cxgb4_main.c 135.7 KB
Newer Older
1 2 3
/*
 * This file is part of the Chelsio T4 Ethernet driver for Linux.
 *
4
 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/bitmap.h>
#include <linux/crc32.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/err.h>
#include <linux/etherdevice.h>
#include <linux/firmware.h>
44
#include <linux/if.h>
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#include <linux/if_vlan.h>
#include <linux/init.h>
#include <linux/log2.h>
#include <linux/mdio.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/aer.h>
#include <linux/rtnetlink.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/sockios.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include <net/neighbour.h>
#include <net/netevent.h>
63
#include <net/addrconf.h>
64
#include <net/bonding.h>
65
#include <net/addrconf.h>
66 67 68 69
#include <asm/uaccess.h>

#include "cxgb4.h"
#include "t4_regs.h"
70
#include "t4_values.h"
71 72
#include "t4_msg.h"
#include "t4fw_api.h"
73
#include "t4fw_version.h"
74
#include "cxgb4_dcb.h"
75
#include "cxgb4_debugfs.h"
76
#include "clip_tbl.h"
77 78
#include "l2t.h"

79 80
char cxgb4_driver_name[] = KBUILD_MODNAME;

81 82 83
#ifdef DRV_VERSION
#undef DRV_VERSION
#endif
84
#define DRV_VERSION "2.0.0-ko"
85
const char cxgb4_driver_version[] = DRV_VERSION;
86
#define DRV_DESC "Chelsio T4/T5 Network Driver"
87

V
Vipul Pandya 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
/* Host shadow copy of ingress filter entry.  This is in host native format
 * and doesn't match the ordering or bit order, etc. of the hardware of the
 * firmware command.  The use of bit-field structure elements is purely to
 * remind ourselves of the field size limitations and save memory in the case
 * where the filter table is large.
 */
struct filter_entry {
	/* Administrative fields for filter.
	 */
	u32 valid:1;            /* filter allocated and valid */
	u32 locked:1;           /* filter is administratively locked */

	u32 pending:1;          /* filter action is pending firmware reply */
	u32 smtidx:8;           /* Source MAC Table index for smac */
	struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */

	/* The filter itself.  Most of this is a straight copy of information
	 * provided by the extended ioctl().  Some fields are translated to
	 * internal forms -- for instance the Ingress Queue ID passed in from
	 * the ioctl() is translated into the Absolute Ingress Queue ID.
	 */
	struct ch_filter_specification fs;
};

112 113 114 115
#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)

116 117 118
/* Macros needed to support the PCI Device ID Table ...
 */
#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119
	static const struct pci_device_id cxgb4_pci_tbl[] = {
120
#define CH_PCI_DEVICE_ID_FUNCTION 0x4
121

122 123 124 125 126 127 128 129 130 131 132 133 134
/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
 * called for both.
 */
#define CH_PCI_DEVICE_ID_FUNCTION2 0x0

#define CH_PCI_ID_TABLE_ENTRY(devid) \
		{PCI_VDEVICE(CHELSIO, (devid)), 4}

#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
		{ 0, } \
	}

#include "t4_pci_id_tbl.h"
135

136
#define FW4_FNAME "cxgb4/t4fw.bin"
S
Santosh Rastapur 已提交
137
#define FW5_FNAME "cxgb4/t5fw.bin"
138
#define FW6_FNAME "cxgb4/t6fw.bin"
139
#define FW4_CFNAME "cxgb4/t4-config.txt"
S
Santosh Rastapur 已提交
140
#define FW5_CFNAME "cxgb4/t5-config.txt"
141
#define FW6_CFNAME "cxgb4/t6-config.txt"
142 143 144 145
#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
#define PHY_AQ1202_DEVICEID 0x4409
#define PHY_BCM84834_DEVICEID 0x4486
146 147 148 149 150 151

MODULE_DESCRIPTION(DRV_DESC);
MODULE_AUTHOR("Chelsio Communications");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(DRV_VERSION);
MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
152
MODULE_FIRMWARE(FW4_FNAME);
S
Santosh Rastapur 已提交
153
MODULE_FIRMWARE(FW5_FNAME);
154

155 156 157 158 159 160 161 162 163 164 165
/*
 * Normally we're willing to become the firmware's Master PF but will be happy
 * if another PF has already become the Master and initialized the adapter.
 * Setting "force_init" will cause this driver to forcibly establish itself as
 * the Master PF and initialize the adapter.
 */
static uint force_init;

module_param(force_init, uint, 0644);
MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter");

166 167 168 169 170 171 172 173 174
/*
 * Normally if the firmware we connect to has Configuration File support, we
 * use that and only fall back to the old Driver-based initialization if the
 * Configuration File fails for some reason.  If force_old_init is set, then
 * we'll always use the old Driver-based initialization sequence.
 */
static uint force_old_init;

module_param(force_old_init, uint, 0644);
175 176
MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated"
		 " parameter");
177

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
static int dflt_msg_enable = DFLT_MSG_ENABLE;

module_param(dflt_msg_enable, int, 0644);
MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");

/*
 * The driver uses the best interrupt scheme available on a platform in the
 * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
 * of these schemes the driver may consider as follows:
 *
 * msi = 2: choose from among all three options
 * msi = 1: only consider MSI and INTx interrupts
 * msi = 0: force INTx interrupts
 */
static int msi = 2;

module_param(msi, int, 0644);
MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");

/*
 * Queue interrupt hold-off timer values.  Queues default to the first of these
 * upon creation.
 */
static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };

module_param_array(intr_holdoff, uint, NULL, 0644);
MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
205
		 "0..4 in microseconds, deprecated parameter");
206 207 208 209 210

static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };

module_param_array(intr_cnt, uint, NULL, 0644);
MODULE_PARM_DESC(intr_cnt,
211 212
		 "thresholds 1..3 for queue interrupt packet counters, "
		 "deprecated parameter");
213

214 215 216 217 218 219 220 221 222 223 224 225 226 227
/*
 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
 * offset by 2 bytes in order to have the IP headers line up on 4-byte
 * boundaries.  This is a requirement for many architectures which will throw
 * a machine check fault if an attempt is made to access one of the 4-byte IP
 * header fields on a non-4-byte boundary.  And it's a major performance issue
 * even on some architectures which allow it like some implementations of the
 * x86 ISA.  However, some architectures don't mind this and for some very
 * edge-case performance sensitive applications (like forwarding large volumes
 * of small packets), setting this DMA offset to 0 will decrease the number of
 * PCI-E Bus transfers enough to measurably affect performance.
 */
static int rx_dma_offset = 2;

228
static bool vf_acls;
229 230 231

#ifdef CONFIG_PCI_IOV
module_param(vf_acls, bool, 0644);
232 233
MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, "
		 "deprecated parameter");
234

235 236
/* Configure the number of PCI-E Virtual Function which are to be instantiated
 * on SR-IOV Capable Physical Functions.
S
Santosh Rastapur 已提交
237
 */
238
static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
239 240

module_param_array(num_vf, uint, NULL, 0644);
241
MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
242 243
#endif

244 245 246 247 248 249 250 251 252 253 254
/* TX Queue select used to determine what algorithm to use for selecting TX
 * queue. Select between the kernel provided function (select_queue=0) or user
 * cxgb_select_queue function (select_queue=1)
 *
 * Default: select_queue=0
 */
static int select_queue;
module_param(select_queue, int, 0644);
MODULE_PARM_DESC(select_queue,
		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");

255
static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC;
256

V
Vipul Pandya 已提交
257
module_param(tp_vlan_pri_map, uint, 0644);
258 259
MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, "
		 "deprecated parameter");
V
Vipul Pandya 已提交
260

261 262 263 264
static struct dentry *cxgb4_debugfs_root;

static LIST_HEAD(adapter_list);
static DEFINE_MUTEX(uld_mutex);
265 266 267
/* Adapter list to be accessed from atomic context */
static LIST_HEAD(adap_rcu_list);
static DEFINE_SPINLOCK(adap_rcu_lock);
268 269 270 271 272 273 274 275 276 277 278 279 280 281
static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
static const char *uld_str[] = { "RDMA", "iSCSI" };

static void link_report(struct net_device *dev)
{
	if (!netif_carrier_ok(dev))
		netdev_info(dev, "link down\n");
	else {
		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };

		const char *s = "10Mbps";
		const struct port_info *p = netdev_priv(dev);

		switch (p->link_cfg.speed) {
282
		case 10000:
283 284
			s = "10Gbps";
			break;
285
		case 1000:
286 287
			s = "1000Mbps";
			break;
288
		case 100:
289 290
			s = "100Mbps";
			break;
291
		case 40000:
292 293
			s = "40Gbps";
			break;
294 295 296 297 298 299 300
		}

		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
			    fc[p->link_cfg.fc]);
	}
}

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
#ifdef CONFIG_CHELSIO_T4_DCB
/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;
	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
	int i;

	/* We use a simple mapping of Port TX Queue Index to DCB
	 * Priority when we're enabling DCB.
	 */
	for (i = 0; i < pi->nqsets; i++, txq++) {
		u32 name, value;
		int err;

317 318 319 320
		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
			FW_PARAMS_PARAM_X_V(
				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
321 322 323 324 325 326
		value = enable ? i : 0xffffffff;

		/* Since we can be called while atomic (from "interrupt
		 * level") we need to issue the Set Parameters Commannd
		 * without sleeping (timeout < 0).
		 */
327
		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
328 329
					    &name, &value,
					    -FW_CMD_MAX_TIMEOUT);
330 331 332 333 334

		if (err)
			dev_err(adap->pdev_dev,
				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
				enable ? "set" : "unset", pi->port_id, i, -err);
335 336
		else
			txq->dcb_prio = value;
337 338 339 340
	}
}
#endif /* CONFIG_CHELSIO_T4_DCB */

341 342 343 344 345 346 347 348
void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
{
	struct net_device *dev = adapter->port[port_id];

	/* Skip changes from disabled ports. */
	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
		if (link_stat)
			netif_carrier_on(dev);
349 350 351 352 353
		else {
#ifdef CONFIG_CHELSIO_T4_DCB
			cxgb4_dcb_state_init(dev);
			dcb_tx_queue_prio_enable(dev, false);
#endif /* CONFIG_CHELSIO_T4_DCB */
354
			netif_carrier_off(dev);
355
		}
356 357 358 359 360 361 362 363

		link_report(dev);
	}
}

void t4_os_portmod_changed(const struct adapter *adap, int port_id)
{
	static const char *mod_str[] = {
364
		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
365 366 367 368 369 370 371
	};

	const struct net_device *dev = adap->port[port_id];
	const struct port_info *pi = netdev_priv(dev);

	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
		netdev_info(dev, "port module unplugged\n");
372
	else if (pi->mod_type < ARRAY_SIZE(mod_str))
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
}

/*
 * Configure the exact and hash address filters to handle a port's multicast
 * and secondary unicast MAC addresses.
 */
static int set_addr_filters(const struct net_device *dev, bool sleep)
{
	u64 mhash = 0;
	u64 uhash = 0;
	bool free = true;
	u16 filt_idx[7];
	const u8 *addr[7];
	int ret, naddr = 0;
	const struct netdev_hw_addr *ha;
	int uc_cnt = netdev_uc_count(dev);
390
	int mc_cnt = netdev_mc_count(dev);
391
	const struct port_info *pi = netdev_priv(dev);
392
	unsigned int mb = pi->adapter->pf;
393 394 395 396 397

	/* first do the secondary unicast addresses */
	netdev_for_each_uc_addr(ha, dev) {
		addr[naddr++] = ha->addr;
		if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
398
			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
399 400 401 402 403 404 405 406 407 408
					naddr, addr, filt_idx, &uhash, sleep);
			if (ret < 0)
				return ret;

			free = false;
			naddr = 0;
		}
	}

	/* next set up the multicast addresses */
409 410 411
	netdev_for_each_mc_addr(ha, dev) {
		addr[naddr++] = ha->addr;
		if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
412
			ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
413 414 415 416 417 418 419 420 421
					naddr, addr, filt_idx, &mhash, sleep);
			if (ret < 0)
				return ret;

			free = false;
			naddr = 0;
		}
	}

422
	return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
423 424 425
				uhash | mhash, sleep);
}

426 427 428 429
int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
module_param(dbfifo_int_thresh, int, 0644);
MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");

430 431 432 433
/*
 * usecs to sleep while draining the dbfifo
 */
static int dbfifo_drain_delay = 1000;
434 435 436 437
module_param(dbfifo_drain_delay, int, 0644);
MODULE_PARM_DESC(dbfifo_drain_delay,
		 "usecs to sleep while draining the dbfifo");

438 439 440 441 442 443 444 445 446 447 448
/*
 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
 * If @mtu is -1 it is left unchanged.
 */
static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
{
	int ret;
	struct port_info *pi = netdev_priv(dev);

	ret = set_addr_filters(dev, sleep_ok);
	if (ret == 0)
449
		ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, mtu,
450
				    (dev->flags & IFF_PROMISC) ? 1 : 0,
451
				    (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
452 453 454 455 456 457 458 459 460 461 462 463 464 465
				    sleep_ok);
	return ret;
}

/**
 *	link_start - enable a port
 *	@dev: the port to enable
 *
 *	Performs the MAC and PHY actions needed to enable a port.
 */
static int link_start(struct net_device *dev)
{
	int ret;
	struct port_info *pi = netdev_priv(dev);
466
	unsigned int mb = pi->adapter->pf;
467 468 469 470 471

	/*
	 * We do not set address filters and promiscuity here, the stack does
	 * that step explicitly.
	 */
472
	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
473
			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
474
	if (ret == 0) {
475
		ret = t4_change_mac(pi->adapter, mb, pi->viid,
476
				    pi->xact_addr_filt, dev->dev_addr, true,
477
				    true);
478 479 480 481 482 483
		if (ret >= 0) {
			pi->xact_addr_filt = ret;
			ret = 0;
		}
	}
	if (ret == 0)
484
		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
485
				    &pi->link_cfg);
486 487
	if (ret == 0) {
		local_bh_disable();
488 489
		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
					  true, CXGB4_DCB_ENABLED);
490 491
		local_bh_enable();
	}
492

493 494 495
	return ret;
}

496 497 498 499 500
int cxgb4_dcb_enabled(const struct net_device *dev)
{
#ifdef CONFIG_CHELSIO_T4_DCB
	struct port_info *pi = netdev_priv(dev);

A
Anish Bhatt 已提交
501 502 503 504 505
	if (!pi->dcb.enabled)
		return 0;

	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
506 507 508 509 510 511 512 513 514 515
#else
	return 0;
#endif
}
EXPORT_SYMBOL(cxgb4_dcb_enabled);

#ifdef CONFIG_CHELSIO_T4_DCB
/* Handle a Data Center Bridging update message from the firmware. */
static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
{
516
	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
	struct net_device *dev = adap->port[port];
	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
	int new_dcb_enabled;

	cxgb4_dcb_handle_fw_update(adap, pcmd);
	new_dcb_enabled = cxgb4_dcb_enabled(dev);

	/* If the DCB has become enabled or disabled on the port then we're
	 * going to need to set up/tear down DCB Priority parameters for the
	 * TX Queues associated with the port.
	 */
	if (new_dcb_enabled != old_dcb_enabled)
		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
}
#endif /* CONFIG_CHELSIO_T4_DCB */

V
Vipul Pandya 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
/* Clear a filter and release any of its resources that we own.  This also
 * clears the filter's "pending" status.
 */
static void clear_filter(struct adapter *adap, struct filter_entry *f)
{
	/* If the new or old filter have loopback rewriteing rules then we'll
	 * need to free any existing Layer Two Table (L2T) entries of the old
	 * filter rule.  The firmware will handle freeing up any Source MAC
	 * Table (SMT) entries used for rewriting Source MAC Addresses in
	 * loopback rules.
	 */
	if (f->l2t)
		cxgb4_l2t_release(f->l2t);

	/* The zeroing of the filter rule below clears the filter valid,
	 * pending, locked flags, l2t pointer, etc. so it's all we need for
	 * this operation.
	 */
	memset(f, 0, sizeof(*f));
}

/* Handle a filter write/deletion reply.
 */
static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
{
	unsigned int idx = GET_TID(rpl);
	unsigned int nidx = idx - adap->tids.ftid_base;
	unsigned int ret;
	struct filter_entry *f;

	if (idx >= adap->tids.ftid_base && nidx <
	   (adap->tids.nftids + adap->tids.nsftids)) {
		idx = nidx;
566
		ret = TCB_COOKIE_G(rpl->cookie);
V
Vipul Pandya 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
		f = &adap->tids.ftid_tab[idx];

		if (ret == FW_FILTER_WR_FLT_DELETED) {
			/* Clear the filter when we get confirmation from the
			 * hardware that the filter has been deleted.
			 */
			clear_filter(adap, f);
		} else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
			dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
				idx);
			clear_filter(adap, f);
		} else if (ret == FW_FILTER_WR_FLT_ADDED) {
			f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
			f->pending = 0;  /* asynchronous setup completed */
			f->valid = 1;
		} else {
			/* Something went wrong.  Issue a warning about the
			 * problem and clear everything out.
			 */
			dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
				idx, ret);
			clear_filter(adap, f);
		}
	}
}

/* Response queue handler for the FW event queue.
594 595 596 597 598 599 600
 */
static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
			  const struct pkt_gl *gl)
{
	u8 opcode = ((const struct rss_header *)rsp)->opcode;

	rsp++;                                          /* skip RSS header */
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615

	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
	 */
	if (unlikely(opcode == CPL_FW4_MSG &&
	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
		rsp++;
		opcode = ((const struct rss_header *)rsp)->opcode;
		rsp++;
		if (opcode != CPL_SGE_EGR_UPDATE) {
			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
				, opcode);
			goto out;
		}
	}

616 617
	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
		const struct cpl_sge_egr_update *p = (void *)rsp;
618
		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
619
		struct sge_txq *txq;
620

621
		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
622
		txq->restarts++;
623
		if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
624 625 626 627 628 629 630 631 632 633 634 635 636
			struct sge_eth_txq *eq;

			eq = container_of(txq, struct sge_eth_txq, q);
			netif_tx_wake_queue(eq->txq);
		} else {
			struct sge_ofld_txq *oq;

			oq = container_of(txq, struct sge_ofld_txq, q);
			tasklet_schedule(&oq->qresume_tsk);
		}
	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
		const struct cpl_fw6_msg *p = (void *)rsp;

