;
713
	}
714

715
	/* Find the first not transferred desciptor */
716 717
	list_for_each_entry(desc, &sh_chan->ld_queue, node)
		if (desc->mark == DESC_SUBMITTED) {
718 719 720
			dev_dbg(sh_chan->dev, "Queue #%d to %d: %u@%x -> %x\n",
				desc->async_tx.cookie, sh_chan->id,
				desc->hw.tcr, desc->hw.sar, desc->hw.dar);
721
			/* Get the ld start address from ld_queue */
722
			dmae_set_reg(sh_chan, &desc->hw);
723 724 725 726 727
			dmae_start(sh_chan);
			break;
		}

	spin_unlock_bh(&sh_chan->desc_lock);
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
}

static void sh_dmae_memcpy_issue_pending(struct dma_chan *chan)
{
	struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
	sh_chan_xfer_ld_queue(sh_chan);
}

static enum dma_status sh_dmae_is_complete(struct dma_chan *chan,
					dma_cookie_t cookie,
					dma_cookie_t *done,
					dma_cookie_t *used)
{
	struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
	dma_cookie_t last_used;
	dma_cookie_t last_complete;
744
	enum dma_status status;
745

746
	sh_dmae_chan_ld_cleanup(sh_chan, false);
747 748 749

	last_used = chan->cookie;
	last_complete = sh_chan->completed_cookie;
750
	BUG_ON(last_complete < 0);
751 752 753 754 755 756 757

	if (done)
		*done = last_complete;

	if (used)
		*used = last_used;

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
	spin_lock_bh(&sh_chan->desc_lock);

	status = dma_async_is_complete(cookie, last_complete, last_used);

	/*
	 * If we don't find cookie on the queue, it has been aborted and we have
	 * to report error
	 */
	if (status != DMA_SUCCESS) {
		struct sh_desc *desc;
		status = DMA_ERROR;
		list_for_each_entry(desc, &sh_chan->ld_queue, node)
			if (desc->cookie == cookie) {
				status = DMA_IN_PROGRESS;
				break;
			}
	}

	spin_unlock_bh(&sh_chan->desc_lock);

	return status;
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
}

static irqreturn_t sh_dmae_interrupt(int irq, void *data)
{
	irqreturn_t ret = IRQ_NONE;
	struct sh_dmae_chan *sh_chan = (struct sh_dmae_chan *)data;
	u32 chcr = sh_dmae_readl(sh_chan, CHCR);

	if (chcr & CHCR_TE) {
		/* DMA stop */
		dmae_halt(sh_chan);

		ret = IRQ_HANDLED;
		tasklet_schedule(&sh_chan->tasklet);
	}

	return ret;
}

#if defined(CONFIG_CPU_SH4)
static irqreturn_t sh_dmae_err(int irq, void *data)
{
	struct sh_dmae_device *shdev = (struct sh_dmae_device *)data;
802
	int i;
803

804
	/* halt the dma controller */
805
	sh_dmae_ctl_stop(shdev);
806 807

	/* We cannot detect, which channel caused the error, have to reset all */
808
	for (i = 0; i < SH_DMAC_MAX_CHANNELS; i++) {
809 810 811 812 813 814 815 816 817 818 819
		struct sh_dmae_chan *sh_chan = shdev->chan[i];
		if (sh_chan) {
			struct sh_desc *desc;
			/* Stop the channel */
			dmae_halt(sh_chan);
			/* Complete all  */
			list_for_each_entry(desc, &sh_chan->ld_queue, node) {
				struct dma_async_tx_descriptor *tx = &desc->async_tx;
				desc->mark = DESC_IDLE;
				if (tx->callback)
					tx->callback(tx->callback_param);
820
			}
821
			list_splice_init(&sh_chan->ld_queue, &sh_chan->ld_free);
822 823
		}
	}
824
	sh_dmae_rst(shdev);
825 826

	return IRQ_HANDLED;
827 828 829 830 831 832
}
#endif

static void dmae_do_tasklet(unsigned long data)
{
	struct sh_dmae_chan *sh_chan = (struct sh_dmae_chan *)data;
833
	struct sh_desc *desc;
834
	u32 sar_buf = sh_dmae_readl(sh_chan, SAR);
835
	u32 dar_buf = sh_dmae_readl(sh_chan, DAR);
836

