padlock-aes.c 15.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9
/* 
 * Cryptographic API.
 *
 * Support for VIA PadLock hardware crypto engine.
 *
 * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
 *
 */

10
#include <crypto/algapi.h>
11
#include <crypto/aes.h>
12
#include <crypto/padlock.h>
L
Linus Torvalds 已提交
13 14 15 16 17
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
18
#include <linux/kernel.h>
19 20
#include <linux/percpu.h>
#include <linux/smp.h>
21
#include <linux/slab.h>
22
#include <asm/cpu_device_id.h>
L
Linus Torvalds 已提交
23
#include <asm/byteorder.h>
24
#include <asm/processor.h>
25
#include <asm/i387.h>
L
Linus Torvalds 已提交
26

27 28 29 30
/*
 * Number of data blocks actually fetched for each xcrypt insn.
 * Processors with prefetch errata will fetch extra blocks.
 */
31
static unsigned int ecb_fetch_blocks = 2;
32
#define MAX_ECB_FETCH_BLOCKS (8)
33
#define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
34 35 36

static unsigned int cbc_fetch_blocks = 1;
#define MAX_CBC_FETCH_BLOCKS (4)
37 38
#define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)

39 40 41 42 43 44 45 46 47 48 49
/* Control word. */
struct cword {
	unsigned int __attribute__ ((__packed__))
		rounds:4,
		algo:3,
		keygen:1,
		interm:1,
		encdec:1,
		ksize:2;
} __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));

50 51
/* Whenever making any changes to the following
 * structure *make sure* you keep E, d_data
52 53 54 55 56
 * and cword aligned on 16 Bytes boundaries and
 * the Hardware can access 16 * 16 bytes of E and d_data
 * (only the first 15 * 16 bytes matter but the HW reads
 * more).
 */
L
Linus Torvalds 已提交
57
struct aes_ctx {
58 59 60 61
	u32 E[AES_MAX_KEYLENGTH_U32]
		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
	u32 d_data[AES_MAX_KEYLENGTH_U32]
		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
62 63 64 65
	struct {
		struct cword encrypt;
		struct cword decrypt;
	} cword;
66
	u32 *D;
L
Linus Torvalds 已提交
67 68
};

69
static DEFINE_PER_CPU(struct cword *, paes_last_cword);
70

L
Linus Torvalds 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83
/* Tells whether the ACE is capable to generate
   the extended key for a given key_len. */
static inline int
aes_hw_extkey_available(uint8_t key_len)
{
	/* TODO: We should check the actual CPU model/stepping
	         as it's possible that the capability will be
	         added in the next CPU revisions. */
	if (key_len == 16)
		return 1;
	return 0;
}

84
static inline struct aes_ctx *aes_ctx_common(void *ctx)
85
{
86
	unsigned long addr = (unsigned long)ctx;
87 88 89 90
	unsigned long align = PADLOCK_ALIGNMENT;

	if (align <= crypto_tfm_ctx_alignment())
		align = 1;
91
	return (struct aes_ctx *)ALIGN(addr, align);
92 93
}

94 95 96 97 98 99 100 101 102 103
static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
{
	return aes_ctx_common(crypto_tfm_ctx(tfm));
}

static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
{
	return aes_ctx_common(crypto_blkcipher_ctx(tfm));
}

104
static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
105
		       unsigned int key_len)
L
Linus Torvalds 已提交
106
{
107
	struct aes_ctx *ctx = aes_ctx(tfm);
108
	const __le32 *key = (const __le32 *)in_key;
109
	u32 *flags = &tfm->crt_flags;
110
	struct crypto_aes_ctx gen_aes;
111
	int cpu;
L
Linus Torvalds 已提交
112

113
	if (key_len % 8) {
L
Linus Torvalds 已提交
114 115 116 117
		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
		return -EINVAL;
	}

118 119 120 121 122
	/*
	 * If the hardware is capable of generating the extended key
	 * itself we must supply the plain key for both encryption
	 * and decryption.
	 */
123
	ctx->D = ctx->E;
L
Linus Torvalds 已提交
124

125 126 127 128
	ctx->E[0] = le32_to_cpu(key[0]);
	ctx->E[1] = le32_to_cpu(key[1]);
	ctx->E[2] = le32_to_cpu(key[2]);
	ctx->E[3] = le32_to_cpu(key[3]);
L
Linus Torvalds 已提交
129

130 131 132 133 134 135 136 137 138
	/* Prepare control words. */
	memset(&ctx->cword, 0, sizeof(ctx->cword));

	ctx->cword.decrypt.encdec = 1;
	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;

L
Linus Torvalds 已提交
139 140
	/* Don't generate extended keys if the hardware can do it. */
	if (aes_hw_extkey_available(key_len))
141
		goto ok;
L
Linus Torvalds 已提交
142

