cpsw.c 72.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Texas Instruments Ethernet Switch Driver
 *
 * Copyright (C) 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/irqreturn.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
27
#include <linux/net_tstamp.h>
28 29 30
#include <linux/phy.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
31
#include <linux/pm_runtime.h>
32
#include <linux/gpio.h>
33
#include <linux/of.h>
34
#include <linux/of_mdio.h>
35 36
#include <linux/of_net.h>
#include <linux/of_device.h>
37
#include <linux/if_vlan.h>
38

39
#include <linux/pinctrl/consumer.h>
40

41
#include "cpsw.h"
42
#include "cpsw_ale.h"
43
#include "cpts.h"
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
#include "davinci_cpdma.h"

#define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
			 NETIF_MSG_RX_STATUS)

#define cpsw_info(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_info(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_err(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_err(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_dbg(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_notice(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

79 80
#define ALE_ALL_PORTS		0x7

81 82 83 84
#define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
#define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
#define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)

85 86
#define CPSW_VERSION_1		0x19010a
#define CPSW_VERSION_2		0x19010c
87
#define CPSW_VERSION_3		0x19010f
88
#define CPSW_VERSION_4		0x190112
89 90 91 92 93 94 95 96 97

#define HOST_PORT_NUM		0
#define SLIVER_SIZE		0x40

#define CPSW1_HOST_PORT_OFFSET	0x028
#define CPSW1_SLAVE_OFFSET	0x050
#define CPSW1_SLAVE_SIZE	0x040
#define CPSW1_CPDMA_OFFSET	0x100
#define CPSW1_STATERAM_OFFSET	0x200
98
#define CPSW1_HW_STATS		0x400
99 100 101 102 103 104 105 106
#define CPSW1_CPTS_OFFSET	0x500
#define CPSW1_ALE_OFFSET	0x600
#define CPSW1_SLIVER_OFFSET	0x700

#define CPSW2_HOST_PORT_OFFSET	0x108
#define CPSW2_SLAVE_OFFSET	0x200
#define CPSW2_SLAVE_SIZE	0x100
#define CPSW2_CPDMA_OFFSET	0x800
107
#define CPSW2_HW_STATS		0x900
108 109 110 111 112 113
#define CPSW2_STATERAM_OFFSET	0xa00
#define CPSW2_CPTS_OFFSET	0xc00
#define CPSW2_ALE_OFFSET	0xd00
#define CPSW2_SLIVER_OFFSET	0xd80
#define CPSW2_BD_OFFSET		0x2000

114 115 116 117 118 119 120 121 122 123 124 125 126
#define CPDMA_RXTHRESH		0x0c0
#define CPDMA_RXFREE		0x0e0
#define CPDMA_TXHDP		0x00
#define CPDMA_RXHDP		0x20
#define CPDMA_TXCP		0x40
#define CPDMA_RXCP		0x60

#define CPSW_POLL_WEIGHT	64
#define CPSW_MIN_PACKET_SIZE	60
#define CPSW_MAX_PACKET_SIZE	(1500 + 14 + 4 + 4)

#define RX_PRIORITY_MAPPING	0x76543210
#define TX_PRIORITY_MAPPING	0x33221100
127
#define CPDMA_TX_PRIORITY_MAP	0x01234567
128

129 130 131
#define CPSW_VLAN_AWARE		BIT(1)
#define CPSW_ALE_VLAN_AWARE	1

132 133 134
#define CPSW_FIFO_NORMAL_MODE		(0 << 16)
#define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
#define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
135

136 137 138 139 140 141 142
#define CPSW_INTPACEEN		(0x3f << 16)
#define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
#define CPSW_CMINTMAX_CNT	63
#define CPSW_CMINTMIN_CNT	2
#define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
#define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)

143 144 145
#define cpsw_slave_index(cpsw, priv)				\
		((cpsw->data.dual_emac) ? priv->emac_port :	\
		cpsw->data.active_slave)
146
#define IRQ_NUM			2
147
#define CPSW_MAX_QUEUES		8
148

149 150 151 152 153 154 155 156 157 158 159 160
static int debug_level;
module_param(debug_level, int, 0);
MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");

static int ale_ageout = 10;
module_param(ale_ageout, int, 0);
MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");

static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
module_param(rx_packet_max, int, 0);
MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");

161
struct cpsw_wr_regs {
162 163 164 165 166 167 168 169
	u32	id_ver;
	u32	soft_reset;
	u32	control;
	u32	int_control;
	u32	rx_thresh_en;
	u32	rx_en;
	u32	tx_en;
	u32	misc_en;
170 171 172 173 174 175 176 177 178
	u32	mem_allign1[8];
	u32	rx_thresh_stat;
	u32	rx_stat;
	u32	tx_stat;
	u32	misc_stat;
	u32	mem_allign2[8];
	u32	rx_imax;
	u32	tx_imax;

179 180
};

181
struct cpsw_ss_regs {
182 183 184 185 186
	u32	id_ver;
	u32	control;
	u32	soft_reset;
	u32	stat_port_en;
	u32	ptype;
187 188 189 190 191 192 193 194
	u32	soft_idle;
	u32	thru_rate;
	u32	gap_thresh;
	u32	tx_start_wds;
	u32	flow_control;
	u32	vlan_ltype;
	u32	ts_ltype;
	u32	dlr_ltype;
195 196
};

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
/* CPSW_PORT_V1 */
#define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
#define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
#define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
#define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
#define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW1_TS_CTL        0x14 /* Time Sync Control */
#define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
#define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */

/* CPSW_PORT_V2 */
#define CPSW2_CONTROL       0x00 /* Control Register */
#define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
#define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
#define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
#define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
#define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */

/* CPSW_PORT_V1 and V2 */
#define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
#define SA_HI               0x24 /* CPGMAC_SL Source Address High */
#define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */

/* CPSW_PORT_V2 only */
#define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */

/* Bit definitions for the CPSW2_CONTROL register */
#define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
#define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
#define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
#define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
#define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
#define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
#define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
#define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
#define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
#define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
242 243
#define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
#define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
244 245 246 247 248 249
#define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
#define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
#define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
#define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
#define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */

250 251 252
#define CTRL_V2_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
253

254 255 256 257 258 259 260 261 262 263 264 265 266
#define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
#define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)


#define CTRL_V3_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
	 TS_LTYPE1_EN)

#define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
#define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
267 268 269 270 271 272 273 274 275

/* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
#define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
#define TS_SEQ_ID_OFFSET_MASK    (0x3f)
#define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
#define TS_MSG_TYPE_EN_MASK      (0xffff)

/* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
#define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
276

277 278 279 280 281 282 283 284
/* Bit definitions for the CPSW1_TS_CTL register */
#define CPSW_V1_TS_RX_EN		BIT(0)
#define CPSW_V1_TS_TX_EN		BIT(4)
#define CPSW_V1_MSG_TYPE_OFS		16

/* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
#define CPSW_V1_SEQ_ID_OFS_SHIFT	16

285 286 287
struct cpsw_host_regs {
	u32	max_blks;
	u32	blk_cnt;
288
	u32	tx_in_ctl;
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	u32	port_vlan;
	u32	tx_pri_map;
	u32	cpdma_tx_pri_map;
	u32	cpdma_rx_chan_map;
};

struct cpsw_sliver_regs {
	u32	id_ver;
	u32	mac_control;
	u32	mac_status;
	u32	soft_reset;
	u32	rx_maxlen;
	u32	__reserved_0;
	u32	rx_pause;
	u32	tx_pause;
	u32	__reserved_1;
	u32	rx_pri_map;
};

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
struct cpsw_hw_stats {
	u32	rxgoodframes;
	u32	rxbroadcastframes;
	u32	rxmulticastframes;
	u32	rxpauseframes;
	u32	rxcrcerrors;
	u32	rxaligncodeerrors;
	u32	rxoversizedframes;
	u32	rxjabberframes;
	u32	rxundersizedframes;
	u32	rxfragments;
	u32	__pad_0[2];
	u32	rxoctets;
	u32	txgoodframes;
	u32	txbroadcastframes;
	u32	txmulticastframes;
	u32	txpauseframes;
	u32	txdeferredframes;
	u32	txcollisionframes;
	u32	txsinglecollframes;
	u32	txmultcollframes;
	u32	txexcessivecollisions;
	u32	txlatecollisions;
	u32	txunderrun;
	u32	txcarriersenseerrors;
	u32	txoctets;
	u32	octetframes64;
	u32	octetframes65t127;
	u32	octetframes128t255;
	u32	octetframes256t511;
	u32	octetframes512t1023;
	u32	octetframes1024tup;
	u32	netoctets;
	u32	rxsofoverruns;
	u32	rxmofoverruns;
	u32	rxdmaoverruns;
};

346
struct cpsw_slave {
347
	void __iomem			*regs;
348 349 350 351 352
	struct cpsw_sliver_regs __iomem	*sliver;
	int				slave_num;
	u32				mac_control;
	struct cpsw_slave_data		*data;
	struct phy_device		*phy;
353 354 355
	struct net_device		*ndev;
	u32				port_vlan;
	u32				open_stat;
356 357
};

358 359 360 361 362 363 364 365 366 367
static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
{
	return __raw_readl(slave->regs + offset);
}

static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
{
	__raw_writel(val, slave->regs + offset);
}