637 638
#ifdef CONFIG_CHELSIO_T4_DCB
		const struct fw_port_cmd *pcmd = (const void *)p->data;
639
		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
640
		unsigned int action =
641
			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
642 643 644

		if (cmd == FW_PORT_CMD &&
		    action == FW_PORT_ACTION_GET_PORT_INFO) {
645
			int port = FW_PORT_CMD_PORTID_G(
646 647 648
					be32_to_cpu(pcmd->op_to_portid));
			struct net_device *dev = q->adap->port[port];
			int state_input = ((pcmd->u.info.dcbxdis_pkd &
649
					    FW_PORT_CMD_DCBXDIS_F)
650 651 652 653 654 655 656 657 658 659 660 661 662
					   ? CXGB4_DCB_INPUT_FW_DISABLED
					   : CXGB4_DCB_INPUT_FW_ENABLED);

			cxgb4_dcb_state_fsm(dev, state_input);
		}

		if (cmd == FW_PORT_CMD &&
		    action == FW_PORT_ACTION_L2_DCB_CFG)
			dcb_rpl(q->adap, pcmd);
		else
#endif
			if (p->type == 0)
				t4_handle_fw_rpl(q->adap, p->data);
663 664 665 666
	} else if (opcode == CPL_L2T_WRITE_RPL) {
		const struct cpl_l2t_write_rpl *p = (void *)rsp;

		do_l2t_write_rpl(q->adap, p);
V
Vipul Pandya 已提交
667 668 669 670
	} else if (opcode == CPL_SET_TCB_RPL) {
		const struct cpl_set_tcb_rpl *p = (void *)rsp;

		filter_rpl(q->adap, p);
671 672 673
	} else
		dev_err(q->adap->pdev_dev,
			"unexpected CPL %#x on FW event queue\n", opcode);
674
out:
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
	return 0;
}

/**
 *	uldrx_handler - response queue handler for ULD queues
 *	@q: the response queue that received the packet
 *	@rsp: the response queue descriptor holding the offload message
 *	@gl: the gather list of packet fragments
 *
 *	Deliver an ingress offload packet to a ULD.  All processing is done by
 *	the ULD, we just maintain statistics.
 */
static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
			 const struct pkt_gl *gl)
{
	struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);

692 693 694 695 696 697
	/* FW can send CPLs encapsulated in a CPL_FW4_MSG.
	 */
	if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
	    ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
		rsp += 2;

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
	if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
		rxq->stats.nomem++;
		return -1;
	}
	if (gl == NULL)
		rxq->stats.imm++;
	else if (gl == CXGB4_MSG_AN)
		rxq->stats.an++;
	else
		rxq->stats.pkts++;
	return 0;
}

static void disable_msi(struct adapter *adapter)
{
	if (adapter->flags & USING_MSIX) {
		pci_disable_msix(adapter->pdev);
		adapter->flags &= ~USING_MSIX;
	} else if (adapter->flags & USING_MSI) {
		pci_disable_msi(adapter->pdev);
		adapter->flags &= ~USING_MSI;
	}
}

/*
 * Interrupt handler for non-data events used with MSI-X.
 */
static irqreturn_t t4_nondata_intr(int irq, void *cookie)
{
	struct adapter *adap = cookie;
728
	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
729

730
	if (v & PFSW_F) {
731
		adap->swintr = 1;
732
		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
733
	}
734 735
	if (adap->flags & MASTER_PF)
		t4_slow_intr_handler(adap);
736 737 738 739 740 741 742 743
	return IRQ_HANDLED;
}

/*
 * Name the MSI-X interrupts.
 */
static void name_msix_vecs(struct adapter *adap)
{
744
	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
745 746

	/* non-data interrupts */
747
	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
748 749

	/* FW events */
750 751
	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
		 adap->port[0]->name);
752 753 754 755 756 757

	/* Ethernet queues */
	for_each_port(adap, j) {
		struct net_device *d = adap->port[j];
		const struct port_info *pi = netdev_priv(d);

758
		for (i = 0; i < pi->nqsets; i++, msi_idx++)
759 760 761 762 763
			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
				 d->name, i);
	}

	/* offload queues */
764 765
	for_each_ofldrxq(&adap->sge, i)
		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d",
766
			 adap->port[0]->name, i);
767 768 769

	for_each_rdmarxq(&adap->sge, i)
		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
770
			 adap->port[0]->name, i);
771 772 773 774

	for_each_rdmaciq(&adap->sge, i)
		snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
			 adap->port[0]->name, i);
775 776 777 778 779
}

static int request_msix_queue_irqs(struct adapter *adap)
{
	struct sge *s = &adap->sge;
780 781
	int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
	int msi_index = 2;
782 783 784 785 786 787 788

	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
			  adap->msix_info[1].desc, &s->fw_evtq);
	if (err)
		return err;

	for_each_ethrxq(s, ethqidx) {
789 790 791
		err = request_irq(adap->msix_info[msi_index].vec,
				  t4_sge_intr_msix, 0,
				  adap->msix_info[msi_index].desc,
792 793 794
				  &s->ethrxq[ethqidx].rspq);
		if (err)
			goto unwind;
795
		msi_index++;
796 797
	}
	for_each_ofldrxq(s, ofldqidx) {
798 799 800
		err = request_irq(adap->msix_info[msi_index].vec,
				  t4_sge_intr_msix, 0,
				  adap->msix_info[msi_index].desc,
801 802 803
				  &s->ofldrxq[ofldqidx].rspq);
		if (err)
			goto unwind;
804
		msi_index++;
805 806
	}
	for_each_rdmarxq(s, rdmaqidx) {
807 808 809
		err = request_irq(adap->msix_info[msi_index].vec,
				  t4_sge_intr_msix, 0,
				  adap->msix_info[msi_index].desc,
810 811 812
				  &s->rdmarxq[rdmaqidx].rspq);
		if (err)
			goto unwind;
813
		msi_index++;
814
	}
815 816 817 818 819 820 821 822 823
	for_each_rdmaciq(s, rdmaciqqidx) {
		err = request_irq(adap->msix_info[msi_index].vec,
				  t4_sge_intr_msix, 0,
				  adap->msix_info[msi_index].desc,
				  &s->rdmaciq[rdmaciqqidx].rspq);
		if (err)
			goto unwind;
		msi_index++;
	}
824 825 826
	return 0;

unwind:
827 828 829
	while (--rdmaciqqidx >= 0)
		free_irq(adap->msix_info[--msi_index].vec,
			 &s->rdmaciq[rdmaciqqidx].rspq);
830
	while (--rdmaqidx >= 0)
831
		free_irq(adap->msix_info[--msi_index].vec,
832 833
			 &s->rdmarxq[rdmaqidx].rspq);
	while (--ofldqidx >= 0)
834
		free_irq(adap->msix_info[--msi_index].vec,
835 836
			 &s->ofldrxq[ofldqidx].rspq);
	while (--ethqidx >= 0)
837 838
		free_irq(adap->msix_info[--msi_index].vec,
			 &s->ethrxq[ethqidx].rspq);
839 840 841 842 843 844
	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
	return err;
}

static void free_msix_queue_irqs(struct adapter *adap)
{
845
	int i, msi_index = 2;
846 847 848 849
	struct sge *s = &adap->sge;

	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
	for_each_ethrxq(s, i)
850
		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
851
	for_each_ofldrxq(s, i)
852
		free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq);
853
	for_each_rdmarxq(s, i)
854
		free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
855 856
	for_each_rdmaciq(s, i)
		free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
857 858
}

859
/**
860
 *	cxgb4_write_rss - write the RSS table for a given port
861 862 863 864 865
 *	@pi: the port
 *	@queues: array of queue indices for RSS
 *
 *	Sets up the portion of the HW RSS table for the port's VI to distribute
 *	packets to the Rx queues in @queues.
866
 *	Should never be called before setting up sge eth rx queues
867
 */
868
int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
869 870 871
{
	u16 *rss;
	int i, err;
872 873
	struct adapter *adapter = pi->adapter;
	const struct sge_eth_rxq *rxq;
874

875
	rxq = &adapter->sge.ethrxq[pi->first_qset];
876 877 878 879 880 881
	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
	if (!rss)
		return -ENOMEM;

	/* map the queue indices to queue ids */
	for (i = 0; i < pi->rss_size; i++, queues++)
882
		rss[i] = rxq[*queues].rspq.abs_id;
883

884
	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
885
				  pi->rss_size, rss, pi->rss_size);
886 887 888 889 890 891 892 893 894 895 896 897 898
	/* If Tunnel All Lookup isn't specified in the global RSS
	 * Configuration, then we need to specify a default Ingress
	 * Queue for any ingress packets which aren't hashed.  We'll
	 * use our first ingress queue ...
	 */
	if (!err)
		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
				       rss[0]);
899 900 901 902
	kfree(rss);
	return err;
}

903 904 905 906
/**
 *	setup_rss - configure RSS
 *	@adap: the adapter
 *
907
 *	Sets up RSS for each port.
908 909 910
 */
static int setup_rss(struct adapter *adap)
{
911
	int i, j, err;
912 913 914 915

	for_each_port(adap, i) {
		const struct port_info *pi = adap2pinfo(adap, i);

916 917 918 919
		/* Fill default values with equal distribution */
		for (j = 0; j < pi->rss_size; j++)
			pi->rss[j] = j % pi->nqsets;

920
		err = cxgb4_write_rss(pi, pi->rss);
921 922 923 924 925 926
		if (err)
			return err;
	}
	return 0;
}

927 928 929 930 931 932 933 934 935
/*
 * Return the channel of the ingress queue with the given qid.
 */
static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
{
	qid -= p->ingr_start;
	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
}

936 937 938 939 940 941 942
/*
 * Wait until all NAPI handlers are descheduled.
 */
static void quiesce_rx(struct adapter *adap)
{
	int i;

943
	for (i = 0; i < adap->sge.ingr_sz; i++) {
944 945
		struct sge_rspq *q = adap->sge.ingr_map[i];

946
		if (q && q->handler) {
947
			napi_disable(&q->napi);
948 949 950 951 952 953
			local_bh_disable();
			while (!cxgb_poll_lock_napi(q))
				mdelay(1);
			local_bh_enable();
		}

954 955 956
	}
}

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
/* Disable interrupt and napi handler */
static void disable_interrupts(struct adapter *adap)
{
	if (adap->flags & FULL_INIT_DONE) {
		t4_intr_disable(adap);
		if (adap->flags & USING_MSIX) {
			free_msix_queue_irqs(adap);
			free_irq(adap->msix_info[0].vec, adap);
		} else {
			free_irq(adap->pdev->irq, adap);
		}
		quiesce_rx(adap);
	}
}

972 973 974 975 976 977 978
/*
 * Enable NAPI scheduling and interrupt generation for all Rx queues.
 */
static void enable_rx(struct adapter *adap)
{
	int i;

979
	for (i = 0; i < adap->sge.ingr_sz; i++) {
980 981 982 983
		struct sge_rspq *q = adap->sge.ingr_map[i];

		if (!q)
			continue;
984 985
		if (q->handler) {
			cxgb_busy_poll_init_lock(q);
986
			napi_enable(&q->napi);
987
		}
988
		/* 0-increment GTS to start the timer and enable interrupts */
989 990 991
		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
			     SEINTARM_V(q->intr_params) |
			     INGRESSQID_V(q->cntxt_id));
992 993 994
	}
}

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
			   unsigned int nq, unsigned int per_chan, int msi_idx,
			   u16 *ids)
{
	int i, err;

	for (i = 0; i < nq; i++, q++) {
		if (msi_idx > 0)
			msi_idx++;
		err = t4_sge_alloc_rxq(adap, &q->rspq, false,
				       adap->port[i / per_chan],
				       msi_idx, q->fl.size ? &q->fl : NULL,
1007
				       uldrx_handler, 0);
1008 1009 1010 1011 1012 1013 1014 1015 1016
		if (err)
			return err;
		memset(&q->stats, 0, sizeof(q->stats));
		if (ids)
			ids[i] = q->rspq.abs_id;
	}
	return 0;
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
/**
 *	setup_sge_queues - configure SGE Tx/Rx/response queues
 *	@adap: the adapter
 *
 *	Determines how many sets of SGE queues to use and initializes them.
 *	We support multiple queue sets per port if we have MSI-X, otherwise
 *	just one queue set per port.
 */
static int setup_sge_queues(struct adapter *adap)
{
	int err, msi_idx, i, j;
	struct sge *s = &adap->sge;

1030 1031
	bitmap_zero(s->starving_fl, s->egr_sz);
	bitmap_zero(s->txq_maperr, s->egr_sz);
1032 1033 1034 1035 1036

	if (adap->flags & USING_MSIX)
		msi_idx = 1;         /* vector 0 is for non-queue interrupts */
	else {
		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1037
				       NULL, NULL, -1);
1038 1039 1040 1041 1042
		if (err)
			return err;
		msi_idx = -((int)s->intrq.abs_id + 1);
	}

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	/* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
	 * don't forget to update the following which need to be
	 * synchronized to and changes here.
	 *
	 * 1. The calculations of MAX_INGQ in cxgb4.h.
	 *
	 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
	 *    to accommodate any new/deleted Ingress Queues
	 *    which need MSI-X Vectors.
	 *
	 * 3. Update sge_qinfo_show() to include information on the
	 *    new/deleted queues.
	 */
1056
	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1057
			       msi_idx, NULL, fwevtq_handler, -1);
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	if (err) {
freeout:	t4_free_sge_resources(adap);
		return err;
	}

	for_each_port(adap, i) {
		struct net_device *dev = adap->port[i];
		struct port_info *pi = netdev_priv(dev);
		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];

		for (j = 0; j < pi->nqsets; j++, q++) {
			if (msi_idx > 0)
				msi_idx++;
			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
					       msi_idx, &q->fl,
1074 1075 1076
					       t4_ethrx_handler,
					       t4_get_mps_bg_map(adap,
								 pi->tx_chan));
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
			if (err)
				goto freeout;
			q->rspq.idx = j;
			memset(&q->stats, 0, sizeof(q->stats));
		}
		for (j = 0; j < pi->nqsets; j++, t++) {
			err = t4_sge_alloc_eth_txq(adap, t, dev,
					netdev_get_tx_queue(dev, j),
					s->fw_evtq.cntxt_id);
			if (err)
				goto freeout;
		}
	}

	j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
	for_each_ofldrxq(s, i) {
1093 1094
		err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
					    adap->port[i / j],
1095 1096 1097 1098 1099
					    s->fw_evtq.cntxt_id);
		if (err)
			goto freeout;
	}

1100 1101 1102 1103 1104 1105 1106
#define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
	err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
	if (err) \
		goto freeout; \
	if (msi_idx > 0) \
		msi_idx += nq; \
} while (0)
1107

1108 1109
	ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq);
	ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
1110 1111
	j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
	ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
1112

1113
#undef ALLOC_OFLD_RXQS
1114

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	for_each_port(adap, i) {
		/*
		 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
		 * have RDMA queues, and that's the right value.
		 */
		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
					    s->fw_evtq.cntxt_id,
					    s->rdmarxq[i].rspq.cntxt_id);
		if (err)
			goto freeout;
	}

1127
	t4_write_reg(adap, is_t4(adap->params.chip) ?
1128 1129 1130 1131
				MPS_TRC_RSS_CONTROL_A :
				MPS_T5_TRC_RSS_CONTROL_A,
		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1132 1133 1134 1135 1136 1137 1138 1139 1140
	return 0;
}

/*
 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
 * The allocated memory is cleared.
 */
void *t4_alloc_mem(size_t size)
{
1141
	void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1142 1143

	if (!p)
E
Eric Dumazet 已提交
1144
		p = vzalloc(size);
1145 1146 1147 1148 1149 1150
	return p;
}

/*
 * Free memory allocated through alloc_mem().
 */
1151
void t4_free_mem(void *addr)
1152
{
1153
	kvfree(addr);
1154 1155
}

V
Vipul Pandya 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
/* Send a Work Request to write the filter at a specified index.  We construct
 * a Firmware Filter Work Request to have the work done and put the indicated
 * filter into "pending" mode which will prevent any further actions against
 * it till we get a reply from the firmware on the completion status of the
 * request.
 */
static int set_filter_wr(struct adapter *adapter, int fidx)
{
	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
	struct sk_buff *skb;
	struct fw_filter_wr *fwr;
	unsigned int ftid;

1169 1170 1171 1172
	skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

V
Vipul Pandya 已提交
1173 1174 1175 1176 1177 1178 1179
	/* If the new filter requires loopback Destination MAC and/or VLAN
	 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
	 * the filter.
	 */
	if (f->fs.newdmac || f->fs.newvlan) {
		/* allocate L2T entry for new filter */
		f->l2t = t4_l2t_alloc_switching(adapter->l2t);
1180 1181
		if (f->l2t == NULL) {
			kfree_skb(skb);
V
Vipul Pandya 已提交
1182
			return -EAGAIN;
1183
		}
V
Vipul Pandya 已提交
1184 1185 1186 1187
		if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan,
					f->fs.eport, f->fs.dmac)) {
			cxgb4_l2t_release(f->l2t);
			f->l2t = NULL;
1188
			kfree_skb(skb);
V
Vipul Pandya 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
			return -ENOMEM;
		}
	}

	ftid = adapter->tids.ftid_base + fidx;

	fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
	memset(fwr, 0, sizeof(*fwr));

	/* It would be nice to put most of the following in t4_hw.c but most
	 * of the work is translating the cxgbtool ch_filter_specification
	 * into the Work Request and the definition of that structure is
	 * currently in cxgbtool.h which isn't appropriate to pull into the
	 * common code.  We may eventually try to come up with a more neutral
	 * filter specification structure but for now it's easiest to simply
	 * put this fairly direct code in line ...
	 */
1206 1207
	fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
	fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
V
Vipul Pandya 已提交
1208
	fwr->tid_to_iq =
1209 1210 1211 1212
		htonl(FW_FILTER_WR_TID_V(ftid) |
		      FW_FILTER_WR_RQTYPE_V(f->fs.type) |
		      FW_FILTER_WR_NOREPLY_V(0) |
		      FW_FILTER_WR_IQ_V(f->fs.iq));
V
Vipul Pandya 已提交
1213
	fwr->del_filter_to_l2tix =
1214 1215 1216 1217 1218 1219 1220 1221 1222
		htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
		      FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
		      FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
		      FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
		      FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
		      FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
		      FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
		      FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
		      FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
V
Vipul Pandya 已提交
1223
					     f->fs.newvlan == VLAN_REWRITE) |
1224
		      FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
V
Vipul Pandya 已提交
1225
					    f->fs.newvlan == VLAN_REWRITE) |
1226 1227 1228 1229
		      FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
		      FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
		      FW_FILTER_WR_PRIO_V(f->fs.prio) |
		      FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
V
Vipul Pandya 已提交
1230 1231 1232
	fwr->ethtype = htons(f->fs.val.ethtype);
	fwr->ethtypem = htons(f->fs.mask.ethtype);
	fwr->frag_to_ovlan_vldm =
1233 1234 1235 1236 1237 1238
		(FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
		 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
		 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
		 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
		 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
		 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
V
Vipul Pandya 已提交
1239 1240
	fwr->smac_sel = 0;
	fwr->rx_chan_rx_rpl_iq =
1241 1242
		htons(FW_FILTER_WR_RX_CHAN_V(0) |
		      FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
V
Vipul Pandya 已提交
1243
	fwr->maci_to_matchtypem =
1244 1245 1246 1247 1248 1249 1250 1251
		htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
		      FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
		      FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
		      FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
		      FW_FILTER_WR_PORT_V(f->fs.val.iport) |
		      FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
		      FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
		      FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
V
Vipul Pandya 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	fwr->ptcl = f->fs.val.proto;
	fwr->ptclm = f->fs.mask.proto;
	fwr->ttyp = f->fs.val.tos;
	fwr->ttypm = f->fs.mask.tos;
	fwr->ivlan = htons(f->fs.val.ivlan);
	fwr->ivlanm = htons(f->fs.mask.ivlan);
	fwr->ovlan = htons(f->fs.val.ovlan);
	fwr->ovlanm = htons(f->fs.mask.ovlan);
	memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
	memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
	memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
	memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
	fwr->lp = htons(f->fs.val.lport);
	fwr->lpm = htons(f->fs.mask.lport);
	fwr->fp = htons(f->fs.val.fport);
	fwr->fpm = htons(f->fs.mask.fport);
	if (f->fs.newsmac)
		memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));

