zsmalloc.c 32.0 KB
Newer Older
1 2 3 4
/*
 * zsmalloc memory allocator
 *
 * Copyright (C) 2011  Nitin Gupta
M
Minchan Kim 已提交
5
 * Copyright (C) 2012, 2013 Minchan Kim
6 7 8 9 10 11 12 13
 *
 * This code is released using a dual license strategy: BSD/GPL
 * You can choose the license that better fits your requirements.
 *
 * Released under the terms of 3-clause BSD License
 * Released under the terms of GNU General Public License Version 2.0
 */

14
/*
N
Nitin Cupta 已提交
15 16 17 18 19 20 21
 * This allocator is designed for use with zram. Thus, the allocator is
 * supposed to work well under low memory conditions. In particular, it
 * never attempts higher order page allocation which is very likely to
 * fail under memory pressure. On the other hand, if we just use single
 * (0-order) pages, it would suffer from very high fragmentation --
 * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
 * This was one of the major issues with its predecessor (xvmalloc).
22 23 24 25 26 27 28
 *
 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
 * and links them together using various 'struct page' fields. These linked
 * pages act as a single higher-order page i.e. an object can span 0-order
 * page boundaries. The code refers to these linked pages as a single entity
 * called zspage.
 *
N
Nitin Cupta 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
 * since this satisfies the requirements of all its current users (in the
 * worst case, page is incompressible and is thus stored "as-is" i.e. in
 * uncompressed form). For allocation requests larger than this size, failure
 * is returned (see zs_malloc).
 *
 * Additionally, zs_malloc() does not return a dereferenceable pointer.
 * Instead, it returns an opaque handle (unsigned long) which encodes actual
 * location of the allocated object. The reason for this indirection is that
 * zsmalloc does not keep zspages permanently mapped since that would cause
 * issues on 32-bit systems where the VA region for kernel space mappings
 * is very small. So, before using the allocating memory, the object has to
 * be mapped using zs_map_object() to get a usable pointer and subsequently
 * unmapped using zs_unmap_object().
 *
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
 * Following is how we use various fields and flags of underlying
 * struct page(s) to form a zspage.
 *
 * Usage of struct page fields:
 *	page->first_page: points to the first component (0-order) page
 *	page->index (union with page->freelist): offset of the first object
 *		starting in this page. For the first page, this is
 *		always 0, so we use this field (aka freelist) to point
 *		to the first free object in zspage.
 *	page->lru: links together all component pages (except the first page)
 *		of a zspage
 *
 *	For _first_ page only:
 *
 *	page->private (union with page->first_page): refers to the
 *		component page after the first page
 *	page->freelist: points to the first free object in zspage.
 *		Free objects are linked together using in-place
 *		metadata.
 *	page->objects: maximum number of objects we can store in this
 *		zspage (class->zspage_order * PAGE_SIZE / class->size)
 *	page->lru: links together first pages of various zspages.
 *		Basically forming list of zspages in a fullness group.
 *	page->mapping: class index and fullness group of the zspage
 *
 * Usage of struct page flags:
 *	PG_private: identifies the first component page
 *	PG_private2: identifies the last component page
 *
 */

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
#ifdef CONFIG_ZSMALLOC_DEBUG
#define DEBUG
#endif

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/highmem.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>
#include <linux/cpumask.h>
#include <linux/cpu.h>
90
#include <linux/vmalloc.h>
91
#include <linux/hardirq.h>
92 93
#include <linux/spinlock.h>
#include <linux/types.h>
M
Minchan Kim 已提交
94
#include <linux/zsmalloc.h>
95
#include <linux/zpool.h>
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

/*
 * This must be power of 2 and greater than of equal to sizeof(link_free).
 * These two conditions ensure that any 'struct link_free' itself doesn't
 * span more than 1 page which avoids complex case of mapping 2 pages simply
 * to restore link_free pointer values.
 */
#define ZS_ALIGN		8

/*
 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
 */
#define ZS_MAX_ZSPAGE_ORDER 2
#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)