368
struct cpsw_common {
369
	struct device			*dev;
370
	struct cpsw_platform_data	data;
371 372
	struct napi_struct		napi_rx;
	struct napi_struct		napi_tx;
373 374 375 376
	struct cpsw_ss_regs __iomem	*regs;
	struct cpsw_wr_regs __iomem	*wr_regs;
	u8 __iomem			*hw_stats;
	struct cpsw_host_regs __iomem	*host_port_regs;
377 378 379 380
	u32				version;
	u32				coal_intvl;
	u32				bus_freq_mhz;
	int				rx_packet_max;
381
	struct cpsw_slave		*slaves;
382
	struct cpdma_ctlr		*dma;
383 384
	struct cpdma_chan		*txch[CPSW_MAX_QUEUES];
	struct cpdma_chan		*rxch[CPSW_MAX_QUEUES];
385
	struct cpsw_ale			*ale;
386 387 388 389
	bool				quirk_irq;
	bool				rx_irq_disabled;
	bool				tx_irq_disabled;
	u32 irqs_table[IRQ_NUM];
390
	struct cpts			*cpts;
391
	int				rx_ch_num, tx_ch_num;
392 393 394
};

struct cpsw_priv {
395 396 397 398
	struct net_device		*ndev;
	struct device			*dev;
	u32				msg_enable;
	u8				mac_addr[ETH_ALEN];
399 400
	bool				rx_pause;
	bool				tx_pause;
401
	u32 emac_port;
402
	struct cpsw_common *cpsw;
403 404
};

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
struct cpsw_stats {
	char stat_string[ETH_GSTRING_LEN];
	int type;
	int sizeof_stat;
	int stat_offset;
};

enum {
	CPSW_STATS,
	CPDMA_RX_STATS,
	CPDMA_TX_STATS,
};

#define CPSW_STAT(m)		CPSW_STATS,				\
				sizeof(((struct cpsw_hw_stats *)0)->m), \
				offsetof(struct cpsw_hw_stats, m)
#define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)
#define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)

static const struct cpsw_stats cpsw_gstrings_stats[] = {
	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
	{ "Rx Fragments", CPSW_STAT(rxfragments) },
	{ "Rx Octets", CPSW_STAT(rxoctets) },
	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
	{ "Collisions", CPSW_STAT(txcollisionframes) },
	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
	{ "Tx Underrun", CPSW_STAT(txunderrun) },
	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
	{ "Tx Octets", CPSW_STAT(txoctets) },
	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
	{ "Net Octets", CPSW_STAT(netoctets) },
	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
};

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
	{ "misqueued", CPDMA_RX_STAT(misqueued) },
	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
	{ "requeue", CPDMA_RX_STAT(requeue) },
	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
};

#define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
#define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
483

484
#define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
485
#define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
486 487
#define for_each_slave(priv, func, arg...)				\
	do {								\
488
		struct cpsw_slave *slave;				\
489
		struct cpsw_common *cpsw = (priv)->cpsw;		\
490
		int n;							\
491 492
		if (cpsw->data.dual_emac)				\
			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
493
		else							\
494 495
			for (n = cpsw->data.slaves,			\
					slave = cpsw->slaves;		\
496 497
					n; n--)				\
				(func)(slave++, ##arg);			\
498 499
	} while (0)

500
#define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)		\
501
	do {								\
502
		if (!cpsw->data.dual_emac)				\
503 504
			break;						\
		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
505
			ndev = cpsw->slaves[0].ndev;			\
506 507
			skb->dev = ndev;				\
		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
508
			ndev = cpsw->slaves[1].ndev;			\
509 510
			skb->dev = ndev;				\
		}							\
511
	} while (0)
512
#define cpsw_add_mcast(cpsw, priv, addr)				\
513
	do {								\
514 515
		if (cpsw->data.dual_emac) {				\
			struct cpsw_slave *slave = cpsw->slaves +	\
516
						priv->emac_port;	\
517
			int slave_port = cpsw_get_slave_port(		\
518
						slave->slave_num);	\
519
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
520
				1 << slave_port | ALE_PORT_HOST,	\
521 522
				ALE_VLAN, slave->port_vlan, 0);		\
		} else {						\
523
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
524
				ALE_ALL_PORTS,				\
525 526 527 528
				0, 0, 0);				\
		}							\
	} while (0)

529
static inline int cpsw_get_slave_port(u32 slave_num)
530
{
531
	return slave_num + 1;
532
}
533

534 535
static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
{
536 537
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_ale *ale = cpsw->ale;
538 539
	int i;

540
	if (cpsw->data.dual_emac) {
541 542 543 544 545 546
		bool flag = false;

		/* Enabling promiscuous mode for one interface will be
		 * common for both the interface as the interface shares
		 * the same hardware resource.
		 */
547 548
		for (i = 0; i < cpsw->data.slaves; i++)
			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
				flag = true;

		if (!enable && flag) {
			enable = true;
			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
		}

		if (enable) {
			/* Enable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);

			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
			/* Disable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	} else {
		if (enable) {
			unsigned long timeout = jiffies + HZ;

570
			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
571
			for (i = 0; i <= cpsw->data.slaves; i++) {
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 1);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 1);
			}

			/* Clear All Untouched entries */
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
			do {
				cpu_relax();
				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
					break;
			} while (time_after(timeout, jiffies));
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);

			/* Clear all mcast from ALE */
588
			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
589 590 591 592 593

			/* Flood All Unicast Packets to Host port */
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
594
			/* Don't Flood All Unicast Packets to Host port */
595 596
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);

597
			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
598
			for (i = 0; i <= cpsw->data.slaves; i++) {
599 600 601 602 603 604 605 606 607 608
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 0);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 0);
			}
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	}
}

609 610 611
static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
612
	struct cpsw_common *cpsw = priv->cpsw;
613 614
	int vid;

615 616
	if (cpsw->data.dual_emac)
		vid = cpsw->slaves[priv->emac_port].port_vlan;
617
	else
618
		vid = cpsw->data.default_vlan;
619 620 621

	if (ndev->flags & IFF_PROMISC) {
		/* Enable promiscuous mode */
622
		cpsw_set_promiscious(ndev, true);
623
		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
624
		return;
625 626 627
	} else {
		/* Disable promiscuous mode */
		cpsw_set_promiscious(ndev, false);
628 629
	}

630
	/* Restore allmulti on vlans if necessary */
631
	cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
632

633
	/* Clear all mcast from ALE */
634
	cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
635 636 637 638 639 640

	if (!netdev_mc_empty(ndev)) {
		struct netdev_hw_addr *ha;

		/* program multicast address list into ALE register */
		netdev_for_each_mc_addr(ha, ndev) {
641
			cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
642 643 644 645
		}
	}
}

646
static void cpsw_intr_enable(struct cpsw_common *cpsw)
647
{
648 649
	__raw_writel(0xFF, &cpsw->wr_regs->tx_en);
	__raw_writel(0xFF, &cpsw->wr_regs->rx_en);
650

651
	cpdma_ctlr_int_ctrl(cpsw->dma, true);
652 653 654
	return;
}

655
static void cpsw_intr_disable(struct cpsw_common *cpsw)
656
{
657 658
	__raw_writel(0, &cpsw->wr_regs->tx_en);
	__raw_writel(0, &cpsw->wr_regs->rx_en);
659

660
	cpdma_ctlr_int_ctrl(cpsw->dma, false);
661 662 663
	return;
}

664
static void cpsw_tx_handler(void *token, int len, int status)
665
{
666
	struct netdev_queue	*txq;
667 668
	struct sk_buff		*skb = token;
	struct net_device	*ndev = skb->dev;
669
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
670

671 672 673
	/* Check whether the queue is stopped due to stalled tx dma, if the
	 * queue is stopped then start the queue as we have free desc for tx
	 */
674 675 676 677
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	if (unlikely(netif_tx_queue_stopped(txq)))
		netif_tx_wake_queue(txq);

678
	cpts_tx_timestamp(cpsw->cpts, skb);
679 680
	ndev->stats.tx_packets++;
	ndev->stats.tx_bytes += len;
681 682 683
	dev_kfree_skb_any(skb);
}

684
static void cpsw_rx_handler(void *token, int len, int status)
685
{
686
	struct cpdma_chan	*ch;
687
	struct sk_buff		*skb = token;
688
	struct sk_buff		*new_skb;
689 690
	struct net_device	*ndev = skb->dev;
	int			ret = 0;
691
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
692

693
	cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
694

695
	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
696
		bool ndev_status = false;
697
		struct cpsw_slave *slave = cpsw->slaves;
698 699
		int n;

700
		if (cpsw->data.dual_emac) {
701
			/* In dual emac mode check for all interfaces */
702
			for (n = cpsw->data.slaves; n; n--, slave++)
703 704 705 706 707 708 709
				if (netif_running(slave->ndev))
					ndev_status = true;
		}

		if (ndev_status && (status >= 0)) {
			/* The packet received is for the interface which
			 * is already down and the other interface is up
710
			 * and running, instead of freeing which results
711 712 713 714 715 716 717
			 * in reducing of the number of rx descriptor in
			 * DMA engine, requeue skb back to cpdma.
			 */
			new_skb = skb;
			goto requeue;
		}

718
		/* the interface is going down, skbs are purged */
719 720 721
		dev_kfree_skb_any(skb);
		return;
	}
722

723
	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
724
	if (new_skb) {
725
		skb_copy_queue_mapping(new_skb, skb);
726
		skb_put(skb, len);
727
		cpts_rx_timestamp(cpsw->cpts, skb);
728 729
		skb->protocol = eth_type_trans(skb, ndev);
		netif_receive_skb(skb);
730 731
		ndev->stats.rx_bytes += len;
		ndev->stats.rx_packets++;
732
		kmemleak_not_leak(new_skb);
733
	} else {
734
		ndev->stats.rx_dropped++;
735
		new_skb = skb;
736 737
	}

738
requeue:
739 740
	ch = cpsw->rxch[skb_get_queue_mapping(new_skb)];
	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
741
				skb_tailroom(new_skb), 0);
742 743
	if (WARN_ON(ret < 0))
		dev_kfree_skb_any(new_skb);
744 745
}