	/* Mark the filter as "pending" and ship off the Filter Work Request.
	 * When we get the Work Request Reply we'll clear the pending status.
	 */
	f->pending = 1;
	set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
	t4_ofld_send(adapter, skb);
	return 0;
}

/* Delete the filter at a specified index.
 */
static int del_filter_wr(struct adapter *adapter, int fidx)
{
	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
	struct sk_buff *skb;
	struct fw_filter_wr *fwr;
	unsigned int len, ftid;

	len = sizeof(*fwr);
	ftid = adapter->tids.ftid_base + fidx;

1292 1293 1294 1295
	skb = alloc_skb(len, GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

V
Vipul Pandya 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	fwr = (struct fw_filter_wr *)__skb_put(skb, len);
	t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);

	/* Mark the filter as "pending" and ship off the Filter Work Request.
	 * When we get the Work Request Reply we'll clear the pending status.
	 */
	f->pending = 1;
	t4_mgmt_tx(adapter, skb);
	return 0;
}

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
			     void *accel_priv, select_queue_fallback_t fallback)
{
	int txq;

#ifdef CONFIG_CHELSIO_T4_DCB
	/* If a Data Center Bridging has been successfully negotiated on this
	 * link then we'll use the skb's priority to map it to a TX Queue.
	 * The skb's priority is determined via the VLAN Tag Priority Code
	 * Point field.
	 */
	if (cxgb4_dcb_enabled(dev)) {
		u16 vlan_tci;
		int err;

		err = vlan_get_tag(skb, &vlan_tci);
		if (unlikely(err)) {
			if (net_ratelimit())
				netdev_warn(dev,
					    "TX Packet without VLAN Tag on DCB Link\n");
			txq = 0;
		} else {
			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
V
Varun Prakash 已提交
1330 1331 1332 1333
#ifdef CONFIG_CHELSIO_T4_FCOE
			if (skb->protocol == htons(ETH_P_FCOE))
				txq = skb->priority & 0x7;
#endif /* CONFIG_CHELSIO_T4_FCOE */
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
		}
		return txq;
	}
#endif /* CONFIG_CHELSIO_T4_DCB */

	if (select_queue) {
		txq = (skb_rx_queue_recorded(skb)
			? skb_get_rx_queue(skb)
			: smp_processor_id());

		while (unlikely(txq >= dev->real_num_tx_queues))
			txq -= dev->real_num_tx_queues;

		return txq;
	}

	return fallback(dev, skb) % dev->real_num_tx_queues;
}

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
static int closest_timer(const struct sge *s, int time)
{
	int i, delta, match = 0, min_delta = INT_MAX;

	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
		delta = time - s->timer_val[i];
		if (delta < 0)
			delta = -delta;
		if (delta < min_delta) {
			min_delta = delta;
			match = i;
		}
	}
	return match;
}

static int closest_thres(const struct sge *s, int thres)
{
	int i, delta, match = 0, min_delta = INT_MAX;

	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
		delta = thres - s->counter_val[i];
		if (delta < 0)
			delta = -delta;
		if (delta < min_delta) {
			min_delta = delta;
			match = i;
		}
	}
	return match;
}

/**
1386
 *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1387 1388 1389 1390 1391 1392 1393
 *	@q: the Rx queue
 *	@us: the hold-off time in us, or 0 to disable timer
 *	@cnt: the hold-off packet count, or 0 to disable counter
 *
 *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
 *	one of the two needs to be enabled for the queue to generate interrupts.
 */
1394 1395
int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
			       unsigned int us, unsigned int cnt)
1396
{
1397 1398
	struct adapter *adap = q->adap;

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	if ((us | cnt) == 0)
		cnt = 1;

	if (cnt) {
		int err;
		u32 v, new_idx;

		new_idx = closest_thres(&adap->sge, cnt);
		if (q->desc && q->pktcnt_idx != new_idx) {
			/* the queue has already been created, update it */
1409 1410 1411 1412
			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
			    FW_PARAMS_PARAM_X_V(
					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1413 1414
			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
					    &v, &new_idx);
1415 1416 1417 1418 1419 1420 1421
			if (err)
				return err;
		}
		q->pktcnt_idx = new_idx;
	}

	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1422
	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1423 1424 1425
	return 0;
}

1426
static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
D
Dimitris Michailidis 已提交
1427
{
1428
	const struct port_info *pi = netdev_priv(dev);
1429
	netdev_features_t changed = dev->features ^ features;
1430 1431
	int err;

1432
	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1433
		return 0;
1434

1435
	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1436
			    -1, -1, -1,
1437
			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1438
	if (unlikely(err))
1439
		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1440
	return err;
D
Dimitris Michailidis 已提交
1441 1442
}

B
Bill Pemberton 已提交
1443
static int setup_debugfs(struct adapter *adap)
1444 1445 1446 1447
{
	if (IS_ERR_OR_NULL(adap->debugfs_root))
		return -1;

1448 1449 1450
#ifdef CONFIG_DEBUG_FS
	t4_setup_debugfs(adap);
#endif
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	return 0;
}

/*
 * upper-layer driver support
 */

/*
 * Allocate an active-open TID and set it to the supplied value.
 */
int cxgb4_alloc_atid(struct tid_info *t, void *data)
{
	int atid = -1;

	spin_lock_bh(&t->atid_lock);
	if (t->afree) {
		union aopen_entry *p = t->afree;

V
Vipul Pandya 已提交
1469
		atid = (p - t->atid_tab) + t->atid_base;
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
		t->afree = p->next;
		p->data = data;
		t->atids_in_use++;
	}
	spin_unlock_bh(&t->atid_lock);
	return atid;
}
EXPORT_SYMBOL(cxgb4_alloc_atid);

/*
 * Release an active-open TID.
 */
void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
{
V
Vipul Pandya 已提交
1484
	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

	spin_lock_bh(&t->atid_lock);
	p->next = t->afree;
	t->afree = p;
	t->atids_in_use--;
	spin_unlock_bh(&t->atid_lock);
}
EXPORT_SYMBOL(cxgb4_free_atid);

/*
 * Allocate a server TID and set it to the supplied value.
 */
int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
{
	int stid;

	spin_lock_bh(&t->stid_lock);
	if (family == PF_INET) {
		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
		if (stid < t->nstids)
			__set_bit(stid, t->stid_bmap);
		else
			stid = -1;
	} else {
		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
		if (stid < 0)
			stid = -1;
	}
	if (stid >= 0) {
		t->stid_tab[stid].data = data;
		stid += t->stid_base;
1516 1517 1518 1519 1520 1521 1522 1523
		/* IPv6 requires max of 520 bits or 16 cells in TCAM
		 * This is equivalent to 4 TIDs. With CLIP enabled it
		 * needs 2 TIDs.
		 */
		if (family == PF_INET)
			t->stids_in_use++;
		else
			t->stids_in_use += 4;
1524 1525 1526 1527 1528 1529
	}
	spin_unlock_bh(&t->stid_lock);
	return stid;
}
EXPORT_SYMBOL(cxgb4_alloc_stid);

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
/* Allocate a server filter TID and set it to the supplied value.
 */
int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
{
	int stid;

	spin_lock_bh(&t->stid_lock);
	if (family == PF_INET) {
		stid = find_next_zero_bit(t->stid_bmap,
				t->nstids + t->nsftids, t->nstids);
		if (stid < (t->nstids + t->nsftids))
			__set_bit(stid, t->stid_bmap);
		else
			stid = -1;
	} else {
		stid = -1;
	}
	if (stid >= 0) {
		t->stid_tab[stid].data = data;
1549 1550
		stid -= t->nstids;
		stid += t->sftid_base;
1551 1552 1553 1554 1555 1556 1557 1558
		t->stids_in_use++;
	}
	spin_unlock_bh(&t->stid_lock);
	return stid;
}
EXPORT_SYMBOL(cxgb4_alloc_sftid);

/* Release a server TID.
1559 1560 1561
 */
void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
{
1562 1563 1564 1565 1566 1567 1568 1569
	/* Is it a server filter TID? */
	if (t->nsftids && (stid >= t->sftid_base)) {
		stid -= t->sftid_base;
		stid += t->nstids;
	} else {
		stid -= t->stid_base;
	}

1570 1571 1572 1573 1574 1575
	spin_lock_bh(&t->stid_lock);
	if (family == PF_INET)
		__clear_bit(stid, t->stid_bmap);
	else
		bitmap_release_region(t->stid_bmap, stid, 2);
	t->stid_tab[stid].data = NULL;
1576 1577 1578 1579
	if (family == PF_INET)
		t->stids_in_use--;
	else
		t->stids_in_use -= 4;
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	spin_unlock_bh(&t->stid_lock);
}
EXPORT_SYMBOL(cxgb4_free_stid);

/*
 * Populate a TID_RELEASE WR.  Caller must properly size the skb.
 */
static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
			   unsigned int tid)
{
	struct cpl_tid_release *req;

	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
	INIT_TP_WR(req, tid);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
}

/*
 * Queue a TID release request and if necessary schedule a work queue to
 * process it.
 */
1602 1603
static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
				    unsigned int tid)
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
{
	void **p = &t->tid_tab[tid];
	struct adapter *adap = container_of(t, struct adapter, tids);

	spin_lock_bh(&adap->tid_release_lock);
	*p = adap->tid_release_head;
	/* Low 2 bits encode the Tx channel number */
	adap->tid_release_head = (void **)((uintptr_t)p | chan);
	if (!adap->tid_release_task_busy) {
		adap->tid_release_task_busy = true;
1614
		queue_work(adap->workq, &adap->tid_release_task);
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	}
	spin_unlock_bh(&adap->tid_release_lock);
}

/*
 * Process the list of pending TID release requests.
 */
static void process_tid_release_list(struct work_struct *work)
{
	struct sk_buff *skb;
	struct adapter *adap;

	adap = container_of(work, struct adapter, tid_release_task);

	spin_lock_bh(&adap->tid_release_lock);
	while (adap->tid_release_head) {
		void **p = adap->tid_release_head;
		unsigned int chan = (uintptr_t)p & 3;
		p = (void *)p - chan;

		adap->tid_release_head = *p;
		*p = NULL;
		spin_unlock_bh(&adap->tid_release_lock);

		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
					 GFP_KERNEL)))
			schedule_timeout_uninterruptible(1);

		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
		t4_ofld_send(adap, skb);
		spin_lock_bh(&adap->tid_release_lock);
	}
	adap->tid_release_task_busy = false;
	spin_unlock_bh(&adap->tid_release_lock);
}

/*
 * Release a TID and inform HW.  If we are unable to allocate the release
 * message we defer to a work queue.
 */
void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
{
	void *old;
	struct sk_buff *skb;
	struct adapter *adap = container_of(t, struct adapter, tids);

	old = t->tid_tab[tid];
	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
	if (likely(skb)) {
		t->tid_tab[tid] = NULL;
		mk_tid_release(skb, chan, tid);
		t4_ofld_send(adap, skb);
	} else
		cxgb4_queue_tid_release(t, chan, tid);
	if (old)
		atomic_dec(&t->tids_in_use);
}
EXPORT_SYMBOL(cxgb4_remove_tid);

/*
 * Allocate and initialize the TID tables.  Returns 0 on success.
 */
static int tid_init(struct tid_info *t)
{
	size_t size;
V
Vipul Pandya 已提交
1680
	unsigned int stid_bmap_size;
1681
	unsigned int natids = t->natids;
1682
	struct adapter *adap = container_of(t, struct adapter, tids);
1683

1684
	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
V
Vipul Pandya 已提交
1685 1686
	size = t->ntids * sizeof(*t->tid_tab) +
	       natids * sizeof(*t->atid_tab) +
1687
	       t->nstids * sizeof(*t->stid_tab) +
1688
	       t->nsftids * sizeof(*t->stid_tab) +
V
Vipul Pandya 已提交
1689
	       stid_bmap_size * sizeof(long) +
1690 1691
	       t->nftids * sizeof(*t->ftid_tab) +
	       t->nsftids * sizeof(*t->ftid_tab);
V
Vipul Pandya 已提交
1692

1693 1694 1695 1696 1697 1698
	t->tid_tab = t4_alloc_mem(size);
	if (!t->tid_tab)
		return -ENOMEM;

	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1699
	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
V
Vipul Pandya 已提交
1700
	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	spin_lock_init(&t->stid_lock);
	spin_lock_init(&t->atid_lock);

	t->stids_in_use = 0;
	t->afree = NULL;
	t->atids_in_use = 0;
	atomic_set(&t->tids_in_use, 0);

	/* Setup the free list for atid_tab and clear the stid bitmap. */
	if (natids) {
		while (--natids)
			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
		t->afree = t->atid_tab;
	}
1715
	bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1716 1717
	/* Reserve stid 0 for T4/T5 adapters */
	if (!t->stid_base &&
1718
	    (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
1719 1720
		__set_bit(0, t->stid_bmap);

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	return 0;
}

/**
 *	cxgb4_create_server - create an IP server
 *	@dev: the device
 *	@stid: the server TID
 *	@sip: local IP address to bind server to
 *	@sport: the server's TCP port
 *	@queue: queue to direct messages from this server to
 *
 *	Create an IP server for the given port and address.
 *	Returns <0 on error and one of the %NET_XMIT_* values on success.
 */
int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1736 1737
			__be32 sip, __be16 sport, __be16 vlan,
			unsigned int queue)
1738 1739 1740 1741 1742
{
	unsigned int chan;
	struct sk_buff *skb;
	struct adapter *adap;
	struct cpl_pass_open_req *req;
1743
	int ret;
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

	adap = netdev2adap(dev);
	req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
	INIT_TP_WR(req, 0);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
	req->local_port = sport;
	req->peer_port = htons(0);
	req->local_ip = sip;
	req->peer_ip = htonl(0);
1757
	chan = rxq_to_chan(&adap->sge, queue);
1758
	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1759 1760
	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1761 1762
	ret = t4_mgmt_tx(adap, skb);
	return net_xmit_eval(ret);
1763 1764 1765
}
EXPORT_SYMBOL(cxgb4_create_server);

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
/*	cxgb4_create_server6 - create an IPv6 server
 *	@dev: the device
 *	@stid: the server TID
 *	@sip: local IPv6 address to bind server to
 *	@sport: the server's TCP port
 *	@queue: queue to direct messages from this server to
 *
 *	Create an IPv6 server for the given port and address.
 *	Returns <0 on error and one of the %NET_XMIT_* values on success.
 */
int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
			 const struct in6_addr *sip, __be16 sport,
			 unsigned int queue)
{
	unsigned int chan;
	struct sk_buff *skb;
	struct adapter *adap;
	struct cpl_pass_open_req6 *req;
	int ret;

	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

	adap = netdev2adap(dev);
	req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
	INIT_TP_WR(req, 0);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
	req->local_port = sport;
	req->peer_port = htons(0);
	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
	req->peer_ip_hi = cpu_to_be64(0);
	req->peer_ip_lo = cpu_to_be64(0);
	chan = rxq_to_chan(&adap->sge, queue);
1801
	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1802 1803
	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
	ret = t4_mgmt_tx(adap, skb);
	return net_xmit_eval(ret);
}
EXPORT_SYMBOL(cxgb4_create_server6);

int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
			unsigned int queue, bool ipv6)
{
	struct sk_buff *skb;
	struct adapter *adap;
	struct cpl_close_listsvr_req *req;
	int ret;

	adap = netdev2adap(dev);

	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
	if (!skb)
		return -ENOMEM;

	req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
	INIT_TP_WR(req, 0);
	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1826 1827
	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1828 1829 1830 1831 1832
	ret = t4_mgmt_tx(adap, skb);
	return net_xmit_eval(ret);
}
EXPORT_SYMBOL(cxgb4_remove_server);

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
/**
 *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
 *	@mtus: the HW MTU table
 *	@mtu: the target MTU
 *	@idx: index of selected entry in the MTU table
 *
 *	Returns the index and the value in the HW MTU table that is closest to
 *	but does not exceed @mtu, unless @mtu is smaller than any value in the
 *	table, in which case that smallest available value is selected.
 */
unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
			    unsigned int *idx)
{
	unsigned int i = 0;

	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
		++i;
	if (idx)
		*idx = i;
	return mtus[i];
}
EXPORT_SYMBOL(cxgb4_best_mtu);

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
/**
 *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
 *     @mtus: the HW MTU table
 *     @header_size: Header Size
 *     @data_size_max: maximum Data Segment Size
 *     @data_size_align: desired Data Segment Size Alignment (2^N)
 *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
 *
 *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
 *     MTU Table based solely on a Maximum MTU parameter, we break that
 *     parameter up into a Header Size and Maximum Data Segment Size, and
 *     provide a desired Data Segment Size Alignment.  If we find an MTU in
 *     the Hardware MTU Table which will result in a Data Segment Size with
 *     the requested alignment _and_ that MTU isn't "too far" from the
 *     closest MTU, then we'll return that rather than the closest MTU.
 */
unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
				    unsigned short header_size,
				    unsigned short data_size_max,
				    unsigned short data_size_align,
				    unsigned int *mtu_idxp)
{
	unsigned short max_mtu = header_size + data_size_max;
	unsigned short data_size_align_mask = data_size_align - 1;
	int mtu_idx, aligned_mtu_idx;

	/* Scan the MTU Table till we find an MTU which is larger than our
	 * Maximum MTU or we reach the end of the table.  Along the way,
	 * record the last MTU found, if any, which will result in a Data
	 * Segment Length matching the requested alignment.
	 */
	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
		unsigned short data_size = mtus[mtu_idx] - header_size;

		/* If this MTU minus the Header Size would result in a
		 * Data Segment Size of the desired alignment, remember it.
		 */
		if ((data_size & data_size_align_mask) == 0)
			aligned_mtu_idx = mtu_idx;

		/* If we're not at the end of the Hardware MTU Table and the
		 * next element is larger than our Maximum MTU, drop out of
		 * the loop.
		 */
		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
			break;
	}

	/* If we fell out of the loop because we ran to the end of the table,
	 * then we just have to use the last [largest] entry.
	 */
	if (mtu_idx == NMTUS)
		mtu_idx--;

	/* If we found an MTU which resulted in the requested Data Segment
	 * Length alignment and that's "not far" from the largest MTU which is
	 * less than or equal to the maximum MTU, then use that.
	 */
	if (aligned_mtu_idx >= 0 &&
	    mtu_idx - aligned_mtu_idx <= 1)
		mtu_idx = aligned_mtu_idx;

	/* If the caller has passed in an MTU Index pointer, pass the
	 * MTU Index back.  Return the MTU value.
	 */
	if (mtu_idxp)
		*mtu_idxp = mtu_idx;
	return mtus[mtu_idx];
}
EXPORT_SYMBOL(cxgb4_best_aligned_mtu);