143 144 145 146
	ctx->D = ctx->d_data;
	ctx->cword.encrypt.keygen = 1;
	ctx->cword.decrypt.keygen = 1;

147 148 149
	if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) {
		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
		return -EINVAL;
L
Linus Torvalds 已提交
150 151
	}

152 153
	memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
	memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
154 155 156

ok:
	for_each_online_cpu(cpu)
157 158 159
		if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
		    &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
			per_cpu(paes_last_cword, cpu) = NULL;
160

L
Linus Torvalds 已提交
161 162 163 164 165
	return 0;
}

/* ====== Encryption/decryption routines ====== */

166
/* These are the real call to PadLock. */
167 168 169 170
static inline void padlock_reset_key(struct cword *cword)
{
	int cpu = raw_smp_processor_id();

171
	if (cword != per_cpu(paes_last_cword, cpu))
172
#ifndef CONFIG_X86_64
173
		asm volatile ("pushfl; popfl");
174 175 176
#else
		asm volatile ("pushfq; popfq");
#endif
177 178 179
}

static inline void padlock_store_cword(struct cword *cword)
180
{
181
	per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
182 183
}

184 185 186 187 188 189
/*
 * While the padlock instructions don't use FP/SSE registers, they
 * generate a spurious DNA fault when cr0.ts is '1'. These instructions
 * should be used only inside the irq_ts_save/restore() context
 */

190
static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
191
				  struct cword *control_word, int count)
192 193 194
{
	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
		      : "+S"(input), "+D"(output)
195
		      : "d"(control_word), "b"(key), "c"(count));
196 197
}

198 199 200 201 202 203 204 205 206 207
static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
				 u8 *iv, struct cword *control_word, int count)
{
	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
		      : "+S" (input), "+D" (output), "+a" (iv)
		      : "d" (control_word), "b" (key), "c" (count));
	return iv;
}

static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
208
			   struct cword *cword, int count)
209
{
210 211 212 213
	/*
	 * Padlock prefetches extra data so we must provide mapped input buffers.
	 * Assume there are at least 16 bytes of stack already in use.
	 */
214
	u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
215
	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
216

217
	memcpy(tmp, in, count * AES_BLOCK_SIZE);
218
	rep_xcrypt_ecb(tmp, out, key, cword, count);
219 220
}

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
			   u8 *iv, struct cword *cword, int count)
{
	/*
	 * Padlock prefetches extra data so we must provide mapped input buffers.
	 * Assume there are at least 16 bytes of stack already in use.
	 */
	u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);

	memcpy(tmp, in, count * AES_BLOCK_SIZE);
	return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
}

static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
236
			     struct cword *cword, int count)
237
{
238 239 240
	/* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
	 * We could avoid some copying here but it's probably not worth it.
	 */
241
	if (unlikely(((unsigned long)in & ~PAGE_MASK) + ecb_fetch_bytes > PAGE_SIZE)) {
242
		ecb_crypt_copy(in, out, key, cword, count);
243 244 245
		return;
	}

246 247 248 249 250 251 252
	rep_xcrypt_ecb(in, out, key, cword, count);
}

static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
			    u8 *iv, struct cword *cword, int count)
{
	/* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
253
	if (unlikely(((unsigned long)in & ~PAGE_MASK) + cbc_fetch_bytes > PAGE_SIZE))
254 255 256
		return cbc_crypt_copy(in, out, key, iv, cword, count);

	return rep_xcrypt_cbc(in, out, key, iv, cword, count);
257 258
}

259 260
static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
				      void *control_word, u32 count)
L
Linus Torvalds 已提交
261
{
262 263 264
	u32 initial = count & (ecb_fetch_blocks - 1);

	if (count < ecb_fetch_blocks) {
265
		ecb_crypt(input, output, key, control_word, count);
266 267 268
		return;
	}

269 270 271 272 273 274
	if (initial)
		asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
			      : "+S"(input), "+D"(output)
			      : "d"(control_word), "b"(key), "c"(initial));

	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
L
Linus Torvalds 已提交
275
		      : "+S"(input), "+D"(output)
276
		      : "d"(control_word), "b"(key), "c"(count - initial));
L
Linus Torvalds 已提交
277 278
}

279 280
static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
				     u8 *iv, void *control_word, u32 count)
281
{
282 283 284 285 286 287 288 289
	u32 initial = count & (cbc_fetch_blocks - 1);

	if (count < cbc_fetch_blocks)
		return cbc_crypt(input, output, key, iv, control_word, count);

	if (initial)
		asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
			      : "+S" (input), "+D" (output), "+a" (iv)
290
			      : "d" (control_word), "b" (key), "c" (initial));
291 292