/*
 * Object location (<PFN>, <obj_idx>) is encoded as
N
Nitin Cupta 已提交
114
 * as single (unsigned long) handle value.
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
 *
 * Note that object index <obj_idx> is relative to system
 * page <PFN> it is stored in, so for each sub-page belonging
 * to a zspage, obj_idx starts with 0.
 *
 * This is made more complicated by various memory models and PAE.
 */

#ifndef MAX_PHYSMEM_BITS
#ifdef CONFIG_HIGHMEM64G
#define MAX_PHYSMEM_BITS 36
#else /* !CONFIG_HIGHMEM64G */
/*
 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 * be PAGE_SHIFT
 */
#define MAX_PHYSMEM_BITS BITS_PER_LONG
#endif
#endif
#define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS)
#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)

#define MAX(a, b) ((a) >= (b) ? (a) : (b))
/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
#define ZS_MIN_ALLOC_SIZE \
	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE

/*
145
 * On systems with 4K page size, this gives 255 size classes! There is a
146 147 148 149 150 151 152 153 154 155 156
 * trader-off here:
 *  - Large number of size classes is potentially wasteful as free page are
 *    spread across these classes
 *  - Small number of size classes causes large internal fragmentation
 *  - Probably its better to use specific size classes (empirically
 *    determined). NOTE: all those class sizes must be set as multiple of
 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 *
 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 *  (reason above)
 */
157
#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
158 159 160 161 162 163 164 165 166 167 168 169 170

/*
 * We do not maintain any list for completely empty or full pages
 */
enum fullness_group {
	ZS_ALMOST_FULL,
	ZS_ALMOST_EMPTY,
	_ZS_NR_FULLNESS_GROUPS,

	ZS_EMPTY,
	ZS_FULL
};

171 172 173 174 175
/*
 * number of size_classes
 */
static int zs_size_classes;

176 177 178 179 180
/*
 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 *	n <= N / f, where
 * n = number of allocated objects
 * N = total number of objects zspage can store
181
 * f = fullness_threshold_frac
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
 *
 * Similarly, we assign zspage to:
 *	ZS_ALMOST_FULL	when n > N / f
 *	ZS_EMPTY	when n == 0
 *	ZS_FULL		when n == N
 *
 * (see: fix_fullness_group())
 */
static const int fullness_threshold_frac = 4;

struct size_class {
	/*
	 * Size of objects stored in this class. Must be multiple
	 * of ZS_ALIGN.
	 */
	int size;
	unsigned int index;

	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
	int pages_per_zspage;

	spinlock_t lock;

	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
};

/*
 * Placed within free objects to form a singly linked list.
 * For every zspage, first_page->freelist gives head of this list.
 *
 * This must be power of 2 and less than or equal to ZS_ALIGN
 */
struct link_free {
	/* Handle of next free chunk (encodes <PFN, obj_idx>) */
	void *next;
};

struct zs_pool {
220
	struct size_class **size_class;
221 222

	gfp_t flags;	/* allocation flags used when growing pool */
223
	atomic_long_t pages_allocated;
224
};
225 226 227 228 229 230 231 232 233 234

/*
 * A zspage's class index and fullness group
 * are encoded in its (first)page->mapping
 */
#define CLASS_IDX_BITS	28
#define FULLNESS_BITS	4
#define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
#define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)

235
struct mapping_area {
236
#ifdef CONFIG_PGTABLE_MAPPING
237 238 239 240 241 242 243 244
	struct vm_struct *vm; /* vm area for mapping object that span pages */
#else
	char *vm_buf; /* copy buffer for objects that span pages */
#endif
	char *vm_addr; /* address of kmap_atomic()'ed pages */
	enum zs_mapmode vm_mm; /* mapping mode */
};