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
/**
 *	cxgb4_port_chan - get the HW channel of a port
 *	@dev: the net device for the port
 *
 *	Return the HW Tx channel of the given port.
 */
unsigned int cxgb4_port_chan(const struct net_device *dev)
{
	return netdev2pinfo(dev)->tx_chan;
}
EXPORT_SYMBOL(cxgb4_port_chan);

1939 1940 1941
unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
{
	struct adapter *adap = netdev2adap(dev);
1942
	u32 v1, v2, lp_count, hp_count;
1943

1944 1945
	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1946
	if (is_t4(adap->params.chip)) {
1947 1948
		lp_count = LP_COUNT_G(v1);
		hp_count = HP_COUNT_G(v1);
1949
	} else {
1950 1951
		lp_count = LP_COUNT_T5_G(v1);
		hp_count = HP_COUNT_T5_G(v2);
1952 1953
	}
	return lpfifo ? lp_count : hp_count;
1954 1955 1956
}
EXPORT_SYMBOL(cxgb4_dbfifo_count);

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
/**
 *	cxgb4_port_viid - get the VI id of a port
 *	@dev: the net device for the port
 *
 *	Return the VI id of the given port.
 */
unsigned int cxgb4_port_viid(const struct net_device *dev)
{
	return netdev2pinfo(dev)->viid;
}
EXPORT_SYMBOL(cxgb4_port_viid);

/**
 *	cxgb4_port_idx - get the index of a port
 *	@dev: the net device for the port
 *
 *	Return the index of the given port.
 */
unsigned int cxgb4_port_idx(const struct net_device *dev)
{
	return netdev2pinfo(dev)->port_id;
}
EXPORT_SYMBOL(cxgb4_port_idx);

void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
			 struct tp_tcp_stats *v6)
{
	struct adapter *adap = pci_get_drvdata(pdev);

	spin_lock(&adap->stats_lock);
	t4_tp_get_tcp_stats(adap, v4, v6);
	spin_unlock(&adap->stats_lock);
}
EXPORT_SYMBOL(cxgb4_get_tcp_stats);

void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
		      const unsigned int *pgsz_order)
{
	struct adapter *adap = netdev2adap(dev);

1997 1998 1999 2000
	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
		     HPZ3_V(pgsz_order[3]));
2001 2002 2003
}
EXPORT_SYMBOL(cxgb4_iscsi_init);

2004 2005 2006 2007
int cxgb4_flush_eq_cache(struct net_device *dev)
{
	struct adapter *adap = netdev2adap(dev);

2008
	return t4_sge_ctxt_flush(adap, adap->mbox);
2009 2010 2011 2012 2013
}
EXPORT_SYMBOL(cxgb4_flush_eq_cache);

static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
{
2014
	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2015 2016 2017
	__be64 indices;
	int ret;

2018 2019 2020 2021 2022
	spin_lock(&adap->win0_lock);
	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
			   sizeof(indices), (__be32 *)&indices,
			   T4_MEMORY_READ);
	spin_unlock(&adap->win0_lock);
2023
	if (!ret) {
2024 2025
		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
	}
	return ret;
}

int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
			u16 size)
{
	struct adapter *adap = netdev2adap(dev);
	u16 hw_pidx, hw_cidx;
	int ret;

	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
	if (ret)
		goto out;

	if (pidx != hw_pidx) {
		u16 delta;
2043
		u32 val;
2044 2045 2046 2047 2048

		if (pidx >= hw_pidx)
			delta = pidx - hw_pidx;
		else
			delta = size - hw_pidx + pidx;
2049 2050 2051 2052 2053

		if (is_t4(adap->params.chip))
			val = PIDX_V(delta);
		else
			val = PIDX_T5_V(delta);
2054
		wmb();
2055 2056
		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
			     QID_V(qid) | val);
2057 2058 2059 2060 2061 2062
	}
out:
	return ret;
}
EXPORT_SYMBOL(cxgb4_sync_txq_pidx);

2063 2064 2065 2066
int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
{
	struct adapter *adap;
	u32 offset, memtype, memaddr;
2067
	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	u32 edc0_end, edc1_end, mc0_end, mc1_end;
	int ret;

	adap = netdev2adap(dev);

	offset = ((stag >> 8) * 32) + adap->vres.stag.start;

	/* Figure out where the offset lands in the Memory Type/Address scheme.
	 * This code assumes that the memory is laid out starting at offset 0
	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
	 * MC0, and some have both MC0 and MC1.
	 */
2081 2082 2083 2084 2085 2086
	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
	edc0_size = EDRAM0_SIZE_G(size) << 20;
	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
	edc1_size = EDRAM1_SIZE_G(size) << 20;
	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101

	edc0_end = edc0_size;
	edc1_end = edc0_end + edc1_size;
	mc0_end = edc1_end + mc0_size;

	if (offset < edc0_end) {
		memtype = MEM_EDC0;
		memaddr = offset;
	} else if (offset < edc1_end) {
		memtype = MEM_EDC1;
		memaddr = offset - edc0_end;
	} else {
		if (offset < mc0_end) {
			memtype = MEM_MC0;
			memaddr = offset - edc1_end;
2102
		} else if (is_t5(adap->params.chip)) {
2103 2104
			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2105 2106 2107 2108 2109 2110 2111 2112
			mc1_end = mc0_end + mc1_size;
			if (offset < mc1_end) {
				memtype = MEM_MC1;
				memaddr = offset - mc0_end;
			} else {
				/* offset beyond the end of any memory */
				goto err;
			}
2113 2114 2115
		} else {
			/* T4/T6 only has a single memory channel */
			goto err;
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
		}
	}

	spin_lock(&adap->win0_lock);
	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
	spin_unlock(&adap->win0_lock);
	return ret;

err:
	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
		stag, offset);
	return -EINVAL;
}
EXPORT_SYMBOL(cxgb4_read_tpte);

2131 2132 2133 2134 2135 2136
u64 cxgb4_read_sge_timestamp(struct net_device *dev)
{
	u32 hi, lo;
	struct adapter *adap;

	adap = netdev2adap(dev);
2137 2138
	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2139 2140 2141 2142 2143

	return ((u64)hi << 32) | (u64)lo;
}
EXPORT_SYMBOL(cxgb4_read_sge_timestamp);

2144 2145 2146
int cxgb4_bar2_sge_qregs(struct net_device *dev,
			 unsigned int qid,
			 enum cxgb4_bar2_qtype qtype,
2147
			 int user,
2148 2149 2150
			 u64 *pbar2_qoffset,
			 unsigned int *pbar2_qid)
{
2151
	return t4_bar2_sge_qregs(netdev2adap(dev),
2152 2153 2154 2155
				 qid,
				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
				  ? T4_BAR2_QTYPE_EGRESS
				  : T4_BAR2_QTYPE_INGRESS),
2156
				 user,
2157 2158 2159 2160 2161
				 pbar2_qoffset,
				 pbar2_qid);
}
EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
static struct pci_driver cxgb4_driver;

static void check_neigh_update(struct neighbour *neigh)
{
	const struct device *parent;
	const struct net_device *netdev = neigh->dev;

	if (netdev->priv_flags & IFF_802_1Q_VLAN)
		netdev = vlan_dev_real_dev(netdev);
	parent = netdev->dev.parent;
	if (parent && parent->driver == &cxgb4_driver.driver)
		t4_l2t_update(dev_get_drvdata(parent), neigh);
}

static int netevent_cb(struct notifier_block *nb, unsigned long event,
		       void *data)
{
	switch (event) {
	case NETEVENT_NEIGH_UPDATE:
		check_neigh_update(data);
		break;
	case NETEVENT_REDIRECT:
	default:
		break;
	}
	return 0;
}

static bool netevent_registered;
static struct notifier_block cxgb4_netevent_nb = {
	.notifier_call = netevent_cb
};

2195 2196
static void drain_db_fifo(struct adapter *adap, int usecs)
{
2197
	u32 v1, v2, lp_count, hp_count;
2198 2199

	do {
2200 2201
		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2202
		if (is_t4(adap->params.chip)) {
2203 2204
			lp_count = LP_COUNT_G(v1);
			hp_count = HP_COUNT_G(v1);
2205
		} else {
2206 2207
			lp_count = LP_COUNT_T5_G(v1);
			hp_count = HP_COUNT_T5_G(v2);
2208 2209 2210 2211
		}

		if (lp_count == 0 && hp_count == 0)
			break;
2212 2213 2214 2215 2216 2217 2218
		set_current_state(TASK_UNINTERRUPTIBLE);
		schedule_timeout(usecs_to_jiffies(usecs));
	} while (1);
}

static void disable_txq_db(struct sge_txq *q)
{
2219 2220 2221
	unsigned long flags;

	spin_lock_irqsave(&q->db_lock, flags);
2222
	q->db_disabled = 1;
2223
	spin_unlock_irqrestore(&q->db_lock, flags);
2224 2225
}

2226
static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2227 2228
{
	spin_lock_irq(&q->db_lock);
2229 2230 2231 2232 2233
	if (q->db_pidx_inc) {
		/* Make sure that all writes to the TX descriptors
		 * are committed before we tell HW about them.
		 */
		wmb();
2234 2235
		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2236 2237
		q->db_pidx_inc = 0;
	}
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
	q->db_disabled = 0;
	spin_unlock_irq(&q->db_lock);
}

static void disable_dbs(struct adapter *adap)
{
	int i;

	for_each_ethrxq(&adap->sge, i)
		disable_txq_db(&adap->sge.ethtxq[i].q);
	for_each_ofldrxq(&adap->sge, i)
		disable_txq_db(&adap->sge.ofldtxq[i].q);
	for_each_port(adap, i)
		disable_txq_db(&adap->sge.ctrlq[i].q);
}

static void enable_dbs(struct adapter *adap)
{
	int i;

	for_each_ethrxq(&adap->sge, i)
2259
		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2260
	for_each_ofldrxq(&adap->sge, i)
2261
		enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2262
	for_each_port(adap, i)
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
}

static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
{
	if (adap->uld_handle[CXGB4_ULD_RDMA])
		ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
				cmd);
}

static void process_db_full(struct work_struct *work)
{
	struct adapter *adap;

	adap = container_of(work, struct adapter, db_full_task);

	drain_db_fifo(adap, dbfifo_drain_delay);
	enable_dbs(adap);
	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2282 2283 2284 2285 2286 2287 2288
	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
	else
		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2289 2290 2291 2292 2293 2294 2295
}

static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
{
	u16 hw_pidx, hw_cidx;
	int ret;

2296
	spin_lock_irq(&q->db_lock);
2297 2298 2299 2300 2301
	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
	if (ret)
		goto out;
	if (q->db_pidx != hw_pidx) {
		u16 delta;
2302
		u32 val;
2303 2304 2305 2306 2307

		if (q->db_pidx >= hw_pidx)
			delta = q->db_pidx - hw_pidx;
		else
			delta = q->size - hw_pidx + q->db_pidx;
2308 2309 2310 2311 2312

		if (is_t4(adap->params.chip))
			val = PIDX_V(delta);
		else
			val = PIDX_T5_V(delta);
2313
		wmb();
2314 2315
		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
			     QID_V(q->cntxt_id) | val);
2316 2317 2318
	}
out:
	q->db_disabled = 0;
2319 2320
	q->db_pidx_inc = 0;
	spin_unlock_irq(&q->db_lock);
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
	if (ret)
		CH_WARN(adap, "DB drop recovery failed.\n");
}
static void recover_all_queues(struct adapter *adap)
{
	int i;

	for_each_ethrxq(&adap->sge, i)
		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
	for_each_ofldrxq(&adap->sge, i)
		sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
	for_each_port(adap, i)
		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
}

2336 2337 2338 2339
static void process_db_drop(struct work_struct *work)
{
	struct adapter *adap;

2340
	adap = container_of(work, struct adapter, db_drop_task);
2341

2342
	if (is_t4(adap->params.chip)) {
2343
		drain_db_fifo(adap, dbfifo_drain_delay);
2344
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2345
		drain_db_fifo(adap, dbfifo_drain_delay);
2346
		recover_all_queues(adap);
2347
		drain_db_fifo(adap, dbfifo_drain_delay);
2348
		enable_dbs(adap);
2349
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2350
	} else if (is_t5(adap->params.chip)) {
2351 2352 2353
		u32 dropped_db = t4_read_reg(adap, 0x010ac);
		u16 qid = (dropped_db >> 15) & 0x1ffff;
		u16 pidx_inc = dropped_db & 0x1fff;
2354 2355 2356
		u64 bar2_qoffset;
		unsigned int bar2_qid;
		int ret;
2357

2358
		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2359
					0, &bar2_qoffset, &bar2_qid);
2360 2361 2362 2363
		if (ret)
			dev_err(adap->pdev_dev, "doorbell drop recovery: "
				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
		else
2364
			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2365
			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2366 2367 2368 2369 2370

		/* Re-enable BAR2 WC */
		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
	}

2371 2372
	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2373 2374 2375 2376
}

void t4_db_full(struct adapter *adap)
{
2377
	if (is_t4(adap->params.chip)) {
2378 2379
		disable_dbs(adap);
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2380 2381
		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2382
		queue_work(adap->workq, &adap->db_full_task);
2383
	}
2384 2385 2386 2387
}

void t4_db_dropped(struct adapter *adap)
{
2388 2389 2390 2391
	if (is_t4(adap->params.chip)) {
		disable_dbs(adap);
		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
	}
2392
	queue_work(adap->workq, &adap->db_drop_task);
2393 2394
}

2395 2396 2397 2398
static void uld_attach(struct adapter *adap, unsigned int uld)
{
	void *handle;
	struct cxgb4_lld_info lli;
2399
	unsigned short i;
2400 2401

	lli.pdev = adap->pdev;
2402
	lli.pf = adap->pf;
2403 2404 2405 2406 2407 2408 2409
	lli.l2t = adap->l2t;
	lli.tids = &adap->tids;
	lli.ports = adap->port;
	lli.vr = &adap->vres;
	lli.mtus = adap->params.mtus;
	if (uld == CXGB4_ULD_RDMA) {
		lli.rxq_ids = adap->sge.rdma_rxq;
2410
		lli.ciq_ids = adap->sge.rdma_ciq;
2411
		lli.nrxq = adap->sge.rdmaqs;
2412
		lli.nciq = adap->sge.rdmaciqs;
2413 2414 2415 2416 2417 2418 2419 2420
	} else if (uld == CXGB4_ULD_ISCSI) {
		lli.rxq_ids = adap->sge.ofld_rxq;
		lli.nrxq = adap->sge.ofldqsets;
	}
	lli.ntxq = adap->sge.ofldqsets;
	lli.nchan = adap->params.nports;
	lli.nports = adap->params.nports;
	lli.wr_cred = adap->params.ofldq_wr_cred;
2421
	lli.adapter_type = adap->params.chip;
2422
	lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2423
	lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2424 2425
	lli.udb_density = 1 << adap->params.sge.eq_qpp;
	lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2426
	lli.filt_mode = adap->params.tp.vlan_pri_map;
2427 2428 2429
	/* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
	for (i = 0; i < NCHAN; i++)
		lli.tx_modq[i] = i;
2430 2431
	lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
	lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2432
	lli.fw_vers = adap->params.fw_vers;
2433
	lli.dbfifo_int_thresh = dbfifo_int_thresh;
2434 2435
	lli.sge_ingpadboundary = adap->sge.fl_align;
	lli.sge_egrstatuspagesize = adap->sge.stat_len;
2436 2437
	lli.sge_pktshift = adap->sge.pktshift;
	lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2438 2439
	lli.max_ordird_qp = adap->params.max_ordird_qp;
	lli.max_ird_adapter = adap->params.max_ird_adapter;
2440
	lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2441
	lli.nodeid = dev_to_node(adap->pdev_dev);
2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456

	handle = ulds[uld].add(&lli);
	if (IS_ERR(handle)) {
		dev_warn(adap->pdev_dev,
			 "could not attach to the %s driver, error %ld\n",
			 uld_str[uld], PTR_ERR(handle));
		return;
	}

	adap->uld_handle[uld] = handle;

	if (!netevent_registered) {
		register_netevent_notifier(&cxgb4_netevent_nb);
		netevent_registered = true;
	}
2457 2458 2459

	if (adap->flags & FULL_INIT_DONE)
		ulds[uld].state_change(handle, CXGB4_STATE_UP);
2460 2461 2462 2463 2464 2465
}

static void attach_ulds(struct adapter *adap)
{
	unsigned int i;

2466 2467 2468 2469
	spin_lock(&adap_rcu_lock);
	list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
	spin_unlock(&adap_rcu_lock);

2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
	mutex_lock(&uld_mutex);
	list_add_tail(&adap->list_node, &adapter_list);
	for (i = 0; i < CXGB4_ULD_MAX; i++)
		if (ulds[i].add)
			uld_attach(adap, i);
	mutex_unlock(&uld_mutex);
}

static void detach_ulds(struct adapter *adap)
{
	unsigned int i;

	mutex_lock(&uld_mutex);
	list_del(&adap->list_node);
	for (i = 0; i < CXGB4_ULD_MAX; i++)
		if (adap->uld_handle[i]) {
			ulds[i].state_change(adap->uld_handle[i],
					     CXGB4_STATE_DETACH);
			adap->uld_handle[i] = NULL;
		}
	if (netevent_registered && list_empty(&adapter_list)) {
		unregister_netevent_notifier(&cxgb4_netevent_nb);
		netevent_registered = false;
	}
	mutex_unlock(&uld_mutex);
2495 2496 2497 2498

	spin_lock(&adap_rcu_lock);
	list_del_rcu(&adap->rcu_node);
	spin_unlock(&adap_rcu_lock);
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
}

static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
{
	unsigned int i;

	mutex_lock(&uld_mutex);
	for (i = 0; i < CXGB4_ULD_MAX; i++)
		if (adap->uld_handle[i])
			ulds[i].state_change(adap->uld_handle[i], new_state);
	mutex_unlock(&uld_mutex);
}

/**
 *	cxgb4_register_uld - register an upper-layer driver
 *	@type: the ULD type
 *	@p: the ULD methods
 *
 *	Registers an upper-layer driver with this driver and notifies the ULD
 *	about any presently available devices that support its type.  Returns
 *	%-EBUSY if a ULD of the same type is already registered.
 */
int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
{
	int ret = 0;
	struct adapter *adap;

	if (type >= CXGB4_ULD_MAX)
		return -EINVAL;
	mutex_lock(&uld_mutex);
	if (ulds[type].add) {
		ret = -EBUSY;
		goto out;
	}
	ulds[type] = *p;
	list_for_each_entry(adap, &adapter_list, list_node)
		uld_attach(adap, type);
out:	mutex_unlock(&uld_mutex);
	return ret;
}
EXPORT_SYMBOL(cxgb4_register_uld);

/**
 *	cxgb4_unregister_uld - unregister an upper-layer driver
 *	@type: the ULD type
 *
 *	Unregisters an existing upper-layer driver.
 */
int cxgb4_unregister_uld(enum cxgb4_uld type)
{
	struct adapter *adap;

	if (type >= CXGB4_ULD_MAX)
		return -EINVAL;
	mutex_lock(&uld_mutex);
	list_for_each_entry(adap, &adapter_list, list_node)
		adap->uld_handle[type] = NULL;
	ulds[type].add = NULL;
	mutex_unlock(&uld_mutex);
	return 0;
}
EXPORT_SYMBOL(cxgb4_unregister_uld);