746
static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
747
{
748
	struct cpsw_common *cpsw = dev_id;
749

750
	writel(0, &cpsw->wr_regs->tx_en);
751
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
752

753 754 755
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[1]);
		cpsw->tx_irq_disabled = true;
756 757
	}

758
	napi_schedule(&cpsw->napi_tx);
759 760 761 762 763
	return IRQ_HANDLED;
}

static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
{
764
	struct cpsw_common *cpsw = dev_id;
765

766
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
767
	writel(0, &cpsw->wr_regs->rx_en);
768

769 770 771
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[0]);
		cpsw->rx_irq_disabled = true;
772 773
	}

774
	napi_schedule(&cpsw->napi_rx);
775
	return IRQ_HANDLED;
776 777
}

778 779
static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
{
780 781
	u32			ch_map;
	int			num_tx, ch;
782
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
783

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
	for (ch = 0, num_tx = 0; num_tx < budget; ch_map >>= 1, ch++) {
		if (!ch_map) {
			ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
			if (!ch_map)
				break;

			ch = 0;
		}

		if (!(ch_map & 0x01))
			continue;

		num_tx += cpdma_chan_process(cpsw->txch[ch], budget - num_tx);
	}

801 802
	if (num_tx < budget) {
		napi_complete(napi_tx);
803
		writel(0xff, &cpsw->wr_regs->tx_en);
804 805 806
		if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
807
		}
808 809 810 811 812 813
	}

	return num_tx;
}

static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
814
{
815 816
	u32			ch_map;
	int			num_rx, ch;
817
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
818

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
	for (ch = 0, num_rx = 0; num_rx < budget; ch_map >>= 1, ch++) {
		if (!ch_map) {
			ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
			if (!ch_map)
				break;

			ch = 0;
		}

		if (!(ch_map & 0x01))
			continue;

		num_rx += cpdma_chan_process(cpsw->rxch[ch], budget - num_rx);
	}

836
	if (num_rx < budget) {
837
		napi_complete(napi_rx);
838
		writel(0xff, &cpsw->wr_regs->rx_en);
839 840 841
		if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
842
		}
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
	}

	return num_rx;
}

static inline void soft_reset(const char *module, void __iomem *reg)
{
	unsigned long timeout = jiffies + HZ;

	__raw_writel(1, reg);
	do {
		cpu_relax();
	} while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));

	WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
}

#define mac_hi(mac)	(((mac)[0] << 0) | ((mac)[1] << 8) |	\
			 ((mac)[2] << 16) | ((mac)[3] << 24))
#define mac_lo(mac)	(((mac)[4] << 0) | ((mac)[5] << 8))

static void cpsw_set_slave_mac(struct cpsw_slave *slave,
			       struct cpsw_priv *priv)
{
867 868
	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
869 870 871 872 873 874 875 876
}

static void _cpsw_adjust_link(struct cpsw_slave *slave,
			      struct cpsw_priv *priv, bool *link)
{
	struct phy_device	*phy = slave->phy;
	u32			mac_control = 0;
	u32			slave_port;
877
	struct cpsw_common *cpsw = priv->cpsw;
878 879 880 881

	if (!phy)
		return;

882
	slave_port = cpsw_get_slave_port(slave->slave_num);
883 884

	if (phy->link) {
885
		mac_control = cpsw->data.mac_control;
886 887

		/* enable forwarding */
888
		cpsw_ale_control_set(cpsw->ale, slave_port,
889 890 891 892 893 894
				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

		if (phy->speed == 1000)
			mac_control |= BIT(7);	/* GIGABITEN	*/
		if (phy->duplex)
			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
895 896 897 898

		/* set speed_in input in case RMII mode is used in 100Mbps */
		if (phy->speed == 100)
			mac_control |= BIT(15);
899 900
		else if (phy->speed == 10)
			mac_control |= BIT(18); /* In Band mode */
901

902 903 904 905 906 907
		if (priv->rx_pause)
			mac_control |= BIT(3);

		if (priv->tx_pause)
			mac_control |= BIT(4);

908 909 910 911
		*link = true;
	} else {
		mac_control = 0;
		/* disable forwarding */
912
		cpsw_ale_control_set(cpsw->ale, slave_port,
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
	}

	if (mac_control != slave->mac_control) {
		phy_print_status(phy);
		__raw_writel(mac_control, &slave->sliver->mac_control);
	}

	slave->mac_control = mac_control;
}

static void cpsw_adjust_link(struct net_device *ndev)
{
	struct cpsw_priv	*priv = netdev_priv(ndev);
	bool			link = false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);

	if (link) {
		netif_carrier_on(ndev);
		if (netif_running(ndev))
934
			netif_tx_wake_all_queues(ndev);
935 936
	} else {
		netif_carrier_off(ndev);
937
		netif_tx_stop_all_queues(ndev);
938 939 940
	}
}

941 942 943
static int cpsw_get_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
944
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
945

946
	coal->rx_coalesce_usecs = cpsw->coal_intvl;
947 948 949 950 951 952 953 954 955 956 957 958
	return 0;
}

static int cpsw_set_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	u32 int_ctrl;
	u32 num_interrupts = 0;
	u32 prescale = 0;
	u32 addnl_dvdr = 1;
	u32 coal_intvl = 0;
959
	struct cpsw_common *cpsw = priv->cpsw;
960 961 962

	coal_intvl = coal->rx_coalesce_usecs;

963
	int_ctrl =  readl(&cpsw->wr_regs->int_control);
964
	prescale = cpsw->bus_freq_mhz * 4;
965

966 967 968 969 970
	if (!coal->rx_coalesce_usecs) {
		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
		goto update_return;
	}

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
	if (coal_intvl < CPSW_CMINTMIN_INTVL)
		coal_intvl = CPSW_CMINTMIN_INTVL;

	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
		/* Interrupt pacer works with 4us Pulse, we can
		 * throttle further by dilating the 4us pulse.
		 */
		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;

		if (addnl_dvdr > 1) {
			prescale *= addnl_dvdr;
			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
				coal_intvl = (CPSW_CMINTMAX_INTVL
						* addnl_dvdr);
		} else {
			addnl_dvdr = 1;
			coal_intvl = CPSW_CMINTMAX_INTVL;
		}
	}

	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
992 993
	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
994 995 996 997

	int_ctrl |= CPSW_INTPACEEN;
	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
998 999

update_return:
1000
	writel(int_ctrl, &cpsw->wr_regs->int_control);
1001 1002

	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1003
	cpsw->coal_intvl = coal_intvl;
1004 1005 1006 1007

	return 0;
}

1008 1009
static int cpsw_get_sset_count(struct net_device *ndev, int sset)
{
1010 1011
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

1012 1013
	switch (sset) {
	case ETH_SS_STATS:
1014 1015 1016
		return (CPSW_STATS_COMMON_LEN +
		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
		       CPSW_STATS_CH_LEN);
1017 1018 1019 1020 1021
	default:
		return -EOPNOTSUPP;
	}
}

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
{
	int ch_stats_len;
	int line;
	int i;

	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
	for (i = 0; i < ch_stats_len; i++) {
		line = i % CPSW_STATS_CH_LEN;
		snprintf(*p, ETH_GSTRING_LEN,
			 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
			 i / CPSW_STATS_CH_LEN,
			 cpsw_gstrings_ch_stats[line].stat_string);
		*p += ETH_GSTRING_LEN;
	}
}

1039 1040
static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
{
1041
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1042 1043 1044 1045 1046
	u8 *p = data;
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
1047
		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1048 1049 1050 1051
			memcpy(p, cpsw_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
1052 1053 1054

		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1055 1056 1057 1058 1059 1060 1061 1062
		break;
	}
}

static void cpsw_get_ethtool_stats(struct net_device *ndev,
				    struct ethtool_stats *stats, u64 *data)
{
	u8 *p;
1063
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1064 1065
	struct cpdma_chan_stats ch_stats;
	int i, l, ch;
1066 1067

	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
		data[l] = readl(cpsw->hw_stats +
				cpsw_gstrings_stats[l].stat_offset);

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
		cpdma_chan_get_stats(cpsw->rxch[ch], &ch_stats);
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
		}
	}
1080

1081 1082 1083 1084 1085 1086
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
		cpdma_chan_get_stats(cpsw->txch[ch], &ch_stats);
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
1087 1088 1089 1090
		}
	}
}

1091
static int cpsw_common_res_usage_state(struct cpsw_common *cpsw)
1092 1093 1094 1095
{
	u32 i;
	u32 usage_count = 0;

1096
	if (!cpsw->data.dual_emac)
1097 1098
		return 0;

1099 1100
	for (i = 0; i < cpsw->data.slaves; i++)
		if (cpsw->slaves[i].open_stat)
1101 1102 1103 1104 1105
			usage_count++;

	return usage_count;
}

1106
static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1107 1108
					struct sk_buff *skb,
					struct cpdma_chan *txch)
1109
{
1110 1111
	struct cpsw_common *cpsw = priv->cpsw;

1112
	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1113
				 priv->emac_port + cpsw->data.dual_emac);
1114 1115 1116 1117 1118 1119
}

static inline void cpsw_add_dual_emac_def_ale_entries(
		struct cpsw_priv *priv, struct cpsw_slave *slave,
		u32 slave_port)
{
1120
	struct cpsw_common *cpsw = priv->cpsw;
1121
	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1122

1123
	if (cpsw->version == CPSW_VERSION_1)
1124 1125 1126
		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
	else
		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1127
	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1128
			  port_mask, port_mask, 0);
1129
	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1130
			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1131 1132 1133
	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
			   HOST_PORT_NUM, ALE_VLAN |
			   ALE_SECURE, slave->port_vlan);
1134 1135
}