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
/* zpool driver */

#ifdef CONFIG_ZPOOL

static void *zs_zpool_create(gfp_t gfp, struct zpool_ops *zpool_ops)
{
	return zs_create_pool(gfp);
}

static void zs_zpool_destroy(void *pool)
{
	zs_destroy_pool(pool);
}

static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
			unsigned long *handle)
{
	*handle = zs_malloc(pool, size);
	return *handle ? 0 : -1;
}
static void zs_zpool_free(void *pool, unsigned long handle)
{
	zs_free(pool, handle);
}

static int zs_zpool_shrink(void *pool, unsigned int pages,
			unsigned int *reclaimed)
{
	return -EINVAL;
}

static void *zs_zpool_map(void *pool, unsigned long handle,
			enum zpool_mapmode mm)
{
	enum zs_mapmode zs_mm;

	switch (mm) {
	case ZPOOL_MM_RO:
		zs_mm = ZS_MM_RO;
		break;
	case ZPOOL_MM_WO:
		zs_mm = ZS_MM_WO;
		break;
	case ZPOOL_MM_RW: /* fallthru */
	default:
		zs_mm = ZS_MM_RW;
		break;
	}

	return zs_map_object(pool, handle, zs_mm);
}
static void zs_zpool_unmap(void *pool, unsigned long handle)
{
	zs_unmap_object(pool, handle);
}

static u64 zs_zpool_total_size(void *pool)
{
303
	return zs_get_total_pages(pool) << PAGE_SHIFT;
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
}

static struct zpool_driver zs_zpool_driver = {
	.type =		"zsmalloc",
	.owner =	THIS_MODULE,
	.create =	zs_zpool_create,
	.destroy =	zs_zpool_destroy,
	.malloc =	zs_zpool_malloc,
	.free =		zs_zpool_free,
	.shrink =	zs_zpool_shrink,
	.map =		zs_zpool_map,
	.unmap =	zs_zpool_unmap,
	.total_size =	zs_zpool_total_size,
};

319
MODULE_ALIAS("zpool-zsmalloc");
320 321
#endif /* CONFIG_ZPOOL */

322 323 324 325 326
/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
static DEFINE_PER_CPU(struct mapping_area, zs_map_area);

static int is_first_page(struct page *page)
{
327
	return PagePrivate(page);
328 329 330 331
}

static int is_last_page(struct page *page)
{
332
	return PagePrivate2(page);
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
}

static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
				enum fullness_group *fullness)
{
	unsigned long m;
	BUG_ON(!is_first_page(page));

	m = (unsigned long)page->mapping;
	*fullness = m & FULLNESS_MASK;
	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
}

static void set_zspage_mapping(struct page *page, unsigned int class_idx,
				enum fullness_group fullness)
{
	unsigned long m;
	BUG_ON(!is_first_page(page));

	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
			(fullness & FULLNESS_MASK);
	page->mapping = (struct address_space *)m;
}

N
Nitin Cupta 已提交
357 358 359 360 361 362 363
/*
 * zsmalloc divides the pool into various size classes where each
 * class maintains a list of zspages where each zspage is divided
 * into equal sized chunks. Each allocation falls into one of these
 * classes depending on its size. This function returns index of the
 * size class which has chunk size big enough to hold the give size.
 */
364 365 366 367 368 369 370 371 372 373 374
static int get_size_class_index(int size)
{
	int idx = 0;

	if (likely(size > ZS_MIN_ALLOC_SIZE))
		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
				ZS_SIZE_CLASS_DELTA);

	return idx;
}

N
Nitin Cupta 已提交
375 376 377 378 379 380 381
/*
 * For each size class, zspages are divided into different groups
 * depending on how "full" they are. This was done so that we could
 * easily find empty or nearly empty zspages when we try to shrink
 * the pool (not yet implemented). This function returns fullness
 * status of the given page.
 */
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
static enum fullness_group get_fullness_group(struct page *page)
{
	int inuse, max_objects;
	enum fullness_group fg;
	BUG_ON(!is_first_page(page));

	inuse = page->inuse;
	max_objects = page->objects;

	if (inuse == 0)
		fg = ZS_EMPTY;
	else if (inuse == max_objects)
		fg = ZS_FULL;
	else if (inuse <= max_objects / fullness_threshold_frac)
		fg = ZS_ALMOST_EMPTY;
	else
		fg = ZS_ALMOST_FULL;

	return fg;
}

N
Nitin Cupta 已提交
403 404 405 406 407 408
/*
 * Each size class maintains various freelists and zspages are assigned
 * to one of these freelists based on the number of live objects they
 * have. This functions inserts the given zspage into the freelist
 * identified by <class, fullness_group>.
 */
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
static void insert_zspage(struct page *page, struct size_class *class,
				enum fullness_group fullness)
{
	struct page **head;