837 838
	spin_lock(&sh_chan->desc_lock);
	list_for_each_entry(desc, &sh_chan->ld_queue, node) {
839 840 841 842
		if (desc->mark == DESC_SUBMITTED &&
		    ((desc->direction == DMA_FROM_DEVICE &&
		      (desc->hw.dar + desc->hw.tcr) == dar_buf) ||
		     (desc->hw.sar + desc->hw.tcr) == sar_buf)) {
843 844 845 846
			dev_dbg(sh_chan->dev, "done #%d@%p dst %u\n",
				desc->async_tx.cookie, &desc->async_tx,
				desc->hw.dar);
			desc->mark = DESC_COMPLETED;
847 848 849
			break;
		}
	}
850
	spin_unlock(&sh_chan->desc_lock);
851 852 853

	/* Next desc */
	sh_chan_xfer_ld_queue(sh_chan);
854
	sh_dmae_chan_ld_cleanup(sh_chan, false);
855 856
}

857 858
static int __devinit sh_dmae_chan_probe(struct sh_dmae_device *shdev, int id,
					int irq, unsigned long flags)
859 860
{
	int err;
861 862
	struct sh_dmae_channel *chan_pdata = &shdev->pdata->channel[id];
	struct platform_device *pdev = to_platform_device(shdev->common.dev);
863 864 865 866 867
	struct sh_dmae_chan *new_sh_chan;

	/* alloc channel */
	new_sh_chan = kzalloc(sizeof(struct sh_dmae_chan), GFP_KERNEL);
	if (!new_sh_chan) {
868 869
		dev_err(shdev->common.dev,
			"No free memory for allocating dma channels!\n");
870 871 872
		return -ENOMEM;
	}

873 874 875
	/* copy struct dma_device */
	new_sh_chan->common.device = &shdev->common;

876 877
	new_sh_chan->dev = shdev->common.dev;
	new_sh_chan->id = id;
878 879
	new_sh_chan->irq = irq;
	new_sh_chan->base = shdev->chan_reg + chan_pdata->offset / sizeof(u32);
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898

	/* Init DMA tasklet */
	tasklet_init(&new_sh_chan->tasklet, dmae_do_tasklet,
			(unsigned long)new_sh_chan);

	/* Init the channel */
	dmae_init(new_sh_chan);

	spin_lock_init(&new_sh_chan->desc_lock);

	/* Init descripter manage list */
	INIT_LIST_HEAD(&new_sh_chan->ld_queue);
	INIT_LIST_HEAD(&new_sh_chan->ld_free);

	/* Add the channel to DMA device channel list */
	list_add_tail(&new_sh_chan->common.device_node,
			&shdev->common.channels);
	shdev->common.chancnt++;

899 900 901 902 903 904
	if (pdev->id >= 0)
		snprintf(new_sh_chan->dev_id, sizeof(new_sh_chan->dev_id),
			 "sh-dmae%d.%d", pdev->id, new_sh_chan->id);
	else
		snprintf(new_sh_chan->dev_id, sizeof(new_sh_chan->dev_id),
			 "sh-dma%d", new_sh_chan->id);
905 906

	/* set up channel irq */
907
	err = request_irq(irq, &sh_dmae_interrupt, flags,
908
			  new_sh_chan->dev_id, new_sh_chan);
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
	if (err) {
		dev_err(shdev->common.dev, "DMA channel %d request_irq error "
			"with return %d\n", id, err);
		goto err_no_irq;
	}

	shdev->chan[id] = new_sh_chan;
	return 0;

err_no_irq:
	/* remove from dmaengine device node */
	list_del(&new_sh_chan->common.device_node);
	kfree(new_sh_chan);
	return err;
}

static void sh_dmae_chan_remove(struct sh_dmae_device *shdev)
{
	int i;

	for (i = shdev->common.chancnt - 1 ; i >= 0 ; i--) {
		if (shdev->chan[i]) {
931 932 933
			struct sh_dmae_chan *sh_chan = shdev->chan[i];

			free_irq(sh_chan->irq, sh_chan);
934

935 936
			list_del(&sh_chan->common.device_node);
			kfree(sh_chan);
937 938 939 940 941 942 943 944
			shdev->chan[i] = NULL;
		}
	}
	shdev->common.chancnt = 0;
}

static int __init sh_dmae_probe(struct platform_device *pdev)
{
945 946
	struct sh_dmae_pdata *pdata = pdev->dev.platform_data;
	unsigned long irqflags = IRQF_DISABLED,
947 948
		chan_flag[SH_DMAC_MAX_CHANNELS] = {};
	int errirq, chan_irq[SH_DMAC_MAX_CHANNELS];
949
	int err, i, irq_cnt = 0, irqres = 0;
950
	struct sh_dmae_device *shdev;
951
	struct resource *chan, *dmars, *errirq_res, *chanirq_res;
952