1136
static void soft_reset_slave(struct cpsw_slave *slave)
1137 1138 1139
{
	char name[32];

1140
	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1141
	soft_reset(name, &slave->sliver->soft_reset);
1142 1143 1144 1145 1146
}

static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	u32 slave_port;
1147
	struct cpsw_common *cpsw = priv->cpsw;
1148 1149

	soft_reset_slave(slave);
1150 1151 1152

	/* setup priority mapping */
	__raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1153

1154
	switch (cpsw->version) {
1155 1156 1157 1158
	case CPSW_VERSION_1:
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
		break;
	case CPSW_VERSION_2:
1159
	case CPSW_VERSION_3:
1160
	case CPSW_VERSION_4:
1161 1162 1163
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
		break;
	}
1164 1165

	/* setup max packet size, and mac address */
1166
	__raw_writel(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1167 1168 1169 1170
	cpsw_set_slave_mac(slave, priv);

	slave->mac_control = 0;	/* no link yet */

1171
	slave_port = cpsw_get_slave_port(slave->slave_num);
1172

1173
	if (cpsw->data.dual_emac)
1174 1175
		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
	else
1176
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1177
				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1178

1179
	if (slave->data->phy_node) {
1180
		slave->phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1181
				 &cpsw_adjust_link, 0, slave->data->phy_if);
1182 1183 1184 1185 1186 1187 1188
		if (!slave->phy) {
			dev_err(priv->dev, "phy \"%s\" not found on slave %d\n",
				slave->data->phy_node->full_name,
				slave->slave_num);
			return;
		}
	} else {
1189
		slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1190
				 &cpsw_adjust_link, slave->data->phy_if);
1191 1192 1193 1194 1195 1196 1197 1198 1199
		if (IS_ERR(slave->phy)) {
			dev_err(priv->dev,
				"phy \"%s\" not found on slave %d, err %ld\n",
				slave->data->phy_id, slave->slave_num,
				PTR_ERR(slave->phy));
			slave->phy = NULL;
			return;
		}
	}
1200

1201
	phy_attached_info(slave->phy);
1202

1203 1204 1205
	phy_start(slave->phy);

	/* Configure GMII_SEL register */
1206
	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1207 1208
}

1209 1210
static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
{
1211 1212
	struct cpsw_common *cpsw = priv->cpsw;
	const int vlan = cpsw->data.default_vlan;
1213 1214
	u32 reg;
	int i;
1215
	int unreg_mcast_mask;
1216

1217
	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1218 1219
	       CPSW2_PORT_VLAN;

1220
	writel(vlan, &cpsw->host_port_regs->port_vlan);
1221

1222 1223
	for (i = 0; i < cpsw->data.slaves; i++)
		slave_write(cpsw->slaves + i, vlan, reg);
1224

1225 1226 1227 1228 1229
	if (priv->ndev->flags & IFF_ALLMULTI)
		unreg_mcast_mask = ALE_ALL_PORTS;
	else
		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;

1230
	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1231 1232
			  ALE_ALL_PORTS, ALE_ALL_PORTS,
			  unreg_mcast_mask);
1233 1234
}

1235 1236
static void cpsw_init_host_port(struct cpsw_priv *priv)
{
1237
	u32 fifo_mode;
1238 1239
	u32 control_reg;
	struct cpsw_common *cpsw = priv->cpsw;
1240

1241
	/* soft reset the controller and initialize ale */
1242
	soft_reset("cpsw", &cpsw->regs->soft_reset);
1243
	cpsw_ale_start(cpsw->ale);
1244 1245

	/* switch to vlan unaware mode */
1246
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1247
			     CPSW_ALE_VLAN_AWARE);
1248
	control_reg = readl(&cpsw->regs->control);
1249
	control_reg |= CPSW_VLAN_AWARE;
1250
	writel(control_reg, &cpsw->regs->control);
1251
	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1252
		     CPSW_FIFO_NORMAL_MODE;
1253
	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1254 1255 1256

	/* setup host port priority mapping */
	__raw_writel(CPDMA_TX_PRIORITY_MAP,
1257 1258
		     &cpsw->host_port_regs->cpdma_tx_pri_map);
	__raw_writel(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1259

1260
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1261 1262
			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

1263
	if (!cpsw->data.dual_emac) {
1264
		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1265
				   0, 0);
1266
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1267
				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1268
	}
1269 1270
}

1271 1272 1273 1274 1275
static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct sk_buff *skb;
	int ch_buf_num;
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	int ch, i, ret;

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxch[ch]);
		for (i = 0; i < ch_buf_num; i++) {
			skb = __netdev_alloc_skb_ip_align(priv->ndev,
							  cpsw->rx_packet_max,
							  GFP_KERNEL);
			if (!skb) {
				cpsw_err(priv, ifup, "cannot allocate skb\n");
				return -ENOMEM;
			}
1288

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
			skb_set_queue_mapping(skb, ch);
			ret = cpdma_chan_submit(cpsw->rxch[ch], skb, skb->data,
						skb_tailroom(skb), 0);
			if (ret < 0) {
				cpsw_err(priv, ifup,
					 "cannot submit skb to channel %d rx, error %d\n",
					 ch, ret);
				kfree_skb(skb);
				return ret;
			}
			kmemleak_not_leak(skb);
1300 1301
		}

1302 1303 1304
		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
			  ch, ch_buf_num);
	}
1305

1306
	return 0;
1307 1308
}

1309
static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1310
{
1311 1312
	u32 slave_port;

1313
	slave_port = cpsw_get_slave_port(slave->slave_num);
1314

1315 1316 1317 1318 1319
	if (!slave->phy)
		return;
	phy_stop(slave->phy);
	phy_disconnect(slave->phy);
	slave->phy = NULL;
1320
	cpsw_ale_control_set(cpsw->ale, slave_port,
1321
			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1322
	soft_reset_slave(slave);
1323 1324
}

1325 1326 1327
static int cpsw_ndo_open(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1328
	struct cpsw_common *cpsw = priv->cpsw;
1329
	int ret;
1330 1331
	u32 reg;

1332
	ret = pm_runtime_get_sync(cpsw->dev);
1333
	if (ret < 0) {
1334
		pm_runtime_put_noidle(cpsw->dev);
1335 1336
		return ret;
	}
1337

1338
	if (!cpsw_common_res_usage_state(cpsw))
1339
		cpsw_intr_disable(cpsw);
1340 1341
	netif_carrier_off(ndev);

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	/* Notify the stack of the actual queue counts. */
	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of tx queues\n");
		goto err_cleanup;
	}

	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of rx queues\n");
		goto err_cleanup;
	}

1355
	reg = cpsw->version;
1356 1357 1358 1359 1360 1361

	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
		 CPSW_RTL_VERSION(reg));

	/* initialize host and slave ports */
1362
	if (!cpsw_common_res_usage_state(cpsw))
1363
		cpsw_init_host_port(priv);
1364 1365
	for_each_slave(priv, cpsw_slave_open, priv);

1366
	/* Add default VLAN */
1367
	if (!cpsw->data.dual_emac)
1368 1369
		cpsw_add_default_vlan(priv);
	else
1370
		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1371
				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1372

1373
	if (!cpsw_common_res_usage_state(cpsw)) {
1374
		/* setup tx dma to fixed prio and zero offset */
1375 1376
		cpdma_control_set(cpsw->dma, CPDMA_TX_PRIO_FIXED, 1);
		cpdma_control_set(cpsw->dma, CPDMA_RX_BUFFER_OFFSET, 0);
1377

1378
		/* disable priority elevation */
1379
		__raw_writel(0, &cpsw->regs->ptype);
1380

1381
		/* enable statistics collection only on all ports */
1382
		__raw_writel(0x7, &cpsw->regs->stat_port_en);
1383

1384
		/* Enable internal fifo flow control */
1385
		writel(0x7, &cpsw->regs->flow_control);
1386

1387 1388
		napi_enable(&cpsw->napi_rx);
		napi_enable(&cpsw->napi_tx);
1389

1390 1391 1392
		if (cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
1393 1394
		}

1395 1396 1397
		if (cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
1398 1399
		}

1400 1401 1402
		ret = cpsw_fill_rx_channels(priv);
		if (ret < 0)
			goto err_cleanup;
1403

1404
		if (cpts_register(cpsw->dev, cpsw->cpts,
1405 1406
				  cpsw->data.cpts_clock_mult,
				  cpsw->data.cpts_clock_shift))
1407 1408
			dev_err(priv->dev, "error registering cpts device\n");

1409 1410
	}

1411
	/* Enable Interrupt pacing if configured */
1412
	if (cpsw->coal_intvl != 0) {
1413 1414
		struct ethtool_coalesce coal;

1415
		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1416 1417 1418
		cpsw_set_coalesce(ndev, &coal);
	}

1419 1420
	cpdma_ctlr_start(cpsw->dma);
	cpsw_intr_enable(cpsw);
1421

1422 1423
	if (cpsw->data.dual_emac)
		cpsw->slaves[priv->emac_port].open_stat = true;
1424 1425 1426

	netif_tx_start_all_queues(ndev);

1427 1428
	return 0;

1429
err_cleanup:
1430
	cpdma_ctlr_stop(cpsw->dma);
1431
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1432
	pm_runtime_put_sync(cpsw->dev);
1433 1434
	netif_carrier_off(priv->ndev);
	return ret;
1435 1436 1437 1438 1439
}

static int cpsw_ndo_stop(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1440
	struct cpsw_common *cpsw = priv->cpsw;
1441 1442

	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1443
	netif_tx_stop_all_queues(priv->ndev);
1444
	netif_carrier_off(priv->ndev);
1445