2562
#if IS_ENABLED(CONFIG_IPV6)
2563 2564
static int cxgb4_inet6addr_handler(struct notifier_block *this,
				   unsigned long event, void *data)
2565
{
2566 2567 2568 2569
	struct inet6_ifaddr *ifa = data;
	struct net_device *event_dev = ifa->idev->dev;
	const struct device *parent = NULL;
#if IS_ENABLED(CONFIG_BONDING)
2570
	struct adapter *adap;
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
#endif
	if (event_dev->priv_flags & IFF_802_1Q_VLAN)
		event_dev = vlan_dev_real_dev(event_dev);
#if IS_ENABLED(CONFIG_BONDING)
	if (event_dev->flags & IFF_MASTER) {
		list_for_each_entry(adap, &adapter_list, list_node) {
			switch (event) {
			case NETDEV_UP:
				cxgb4_clip_get(adap->port[0],
					       (const u32 *)ifa, 1);
				break;
			case NETDEV_DOWN:
				cxgb4_clip_release(adap->port[0],
						   (const u32 *)ifa, 1);
				break;
			default:
				break;
			}
		}
		return NOTIFY_OK;
	}
#endif
2593

2594 2595
	if (event_dev)
		parent = event_dev->dev.parent;
2596

2597
	if (parent && parent->driver == &cxgb4_driver.driver) {
2598 2599
		switch (event) {
		case NETDEV_UP:
2600
			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2601 2602
			break;
		case NETDEV_DOWN:
2603
			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2604 2605 2606 2607 2608
			break;
		default:
			break;
		}
	}
2609
	return NOTIFY_OK;
2610 2611
}

2612
static bool inet6addr_registered;
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
static struct notifier_block cxgb4_inet6addr_notifier = {
	.notifier_call = cxgb4_inet6addr_handler
};

static void update_clip(const struct adapter *adap)
{
	int i;
	struct net_device *dev;
	int ret;

	rcu_read_lock();

	for (i = 0; i < MAX_NPORTS; i++) {
		dev = adap->port[i];
		ret = 0;

		if (dev)
2630
			ret = cxgb4_update_root_dev_clip(dev);
2631 2632 2633 2634 2635 2636

		if (ret < 0)
			break;
	}
	rcu_read_unlock();
}
2637
#endif /* IS_ENABLED(CONFIG_IPV6) */
2638

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
/**
 *	cxgb_up - enable the adapter
 *	@adap: adapter being enabled
 *
 *	Called when the first port is enabled, this function performs the
 *	actions necessary to make an adapter operational, such as completing
 *	the initialization of HW modules, and enabling interrupts.
 *
 *	Must be called with the rtnl lock held.
 */
static int cxgb_up(struct adapter *adap)
{
2651
	int err;
2652

2653 2654 2655 2656 2657 2658
	err = setup_sge_queues(adap);
	if (err)
		goto out;
	err = setup_rss(adap);
	if (err)
		goto freeq;
2659 2660

	if (adap->flags & USING_MSIX) {
2661
		name_msix_vecs(adap);
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
				  adap->msix_info[0].desc, adap);
		if (err)
			goto irq_err;

		err = request_msix_queue_irqs(adap);
		if (err) {
			free_irq(adap->msix_info[0].vec, adap);
			goto irq_err;
		}
	} else {
		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2675
				  adap->port[0]->name, adap);
2676 2677 2678 2679 2680 2681
		if (err)
			goto irq_err;
	}
	enable_rx(adap);
	t4_sge_start(adap);
	t4_intr_enable(adap);
2682
	adap->flags |= FULL_INIT_DONE;
2683
	notify_ulds(adap, CXGB4_STATE_UP);
2684
#if IS_ENABLED(CONFIG_IPV6)
2685
	update_clip(adap);
2686
#endif
2687 2688 2689 2690
 out:
	return err;
 irq_err:
	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2691 2692
 freeq:
	t4_free_sge_resources(adap);
2693 2694 2695 2696 2697 2698
	goto out;
}

static void cxgb_down(struct adapter *adapter)
{
	cancel_work_sync(&adapter->tid_release_task);
2699 2700
	cancel_work_sync(&adapter->db_full_task);
	cancel_work_sync(&adapter->db_drop_task);
2701
	adapter->tid_release_task_busy = false;
D
Dimitris Michailidis 已提交
2702
	adapter->tid_release_head = NULL;
2703

2704 2705 2706
	t4_sge_stop(adapter);
	t4_free_sge_resources(adapter);
	adapter->flags &= ~FULL_INIT_DONE;
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
}

/*
 * net_device operations
 */
static int cxgb_open(struct net_device *dev)
{
	int err;
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adapter = pi->adapter;

2718 2719
	netif_carrier_off(dev);

2720 2721 2722 2723 2724
	if (!(adapter->flags & FULL_INIT_DONE)) {
		err = cxgb_up(adapter);
		if (err < 0)
			return err;
	}
2725

2726 2727 2728 2729
	err = link_start(dev);
	if (!err)
		netif_tx_start_all_queues(dev);
	return err;
2730 2731 2732 2733 2734 2735 2736 2737 2738
}

static int cxgb_close(struct net_device *dev)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adapter = pi->adapter;

	netif_tx_stop_all_queues(dev);
	netif_carrier_off(dev);
2739
	return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2740 2741
}

V
Vipul Pandya 已提交
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
/* Return an error number if the indicated filter isn't writable ...
 */
static int writable_filter(struct filter_entry *f)
{
	if (f->locked)
		return -EPERM;
	if (f->pending)
		return -EBUSY;

	return 0;
}

/* Delete the filter at the specified index (if valid).  The checks for all
 * the common problems with doing this like the filter being locked, currently
 * pending in another operation, etc.
 */
static int delete_filter(struct adapter *adapter, unsigned int fidx)
{
	struct filter_entry *f;
	int ret;

2763
	if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
V
Vipul Pandya 已提交
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
		return -EINVAL;

	f = &adapter->tids.ftid_tab[fidx];
	ret = writable_filter(f);
	if (ret)
		return ret;
	if (f->valid)
		return del_filter_wr(adapter, fidx);

	return 0;
}

2776
int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2777 2778
		__be32 sip, __be16 sport, __be16 vlan,
		unsigned int queue, unsigned char port, unsigned char mask)
2779 2780 2781 2782 2783 2784 2785 2786 2787
{
	int ret;
	struct filter_entry *f;
	struct adapter *adap;
	int i;
	u8 *val;

	adap = netdev2adap(dev);

2788
	/* Adjust stid to correct filter index */
2789
	stid -= adap->tids.sftid_base;
2790 2791
	stid += adap->tids.nftids;

2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
	/* Check to make sure the filter requested is writable ...
	 */
	f = &adap->tids.ftid_tab[stid];
	ret = writable_filter(f);
	if (ret)
		return ret;

	/* Clear out any old resources being used by the filter before
	 * we start constructing the new filter.
	 */
	if (f->valid)
		clear_filter(adap, f);

	/* Clear out filter specifications */
	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
	f->fs.val.lport = cpu_to_be16(sport);
	f->fs.mask.lport  = ~0;
	val = (u8 *)&sip;
2810
	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2811 2812 2813 2814
		for (i = 0; i < 4; i++) {
			f->fs.val.lip[i] = val[i];
			f->fs.mask.lip[i] = ~0;
		}
2815
		if (adap->params.tp.vlan_pri_map & PORT_F) {
2816 2817 2818 2819
			f->fs.val.iport = port;
			f->fs.mask.iport = mask;
		}
	}
2820

2821
	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2822 2823 2824 2825
		f->fs.val.proto = IPPROTO_TCP;
		f->fs.mask.proto = ~0;
	}

2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
	f->fs.dirsteer = 1;
	f->fs.iq = queue;
	/* Mark filter as locked */
	f->locked = 1;
	f->fs.rpttid = 1;

	ret = set_filter_wr(adap, stid);
	if (ret) {
		clear_filter(adap, f);
		return ret;
	}

	return 0;
}
EXPORT_SYMBOL(cxgb4_create_server_filter);

int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
		unsigned int queue, bool ipv6)
{
	int ret;
	struct filter_entry *f;
	struct adapter *adap;

	adap = netdev2adap(dev);
2850 2851

	/* Adjust stid to correct filter index */
2852
	stid -= adap->tids.sftid_base;
2853 2854
	stid += adap->tids.nftids;

2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
	f = &adap->tids.ftid_tab[stid];
	/* Unlock the filter */
	f->locked = 0;

	ret = delete_filter(adap, stid);
	if (ret)
		return ret;

	return 0;
}
EXPORT_SYMBOL(cxgb4_remove_server_filter);

2867 2868
static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
						struct rtnl_link_stats64 *ns)
2869 2870 2871 2872 2873
{
	struct port_stats stats;
	struct port_info *p = netdev_priv(dev);
	struct adapter *adapter = p->adapter;

2874 2875 2876 2877
	/* Block retrieving statistics during EEH error
	 * recovery. Otherwise, the recovery might fail
	 * and the PCI device will be removed permanently
	 */
2878
	spin_lock(&adapter->stats_lock);
2879 2880 2881 2882
	if (!netif_device_present(dev)) {
		spin_unlock(&adapter->stats_lock);
		return ns;
	}
2883 2884
	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
				 &p->stats_base);
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	spin_unlock(&adapter->stats_lock);

	ns->tx_bytes   = stats.tx_octets;
	ns->tx_packets = stats.tx_frames;
	ns->rx_bytes   = stats.rx_octets;
	ns->rx_packets = stats.rx_frames;
	ns->multicast  = stats.rx_mcast_frames;

	/* detailed rx_errors */
	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
			       stats.rx_runt;
	ns->rx_over_errors   = 0;
	ns->rx_crc_errors    = stats.rx_fcs_err;
	ns->rx_frame_errors  = stats.rx_symbol_err;
	ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
			       stats.rx_ovflow2 + stats.rx_ovflow3 +
			       stats.rx_trunc0 + stats.rx_trunc1 +
			       stats.rx_trunc2 + stats.rx_trunc3;
	ns->rx_missed_errors = 0;

	/* detailed tx_errors */
	ns->tx_aborted_errors   = 0;
	ns->tx_carrier_errors   = 0;
	ns->tx_fifo_errors      = 0;
	ns->tx_heartbeat_errors = 0;
	ns->tx_window_errors    = 0;

	ns->tx_errors = stats.tx_error_frames;
	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
	return ns;
}

static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
2920
	unsigned int mbox;
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
	int ret = 0, prtad, devad;
	struct port_info *pi = netdev_priv(dev);
	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;

	switch (cmd) {
	case SIOCGMIIPHY:
		if (pi->mdio_addr < 0)
			return -EOPNOTSUPP;
		data->phy_id = pi->mdio_addr;
		break;
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		if (mdio_phy_id_is_c45(data->phy_id)) {
			prtad = mdio_phy_id_prtad(data->phy_id);
			devad = mdio_phy_id_devad(data->phy_id);
		} else if (data->phy_id < 32) {
			prtad = data->phy_id;
			devad = 0;
			data->reg_num &= 0x1f;
		} else
			return -EINVAL;

2943
		mbox = pi->adapter->pf;
2944
		if (cmd == SIOCGMIIREG)
2945
			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2946 2947
					 data->reg_num, &data->val_out);
		else
2948
			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
					 data->reg_num, data->val_in);
		break;
	default:
		return -EOPNOTSUPP;
	}
	return ret;
}

static void cxgb_set_rxmode(struct net_device *dev)
{
	/* unfortunately we can't return errors to the stack */
	set_rxmode(dev, -1, false);
}

static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
{
	int ret;
	struct port_info *pi = netdev_priv(dev);

	if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
		return -EINVAL;
2970
	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2971
			    -1, -1, -1, true);
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	if (!ret)
		dev->mtu = new_mtu;
	return ret;
}

static int cxgb_set_mac_addr(struct net_device *dev, void *p)
{
	int ret;
	struct sockaddr *addr = p;
	struct port_info *pi = netdev_priv(dev);

	if (!is_valid_ether_addr(addr->sa_data))
2984
		return -EADDRNOTAVAIL;
2985

2986
	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2987
			    pi->xact_addr_filt, addr->sa_data, true, true);
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
	if (ret < 0)
		return ret;

	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
	pi->xact_addr_filt = ret;
	return 0;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void cxgb_netpoll(struct net_device *dev)
{
	struct port_info *pi = netdev_priv(dev);
	struct adapter *adap = pi->adapter;

	if (adap->flags & USING_MSIX) {
		int i;
		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];

		for (i = pi->nqsets; i; i--, rx++)
			t4_sge_intr_msix(0, &rx->rspq);
	} else
		t4_intr_handler(adap)(0, adap);
}
#endif

static const struct net_device_ops cxgb4_netdev_ops = {
	.ndo_open             = cxgb_open,
	.ndo_stop             = cxgb_close,
	.ndo_start_xmit       = t4_eth_xmit,
3017
	.ndo_select_queue     =	cxgb_select_queue,
3018
	.ndo_get_stats64      = cxgb_get_stats,
3019 3020
	.ndo_set_rx_mode      = cxgb_set_rxmode,
	.ndo_set_mac_address  = cxgb_set_mac_addr,
3021
	.ndo_set_features     = cxgb_set_features,
3022 3023 3024 3025 3026 3027
	.ndo_validate_addr    = eth_validate_addr,
	.ndo_do_ioctl         = cxgb_ioctl,
	.ndo_change_mtu       = cxgb_change_mtu,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller  = cxgb_netpoll,
#endif
V
Varun Prakash 已提交
3028 3029 3030 3031
#ifdef CONFIG_CHELSIO_T4_FCOE
	.ndo_fcoe_enable      = cxgb_fcoe_enable,
	.ndo_fcoe_disable     = cxgb_fcoe_disable,
#endif /* CONFIG_CHELSIO_T4_FCOE */
3032 3033 3034 3035
#ifdef CONFIG_NET_RX_BUSY_POLL
	.ndo_busy_poll        = cxgb_busy_poll,
#endif

3036 3037 3038 3039
};

void t4_fatal_err(struct adapter *adap)
{
3040
	t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3041 3042 3043 3044 3045 3046
	t4_intr_disable(adap);
	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
}

static void setup_memwin(struct adapter *adap)
{
3047
	u32 nic_win_base = t4_get_util_window(adap);
3048

3049
	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3050 3051 3052 3053
}

static void setup_memwin_rdma(struct adapter *adap)
{
3054
	if (adap->vres.ocq.size) {
3055 3056
		u32 start;
		unsigned int sz_kb;
3057

3058 3059 3060
		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
		start &= PCI_BASE_ADDRESS_MEM_MASK;
		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3061 3062
		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
		t4_write_reg(adap,
3063 3064
			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3065
		t4_write_reg(adap,
3066
			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3067 3068
			     adap->vres.ocq.start);
		t4_read_reg(adap,
3069
			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3070
	}
3071 3072
}

3073 3074 3075 3076 3077 3078 3079
static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
{
	u32 v;
	int ret;

	/* get device capabilities */
	memset(c, 0, sizeof(*c));
3080 3081
	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
3082
	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3083
	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
	if (ret < 0)
		return ret;

	/* select capabilities we'll be using */
	if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
		if (!vf_acls)
			c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
		else
			c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
	} else if (vf_acls) {
		dev_err(adap->pdev_dev, "virtualization ACLs not supported");
		return ret;
	}
3097 3098
	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3099
	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3100 3101 3102
	if (ret < 0)
		return ret;

3103
	ret = t4_config_glbl_rss(adap, adap->pf,
3104
				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3105 3106
				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3107 3108 3109
	if (ret < 0)
		return ret;

3110
	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3111 3112
			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
			  FW_CMD_CAP_PF);
3113 3114 3115 3116 3117 3118
	if (ret < 0)
		return ret;

	t4_sge_init(adap);

	/* tweak some settings */
3119
	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3120
	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3121 3122 3123
	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
	v = t4_read_reg(adap, TP_PIO_DATA_A);
	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3124

3125 3126
	/* first 4 Tx modulation queues point to consecutive Tx channels */
	adap->params.tp.tx_modq_map = 0xE4;
3127 3128
	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3129 3130 3131

	/* associate each Tx modulation queue with consecutive Tx channels */
	v = 0x84218421;
3132
	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3133
			  &v, 1, TP_TX_SCHED_HDR_A);
3134
	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3135
			  &v, 1, TP_TX_SCHED_FIFO_A);
3136
	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3137
			  &v, 1, TP_TX_SCHED_PCMD_A);
3138 3139 3140

#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
	if (is_offload(adap)) {
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3151 3152
	}

3153
	/* get basic stuff going */
3154
	return t4_early_init(adap, adap->pf);
3155 3156
}

3157 3158 3159 3160 3161
/*
 * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
 */
#define MAX_ATIDS 8192U

3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
/*
 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
 *
 * If the firmware we're dealing with has Configuration File support, then
 * we use that to perform all configuration
 */

/*
 * Tweak configuration based on module parameters, etc.  Most of these have
 * defaults assigned to them by Firmware Configuration Files (if we're using
 * them) but need to be explicitly set if we're using hard-coded
 * initialization.  But even in the case of using Firmware Configuration
 * Files, we'd like to expose the ability to change these via module
 * parameters so these are essentially common tweaks/settings for
 * Configuration Files and hard-coded initialization ...
 */
static int adap_init0_tweaks(struct adapter *adapter)
{
	/*
	 * Fix up various Host-Dependent Parameters like Page Size, Cache
	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
	 * 64B Cache Line Size ...
	 */
	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);

	/*
	 * Process module parameters which affect early initialization.
	 */
	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
		dev_err(&adapter->pdev->dev,
			"Ignoring illegal rx_dma_offset=%d, using 2\n",
			rx_dma_offset);
		rx_dma_offset = 2;
	}
3196 3197 3198
	t4_set_reg_field(adapter, SGE_CONTROL_A,
			 PKTSHIFT_V(PKTSHIFT_M),
			 PKTSHIFT_V(rx_dma_offset));
3199 3200 3201 3202 3203

	/*
	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
	 * adds the pseudo header itself.
	 */
3204 3205
	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
			       CSUM_HAS_PSEUDO_HDR_F, 0);
3206 3207 3208 3209

	return 0;
}

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
 * unto themselves and they contain their own firmware to perform their
 * tasks ...
 */
static int phy_aq1202_version(const u8 *phy_fw_data,
			      size_t phy_fw_size)
{
	int offset;

	/* At offset 0x8 you're looking for the primary image's
	 * starting offset which is 3 Bytes wide
	 *
	 * At offset 0xa of the primary image, you look for the offset
	 * of the DRAM segment which is 3 Bytes wide.
	 *
	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
	 * wide
	 */
	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
	#define le24(__p) (le16(__p) | ((__p)[2] << 16))

	offset = le24(phy_fw_data + 0x8) << 12;
	offset = le24(phy_fw_data + offset + 0xa);
	return be16(phy_fw_data + offset + 0x27e);