	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
293
		      : "+S" (input), "+D" (output), "+a" (iv)
294
		      : "d" (control_word), "b" (key), "c" (count-initial));
295
	return iv;
296 297
}

298
static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
L
Linus Torvalds 已提交
299
{
300
	struct aes_ctx *ctx = aes_ctx(tfm);
301 302
	int ts_state;

303
	padlock_reset_key(&ctx->cword.encrypt);
304
	ts_state = irq_ts_save();
305
	ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
306
	irq_ts_restore(ts_state);
307
	padlock_store_cword(&ctx->cword.encrypt);
L
Linus Torvalds 已提交
308 309
}

310
static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
L
Linus Torvalds 已提交
311
{
312
	struct aes_ctx *ctx = aes_ctx(tfm);
313 314
	int ts_state;

315
	padlock_reset_key(&ctx->cword.encrypt);
316
	ts_state = irq_ts_save();
317
	ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
318
	irq_ts_restore(ts_state);
319
	padlock_store_cword(&ctx->cword.encrypt);
L
Linus Torvalds 已提交
320 321 322 323
}

static struct crypto_alg aes_alg = {
	.cra_name		=	"aes",
324
	.cra_driver_name	=	"aes-padlock",
325
	.cra_priority		=	PADLOCK_CRA_PRIORITY,
L
Linus Torvalds 已提交
326 327
	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
	.cra_blocksize		=	AES_BLOCK_SIZE,
328
	.cra_ctxsize		=	sizeof(struct aes_ctx),
329
	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
L
Linus Torvalds 已提交
330 331 332 333 334 335 336
	.cra_module		=	THIS_MODULE,
	.cra_u			=	{
		.cipher = {
			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
			.cia_setkey	   	= 	aes_set_key,
			.cia_encrypt	 	=	aes_encrypt,
337
			.cia_decrypt	  	=	aes_decrypt,
L
Linus Torvalds 已提交
338 339 340 341
		}
	}
};

342 343 344 345 346 347 348
static int ecb_aes_encrypt(struct blkcipher_desc *desc,
			   struct scatterlist *dst, struct scatterlist *src,
			   unsigned int nbytes)
{
	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
	struct blkcipher_walk walk;
	int err;
349
	int ts_state;
350

351
	padlock_reset_key(&ctx->cword.encrypt);
352

353 354 355
	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);

356
	ts_state = irq_ts_save();
357 358 359 360 361 362 363
	while ((nbytes = walk.nbytes)) {
		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
				   ctx->E, &ctx->cword.encrypt,
				   nbytes / AES_BLOCK_SIZE);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = blkcipher_walk_done(desc, &walk, nbytes);
	}
364
	irq_ts_restore(ts_state);
365

366 367
	padlock_store_cword(&ctx->cword.encrypt);

368 369 370 371 372 373 374 375 376 377
	return err;
}

static int ecb_aes_decrypt(struct blkcipher_desc *desc,
			   struct scatterlist *dst, struct scatterlist *src,
			   unsigned int nbytes)
{
	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
	struct blkcipher_walk walk;
	int err;
378
	int ts_state;
379

380
	padlock_reset_key(&ctx->cword.decrypt);
381

382 383 384
	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);

385
	ts_state = irq_ts_save();
386 387 388 389 390 391 392
	while ((nbytes = walk.nbytes)) {
		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
				   ctx->D, &ctx->cword.decrypt,
				   nbytes / AES_BLOCK_SIZE);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = blkcipher_walk_done(desc, &walk, nbytes);
	}
393
	irq_ts_restore(ts_state);
394 395 396

	padlock_store_cword(&ctx->cword.encrypt);

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	return err;
}

static struct crypto_alg ecb_aes_alg = {
	.cra_name		=	"ecb(aes)",
	.cra_driver_name	=	"ecb-aes-padlock",
	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY,
	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
	.cra_blocksize		=	AES_BLOCK_SIZE,
	.cra_ctxsize		=	sizeof(struct aes_ctx),
	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
	.cra_type		=	&crypto_blkcipher_type,
	.cra_module		=	THIS_MODULE,
	.cra_u			=	{
		.blkcipher = {
			.min_keysize		=	AES_MIN_KEY_SIZE,
			.max_keysize		=	AES_MAX_KEY_SIZE,
			.setkey	   		= 	aes_set_key,
			.encrypt		=	ecb_aes_encrypt,
			.decrypt		=	ecb_aes_decrypt,
		}
	}
};

static int cbc_aes_encrypt(struct blkcipher_desc *desc,
			   struct scatterlist *dst, struct scatterlist *src,
			   unsigned int nbytes)
{
	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
	struct blkcipher_walk walk;
	int err;
428
	int ts_state;
429