1446
	if (cpsw_common_res_usage_state(cpsw) <= 1) {
1447 1448
		napi_disable(&cpsw->napi_rx);
		napi_disable(&cpsw->napi_tx);
1449
		cpts_unregister(cpsw->cpts);
1450 1451
		cpsw_intr_disable(cpsw);
		cpdma_ctlr_stop(cpsw->dma);
1452
		cpsw_ale_stop(cpsw->ale);
1453
	}
1454
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1455
	pm_runtime_put_sync(cpsw->dev);
1456 1457
	if (cpsw->data.dual_emac)
		cpsw->slaves[priv->emac_port].open_stat = false;
1458 1459 1460 1461 1462 1463 1464
	return 0;
}

static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
				       struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1465
	struct cpsw_common *cpsw = priv->cpsw;
1466 1467 1468
	struct netdev_queue *txq;
	struct cpdma_chan *txch;
	int ret, q_idx;
1469

1470
	netif_trans_update(ndev);
1471 1472 1473

	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
		cpsw_err(priv, tx_err, "packet pad failed\n");
1474
		ndev->stats.tx_dropped++;
1475 1476 1477
		return NETDEV_TX_OK;
	}

1478
	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1479
				cpsw->cpts->tx_enable)
1480 1481 1482 1483
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;

	skb_tx_timestamp(skb);

1484 1485 1486 1487 1488 1489
	q_idx = skb_get_queue_mapping(skb);
	if (q_idx >= cpsw->tx_ch_num)
		q_idx = q_idx % cpsw->tx_ch_num;

	txch = cpsw->txch[q_idx];
	ret = cpsw_tx_packet_submit(priv, skb, txch);
1490 1491 1492 1493 1494
	if (unlikely(ret != 0)) {
		cpsw_err(priv, tx_err, "desc submit failed\n");
		goto fail;
	}

1495 1496 1497
	/* If there is no more tx desc left free then we need to
	 * tell the kernel to stop sending us tx frames.
	 */
1498 1499 1500 1501
	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
		txq = netdev_get_tx_queue(ndev, q_idx);
		netif_tx_stop_queue(txq);
	}
1502

1503 1504
	return NETDEV_TX_OK;
fail:
1505
	ndev->stats.tx_dropped++;
1506 1507
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	netif_tx_stop_queue(txq);
1508 1509 1510
	return NETDEV_TX_BUSY;
}

1511 1512
#ifdef CONFIG_TI_CPTS

1513
static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1514
{
1515
	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1516 1517
	u32 ts_en, seq_id;

1518
	if (!cpsw->cpts->tx_enable && !cpsw->cpts->rx_enable) {
1519 1520 1521 1522 1523 1524 1525
		slave_write(slave, 0, CPSW1_TS_CTL);
		return;
	}

	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;

1526
	if (cpsw->cpts->tx_enable)
1527 1528
		ts_en |= CPSW_V1_TS_TX_EN;

1529
	if (cpsw->cpts->rx_enable)
1530 1531 1532 1533 1534 1535 1536 1537
		ts_en |= CPSW_V1_TS_RX_EN;

	slave_write(slave, ts_en, CPSW1_TS_CTL);
	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
}

static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
{
1538
	struct cpsw_slave *slave;
1539
	struct cpsw_common *cpsw = priv->cpsw;
1540 1541
	u32 ctrl, mtype;

1542 1543
	if (cpsw->data.dual_emac)
		slave = &cpsw->slaves[priv->emac_port];
1544
	else
1545
		slave = &cpsw->slaves[cpsw->data.active_slave];
1546

1547
	ctrl = slave_read(slave, CPSW2_CONTROL);
1548
	switch (cpsw->version) {
1549 1550
	case CPSW_VERSION_2:
		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1551

1552
		if (cpsw->cpts->tx_enable)
1553
			ctrl |= CTRL_V2_TX_TS_BITS;
1554

1555
		if (cpsw->cpts->rx_enable)
1556
			ctrl |= CTRL_V2_RX_TS_BITS;
1557
		break;
1558 1559 1560 1561
	case CPSW_VERSION_3:
	default:
		ctrl &= ~CTRL_V3_ALL_TS_MASK;

1562
		if (cpsw->cpts->tx_enable)
1563 1564
			ctrl |= CTRL_V3_TX_TS_BITS;

1565
		if (cpsw->cpts->rx_enable)
1566
			ctrl |= CTRL_V3_RX_TS_BITS;
1567
		break;
1568
	}
1569 1570 1571 1572 1573

	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;

	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
	slave_write(slave, ctrl, CPSW2_CONTROL);
1574
	__raw_writel(ETH_P_1588, &cpsw->regs->ts_ltype);
1575 1576
}

1577
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1578
{
1579
	struct cpsw_priv *priv = netdev_priv(dev);
1580
	struct hwtstamp_config cfg;
1581 1582
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpts *cpts = cpsw->cpts;
1583

1584 1585 1586
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1587 1588
		return -EOPNOTSUPP;

1589 1590 1591 1592 1593 1594 1595
	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
		return -EFAULT;

	/* reserved for future extensions */
	if (cfg.flags)
		return -EINVAL;

1596
	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
		return -ERANGE;

	switch (cfg.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		cpts->rx_enable = 0;
		break;
	case HWTSTAMP_FILTER_ALL:
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		return -ERANGE;
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
		cpts->rx_enable = 1;
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		break;
	default:
		return -ERANGE;
	}

1624 1625
	cpts->tx_enable = cfg.tx_type == HWTSTAMP_TX_ON;

1626
	switch (cpsw->version) {
1627
	case CPSW_VERSION_1:
1628
		cpsw_hwtstamp_v1(cpsw);
1629 1630
		break;
	case CPSW_VERSION_2:
1631
	case CPSW_VERSION_3:
1632 1633 1634
		cpsw_hwtstamp_v2(priv);
		break;
	default:
1635
		WARN_ON(1);
1636 1637 1638 1639 1640
	}

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}

1641 1642
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
1643 1644
	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
	struct cpts *cpts = cpsw->cpts;
1645 1646
	struct hwtstamp_config cfg;

1647 1648 1649
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
		return -EOPNOTSUPP;

	cfg.flags = 0;
	cfg.tx_type = cpts->tx_enable ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
	cfg.rx_filter = (cpts->rx_enable ?
			 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}

1660 1661 1662 1663
#endif /*CONFIG_TI_CPTS*/

static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
1664
	struct cpsw_priv *priv = netdev_priv(dev);
1665 1666
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
1667

1668 1669 1670
	if (!netif_running(dev))
		return -EINVAL;

1671
	switch (cmd) {
1672
#ifdef CONFIG_TI_CPTS
1673
	case SIOCSHWTSTAMP:
1674 1675 1676
		return cpsw_hwtstamp_set(dev, req);
	case SIOCGHWTSTAMP:
		return cpsw_hwtstamp_get(dev, req);
1677
#endif
1678 1679
	}

1680
	if (!cpsw->slaves[slave_no].phy)
1681
		return -EOPNOTSUPP;
1682
	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1683 1684
}

1685 1686 1687
static void cpsw_ndo_tx_timeout(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1688
	struct cpsw_common *cpsw = priv->cpsw;
1689
	int ch;
1690 1691

	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1692
	ndev->stats.tx_errors++;
1693
	cpsw_intr_disable(cpsw);
1694 1695 1696 1697 1698
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
		cpdma_chan_stop(cpsw->txch[ch]);
		cpdma_chan_start(cpsw->txch[ch]);
	}

1699
	cpsw_intr_enable(cpsw);
1700 1701
}

1702 1703 1704 1705
static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct sockaddr *addr = (struct sockaddr *)p;
1706
	struct cpsw_common *cpsw = priv->cpsw;
1707 1708
	int flags = 0;
	u16 vid = 0;
1709
	int ret;
1710 1711 1712 1713

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

1714
	ret = pm_runtime_get_sync(cpsw->dev);
1715
	if (ret < 0) {
1716
		pm_runtime_put_noidle(cpsw->dev);
1717 1718 1719
		return ret;
	}

1720 1721
	if (cpsw->data.dual_emac) {
		vid = cpsw->slaves[priv->emac_port].port_vlan;
1722 1723 1724
		flags = ALE_VLAN;
	}

1725
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1726
			   flags, vid);
1727
	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1728 1729 1730 1731 1732 1733
			   flags, vid);

	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
	for_each_slave(priv, cpsw_set_slave_mac, priv);

1734
	pm_runtime_put(cpsw->dev);
1735

1736 1737 1738
	return 0;
}

1739 1740 1741
#ifdef CONFIG_NET_POLL_CONTROLLER
static void cpsw_ndo_poll_controller(struct net_device *ndev)
{
1742
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1743

1744 1745 1746 1747
	cpsw_intr_disable(cpsw);
	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
	cpsw_intr_enable(cpsw);
1748 1749 1750
}
#endif

1751 1752 1753 1754
static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
				unsigned short vid)
{
	int ret;
1755 1756
	int unreg_mcast_mask = 0;
	u32 port_mask;
1757
	struct cpsw_common *cpsw = priv->cpsw;
1758

1759
	if (cpsw->data.dual_emac) {
1760
		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1761

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = port_mask;
	} else {
		port_mask = ALE_ALL_PORTS;

		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = ALE_ALL_PORTS;
		else
			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
	}
1772

1773
	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1774
				unreg_mcast_mask);
1775 1776 1777
	if (ret != 0)
		return ret;

1778
	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1779
				 HOST_PORT_NUM, ALE_VLAN, vid);
1780 1781 1782
	if (ret != 0)
		goto clean_vid;