	#undef be16
	#undef le16
	#undef le24
}

static struct info_10gbt_phy_fw {
	unsigned int phy_fw_id;		/* PCI Device ID */
	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
	int phy_flash;			/* Has FLASH for PHY Firmware */
} phy_info_array[] = {
	{
		PHY_AQ1202_DEVICEID,
		PHY_AQ1202_FIRMWARE,
		phy_aq1202_version,
		1,
	},
	{
		PHY_BCM84834_DEVICEID,
		PHY_BCM84834_FIRMWARE,
		NULL,
		0,
	},
	{ 0, NULL, NULL },
};

static struct info_10gbt_phy_fw *find_phy_info(int devid)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
		if (phy_info_array[i].phy_fw_id == devid)
			return &phy_info_array[i];
	}
	return NULL;
}

/* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
 * we return a negative error number.  If we transfer new firmware we return 1
 * (from t4_load_phy_fw()).  If we don't do anything we return 0.
 */
static int adap_init0_phy(struct adapter *adap)
{
	const struct firmware *phyf;
	int ret;
	struct info_10gbt_phy_fw *phy_info;

	/* Use the device ID to determine which PHY file to flash.
	 */
	phy_info = find_phy_info(adap->pdev->device);
	if (!phy_info) {
		dev_warn(adap->pdev_dev,
			 "No PHY Firmware file found for this PHY\n");
		return -EOPNOTSUPP;
	}

	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
	 * use that. The adapter firmware provides us with a memory buffer
	 * where we can load a PHY firmware file from the host if we want to
	 * override the PHY firmware File in flash.
	 */
	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
				      adap->pdev_dev);
	if (ret < 0) {
		/* For adapters without FLASH attached to PHY for their
		 * firmware, it's obviously a fatal error if we can't get the
		 * firmware to the adapter.  For adapters with PHY firmware
		 * FLASH storage, it's worth a warning if we can't find the
		 * PHY Firmware but we'll neuter the error ...
		 */
		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
			"/lib/firmware/%s, error %d\n",
			phy_info->phy_fw_file, -ret);
		if (phy_info->phy_flash) {
			int cur_phy_fw_ver = 0;

			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
			ret = 0;
		}

		return ret;
	}

	/* Load PHY Firmware onto adapter.
	 */
	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
			     phy_info->phy_fw_version,
			     (u8 *)phyf->data, phyf->size);
	if (ret < 0)
		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
			-ret);
	else if (ret > 0) {
		int new_phy_fw_ver = 0;

		if (phy_info->phy_fw_version)
			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
								  phyf->size);
		dev_info(adap->pdev_dev, "Successfully transferred PHY "
			 "Firmware /lib/firmware/%s, version %#x\n",
			 phy_info->phy_fw_file, new_phy_fw_ver);
	}

	release_firmware(phyf);

	return ret;
}

3346 3347 3348 3349 3350 3351 3352 3353 3354
/*
 * Attempt to initialize the adapter via a Firmware Configuration File.
 */
static int adap_init0_config(struct adapter *adapter, int reset)
{
	struct fw_caps_config_cmd caps_cmd;
	const struct firmware *cf;
	unsigned long mtype = 0, maddr = 0;
	u32 finiver, finicsum, cfcsum;
3355 3356
	int ret;
	int config_issued = 0;
S
Santosh Rastapur 已提交
3357
	char *fw_config_file, fw_config_file_path[256];
3358
	char *config_name = NULL;
3359 3360 3361 3362 3363 3364

	/*
	 * Reset device if necessary.
	 */
	if (reset) {
		ret = t4_fw_reset(adapter, adapter->mbox,
3365
				  PIORSTMODE_F | PIORST_F);
3366 3367 3368 3369
		if (ret < 0)
			goto bye;
	}

3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
	/* If this is a 10Gb/s-BT adapter make sure the chip-external
	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
	 * to be performed after any global adapter RESET above since some
	 * PHYs only have local RAM copies of the PHY firmware.
	 */
	if (is_10gbt_device(adapter->pdev->device)) {
		ret = adap_init0_phy(adapter);
		if (ret < 0)
			goto bye;
	}
3380 3381 3382 3383 3384
	/*
	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
	 * then use that.  Otherwise, use the configuration file stored
	 * in the adapter flash ...
	 */
3385
	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
S
Santosh Rastapur 已提交
3386
	case CHELSIO_T4:
3387
		fw_config_file = FW4_CFNAME;
S
Santosh Rastapur 已提交
3388 3389 3390 3391
		break;
	case CHELSIO_T5:
		fw_config_file = FW5_CFNAME;
		break;
3392 3393 3394
	case CHELSIO_T6:
		fw_config_file = FW6_CFNAME;
		break;
S
Santosh Rastapur 已提交
3395 3396 3397 3398 3399 3400 3401 3402
	default:
		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
		       adapter->pdev->device);
		ret = -EINVAL;
		goto bye;
	}

	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3403
	if (ret < 0) {
3404
		config_name = "On FLASH";
3405 3406 3407 3408 3409
		mtype = FW_MEMTYPE_CF_FLASH;
		maddr = t4_flash_cfg_addr(adapter);
	} else {
		u32 params[7], val[7];

3410 3411 3412 3413
		sprintf(fw_config_file_path,
			"/lib/firmware/%s", fw_config_file);
		config_name = fw_config_file_path;

3414 3415 3416
		if (cf->size >= FLASH_CFG_MAX_SIZE)
			ret = -ENOMEM;
		else {
3417 3418
			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3419
			ret = t4_query_params(adapter, adapter->mbox,
3420
					      adapter->pf, 0, 1, params, val);
3421 3422
			if (ret == 0) {
				/*
3423
				 * For t4_memory_rw() below addresses and
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
				 * sizes have to be in terms of multiples of 4
				 * bytes.  So, if the Configuration File isn't
				 * a multiple of 4 bytes in length we'll have
				 * to write that out separately since we can't
				 * guarantee that the bytes following the
				 * residual byte in the buffer returned by
				 * request_firmware() are zeroed out ...
				 */
				size_t resid = cf->size & 0x3;
				size_t size = cf->size & ~0x3;
				__be32 *data = (__be32 *)cf->data;

3436 3437
				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3438

3439 3440 3441
				spin_lock(&adapter->win0_lock);
				ret = t4_memory_rw(adapter, 0, mtype, maddr,
						   size, data, T4_MEMORY_WRITE);
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
				if (ret == 0 && resid != 0) {
					union {
						__be32 word;
						char buf[4];
					} last;
					int i;

					last.word = data[size >> 2];
					for (i = resid; i < 4; i++)
						last.buf[i] = 0;
3452 3453 3454 3455
					ret = t4_memory_rw(adapter, 0, mtype,
							   maddr + size,
							   4, &last.word,
							   T4_MEMORY_WRITE);
3456
				}
3457
				spin_unlock(&adapter->win0_lock);
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
			}
		}

		release_firmware(cf);
		if (ret)
			goto bye;
	}

	/*
	 * Issue a Capability Configuration command to the firmware to get it
	 * to parse the Configuration File.  We don't use t4_fw_config_file()
	 * because we want the ability to modify various features after we've
	 * processed the configuration file ...
	 */
	memset(&caps_cmd, 0, sizeof(caps_cmd));
	caps_cmd.op_to_write =
3474 3475 3476
		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
		      FW_CMD_REQUEST_F |
		      FW_CMD_READ_F);
3477
	caps_cmd.cfvalid_to_len16 =
3478 3479 3480
		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3481 3482 3483
		      FW_LEN16(caps_cmd));
	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
			 &caps_cmd);
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493

	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
	 * Configuration File in FLASH), our last gasp effort is to use the
	 * Firmware Configuration File which is embedded in the firmware.  A
	 * very few early versions of the firmware didn't have one embedded
	 * but we can ignore those.
	 */
	if (ret == -ENOENT) {
		memset(&caps_cmd, 0, sizeof(caps_cmd));
		caps_cmd.op_to_write =
3494 3495 3496
			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
					FW_CMD_REQUEST_F |
					FW_CMD_READ_F);
3497 3498 3499 3500 3501 3502 3503
		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
				sizeof(caps_cmd), &caps_cmd);
		config_name = "Firmware Default";
	}

	config_issued = 1;
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
	if (ret < 0)
		goto bye;

	finiver = ntohl(caps_cmd.finiver);
	finicsum = ntohl(caps_cmd.finicsum);
	cfcsum = ntohl(caps_cmd.cfcsum);
	if (finicsum != cfcsum)
		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
			 finicsum, cfcsum);

	/*
	 * And now tell the firmware to use the configuration we just loaded.
	 */
	caps_cmd.op_to_write =
3519 3520 3521
		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
		      FW_CMD_REQUEST_F |
		      FW_CMD_WRITE_F);
3522
	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
			 NULL);
	if (ret < 0)
		goto bye;

	/*
	 * Tweak configuration based on system architecture, module
	 * parameters, etc.
	 */
	ret = adap_init0_tweaks(adapter);
	if (ret < 0)
		goto bye;

	/*
	 * And finally tell the firmware to initialize itself using the
	 * parameters from the Configuration File.
	 */
	ret = t4_fw_initialize(adapter, adapter->mbox);
	if (ret < 0)
		goto bye;

3544 3545
	/* Emit Firmware Configuration File information and return
	 * successfully.
3546 3547
	 */
	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3548 3549
		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
		 config_name, finiver, cfcsum);
3550 3551 3552 3553 3554 3555 3556 3557
	return 0;

	/*
	 * Something bad happened.  Return the error ...  (If the "error"
	 * is that there's no Configuration File on the adapter we don't
	 * want to issue a warning since this is fairly common.)
	 */
bye:
3558 3559 3560
	if (config_issued && ret != -ENOENT)
		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
			 config_name, -ret);
3561 3562 3563
	return ret;
}

3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
static struct fw_info fw_info_array[] = {
	{
		.chip = CHELSIO_T4,
		.fs_name = FW4_CFNAME,
		.fw_mod_name = FW4_FNAME,
		.fw_hdr = {
			.chip = FW_HDR_CHIP_T4,
			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
			.intfver_nic = FW_INTFVER(T4, NIC),
			.intfver_vnic = FW_INTFVER(T4, VNIC),
			.intfver_ri = FW_INTFVER(T4, RI),
			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
			.intfver_fcoe = FW_INTFVER(T4, FCOE),
		},
	}, {
		.chip = CHELSIO_T5,
		.fs_name = FW5_CFNAME,
		.fw_mod_name = FW5_FNAME,
		.fw_hdr = {
			.chip = FW_HDR_CHIP_T5,
			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
			.intfver_nic = FW_INTFVER(T5, NIC),
			.intfver_vnic = FW_INTFVER(T5, VNIC),
			.intfver_ri = FW_INTFVER(T5, RI),
			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
			.intfver_fcoe = FW_INTFVER(T5, FCOE),
		},
3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
	}, {
		.chip = CHELSIO_T6,
		.fs_name = FW6_CFNAME,
		.fw_mod_name = FW6_FNAME,
		.fw_hdr = {
			.chip = FW_HDR_CHIP_T6,
			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
			.intfver_nic = FW_INTFVER(T6, NIC),
			.intfver_vnic = FW_INTFVER(T6, VNIC),
			.intfver_ofld = FW_INTFVER(T6, OFLD),
			.intfver_ri = FW_INTFVER(T6, RI),
			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
			.intfver_fcoe = FW_INTFVER(T6, FCOE),
		},
3607
	}
3608

3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
};

static struct fw_info *find_fw_info(int chip)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
		if (fw_info_array[i].chip == chip)
			return &fw_info_array[i];
	}
	return NULL;
}

3622 3623 3624 3625 3626 3627 3628 3629 3630
/*
 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
 */
static int adap_init0(struct adapter *adap)
{
	int ret;
	u32 v, port_vec;
	enum dev_state state;
	u32 params[7], val[7];
3631
	struct fw_caps_config_cmd caps_cmd;
3632
	int reset = 1;
3633

3634 3635 3636 3637 3638 3639 3640
	/* Grab Firmware Device Log parameters as early as possible so we have
	 * access to it for debugging, etc.
	 */
	ret = t4_init_devlog_params(adap);
	if (ret < 0)
		return ret;

3641 3642
	/* Contact FW, advertising Master capability */
	ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3643 3644 3645 3646 3647
	if (ret < 0) {
		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
			ret);
		return ret;
	}
3648 3649
	if (ret == adap->mbox)
		adap->flags |= MASTER_PF;
3650

3651 3652 3653 3654 3655 3656 3657
	/*
	 * If we're the Master PF Driver and the device is uninitialized,
	 * then let's consider upgrading the firmware ...  (We always want
	 * to check the firmware version number in order to A. get it for
	 * later reporting and B. to warn if the currently loaded firmware
	 * is excessively mismatched relative to the driver.)
	 */
3658 3659
	t4_get_fw_version(adap, &adap->params.fw_vers);
	t4_get_tp_version(adap, &adap->params.tp_vers);
3660
	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
		struct fw_info *fw_info;
		struct fw_hdr *card_fw;
		const struct firmware *fw;
		const u8 *fw_data = NULL;
		unsigned int fw_size = 0;

		/* This is the firmware whose headers the driver was compiled
		 * against
		 */
		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
		if (fw_info == NULL) {
			dev_err(adap->pdev_dev,
				"unable to get firmware info for chip %d.\n",
				CHELSIO_CHIP_VERSION(adap->params.chip));
			return -EINVAL;
3676
		}
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699

		/* allocate memory to read the header of the firmware on the
		 * card
		 */
		card_fw = t4_alloc_mem(sizeof(*card_fw));

		/* Get FW from from /lib/firmware/ */
		ret = request_firmware(&fw, fw_info->fw_mod_name,
				       adap->pdev_dev);
		if (ret < 0) {
			dev_err(adap->pdev_dev,
				"unable to load firmware image %s, error %d\n",
				fw_info->fw_mod_name, ret);
		} else {
			fw_data = fw->data;
			fw_size = fw->size;
		}

		/* upgrade FW logic */
		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
				 state, &reset);

		/* Cleaning up */
3700
		release_firmware(fw);
3701 3702
		t4_free_mem(card_fw);

3703
		if (ret < 0)
3704
			goto bye;
3705
	}
3706

3707 3708 3709 3710 3711 3712 3713
	/*
	 * Grab VPD parameters.  This should be done after we establish a
	 * connection to the firmware since some of the VPD parameters
	 * (notably the Core Clock frequency) are retrieved via requests to
	 * the firmware.  On the other hand, we need these fairly early on
	 * so we do this right after getting ahold of the firmware.
	 */
3714
	ret = t4_get_vpd_params(adap, &adap->params.vpd);
3715 3716 3717
	if (ret < 0)
		goto bye;

3718
	/*
3719 3720 3721
	 * Find out what ports are available to us.  Note that we need to do
	 * this before calling adap_init0_no_config() since it needs nports
	 * and portvec ...
3722 3723
	 */
	v =
3724 3725
	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3726
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3727 3728 3729
	if (ret < 0)
		goto bye;

3730 3731 3732
	adap->params.nports = hweight32(port_vec);
	adap->params.portvec = port_vec;

3733 3734
	/* If the firmware is initialized already, emit a simply note to that
	 * effect. Otherwise, it's time to try initializing the adapter.
3735 3736 3737 3738 3739 3740 3741 3742
	 */
	if (state == DEV_STATE_INIT) {
		dev_info(adap->pdev_dev, "Coming up as %s: "\
			 "Adapter already initialized\n",
			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
	} else {
		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
			 "Initializing adapter\n");
3743 3744 3745

		/* Find out whether we're dealing with a version of the
		 * firmware which has configuration file support.
3746
		 */
3747 3748
		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3749
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3750
				      params, val);
3751

3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
		/* If the firmware doesn't support Configuration Files,
		 * return an error.
		 */
		if (ret < 0) {
			dev_err(adap->pdev_dev, "firmware doesn't support "
				"Firmware Configuration Files\n");
			goto bye;
		}

		/* The firmware provides us with a memory buffer where we can
		 * load a Configuration File from the host if we want to
		 * override the Configuration File in flash.
		 */
		ret = adap_init0_config(adap, reset);
		if (ret == -ENOENT) {
			dev_err(adap->pdev_dev, "no Configuration File "
				"present on adapter.\n");
			goto bye;
3770 3771
		}
		if (ret < 0) {
3772 3773
			dev_err(adap->pdev_dev, "could not initialize "
				"adapter, error %d\n", -ret);
3774 3775 3776 3777
			goto bye;
		}
	}

3778 3779 3780
	/* Give the SGE code a chance to pull in anything that it needs ...
	 * Note that this must be called after we retrieve our VPD parameters
	 * in order to know how to convert core ticks to seconds, etc.
3781
	 */
3782 3783 3784
	ret = t4_sge_init(adap);
	if (ret < 0)
		goto bye;
3785

3786 3787 3788
	if (is_bypass_device(adap->pdev->device))
		adap->params.bypass = 1;

3789 3790 3791 3792
	/*
	 * Grab some of our basic fundamental operating parameters.
	 */
#define FW_PARAM_DEV(param) \
3793 3794
	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3795

3796
#define FW_PARAM_PFVF(param) \
3797 3798 3799 3800
	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
	FW_PARAMS_PARAM_Y_V(0) | \
	FW_PARAMS_PARAM_Z_V(0)
3801

3802
	params[0] = FW_PARAM_PFVF(EQ_START);
3803 3804 3805 3806
	params[1] = FW_PARAM_PFVF(L2T_START);
	params[2] = FW_PARAM_PFVF(L2T_END);
	params[3] = FW_PARAM_PFVF(FILTER_START);
	params[4] = FW_PARAM_PFVF(FILTER_END);
3807
	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3808
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3809 3810
	if (ret < 0)
		goto bye;
3811 3812 3813
	adap->sge.egr_start = val[0];
	adap->l2t_start = val[1];
	adap->l2t_end = val[2];
3814 3815
	adap->tids.ftid_base = val[3];
	adap->tids.nftids = val[4] - val[3] + 1;
3816
	adap->sge.ingr_start = val[5];
3817

3818 3819 3820 3821 3822 3823 3824 3825
	/* qids (ingress/egress) returned from firmware can be anywhere
	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
	 * Hence driver needs to allocate memory for this range to
	 * store the queue info. Get the highest IQFLINT/EQ index returned
	 * in FW_EQ_*_CMD.alloc command.
	 */
	params[0] = FW_PARAM_PFVF(EQ_END);
	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3826
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
	if (ret < 0)
		goto bye;
	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;

	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
	if (!adap->sge.egr_map) {
		ret = -ENOMEM;
		goto bye;
	}

	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
	if (!adap->sge.ingr_map) {
		ret = -ENOMEM;
		goto bye;
	}

	/* Allocate the memory for the vaious egress queue bitmaps
3847
	 * ie starving_fl, txq_maperr and blocked_fl.
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
	 */
	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
					sizeof(long), GFP_KERNEL);
	if (!adap->sge.starving_fl) {
		ret = -ENOMEM;
		goto bye;
	}

	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
				       sizeof(long), GFP_KERNEL);
	if (!adap->sge.txq_maperr) {
		ret = -ENOMEM;
		goto bye;
	}