953
	/* get platform data */
954
	if (!pdata || !pdata->channel_num)
955 956
		return -ENODEV;

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
	chan = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	/* DMARS area is optional, if absent, this controller cannot do slave DMA */
	dmars = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	/*
	 * IRQ resources:
	 * 1. there always must be at least one IRQ IO-resource. On SH4 it is
	 *    the error IRQ, in which case it is the only IRQ in this resource:
	 *    start == end. If it is the only IRQ resource, all channels also
	 *    use the same IRQ.
	 * 2. DMA channel IRQ resources can be specified one per resource or in
	 *    ranges (start != end)
	 * 3. iff all events (channels and, optionally, error) on this
	 *    controller use the same IRQ, only one IRQ resource can be
	 *    specified, otherwise there must be one IRQ per channel, even if
	 *    some of them are equal
	 * 4. if all IRQs on this controller are equal or if some specific IRQs
	 *    specify IORESOURCE_IRQ_SHAREABLE in their resources, they will be
	 *    requested with the IRQF_SHARED flag
	 */
	errirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
	if (!chan || !errirq_res)
		return -ENODEV;

	if (!request_mem_region(chan->start, resource_size(chan), pdev->name)) {
		dev_err(&pdev->dev, "DMAC register region already claimed\n");
		return -EBUSY;
	}

	if (dmars && !request_mem_region(dmars->start, resource_size(dmars), pdev->name)) {
		dev_err(&pdev->dev, "DMAC DMARS region already claimed\n");
		err = -EBUSY;
		goto ermrdmars;
	}

	err = -ENOMEM;
992 993
	shdev = kzalloc(sizeof(struct sh_dmae_device), GFP_KERNEL);
	if (!shdev) {
994 995 996 997 998 999 1000 1001 1002 1003 1004
		dev_err(&pdev->dev, "Not enough memory\n");
		goto ealloc;
	}

	shdev->chan_reg = ioremap(chan->start, resource_size(chan));
	if (!shdev->chan_reg)
		goto emapchan;
	if (dmars) {
		shdev->dmars = ioremap(dmars->start, resource_size(dmars));
		if (!shdev->dmars)
			goto emapdmars;
1005 1006 1007
	}

	/* platform data */
1008
	shdev->pdata = pdata;
1009

1010 1011 1012
	pm_runtime_enable(&pdev->dev);
	pm_runtime_get_sync(&pdev->dev);

1013
	/* reset dma controller */
1014
	err = sh_dmae_rst(shdev);
1015 1016 1017 1018 1019 1020
	if (err)
		goto rst_err;

	INIT_LIST_HEAD(&shdev->common.channels);

	dma_cap_set(DMA_MEMCPY, shdev->common.cap_mask);
1021 1022
	if (dmars)
		dma_cap_set(DMA_SLAVE, shdev->common.cap_mask);
1023

1024 1025 1026 1027 1028 1029
	shdev->common.device_alloc_chan_resources
		= sh_dmae_alloc_chan_resources;
	shdev->common.device_free_chan_resources = sh_dmae_free_chan_resources;
	shdev->common.device_prep_dma_memcpy = sh_dmae_prep_memcpy;
	shdev->common.device_is_tx_complete = sh_dmae_is_complete;
	shdev->common.device_issue_pending = sh_dmae_memcpy_issue_pending;
1030 1031 1032 1033 1034

	/* Compulsory for DMA_SLAVE fields */
	shdev->common.device_prep_slave_sg = sh_dmae_prep_slave_sg;
	shdev->common.device_terminate_all = sh_dmae_terminate_all;

1035
	shdev->common.dev = &pdev->dev;
1036
	/* Default transfer size of 32 bytes requires 32-byte alignment */
1037
	shdev->common.copy_align = LOG2_DEFAULT_XFER_SIZE;
1038 1039

#if defined(CONFIG_CPU_SH4)
1040 1041 1042 1043 1044 1045 1046 1047 1048
	chanirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 1);

	if (!chanirq_res)
		chanirq_res = errirq_res;
	else
		irqres++;

	if (chanirq_res == errirq_res ||
	    (errirq_res->flags & IORESOURCE_BITS) == IORESOURCE_IRQ_SHAREABLE)
1049
		irqflags = IRQF_SHARED;
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

	errirq = errirq_res->start;

	err = request_irq(errirq, sh_dmae_err, irqflags,
			  "DMAC Address Error", shdev);
	if (err) {
		dev_err(&pdev->dev,
			"DMA failed requesting irq #%d, error %d\n",
			errirq, err);
		goto eirq_err;
1060 1061
	}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
#else
	chanirq_res = errirq_res;
#endif /* CONFIG_CPU_SH4 */