1783
	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1784
				 port_mask, ALE_VLAN, vid, 0);
1785 1786 1787 1788 1789
	if (ret != 0)
		goto clean_vlan_ucast;
	return 0;

clean_vlan_ucast:
1790
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1791
			   HOST_PORT_NUM, ALE_VLAN, vid);
1792
clean_vid:
1793
	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1794 1795 1796 1797
	return ret;
}

static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1798
				    __be16 proto, u16 vid)
1799 1800
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1801
	struct cpsw_common *cpsw = priv->cpsw;
1802
	int ret;
1803

1804
	if (vid == cpsw->data.default_vlan)
1805 1806
		return 0;

1807
	ret = pm_runtime_get_sync(cpsw->dev);
1808
	if (ret < 0) {
1809
		pm_runtime_put_noidle(cpsw->dev);
1810 1811 1812
		return ret;
	}

1813
	if (cpsw->data.dual_emac) {
1814 1815 1816 1817 1818 1819
		/* In dual EMAC, reserved VLAN id should not be used for
		 * creating VLAN interfaces as this can break the dual
		 * EMAC port separation
		 */
		int i;

1820 1821
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
1822 1823 1824 1825
				return -EINVAL;
		}
	}

1826
	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1827 1828
	ret = cpsw_add_vlan_ale_entry(priv, vid);

1829
	pm_runtime_put(cpsw->dev);
1830
	return ret;
1831 1832 1833
}

static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1834
				     __be16 proto, u16 vid)
1835 1836
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1837
	struct cpsw_common *cpsw = priv->cpsw;
1838 1839
	int ret;

1840
	if (vid == cpsw->data.default_vlan)
1841 1842
		return 0;

1843
	ret = pm_runtime_get_sync(cpsw->dev);
1844
	if (ret < 0) {
1845
		pm_runtime_put_noidle(cpsw->dev);
1846 1847 1848
		return ret;
	}

1849
	if (cpsw->data.dual_emac) {
1850 1851
		int i;

1852 1853
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
1854 1855 1856 1857
				return -EINVAL;
		}
	}

1858
	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
1859
	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1860 1861 1862
	if (ret != 0)
		return ret;

1863
	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1864
				 HOST_PORT_NUM, ALE_VLAN, vid);
1865 1866 1867
	if (ret != 0)
		return ret;

1868
	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
1869
				 0, ALE_VLAN, vid);
1870
	pm_runtime_put(cpsw->dev);
1871
	return ret;
1872 1873
}

1874 1875 1876 1877
static const struct net_device_ops cpsw_netdev_ops = {
	.ndo_open		= cpsw_ndo_open,
	.ndo_stop		= cpsw_ndo_stop,
	.ndo_start_xmit		= cpsw_ndo_start_xmit,
1878
	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
1879
	.ndo_do_ioctl		= cpsw_ndo_ioctl,
1880
	.ndo_validate_addr	= eth_validate_addr,
1881
	.ndo_change_mtu		= eth_change_mtu,
1882
	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
1883
	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
1884 1885 1886
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= cpsw_ndo_poll_controller,
#endif
1887 1888
	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
1889 1890
};

1891 1892
static int cpsw_get_regs_len(struct net_device *ndev)
{
1893
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1894

1895
	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
1896 1897 1898 1899 1900 1901
}

static void cpsw_get_regs(struct net_device *ndev,
			  struct ethtool_regs *regs, void *p)
{
	u32 *reg = p;
1902
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1903 1904

	/* update CPSW IP version */
1905
	regs->version = cpsw->version;
1906

1907
	cpsw_ale_dump(cpsw->ale, reg);
1908 1909
}

1910 1911 1912
static void cpsw_get_drvinfo(struct net_device *ndev,
			     struct ethtool_drvinfo *info)
{
1913
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1914
	struct platform_device	*pdev = to_platform_device(cpsw->dev);
1915

1916
	strlcpy(info->driver, "cpsw", sizeof(info->driver));
1917
	strlcpy(info->version, "1.0", sizeof(info->version));
1918
	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
}

static u32 cpsw_get_msglevel(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	return priv->msg_enable;
}

static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	priv->msg_enable = value;
}

1933 1934 1935 1936
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
#ifdef CONFIG_TI_CPTS
1937
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1938 1939 1940 1941 1942 1943 1944 1945

	info->so_timestamping =
		SOF_TIMESTAMPING_TX_HARDWARE |
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_HARDWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE |
		SOF_TIMESTAMPING_RAW_HARDWARE;
1946
	info->phc_index = cpsw->cpts->phc_index;
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
	info->tx_types =
		(1 << HWTSTAMP_TX_OFF) |
		(1 << HWTSTAMP_TX_ON);
	info->rx_filters =
		(1 << HWTSTAMP_FILTER_NONE) |
		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
#else
	info->so_timestamping =
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE;
	info->phc_index = -1;
	info->tx_types = 0;
	info->rx_filters = 0;
#endif
	return 0;
}

1965 1966 1967 1968
static int cpsw_get_settings(struct net_device *ndev,
			     struct ethtool_cmd *ecmd)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1969 1970
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
1971

1972 1973
	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_gset(cpsw->slaves[slave_no].phy, ecmd);
1974 1975 1976 1977 1978 1979 1980
	else
		return -EOPNOTSUPP;
}

static int cpsw_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1981 1982
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
1983

1984 1985
	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_sset(cpsw->slaves[slave_no].phy, ecmd);
1986 1987 1988 1989
	else
		return -EOPNOTSUPP;
}

1990 1991 1992
static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1993 1994
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
1995 1996 1997 1998

	wol->supported = 0;
	wol->wolopts = 0;

1999 2000
	if (cpsw->slaves[slave_no].phy)
		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2001 2002 2003 2004 2005
}

static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2006 2007
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2008

2009 2010
	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2011 2012 2013 2014
	else
		return -EOPNOTSUPP;
}

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
static void cpsw_get_pauseparam(struct net_device *ndev,
				struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);

	pause->autoneg = AUTONEG_DISABLE;
	pause->rx_pause = priv->rx_pause ? true : false;
	pause->tx_pause = priv->tx_pause ? true : false;
}

static int cpsw_set_pauseparam(struct net_device *ndev,
			       struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	bool link;

	priv->rx_pause = pause->rx_pause ? true : false;
	priv->tx_pause = pause->tx_pause ? true : false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
	return 0;
}

2038 2039 2040
static int cpsw_ethtool_op_begin(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2041
	struct cpsw_common *cpsw = priv->cpsw;
2042 2043
	int ret;

2044
	ret = pm_runtime_get_sync(cpsw->dev);
2045 2046
	if (ret < 0) {
		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2047
		pm_runtime_put_noidle(cpsw->dev);
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
	}

	return ret;
}

static void cpsw_ethtool_op_complete(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	int ret;

2058
	ret = pm_runtime_put(priv->cpsw->dev);
2059 2060 2061 2062
	if (ret < 0)
		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
}

2063 2064 2065 2066 2067
static const struct ethtool_ops cpsw_ethtool_ops = {
	.get_drvinfo	= cpsw_get_drvinfo,
	.get_msglevel	= cpsw_get_msglevel,
	.set_msglevel	= cpsw_set_msglevel,
	.get_link	= ethtool_op_get_link,
2068
	.get_ts_info	= cpsw_get_ts_info,
2069 2070
	.get_settings	= cpsw_get_settings,
	.set_settings	= cpsw_set_settings,
2071 2072
	.get_coalesce	= cpsw_get_coalesce,
	.set_coalesce	= cpsw_set_coalesce,
2073 2074 2075
	.get_sset_count		= cpsw_get_sset_count,
	.get_strings		= cpsw_get_strings,
	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2076 2077
	.get_pauseparam		= cpsw_get_pauseparam,
	.set_pauseparam		= cpsw_set_pauseparam,
2078 2079
	.get_wol	= cpsw_get_wol,
	.set_wol	= cpsw_set_wol,
2080 2081
	.get_regs_len	= cpsw_get_regs_len,
	.get_regs	= cpsw_get_regs,
2082 2083
	.begin		= cpsw_ethtool_op_begin,
	.complete	= cpsw_ethtool_op_complete,
2084 2085
};

2086
static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2087
			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
2088
{
2089
	void __iomem		*regs = cpsw->regs;
2090
	int			slave_num = slave->slave_num;
2091
	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
2092 2093

	slave->data	= data;
2094 2095
	slave->regs	= regs + slave_reg_ofs;
	slave->sliver	= regs + sliver_reg_ofs;
2096
	slave->port_vlan = data->dual_emac_res_vlan;
2097 2098
}

2099
static int cpsw_probe_dt(struct cpsw_platform_data *data,
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
			 struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0, ret;
	u32 prop;

	if (!node)
		return -EINVAL;

	if (of_property_read_u32(node, "slaves", &prop)) {
2111
		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2112 2113 2114 2115
		return -EINVAL;
	}
	data->slaves = prop;

2116
	if (of_property_read_u32(node, "active_slave", &prop)) {
2117
		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2118
		return -EINVAL;
2119
	}
2120
	data->active_slave = prop;
2121

2122
	if (of_property_read_u32(node, "cpts_clock_mult", &prop)) {
2123
		dev_err(&pdev->dev, "Missing cpts_clock_mult property in the DT.\n");
2124
		return -EINVAL;
2125 2126 2127 2128
	}
	data->cpts_clock_mult = prop;

	if (of_property_read_u32(node, "cpts_clock_shift", &prop)) {
2129
		dev_err(&pdev->dev, "Missing cpts_clock_shift property in the DT.\n");
2130
		return -EINVAL;
2131 2132 2133
	}
	data->cpts_clock_shift = prop;

2134 2135 2136
	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
					* sizeof(struct cpsw_slave_data),
					GFP_KERNEL);
2137
	if (!data->slave_data)
2138
		return -ENOMEM;
2139 2140