3863 3864 3865 3866 3867 3868 3869 3870 3871
#ifdef CONFIG_DEBUG_FS
	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
				       sizeof(long), GFP_KERNEL);
	if (!adap->sge.blocked_fl) {
		ret = -ENOMEM;
		goto bye;
	}
#endif

3872 3873
	params[0] = FW_PARAM_PFVF(CLIP_START);
	params[1] = FW_PARAM_PFVF(CLIP_END);
3874
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3875 3876 3877 3878 3879
	if (ret < 0)
		goto bye;
	adap->clipt_start = val[0];
	adap->clipt_end = val[1];

3880 3881 3882
	/* query params related to active filter region */
	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3883
	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3884 3885 3886 3887 3888 3889 3890 3891 3892
	/* If Active filter size is set we enable establishing
	 * offload connection through firmware work request
	 */
	if ((val[0] != val[1]) && (ret >= 0)) {
		adap->flags |= FW_OFLD_CONN;
		adap->tids.aftid_base = val[0];
		adap->tids.aftid_end = val[1];
	}

3893 3894 3895 3896 3897 3898 3899
	/* If we're running on newer firmware, let it know that we're
	 * prepared to deal with encapsulated CPL messages.  Older
	 * firmware won't understand this and we'll just get
	 * unencapsulated messages ...
	 */
	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
	val[0] = 1;
3900
	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3901

3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
	/*
	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
	 * capability.  Earlier versions of the firmware didn't have the
	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
	 * permission to use ULPTX MEMWRITE DSGL.
	 */
	if (is_t4(adap->params.chip)) {
		adap->params.ulptx_memwrite_dsgl = false;
	} else {
		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3912
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3913 3914 3915 3916
				      1, params, val);
		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
	}

3917 3918 3919 3920 3921
	/*
	 * Get device capabilities so we can determine what resources we need
	 * to manage.
	 */
	memset(&caps_cmd, 0, sizeof(caps_cmd));
3922 3923
	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3924
	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3925 3926 3927 3928 3929
	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
			 &caps_cmd);
	if (ret < 0)
		goto bye;

3930
	if (caps_cmd.ofldcaps) {
3931 3932 3933 3934 3935 3936 3937
		/* query offload-related parameters */
		params[0] = FW_PARAM_DEV(NTID);
		params[1] = FW_PARAM_PFVF(SERVER_START);
		params[2] = FW_PARAM_PFVF(SERVER_END);
		params[3] = FW_PARAM_PFVF(TDDP_START);
		params[4] = FW_PARAM_PFVF(TDDP_END);
		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3938
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3939
				      params, val);
3940 3941 3942 3943 3944 3945
		if (ret < 0)
			goto bye;
		adap->tids.ntids = val[0];
		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
		adap->tids.stid_base = val[1];
		adap->tids.nstids = val[2] - val[1] + 1;
3946
		/*
3947
		 * Setup server filter region. Divide the available filter
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
		 * region into two parts. Regular filters get 1/3rd and server
		 * filters get 2/3rd part. This is only enabled if workarond
		 * path is enabled.
		 * 1. For regular filters.
		 * 2. Server filter: This are special filters which are used
		 * to redirect SYN packets to offload queue.
		 */
		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
			adap->tids.sftid_base = adap->tids.ftid_base +
					DIV_ROUND_UP(adap->tids.nftids, 3);
			adap->tids.nsftids = adap->tids.nftids -
					 DIV_ROUND_UP(adap->tids.nftids, 3);
			adap->tids.nftids = adap->tids.sftid_base -
						adap->tids.ftid_base;
		}
3963 3964 3965
		adap->vres.ddp.start = val[3];
		adap->vres.ddp.size = val[4] - val[3] + 1;
		adap->params.ofldq_wr_cred = val[5];
3966

3967 3968
		adap->params.offload = 1;
	}
3969
	if (caps_cmd.rdmacaps) {
3970 3971 3972 3973 3974 3975
		params[0] = FW_PARAM_PFVF(STAG_START);
		params[1] = FW_PARAM_PFVF(STAG_END);
		params[2] = FW_PARAM_PFVF(RQ_START);
		params[3] = FW_PARAM_PFVF(RQ_END);
		params[4] = FW_PARAM_PFVF(PBL_START);
		params[5] = FW_PARAM_PFVF(PBL_END);
3976
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3977
				      params, val);
3978 3979 3980 3981 3982 3983 3984 3985
		if (ret < 0)
			goto bye;
		adap->vres.stag.start = val[0];
		adap->vres.stag.size = val[1] - val[0] + 1;
		adap->vres.rq.start = val[2];
		adap->vres.rq.size = val[3] - val[2] + 1;
		adap->vres.pbl.start = val[4];
		adap->vres.pbl.size = val[5] - val[4] + 1;
3986 3987 3988 3989 3990

		params[0] = FW_PARAM_PFVF(SQRQ_START);
		params[1] = FW_PARAM_PFVF(SQRQ_END);
		params[2] = FW_PARAM_PFVF(CQ_START);
		params[3] = FW_PARAM_PFVF(CQ_END);
3991 3992
		params[4] = FW_PARAM_PFVF(OCQ_START);
		params[5] = FW_PARAM_PFVF(OCQ_END);
3993
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
3994
				      val);
3995 3996 3997 3998 3999 4000
		if (ret < 0)
			goto bye;
		adap->vres.qp.start = val[0];
		adap->vres.qp.size = val[1] - val[0] + 1;
		adap->vres.cq.start = val[2];
		adap->vres.cq.size = val[3] - val[2] + 1;
4001 4002
		adap->vres.ocq.start = val[4];
		adap->vres.ocq.size = val[5] - val[4] + 1;
4003 4004 4005

		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4006
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4007
				      val);
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
		if (ret < 0) {
			adap->params.max_ordird_qp = 8;
			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
			ret = 0;
		} else {
			adap->params.max_ordird_qp = val[0];
			adap->params.max_ird_adapter = val[1];
		}
		dev_info(adap->pdev_dev,
			 "max_ordird_qp %d max_ird_adapter %d\n",
			 adap->params.max_ordird_qp,
			 adap->params.max_ird_adapter);
4020
	}
4021
	if (caps_cmd.iscsicaps) {
4022 4023
		params[0] = FW_PARAM_PFVF(ISCSI_START);
		params[1] = FW_PARAM_PFVF(ISCSI_END);
4024
		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4025
				      params, val);
4026 4027 4028 4029 4030 4031 4032 4033
		if (ret < 0)
			goto bye;
		adap->vres.iscsi.start = val[0];
		adap->vres.iscsi.size = val[1] - val[0] + 1;
	}
#undef FW_PARAM_PFVF
#undef FW_PARAM_DEV

4034 4035 4036 4037
	/* The MTU/MSS Table is initialized by now, so load their values.  If
	 * we're initializing the adapter, then we'll make any modifications
	 * we want to the MTU/MSS Table and also initialize the congestion
	 * parameters.
4038
	 */
4039
	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
	if (state != DEV_STATE_INIT) {
		int i;

		/* The default MTU Table contains values 1492 and 1500.
		 * However, for TCP, it's better to have two values which are
		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
		 * This allows us to have a TCP Data Payload which is a
		 * multiple of 8 regardless of what combination of TCP Options
		 * are in use (always a multiple of 4 bytes) which is
		 * important for performance reasons.  For instance, if no
		 * options are in use, then we have a 20-byte IP header and a
		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
		 * which is not a multiple of 8.  So using an MSS of 1488 in
		 * this case results in a TCP Data Payload of 1448 bytes which
		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
		 * Stamps have been negotiated, then an MTU of 1500 bytes
		 * results in a TCP Data Payload of 1448 bytes which, as
		 * above, is a multiple of 8 bytes ...
		 */
		for (i = 0; i < NMTUS; i++)
			if (adap->params.mtus[i] == 1492) {
				adap->params.mtus[i] = 1488;
				break;
			}
4065

4066 4067 4068
		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
			     adap->params.b_wnd);
	}
4069
	t4_init_sge_params(adap);
4070
	adap->flags |= FW_OK;
4071
	t4_init_tp_params(adap);
4072 4073 4074
	return 0;

	/*
4075 4076 4077
	 * Something bad happened.  If a command timed out or failed with EIO
	 * FW does not operate within its spec or something catastrophic
	 * happened to HW/FW, stop issuing commands.
4078
	 */
4079
bye:
4080 4081 4082 4083
	kfree(adap->sge.egr_map);
	kfree(adap->sge.ingr_map);
	kfree(adap->sge.starving_fl);
	kfree(adap->sge.txq_maperr);
4084 4085 4086
#ifdef CONFIG_DEBUG_FS
	kfree(adap->sge.blocked_fl);
#endif
4087 4088
	if (ret != -ETIMEDOUT && ret != -EIO)
		t4_fw_bye(adap, adap->mbox);
4089 4090 4091
	return ret;
}

D
Dimitris Michailidis 已提交
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
/* EEH callbacks */

static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
					 pci_channel_state_t state)
{
	int i;
	struct adapter *adap = pci_get_drvdata(pdev);

	if (!adap)
		goto out;

	rtnl_lock();
	adap->flags &= ~FW_OK;
	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4106
	spin_lock(&adap->stats_lock);
D
Dimitris Michailidis 已提交
4107 4108 4109 4110 4111 4112
	for_each_port(adap, i) {
		struct net_device *dev = adap->port[i];

		netif_device_detach(dev);
		netif_carrier_off(dev);
	}
4113
	spin_unlock(&adap->stats_lock);
4114
	disable_interrupts(adap);
D
Dimitris Michailidis 已提交
4115 4116 4117
	if (adap->flags & FULL_INIT_DONE)
		cxgb_down(adap);
	rtnl_unlock();
4118 4119 4120 4121
	if ((adap->flags & DEV_ENABLED)) {
		pci_disable_device(pdev);
		adap->flags &= ~DEV_ENABLED;
	}
D
Dimitris Michailidis 已提交
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
out:	return state == pci_channel_io_perm_failure ?
		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
}

static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
{
	int i, ret;
	struct fw_caps_config_cmd c;
	struct adapter *adap = pci_get_drvdata(pdev);

	if (!adap) {
		pci_restore_state(pdev);
		pci_save_state(pdev);
		return PCI_ERS_RESULT_RECOVERED;
	}

4138 4139 4140 4141 4142 4143 4144
	if (!(adap->flags & DEV_ENABLED)) {
		if (pci_enable_device(pdev)) {
			dev_err(&pdev->dev, "Cannot reenable PCI "
					    "device after reset\n");
			return PCI_ERS_RESULT_DISCONNECT;
		}
		adap->flags |= DEV_ENABLED;
D
Dimitris Michailidis 已提交
4145 4146 4147 4148 4149 4150 4151
	}

	pci_set_master(pdev);
	pci_restore_state(pdev);
	pci_save_state(pdev);
	pci_cleanup_aer_uncorrect_error_status(pdev);

4152
	if (t4_wait_dev_ready(adap->regs) < 0)
D
Dimitris Michailidis 已提交
4153
		return PCI_ERS_RESULT_DISCONNECT;
4154
	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
D
Dimitris Michailidis 已提交
4155 4156 4157 4158 4159 4160 4161 4162
		return PCI_ERS_RESULT_DISCONNECT;
	adap->flags |= FW_OK;
	if (adap_init1(adap, &c))
		return PCI_ERS_RESULT_DISCONNECT;

	for_each_port(adap, i) {
		struct port_info *p = adap2pinfo(adap, i);

4163
		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4164
				  NULL, NULL);
D
Dimitris Michailidis 已提交
4165 4166 4167 4168 4169 4170 4171 4172
		if (ret < 0)
			return PCI_ERS_RESULT_DISCONNECT;
		p->viid = ret;
		p->xact_addr_filt = -1;
	}

	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
		     adap->params.b_wnd);
4173
	setup_memwin(adap);
D
Dimitris Michailidis 已提交
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
	if (cxgb_up(adap))
		return PCI_ERS_RESULT_DISCONNECT;
	return PCI_ERS_RESULT_RECOVERED;
}

static void eeh_resume(struct pci_dev *pdev)
{
	int i;
	struct adapter *adap = pci_get_drvdata(pdev);

	if (!adap)
		return;

	rtnl_lock();
	for_each_port(adap, i) {
		struct net_device *dev = adap->port[i];

		if (netif_running(dev)) {
			link_start(dev);
			cxgb_set_rxmode(dev);
		}
		netif_device_attach(dev);
	}
	rtnl_unlock();
}

4200
static const struct pci_error_handlers cxgb4_eeh = {
D
Dimitris Michailidis 已提交
4201 4202 4203 4204 4205
	.error_detected = eeh_err_detected,
	.slot_reset     = eeh_slot_reset,
	.resume         = eeh_resume,
};

4206
static inline bool is_x_10g_port(const struct link_config *lc)
4207
{
4208 4209
	return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
	       (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4210 4211
}

4212 4213
static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
			     unsigned int us, unsigned int cnt,
4214 4215
			     unsigned int size, unsigned int iqe_size)
{
4216
	q->adap = adap;
4217
	cxgb4_set_rspq_intr_params(q, us, cnt);
4218 4219 4220 4221 4222 4223 4224 4225 4226
	q->iqe_len = iqe_size;
	q->size = size;
}

/*
 * Perform default configuration of DMA queues depending on the number and type
 * of ports we found and the number of available CPUs.  Most settings can be
 * modified by the admin prior to actual use.
 */
B
Bill Pemberton 已提交
4227
static void cfg_queues(struct adapter *adap)
4228 4229
{
	struct sge *s = &adap->sge;
4230 4231 4232 4233
	int i, n10g = 0, qidx = 0;
#ifndef CONFIG_CHELSIO_T4_DCB
	int q10g = 0;
#endif
4234
	int ciq_size;
4235 4236

	for_each_port(adap, i)
4237
		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
#ifdef CONFIG_CHELSIO_T4_DCB
	/* For Data Center Bridging support we need to be able to support up
	 * to 8 Traffic Priorities; each of which will be assigned to its
	 * own TX Queue in order to prevent Head-Of-Line Blocking.
	 */
	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
			MAX_ETH_QSETS, adap->params.nports * 8);
		BUG_ON(1);
	}
4248

4249 4250 4251 4252 4253 4254 4255 4256
	for_each_port(adap, i) {
		struct port_info *pi = adap2pinfo(adap, i);

		pi->first_qset = qidx;
		pi->nqsets = 8;
		qidx += pi->nqsets;
	}
#else /* !CONFIG_CHELSIO_T4_DCB */
4257 4258 4259 4260 4261 4262
	/*
	 * We default to 1 queue per non-10G port and up to # of cores queues
	 * per 10G port.
	 */
	if (n10g)
		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4263 4264
	if (q10g > netif_get_num_default_rss_queues())
		q10g = netif_get_num_default_rss_queues();
4265 4266 4267 4268 4269

	for_each_port(adap, i) {
		struct port_info *pi = adap2pinfo(adap, i);

		pi->first_qset = qidx;
4270
		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4271 4272
		qidx += pi->nqsets;
	}
4273
#endif /* !CONFIG_CHELSIO_T4_DCB */
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291

	s->ethqsets = qidx;
	s->max_ethqsets = qidx;   /* MSI-X may lower it later */

	if (is_offload(adap)) {
		/*
		 * For offload we use 1 queue/channel if all ports are up to 1G,
		 * otherwise we divide all available queues amongst the channels
		 * capped by the number of available cores.
		 */
		if (n10g) {
			i = min_t(int, ARRAY_SIZE(s->ofldrxq),
				  num_online_cpus());
			s->ofldqsets = roundup(i, adap->params.nports);
		} else
			s->ofldqsets = adap->params.nports;
		/* For RDMA one Rx queue per channel suffices */
		s->rdmaqs = adap->params.nports;
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
		/* Try and allow at least 1 CIQ per cpu rounding down
		 * to the number of ports, with a minimum of 1 per port.
		 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
		 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
		 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
		 */
		s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
		s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
				adap->params.nports;
		s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4302 4303 4304 4305 4306
	}

	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
		struct sge_eth_rxq *r = &s->ethrxq[i];

4307
		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
		r->fl.size = 72;
	}

	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
		s->ethtxq[i].q.size = 1024;

	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
		s->ctrlq[i].q.size = 512;

	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
		s->ofldtxq[i].q.size = 1024;

	for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
		struct sge_ofld_rxq *r = &s->ofldrxq[i];

4323
		init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4324 4325 4326 4327 4328 4329 4330
		r->rspq.uld = CXGB4_ULD_ISCSI;
		r->fl.size = 72;
	}

	for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
		struct sge_ofld_rxq *r = &s->rdmarxq[i];

4331
		init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4332 4333 4334 4335
		r->rspq.uld = CXGB4_ULD_RDMA;
		r->fl.size = 72;
	}

4336 4337 4338 4339 4340 4341 4342 4343 4344
	ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
	if (ciq_size > SGE_MAX_IQ_SIZE) {
		CH_WARN(adap, "CIQ size too small for available IQs\n");
		ciq_size = SGE_MAX_IQ_SIZE;
	}

	for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
		struct sge_ofld_rxq *r = &s->rdmaciq[i];

4345
		init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4346 4347 4348
		r->rspq.uld = CXGB4_ULD_RDMA;
	}

4349 4350
	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
	init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4351 4352 4353 4354 4355 4356
}

/*
 * Reduce the number of Ethernet queues across all ports to at most n.
 * n provides at least one queue per port.
 */
B
Bill Pemberton 已提交
4357
static void reduce_ethqs(struct adapter *adap, int n)
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
{
	int i;
	struct port_info *pi;

	while (n < adap->sge.ethqsets)
		for_each_port(adap, i) {
			pi = adap2pinfo(adap, i);
			if (pi->nqsets > 1) {
				pi->nqsets--;
				adap->sge.ethqsets--;
				if (adap->sge.ethqsets <= n)
					break;
			}
		}

	n = 0;
	for_each_port(adap, i) {
		pi = adap2pinfo(adap, i);
		pi->first_qset = n;
		n += pi->nqsets;
	}
}

/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
#define EXTRA_VECS 2

B
Bill Pemberton 已提交
4384
static int enable_msix(struct adapter *adap)
4385 4386
{
	int ofld_need = 0;
4387
	int i, want, need, allocated;
4388 4389
	struct sge *s = &adap->sge;
	unsigned int nchan = adap->params.nports;
4390 4391 4392 4393 4394 4395
	struct msix_entry *entries;

	entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
			  GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
4396

4397
	for (i = 0; i < MAX_INGQ + 1; ++i)
4398 4399 4400 4401
		entries[i].entry = i;

	want = s->max_ethqsets + EXTRA_VECS;
	if (is_offload(adap)) {
4402
		want += s->rdmaqs + s->rdmaciqs + s->ofldqsets;
4403
		/* need nchan for each possible ULD */
4404
		ofld_need = 3 * nchan;
4405
	}
4406 4407 4408 4409 4410 4411
#ifdef CONFIG_CHELSIO_T4_DCB
	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
	 * each port.
	 */
	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
#else
4412
	need = adap->params.nports + EXTRA_VECS + ofld_need;
4413
#endif
4414 4415 4416 4417 4418 4419 4420
	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
	if (allocated < 0) {
		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
			 " not using MSI-X\n");
		kfree(entries);
		return allocated;
	}
4421