	if (chanirq_res->start == chanirq_res->end &&
	    !platform_get_resource(pdev, IORESOURCE_IRQ, 1)) {
		/* Special case - all multiplexed */
		for (; irq_cnt < pdata->channel_num; irq_cnt++) {
			chan_irq[irq_cnt] = chanirq_res->start;
			chan_flag[irq_cnt] = IRQF_SHARED;
1072
		}
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	} else {
		do {
			for (i = chanirq_res->start; i <= chanirq_res->end; i++) {
				if ((errirq_res->flags & IORESOURCE_BITS) ==
				    IORESOURCE_IRQ_SHAREABLE)
					chan_flag[irq_cnt] = IRQF_SHARED;
				else
					chan_flag[irq_cnt] = IRQF_DISABLED;
				dev_dbg(&pdev->dev,
					"Found IRQ %d for channel %d\n",
					i, irq_cnt);
				chan_irq[irq_cnt++] = i;
			}
			chanirq_res = platform_get_resource(pdev,
						IORESOURCE_IRQ, ++irqres);
		} while (irq_cnt < pdata->channel_num && chanirq_res);
1089
	}
1090 1091 1092

	if (irq_cnt < pdata->channel_num)
		goto eirqres;
1093 1094

	/* Create DMA Channel */
1095 1096
	for (i = 0; i < pdata->channel_num; i++) {
		err = sh_dmae_chan_probe(shdev, i, chan_irq[i], chan_flag[i]);
1097 1098 1099 1100
		if (err)
			goto chan_probe_err;
	}

1101 1102
	pm_runtime_put(&pdev->dev);

1103 1104 1105 1106 1107 1108 1109
	platform_set_drvdata(pdev, shdev);
	dma_async_device_register(&shdev->common);

	return err;

chan_probe_err:
	sh_dmae_chan_remove(shdev);
1110 1111 1112
eirqres:
#if defined(CONFIG_CPU_SH4)
	free_irq(errirq, shdev);
1113
eirq_err:
1114
#endif
1115
rst_err:
1116
	pm_runtime_put(&pdev->dev);
1117 1118 1119 1120 1121
	if (dmars)
		iounmap(shdev->dmars);
emapdmars:
	iounmap(shdev->chan_reg);
emapchan:
1122
	kfree(shdev);
1123 1124 1125 1126 1127
ealloc:
	if (dmars)
		release_mem_region(dmars->start, resource_size(dmars));
ermrdmars:
	release_mem_region(chan->start, resource_size(chan));
1128 1129 1130 1131 1132 1133 1134

	return err;
}

static int __exit sh_dmae_remove(struct platform_device *pdev)
{
	struct sh_dmae_device *shdev = platform_get_drvdata(pdev);
1135 1136
	struct resource *res;
	int errirq = platform_get_irq(pdev, 0);
1137 1138 1139

	dma_async_device_unregister(&shdev->common);

1140 1141
	if (errirq > 0)
		free_irq(errirq, shdev);
1142 1143 1144 1145

	/* channel data remove */
	sh_dmae_chan_remove(shdev);

1146 1147
	pm_runtime_disable(&pdev->dev);

1148 1149 1150 1151
	if (shdev->dmars)
		iounmap(shdev->dmars);
	iounmap(shdev->chan_reg);

1152 1153
	kfree(shdev);

1154 1155 1156 1157 1158 1159 1160
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (res)
		release_mem_region(res->start, resource_size(res));
	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	if (res)
		release_mem_region(res->start, resource_size(res));

1161 1162 1163 1164 1165 1166
	return 0;
}

static void sh_dmae_shutdown(struct platform_device *pdev)
{
	struct sh_dmae_device *shdev = platform_get_drvdata(pdev);
1167
	sh_dmae_ctl_stop(shdev);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
}

static struct platform_driver sh_dmae_driver = {
	.remove		= __exit_p(sh_dmae_remove),
	.shutdown	= sh_dmae_shutdown,
	.driver = {
		.name	= "sh-dma-engine",
	},
};

static int __init sh_dmae_init(void)
{
	return platform_driver_probe(&sh_dmae_driver, sh_dmae_probe);
}
module_init(sh_dmae_init);

static void __exit sh_dmae_exit(void)
{
	platform_driver_unregister(&sh_dmae_driver);
}
module_exit(sh_dmae_exit);

MODULE_AUTHOR("Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>");
MODULE_DESCRIPTION("Renesas SH DMA Engine driver");
MODULE_LICENSE("GPL");