	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2141
		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2142
		return -EINVAL;
2143 2144 2145 2146
	}
	data->channels = prop;

	if (of_property_read_u32(node, "ale_entries", &prop)) {
2147
		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2148
		return -EINVAL;
2149 2150 2151 2152
	}
	data->ale_entries = prop;

	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2153
		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2154
		return -EINVAL;
2155 2156 2157 2158
	}
	data->bd_ram_size = prop;

	if (of_property_read_u32(node, "mac_control", &prop)) {
2159
		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2160
		return -EINVAL;
2161 2162 2163
	}
	data->mac_control = prop;

2164 2165
	if (of_property_read_bool(node, "dual_emac"))
		data->dual_emac = 1;
2166

2167 2168 2169 2170 2171 2172
	/*
	 * Populate all the child nodes here...
	 */
	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
	/* We do not want to force this, as in some cases may not have child */
	if (ret)
2173
		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2174

2175
	for_each_available_child_of_node(node, slave_node) {
2176 2177
		struct cpsw_slave_data *slave_data = data->slave_data + i;
		const void *mac_addr = NULL;
2178 2179 2180
		int lenp;
		const __be32 *parp;

2181 2182 2183 2184
		/* This is no slave child node, continue */
		if (strcmp(slave_node->name, "slave"))
			continue;

2185 2186
		slave_data->phy_node = of_parse_phandle(slave_node,
							"phy-handle", 0);
2187
		parp = of_get_property(slave_node, "phy_id", &lenp);
2188 2189 2190 2191 2192
		if (slave_data->phy_node) {
			dev_dbg(&pdev->dev,
				"slave[%d] using phy-handle=\"%s\"\n",
				i, slave_data->phy_node->full_name);
		} else if (of_phy_is_fixed_link(slave_node)) {
2193 2194 2195
			/* In the case of a fixed PHY, the DT node associated
			 * to the PHY is the Ethernet MAC DT node.
			 */
2196 2197 2198
			ret = of_phy_register_fixed_link(slave_node);
			if (ret)
				return ret;
2199
			slave_data->phy_node = of_node_get(slave_node);
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
		} else if (parp) {
			u32 phyid;
			struct device_node *mdio_node;
			struct platform_device *mdio;

			if (lenp != (sizeof(__be32) * 2)) {
				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
				goto no_phy_slave;
			}
			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
			phyid = be32_to_cpup(parp+1);
			mdio = of_find_device_by_node(mdio_node);
			of_node_put(mdio_node);
			if (!mdio) {
				dev_err(&pdev->dev, "Missing mdio platform device\n");
				return -EINVAL;
			}
			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
				 PHY_ID_FMT, mdio->name, phyid);
		} else {
2220 2221 2222
			dev_err(&pdev->dev,
				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
				i);
2223
			goto no_phy_slave;
2224
		}
2225 2226 2227 2228 2229 2230 2231 2232
		slave_data->phy_if = of_get_phy_mode(slave_node);
		if (slave_data->phy_if < 0) {
			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
				i);
			return slave_data->phy_if;
		}

no_phy_slave:
2233
		mac_addr = of_get_mac_address(slave_node);
2234
		if (mac_addr) {
2235
			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2236
		} else {
2237 2238 2239 2240
			ret = ti_cm_get_macid(&pdev->dev, i,
					      slave_data->mac_addr);
			if (ret)
				return ret;
2241
		}
2242
		if (data->dual_emac) {
2243
			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2244
						 &prop)) {
2245
				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2246
				slave_data->dual_emac_res_vlan = i+1;
2247 2248
				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
					slave_data->dual_emac_res_vlan, i);
2249 2250 2251 2252 2253
			} else {
				slave_data->dual_emac_res_vlan = prop;
			}
		}

2254
		i++;
2255 2256
		if (i == data->slaves)
			break;
2257 2258 2259 2260 2261
	}

	return 0;
}

2262
static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2263
{
2264 2265
	struct cpsw_common		*cpsw = priv->cpsw;
	struct cpsw_platform_data	*data = &cpsw->data;
2266 2267
	struct net_device		*ndev;
	struct cpsw_priv		*priv_sl2;
2268
	int ret = 0;
2269

2270
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2271
	if (!ndev) {
2272
		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2273 2274 2275 2276
		return -ENOMEM;
	}

	priv_sl2 = netdev_priv(ndev);
2277
	priv_sl2->cpsw = cpsw;
2278 2279 2280 2281 2282 2283 2284
	priv_sl2->ndev = ndev;
	priv_sl2->dev  = &ndev->dev;
	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);

	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
			ETH_ALEN);
2285 2286
		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
			 priv_sl2->mac_addr);
2287 2288
	} else {
		random_ether_addr(priv_sl2->mac_addr);
2289 2290
		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
			 priv_sl2->mac_addr);
2291 2292 2293 2294
	}
	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);

	priv_sl2->emac_port = 1;
2295
	cpsw->slaves[1].ndev = ndev;
2296
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2297 2298

	ndev->netdev_ops = &cpsw_netdev_ops;
2299
	ndev->ethtool_ops = &cpsw_ethtool_ops;
2300 2301

	/* register the network device */
2302
	SET_NETDEV_DEV(ndev, cpsw->dev);
2303 2304
	ret = register_netdev(ndev);
	if (ret) {
2305
		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2306 2307 2308 2309 2310 2311 2312
		free_netdev(ndev);
		ret = -ENODEV;
	}

	return ret;
}

2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
#define CPSW_QUIRK_IRQ		BIT(0)

static struct platform_device_id cpsw_devtype[] = {
	{
		/* keep it for existing comaptibles */
		.name = "cpsw",
		.driver_data = CPSW_QUIRK_IRQ,
	}, {
		.name = "am335x-cpsw",
		.driver_data = CPSW_QUIRK_IRQ,
	}, {
		.name = "am4372-cpsw",
		.driver_data = 0,
	}, {
		.name = "dra7-cpsw",
		.driver_data = 0,
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(platform, cpsw_devtype);

enum ti_cpsw_type {
	CPSW = 0,
	AM335X_CPSW,
	AM4372_CPSW,
	DRA7_CPSW,
};

static const struct of_device_id cpsw_of_mtable[] = {
	{ .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
	{ .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
	{ .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
	{ .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cpsw_of_mtable);

B
Bill Pemberton 已提交
2351
static int cpsw_probe(struct platform_device *pdev)
2352
{
2353
	struct clk			*clk;
2354
	struct cpsw_platform_data	*data;
2355 2356 2357 2358
	struct net_device		*ndev;
	struct cpsw_priv		*priv;
	struct cpdma_params		dma_params;
	struct cpsw_ale_params		ale_params;
2359 2360
	void __iomem			*ss_regs;
	struct resource			*res, *ss_res;
2361
	const struct of_device_id	*of_id;
2362
	struct gpio_descs		*mode;
2363
	u32 slave_offset, sliver_offset, slave_size;
2364
	struct cpsw_common		*cpsw;
2365 2366
	int ret = 0, i;
	int irq;
2367

2368
	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2369
	cpsw->dev = &pdev->dev;
2370

2371
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2372
	if (!ndev) {
2373
		dev_err(&pdev->dev, "error allocating net_device\n");
2374 2375 2376 2377 2378
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, ndev);
	priv = netdev_priv(ndev);
2379
	priv->cpsw = cpsw;
2380 2381 2382
	priv->ndev = ndev;
	priv->dev  = &ndev->dev;
	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2383 2384 2385
	cpsw->rx_packet_max = max(rx_packet_max, 128);
	cpsw->cpts = devm_kzalloc(&pdev->dev, sizeof(struct cpts), GFP_KERNEL);
	if (!cpsw->cpts) {
2386
		dev_err(&pdev->dev, "error allocating cpts\n");
2387
		ret = -ENOMEM;
2388 2389
		goto clean_ndev_ret;
	}
2390

2391 2392 2393 2394 2395 2396 2397
	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
	if (IS_ERR(mode)) {
		ret = PTR_ERR(mode);
		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
		goto clean_ndev_ret;
	}

2398 2399 2400 2401 2402
	/*
	 * This may be required here for child devices.
	 */
	pm_runtime_enable(&pdev->dev);

2403 2404 2405
	/* Select default pin state */
	pinctrl_pm_select_default_state(&pdev->dev);

2406
	if (cpsw_probe_dt(&cpsw->data, pdev)) {
2407
		dev_err(&pdev->dev, "cpsw: platform data missing\n");
2408
		ret = -ENODEV;
2409
		goto clean_runtime_disable_ret;
2410
	}
2411
	data = &cpsw->data;
2412 2413
	cpsw->rx_ch_num = 1;
	cpsw->tx_ch_num = 1;
2414

2415 2416
	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2417
		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2418
	} else {
J
Joe Perches 已提交
2419
		eth_random_addr(priv->mac_addr);
2420
		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2421 2422 2423 2424
	}

	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);

2425
	cpsw->slaves = devm_kzalloc(&pdev->dev,
2426 2427
				    sizeof(struct cpsw_slave) * data->slaves,
				    GFP_KERNEL);
2428
	if (!cpsw->slaves) {
2429 2430
		ret = -ENOMEM;
		goto clean_runtime_disable_ret;
2431 2432
	}
	for (i = 0; i < data->slaves; i++)
2433
		cpsw->slaves[i].slave_num = i;
2434

2435
	cpsw->slaves[0].ndev = ndev;
2436 2437
	priv->emac_port = 0;

2438 2439
	clk = devm_clk_get(&pdev->dev, "fck");
	if (IS_ERR(clk)) {
2440
		dev_err(priv->dev, "fck is not found\n");
2441
		ret = -ENODEV;
2442
		goto clean_runtime_disable_ret;
2443
	}
2444
	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2445