430
	padlock_reset_key(&ctx->cword.encrypt);
431

432 433 434
	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);

435
	ts_state = irq_ts_save();
436 437 438 439 440 441 442 443 444
	while ((nbytes = walk.nbytes)) {
		u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
					    walk.dst.virt.addr, ctx->E,
					    walk.iv, &ctx->cword.encrypt,
					    nbytes / AES_BLOCK_SIZE);
		memcpy(walk.iv, iv, AES_BLOCK_SIZE);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = blkcipher_walk_done(desc, &walk, nbytes);
	}
445
	irq_ts_restore(ts_state);
446

447 448
	padlock_store_cword(&ctx->cword.decrypt);

449 450 451 452 453 454 455 456 457 458
	return err;
}

static int cbc_aes_decrypt(struct blkcipher_desc *desc,
			   struct scatterlist *dst, struct scatterlist *src,
			   unsigned int nbytes)
{
	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
	struct blkcipher_walk walk;
	int err;
459
	int ts_state;
460

461
	padlock_reset_key(&ctx->cword.encrypt);
462

463 464 465
	blkcipher_walk_init(&walk, dst, src, nbytes);
	err = blkcipher_walk_virt(desc, &walk);

466
	ts_state = irq_ts_save();
467 468 469 470 471 472 473 474
	while ((nbytes = walk.nbytes)) {
		padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
				   ctx->D, walk.iv, &ctx->cword.decrypt,
				   nbytes / AES_BLOCK_SIZE);
		nbytes &= AES_BLOCK_SIZE - 1;
		err = blkcipher_walk_done(desc, &walk, nbytes);
	}

475
	irq_ts_restore(ts_state);
476 477 478

	padlock_store_cword(&ctx->cword.encrypt);

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
	return err;
}

static struct crypto_alg cbc_aes_alg = {
	.cra_name		=	"cbc(aes)",
	.cra_driver_name	=	"cbc-aes-padlock",
	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY,
	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
	.cra_blocksize		=	AES_BLOCK_SIZE,
	.cra_ctxsize		=	sizeof(struct aes_ctx),
	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
	.cra_type		=	&crypto_blkcipher_type,
	.cra_module		=	THIS_MODULE,
	.cra_u			=	{
		.blkcipher = {
			.min_keysize		=	AES_MIN_KEY_SIZE,
			.max_keysize		=	AES_MAX_KEY_SIZE,
			.ivsize			=	AES_BLOCK_SIZE,
			.setkey	   		= 	aes_set_key,
			.encrypt		=	cbc_aes_encrypt,
			.decrypt		=	cbc_aes_decrypt,
		}
	}
};

504 505 506 507 508 509
static struct x86_cpu_id padlock_cpu_id[] = {
	X86_FEATURE_MATCH(X86_FEATURE_XCRYPT),
	{}
};
MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);

510
static int __init padlock_init(void)
L
Linus Torvalds 已提交
511
{
512
	int ret;
513
	struct cpuinfo_x86 *c = &cpu_data(0);
514

515
	if (!x86_match_cpu(padlock_cpu_id))
516 517 518
		return -ENODEV;

	if (!cpu_has_xcrypt_enabled) {
519
		printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
520 521
		return -ENODEV;
	}
L
Linus Torvalds 已提交
522

523 524 525 526 527 528 529 530
	if ((ret = crypto_register_alg(&aes_alg)))
		goto aes_err;

	if ((ret = crypto_register_alg(&ecb_aes_alg)))
		goto ecb_aes_err;

	if ((ret = crypto_register_alg(&cbc_aes_alg)))
		goto cbc_aes_err;
531 532 533

	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");

534
	if (c->x86 == 6 && c->x86_model == 15 && c->x86_mask == 2) {
535 536
		ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
		cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
537 538 539
		printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
	}

540
out:
541
	return ret;
542 543 544 545 546 547 548 549

cbc_aes_err:
	crypto_unregister_alg(&ecb_aes_alg);
ecb_aes_err:
	crypto_unregister_alg(&aes_alg);
aes_err:
	printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
	goto out;
L
Linus Torvalds 已提交
550 551
}

552
static void __exit padlock_fini(void)
L
Linus Torvalds 已提交
553
{
554 555
	crypto_unregister_alg(&cbc_aes_alg);
	crypto_unregister_alg(&ecb_aes_alg);
L
Linus Torvalds 已提交
556 557
	crypto_unregister_alg(&aes_alg);
}
558 559 560 561 562 563 564 565

module_init(padlock_init);
module_exit(padlock_fini);

MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Michal Ludvig");

566
MODULE_ALIAS("aes");