4422
	/* Distribute available vectors to the various queue groups.
4423 4424 4425
	 * Every group gets its minimum requirement and NIC gets top
	 * priority for leftovers.
	 */
4426
	i = allocated - EXTRA_VECS - ofld_need;
4427 4428 4429 4430 4431 4432
	if (i < s->max_ethqsets) {
		s->max_ethqsets = i;
		if (i < s->ethqsets)
			reduce_ethqs(adap, i);
	}
	if (is_offload(adap)) {
4433 4434 4435 4436 4437 4438 4439 4440
		if (allocated < want) {
			s->rdmaqs = nchan;
			s->rdmaciqs = nchan;
		}

		/* leftovers go to OFLD */
		i = allocated - EXTRA_VECS - s->max_ethqsets -
		    s->rdmaqs - s->rdmaciqs;
4441 4442
		s->ofldqsets = (i / nchan) * nchan;  /* round down */
	}
4443
	for (i = 0; i < allocated; ++i)
4444 4445
		adap->msix_info[i].vec = entries[i].vector;

4446
	kfree(entries);
4447
	return 0;
4448 4449 4450 4451
}

#undef EXTRA_VECS

B
Bill Pemberton 已提交
4452
static int init_rss(struct adapter *adap)
4453
{
4454 4455 4456 4457 4458 4459
	unsigned int i;
	int err;

	err = t4_init_rss_mode(adap, adap->mbox);
	if (err)
		return err;
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470

	for_each_port(adap, i) {
		struct port_info *pi = adap2pinfo(adap, i);

		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
		if (!pi->rss)
			return -ENOMEM;
	}
	return 0;
}

B
Bill Pemberton 已提交
4471
static void print_port_info(const struct net_device *dev)
4472 4473
{
	char buf[80];
4474
	char *bufp = buf;
4475
	const char *spd = "";
4476 4477
	const struct port_info *pi = netdev_priv(dev);
	const struct adapter *adap = pi->adapter;
4478 4479 4480 4481 4482

	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
		spd = " 2.5 GT/s";
	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
		spd = " 5 GT/s";
4483 4484
	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
		spd = " 8 GT/s";
4485

4486 4487 4488 4489 4490 4491
	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
		bufp += sprintf(bufp, "100/");
	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
		bufp += sprintf(bufp, "1000/");
	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
		bufp += sprintf(bufp, "10G/");
4492 4493
	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
		bufp += sprintf(bufp, "40G/");
4494 4495
	if (bufp != buf)
		--bufp;
4496
	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4497 4498

	netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
S
Santosh Rastapur 已提交
4499
		    adap->params.vpd.id,
4500
		    CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4501 4502 4503
		    is_offload(adap) ? "R" : "", adap->params.pci.width, spd,
		    (adap->flags & USING_MSIX) ? " MSI-X" :
		    (adap->flags & USING_MSI) ? " MSI" : "");
4504 4505
	netdev_info(dev, "S/N: %s, P/N: %s\n",
		    adap->params.vpd.sn, adap->params.vpd.pn);
4506 4507
}

B
Bill Pemberton 已提交
4508
static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4509
{
4510
	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4511 4512
}

4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
/*
 * Free the following resources:
 * - memory used for tables
 * - MSI/MSI-X
 * - net devices
 * - resources FW is holding for us
 */
static void free_some_resources(struct adapter *adapter)
{
	unsigned int i;

	t4_free_mem(adapter->l2t);
	t4_free_mem(adapter->tids.tid_tab);
4526 4527 4528 4529
	kfree(adapter->sge.egr_map);
	kfree(adapter->sge.ingr_map);
	kfree(adapter->sge.starving_fl);
	kfree(adapter->sge.txq_maperr);
4530 4531 4532
#ifdef CONFIG_DEBUG_FS
	kfree(adapter->sge.blocked_fl);
#endif
4533 4534 4535
	disable_msi(adapter);

	for_each_port(adapter, i)
4536
		if (adapter->port[i]) {
4537 4538 4539 4540 4541
			struct port_info *pi = adap2pinfo(adapter, i);

			if (pi->viid != 0)
				t4_free_vi(adapter, adapter->mbox, adapter->pf,
					   0, pi->viid);
4542
			kfree(adap2pinfo(adapter, i)->rss);
4543
			free_netdev(adapter->port[i]);
4544
		}
4545
	if (adapter->flags & FW_OK)
4546
		t4_fw_bye(adapter, adapter->pf);
4547 4548
}

4549
#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4550
#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4551
		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4552
#define SEGMENT_SIZE 128
4553

4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579
static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
{
	int ver, chip;
	u16 device_id;

	/* Retrieve adapter's device ID */
	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
	ver = device_id >> 12;
	switch (ver) {
	case CHELSIO_T4:
		chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
		break;
	case CHELSIO_T5:
		chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
		break;
	case CHELSIO_T6:
		chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
		break;
	default:
		dev_err(&pdev->dev, "Device %d is not supported\n",
			device_id);
		return -EINVAL;
	}
	return chip;
}

4580
static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4581
{
4582
	int func, i, err, s_qpp, qpp, num_seg;
4583
	struct port_info *pi;
4584
	bool highdma = false;
4585
	struct adapter *adapter = NULL;
4586
	void __iomem *regs;
4587 4588
	u32 whoami, pl_rev;
	enum chip_type chip;
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604

	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);

	err = pci_request_regions(pdev, KBUILD_MODNAME);
	if (err) {
		/* Just info, some other driver may have claimed the device. */
		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
		return err;
	}

	err = pci_enable_device(pdev);
	if (err) {
		dev_err(&pdev->dev, "cannot enable PCI device\n");
		goto out_release_regions;
	}

4605 4606 4607 4608 4609 4610 4611
	regs = pci_ioremap_bar(pdev, 0);
	if (!regs) {
		dev_err(&pdev->dev, "cannot map device registers\n");
		err = -ENOMEM;
		goto out_disable_device;
	}

4612 4613 4614 4615
	err = t4_wait_dev_ready(regs);
	if (err < 0)
		goto out_unmap_bar0;

4616
	/* We control everything through one PF */
4617 4618 4619 4620 4621
	whoami = readl(regs + PL_WHOAMI_A);
	pl_rev = REV_G(readl(regs + PL_REV_A));
	chip = get_chip_type(pdev, pl_rev);
	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
		SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4622 4623 4624 4625 4626 4627 4628
	if (func != ent->driver_data) {
		iounmap(regs);
		pci_disable_device(pdev);
		pci_save_state(pdev);        /* to restore SR-IOV later */
		goto sriov;
	}

4629
	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4630
		highdma = true;
4631 4632 4633 4634
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
		if (err) {
			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
				"coherent allocations\n");
4635
			goto out_unmap_bar0;
4636 4637 4638 4639 4640
		}
	} else {
		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (err) {
			dev_err(&pdev->dev, "no usable DMA configuration\n");
4641
			goto out_unmap_bar0;
4642 4643 4644 4645
		}
	}

	pci_enable_pcie_error_reporting(pdev);
4646
	enable_pcie_relaxed_ordering(pdev);
4647 4648 4649 4650 4651 4652
	pci_set_master(pdev);
	pci_save_state(pdev);

	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
	if (!adapter) {
		err = -ENOMEM;
4653
		goto out_unmap_bar0;
4654 4655
	}

4656 4657 4658 4659 4660 4661
	adapter->workq = create_singlethread_workqueue("cxgb4");
	if (!adapter->workq) {
		err = -ENOMEM;
		goto out_free_adapter;
	}

4662 4663 4664
	/* PCI device has been enabled */
	adapter->flags |= DEV_ENABLED;

4665
	adapter->regs = regs;
4666 4667
	adapter->pdev = pdev;
	adapter->pdev_dev = &pdev->dev;
4668
	adapter->mbox = func;
4669
	adapter->pf = func;
4670 4671 4672 4673 4674
	adapter->msg_enable = dflt_msg_enable;
	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));

	spin_lock_init(&adapter->stats_lock);
	spin_lock_init(&adapter->tid_release_lock);
4675
	spin_lock_init(&adapter->win0_lock);
4676 4677

	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4678 4679
	INIT_WORK(&adapter->db_full_task, process_db_full);
	INIT_WORK(&adapter->db_drop_task, process_db_drop);
4680 4681 4682

	err = t4_prep_adapter(adapter);
	if (err)
4683 4684
		goto out_free_adapter;

4685

4686
	if (!is_t4(adapter->params.chip)) {
4687 4688
		s_qpp = (QUEUESPERPAGEPF0_S +
			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4689
			adapter->pf);
4690 4691
		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
		num_seg = PAGE_SIZE / SEGMENT_SIZE;

		/* Each segment size is 128B. Write coalescing is enabled only
		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
		 * queue is less no of segments that can be accommodated in
		 * a page size.
		 */
		if (qpp > num_seg) {
			dev_err(&pdev->dev,
				"Incorrect number of egress queues per page\n");
			err = -EINVAL;
4703
			goto out_free_adapter;
4704 4705 4706 4707 4708 4709
		}
		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
		pci_resource_len(pdev, 2));
		if (!adapter->bar2) {
			dev_err(&pdev->dev, "cannot map device bar2 region\n");
			err = -ENOMEM;
4710
			goto out_free_adapter;
4711
		}
4712 4713
		t4_write_reg(adapter, SGE_STAT_CFG_A,
			     STATSOURCE_T5_V(7) | STATMODE_V(0));
4714 4715
	}

4716
	setup_memwin(adapter);
4717
	err = adap_init0(adapter);
4718 4719 4720
#ifdef CONFIG_DEBUG_FS
	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
#endif
4721
	setup_memwin_rdma(adapter);
4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
	if (err)
		goto out_unmap_bar;

	for_each_port(adapter, i) {
		struct net_device *netdev;

		netdev = alloc_etherdev_mq(sizeof(struct port_info),
					   MAX_ETH_QSETS);
		if (!netdev) {
			err = -ENOMEM;
			goto out_free_dev;
		}

		SET_NETDEV_DEV(netdev, &pdev->dev);

		adapter->port[i] = netdev;
		pi = netdev_priv(netdev);
		pi->adapter = adapter;
		pi->xact_addr_filt = -1;
		pi->port_id = i;
		netdev->irq = pdev->irq;

4744 4745 4746
		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
			NETIF_F_RXCSUM | NETIF_F_RXHASH |
4747
			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4748 4749 4750
		if (highdma)
			netdev->hw_features |= NETIF_F_HIGHDMA;
		netdev->features |= netdev->hw_features;
4751 4752
		netdev->vlan_features = netdev->features & VLAN_FEAT;

4753 4754
		netdev->priv_flags |= IFF_UNICAST_FLT;

4755
		netdev->netdev_ops = &cxgb4_netdev_ops;
4756 4757 4758 4759
#ifdef CONFIG_CHELSIO_T4_DCB
		netdev->dcbnl_ops = &cxgb4_dcb_ops;
		cxgb4_dcb_state_init(netdev);
#endif
4760
		cxgb4_set_ethtool_ops(netdev);
4761 4762 4763 4764 4765
	}

	pci_set_drvdata(pdev, adapter);

	if (adapter->flags & FW_OK) {
4766
		err = t4_port_init(adapter, func, func, 0);
4767 4768
		if (err)
			goto out_free_dev;
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
	} else if (adapter->params.nports == 1) {
		/* If we don't have a connection to the firmware -- possibly
		 * because of an error -- grab the raw VPD parameters so we
		 * can set the proper MAC Address on the debug network
		 * interface that we've created.
		 */
		u8 hw_addr[ETH_ALEN];
		u8 *na = adapter->params.vpd.na;

		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
		if (!err) {
			for (i = 0; i < ETH_ALEN; i++)
				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
					      hex2val(na[2 * i + 1]));
			t4_set_hw_addr(adapter, 0, hw_addr);
		}
4785 4786
	}

4787
	/* Configure queues and allocate tables now, they can be needed as
4788 4789 4790 4791
	 * soon as the first register_netdev completes.
	 */
	cfg_queues(adapter);

4792
	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4793 4794 4795 4796 4797 4798
	if (!adapter->l2t) {
		/* We tolerate a lack of L2T, giving up some functionality */
		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
		adapter->params.offload = 0;
	}

4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
#if IS_ENABLED(CONFIG_IPV6)
	adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
					  adapter->clipt_end);
	if (!adapter->clipt) {
		/* We tolerate a lack of clip_table, giving up
		 * some functionality
		 */
		dev_warn(&pdev->dev,
			 "could not allocate Clip table, continuing\n");
		adapter->params.offload = 0;
	}
#endif
4811 4812 4813 4814 4815 4816
	if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
		dev_warn(&pdev->dev, "could not allocate TID table, "
			 "continuing\n");
		adapter->params.offload = 0;
	}

4817 4818 4819 4820 4821 4822
	/* See what interrupts we'll be using */
	if (msi > 1 && enable_msix(adapter) == 0)
		adapter->flags |= USING_MSIX;
	else if (msi > 0 && pci_enable_msi(pdev) == 0)
		adapter->flags |= USING_MSI;

4823 4824 4825 4826
	err = init_rss(adapter);
	if (err)
		goto out_free_dev;

4827 4828 4829 4830 4831 4832 4833
	/*
	 * The card is now ready to go.  If any errors occur during device
	 * registration we do not fail the whole card but rather proceed only
	 * with the ports we manage to register successfully.  However we must
	 * register at least one net device.
	 */
	for_each_port(adapter, i) {
4834 4835 4836 4837
		pi = adap2pinfo(adapter, i);
		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);

4838 4839
		err = register_netdev(adapter->port[i]);
		if (err)
4840 4841 4842
			break;
		adapter->chan_map[pi->tx_chan] = i;
		print_port_info(adapter->port[i]);
4843
	}
4844
	if (i == 0) {
4845 4846 4847
		dev_err(&pdev->dev, "could not register any net devices\n");
		goto out_free_dev;
	}
4848 4849 4850
	if (err) {
		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
		err = 0;
4851
	}
4852 4853 4854 4855 4856 4857 4858

	if (cxgb4_debugfs_root) {
		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
							   cxgb4_debugfs_root);
		setup_debugfs(adapter);
	}

D
Divy Le Ray 已提交
4859 4860 4861
	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
	pdev->needs_freset = 1;

4862 4863 4864
	if (is_offload(adapter))
		attach_ulds(adapter);

4865
sriov:
4866
#ifdef CONFIG_PCI_IOV
4867
	if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
4868 4869 4870 4871 4872 4873 4874 4875
		if (pci_enable_sriov(pdev, num_vf[func]) == 0)
			dev_info(&pdev->dev,
				 "instantiated %u virtual functions\n",
				 num_vf[func]);
#endif
	return 0;

 out_free_dev:
4876
	free_some_resources(adapter);
4877
 out_unmap_bar:
4878
	if (!is_t4(adapter->params.chip))
4879
		iounmap(adapter->bar2);
4880
 out_free_adapter:
4881 4882 4883
	if (adapter->workq)
		destroy_workqueue(adapter->workq);

4884
	kfree(adapter);
4885 4886
 out_unmap_bar0:
	iounmap(regs);
4887 4888 4889 4890 4891 4892 4893 4894
 out_disable_device:
	pci_disable_pcie_error_reporting(pdev);
	pci_disable_device(pdev);
 out_release_regions:
	pci_release_regions(pdev);
	return err;
}

B
Bill Pemberton 已提交
4895
static void remove_one(struct pci_dev *pdev)
4896 4897 4898
{
	struct adapter *adapter = pci_get_drvdata(pdev);

4899
#ifdef CONFIG_PCI_IOV
4900 4901
	pci_disable_sriov(pdev);

4902 4903
#endif

4904 4905 4906
	if (adapter) {
		int i;

4907 4908 4909 4910 4911
		/* Tear down per-adapter Work Queue first since it can contain
		 * references to our adapter data structure.
		 */
		destroy_workqueue(adapter->workq);

4912 4913 4914
		if (is_offload(adapter))
			detach_ulds(adapter);

4915 4916
		disable_interrupts(adapter);

4917
		for_each_port(adapter, i)
D
Dimitris Michailidis 已提交
4918
			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
4919 4920
				unregister_netdev(adapter->port[i]);

4921
		debugfs_remove_recursive(adapter->debugfs_root);
4922

V
Vipul Pandya 已提交
4923 4924 4925 4926 4927
		/* If we allocated filters, free up state associated with any
		 * valid filters ...
		 */
		if (adapter->tids.ftid_tab) {
			struct filter_entry *f = &adapter->tids.ftid_tab[0];
4928 4929
			for (i = 0; i < (adapter->tids.nftids +
					adapter->tids.nsftids); i++, f++)
V
Vipul Pandya 已提交
4930 4931 4932 4933
				if (f->valid)
					clear_filter(adapter, f);
		}

4934 4935
		if (adapter->flags & FULL_INIT_DONE)
			cxgb_down(adapter);
4936

4937
		free_some_resources(adapter);
4938 4939 4940
#if IS_ENABLED(CONFIG_IPV6)
		t4_cleanup_clip_tbl(adapter);
#endif
4941
		iounmap(adapter->regs);
4942
		if (!is_t4(adapter->params.chip))
4943
			iounmap(adapter->bar2);
4944
		pci_disable_pcie_error_reporting(pdev);
4945 4946 4947 4948
		if ((adapter->flags & DEV_ENABLED)) {
			pci_disable_device(pdev);
			adapter->flags &= ~DEV_ENABLED;
		}
4949
		pci_release_regions(pdev);
4950
		synchronize_rcu();
4951
		kfree(adapter);
4952
	} else
4953 4954 4955 4956 4957 4958 4959
		pci_release_regions(pdev);
}

static struct pci_driver cxgb4_driver = {
	.name     = KBUILD_MODNAME,
	.id_table = cxgb4_pci_tbl,
	.probe    = init_one,
B
Bill Pemberton 已提交
4960
	.remove   = remove_one,
4961
	.shutdown = remove_one,
D
Dimitris Michailidis 已提交
4962
	.err_handler = &cxgb4_eeh,
4963 4964 4965 4966 4967 4968 4969 4970 4971
};

static int __init cxgb4_init_module(void)
{
	int ret;

	/* Debugfs support is optional, just warn if this fails */
	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
	if (!cxgb4_debugfs_root)
4972
		pr_warn("could not create debugfs entry, continuing\n");
4973 4974

	ret = pci_register_driver(&cxgb4_driver);
4975
	if (ret < 0)
4976
		debugfs_remove(cxgb4_debugfs_root);
4977

4978
#if IS_ENABLED(CONFIG_IPV6)
4979 4980 4981 4982
	if (!inet6addr_registered) {
		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
		inet6addr_registered = true;
	}
4983
#endif
4984

4985 4986 4987 4988 4989
	return ret;
}

static void __exit cxgb4_cleanup_module(void)
{
4990
#if IS_ENABLED(CONFIG_IPV6)
4991
	if (inet6addr_registered) {
4992 4993 4994
		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
		inet6addr_registered = false;
	}
4995
#endif
4996 4997 4998 4999 5000 5001
	pci_unregister_driver(&cxgb4_driver);
	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
}

module_init(cxgb4_init_module);
module_exit(cxgb4_cleanup_module);