2446 2447 2448 2449 2450
	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
	if (IS_ERR(ss_regs)) {
		ret = PTR_ERR(ss_regs);
		goto clean_runtime_disable_ret;
2451
	}
2452
	cpsw->regs = ss_regs;
2453

2454 2455 2456
	/* Need to enable clocks with runtime PM api to access module
	 * registers
	 */
2457 2458 2459 2460 2461
	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
		goto clean_runtime_disable_ret;
	}
2462
	cpsw->version = readl(&cpsw->regs->id_ver);
2463 2464
	pm_runtime_put_sync(&pdev->dev);

2465
	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2466 2467 2468
	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(cpsw->wr_regs)) {
		ret = PTR_ERR(cpsw->wr_regs);
2469
		goto clean_runtime_disable_ret;
2470 2471 2472
	}

	memset(&dma_params, 0, sizeof(dma_params));
2473 2474
	memset(&ale_params, 0, sizeof(ale_params));

2475
	switch (cpsw->version) {
2476
	case CPSW_VERSION_1:
2477
		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
2478
		cpsw->cpts->reg      = ss_regs + CPSW1_CPTS_OFFSET;
2479
		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
2480 2481 2482 2483 2484 2485 2486 2487 2488
		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
		slave_offset         = CPSW1_SLAVE_OFFSET;
		slave_size           = CPSW1_SLAVE_SIZE;
		sliver_offset        = CPSW1_SLIVER_OFFSET;
		dma_params.desc_mem_phys = 0;
		break;
	case CPSW_VERSION_2:
2489
	case CPSW_VERSION_3:
2490
	case CPSW_VERSION_4:
2491
		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
2492
		cpsw->cpts->reg      = ss_regs + CPSW2_CPTS_OFFSET;
2493
		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
2494 2495 2496 2497 2498 2499 2500
		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
		slave_offset         = CPSW2_SLAVE_OFFSET;
		slave_size           = CPSW2_SLAVE_SIZE;
		sliver_offset        = CPSW2_SLIVER_OFFSET;
		dma_params.desc_mem_phys =
2501
			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
2502 2503
		break;
	default:
2504
		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
2505
		ret = -ENODEV;
2506
		goto clean_runtime_disable_ret;
2507
	}
2508 2509 2510 2511
	for (i = 0; i < cpsw->data.slaves; i++) {
		struct cpsw_slave *slave = &cpsw->slaves[i];

		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
2512 2513 2514 2515
		slave_offset  += slave_size;
		sliver_offset += SLIVER_SIZE;
	}

2516
	dma_params.dev		= &pdev->dev;
2517 2518 2519 2520 2521
	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
2522 2523 2524 2525 2526 2527 2528

	dma_params.num_chan		= data->channels;
	dma_params.has_soft_reset	= true;
	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
	dma_params.desc_mem_size	= data->bd_ram_size;
	dma_params.desc_align		= 16;
	dma_params.has_ext_regs		= true;
2529
	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
2530

2531 2532
	cpsw->dma = cpdma_ctlr_create(&dma_params);
	if (!cpsw->dma) {
2533 2534
		dev_err(priv->dev, "error initializing dma\n");
		ret = -ENOMEM;
2535
		goto clean_runtime_disable_ret;
2536 2537
	}

2538 2539 2540 2541
	cpsw->txch[0] = cpdma_chan_create(cpsw->dma, tx_chan_num(0),
					  cpsw_tx_handler);
	cpsw->rxch[0] = cpdma_chan_create(cpsw->dma, rx_chan_num(0),
					  cpsw_rx_handler);
2542

2543
	if (WARN_ON(!cpsw->rxch[0] || !cpsw->txch[0])) {
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
		dev_err(priv->dev, "error initializing dma channels\n");
		ret = -ENOMEM;
		goto clean_dma_ret;
	}

	ale_params.dev			= &ndev->dev;
	ale_params.ale_ageout		= ale_ageout;
	ale_params.ale_entries		= data->ale_entries;
	ale_params.ale_ports		= data->slaves;

2554 2555
	cpsw->ale = cpsw_ale_create(&ale_params);
	if (!cpsw->ale) {
2556 2557 2558 2559 2560
		dev_err(priv->dev, "error initializing ale engine\n");
		ret = -ENODEV;
		goto clean_dma_ret;
	}

2561
	ndev->irq = platform_get_irq(pdev, 1);
2562 2563
	if (ndev->irq < 0) {
		dev_err(priv->dev, "error getting irq resource\n");
2564
		ret = ndev->irq;
2565 2566 2567
		goto clean_ale_ret;
	}

2568 2569 2570 2571
	of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
	if (of_id) {
		pdev->id_entry = of_id->data;
		if (pdev->id_entry->driver_data)
2572
			cpsw->quirk_irq = true;
2573 2574
	}

2575 2576 2577 2578 2579 2580 2581
	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
	 * MISC IRQs which are always kept disabled with this driver so
	 * we will not request them.
	 *
	 * If anyone wants to implement support for those, make sure to
	 * first request and append them to irqs_table array.
	 */
2582

2583
	/* RX IRQ */
2584
	irq = platform_get_irq(pdev, 1);
2585 2586
	if (irq < 0) {
		ret = irq;
2587
		goto clean_ale_ret;
2588
	}
2589

2590
	cpsw->irqs_table[0] = irq;
2591
	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
2592
			       0, dev_name(&pdev->dev), cpsw);
2593 2594 2595 2596 2597
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
		goto clean_ale_ret;
	}

2598
	/* TX IRQ */
2599
	irq = platform_get_irq(pdev, 2);
2600 2601
	if (irq < 0) {
		ret = irq;
2602
		goto clean_ale_ret;
2603
	}
2604

2605
	cpsw->irqs_table[1] = irq;
2606
	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
2607
			       0, dev_name(&pdev->dev), cpsw);
2608 2609 2610
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
		goto clean_ale_ret;
2611
	}
2612

2613
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2614 2615

	ndev->netdev_ops = &cpsw_netdev_ops;
2616
	ndev->ethtool_ops = &cpsw_ethtool_ops;
2617 2618
	netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
	netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
2619 2620 2621 2622 2623 2624 2625

	/* register the network device */
	SET_NETDEV_DEV(ndev, &pdev->dev);
	ret = register_netdev(ndev);
	if (ret) {
		dev_err(priv->dev, "error registering net device\n");
		ret = -ENODEV;
2626
		goto clean_ale_ret;
2627 2628
	}

2629 2630
	cpsw_notice(priv, probe, "initialized device (regs %pa, irq %d)\n",
		    &ss_res->start, ndev->irq);
2631

2632
	if (cpsw->data.dual_emac) {
2633
		ret = cpsw_probe_dual_emac(priv);
2634 2635
		if (ret) {
			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
2636
			goto clean_ale_ret;
2637 2638 2639
		}
	}

2640 2641 2642
	return 0;

clean_ale_ret:
2643
	cpsw_ale_destroy(cpsw->ale);
2644
clean_dma_ret:
2645
	cpdma_ctlr_destroy(cpsw->dma);
2646
clean_runtime_disable_ret:
2647
	pm_runtime_disable(&pdev->dev);
2648
clean_ndev_ret:
2649
	free_netdev(priv->ndev);
2650 2651 2652
	return ret;
}

B
Bill Pemberton 已提交
2653
static int cpsw_remove(struct platform_device *pdev)
2654 2655
{
	struct net_device *ndev = platform_get_drvdata(pdev);
2656
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2657 2658 2659 2660 2661 2662 2663
	int ret;

	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
		return ret;
	}
2664

2665 2666
	if (cpsw->data.dual_emac)
		unregister_netdev(cpsw->slaves[1].ndev);
2667
	unregister_netdev(ndev);
2668

2669
	cpsw_ale_destroy(cpsw->ale);
2670
	cpdma_ctlr_destroy(cpsw->dma);
2671
	of_platform_depopulate(&pdev->dev);
2672 2673
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
2674 2675
	if (cpsw->data.dual_emac)
		free_netdev(cpsw->slaves[1].ndev);
2676 2677 2678 2679
	free_netdev(ndev);
	return 0;
}

2680
#ifdef CONFIG_PM_SLEEP
2681 2682 2683 2684
static int cpsw_suspend(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
2685
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
2686

2687
	if (cpsw->data.dual_emac) {
2688
		int i;
2689

2690 2691 2692
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_stop(cpsw->slaves[i].ndev);
2693 2694 2695 2696 2697
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_stop(ndev);
	}
2698

2699
	/* Select sleep pin state */
2700
	pinctrl_pm_select_sleep_state(dev);
2701

2702 2703 2704 2705 2706 2707 2708
	return 0;
}

static int cpsw_resume(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
2709
	struct cpsw_common	*cpsw = netdev_priv(ndev);
2710

2711
	/* Select default pin state */
2712
	pinctrl_pm_select_default_state(dev);
2713

2714
	if (cpsw->data.dual_emac) {
2715 2716
		int i;

2717 2718 2719
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_open(cpsw->slaves[i].ndev);
2720 2721 2722 2723 2724
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_open(ndev);
	}
2725 2726
	return 0;
}
2727
#endif
2728

2729
static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
2730 2731 2732 2733 2734

static struct platform_driver cpsw_driver = {
	.driver = {
		.name	 = "cpsw",
		.pm	 = &cpsw_pm_ops,
2735
		.of_match_table = cpsw_of_mtable,
2736 2737
	},
	.probe = cpsw_probe,
B
Bill Pemberton 已提交
2738
	.remove = cpsw_remove,
2739 2740
};

2741
module_platform_driver(cpsw_driver);
2742 2743 2744 2745 2746

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
MODULE_DESCRIPTION("TI CPSW Ethernet driver");