	BUG_ON(!is_first_page(page));

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

	head = &class->fullness_list[fullness];
	if (*head)
		list_add_tail(&page->lru, &(*head)->lru);

	*head = page;
}

N
Nitin Cupta 已提交
426 427 428 429
/*
 * This function removes the given zspage from the freelist identified
 * by <class, fullness_group>.
 */
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
static void remove_zspage(struct page *page, struct size_class *class,
				enum fullness_group fullness)
{
	struct page **head;

	BUG_ON(!is_first_page(page));

	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
		return;

	head = &class->fullness_list[fullness];
	BUG_ON(!*head);
	if (list_empty(&(*head)->lru))
		*head = NULL;
	else if (*head == page)
		*head = (struct page *)list_entry((*head)->lru.next,
					struct page, lru);

	list_del_init(&page->lru);
}

N
Nitin Cupta 已提交
451 452 453 454 455 456 457 458 459
/*
 * Each size class maintains zspages in different fullness groups depending
 * on the number of live objects they contain. When allocating or freeing
 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 * to ALMOST_EMPTY when freeing an object. This function checks if such
 * a status change has occurred for the given page and accordingly moves the
 * page from the freelist of the old fullness group to that of the new
 * fullness group.
 */
460 461 462 463 464 465 466 467 468 469 470 471 472 473
static enum fullness_group fix_fullness_group(struct zs_pool *pool,
						struct page *page)
{
	int class_idx;
	struct size_class *class;
	enum fullness_group currfg, newfg;

	BUG_ON(!is_first_page(page));

	get_zspage_mapping(page, &class_idx, &currfg);
	newfg = get_fullness_group(page);
	if (newfg == currfg)
		goto out;

474
	class = pool->size_class[class_idx];
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
	remove_zspage(page, class, currfg);
	insert_zspage(page, class, newfg);
	set_zspage_mapping(page, class_idx, newfg);

out:
	return newfg;
}

/*
 * We have to decide on how many pages to link together
 * to form a zspage for each size class. This is important
 * to reduce wastage due to unusable space left at end of
 * each zspage which is given as:
 *	wastage = Zp - Zp % size_class
 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 *
 * For example, for size class of 3/8 * PAGE_SIZE, we should
 * link together 3 PAGE_SIZE sized pages to form a zspage
 * since then we can perfectly fit in 8 such objects.
 */
495
static int get_pages_per_zspage(int class_size)
496 497 498 499 500
{
	int i, max_usedpc = 0;
	/* zspage order which gives maximum used size per KB */
	int max_usedpc_order = 1;

501
	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
		int zspage_size;
		int waste, usedpc;

		zspage_size = i * PAGE_SIZE;
		waste = zspage_size % class_size;
		usedpc = (zspage_size - waste) * 100 / zspage_size;

		if (usedpc > max_usedpc) {
			max_usedpc = usedpc;
			max_usedpc_order = i;
		}
	}

	return max_usedpc_order;
}

/*
 * A single 'zspage' is composed of many system pages which are
 * linked together using fields in struct page. This function finds
 * the first/head page, given any component page of a zspage.
 */
static struct page *get_first_page(struct page *page)
{
	if (is_first_page(page))
		return page;
	else
		return page->first_page;
}

static struct page *get_next_page(struct page *page)
{
	struct page *next;

	if (is_last_page(page))
		next = NULL;
	else if (is_first_page(page))
538
		next = (struct page *)page_private(page);
539 540 541 542 543 544
	else
		next = list_entry(page->lru.next, struct page, lru);

	return next;
}

545 546 547 548 549 550
/*
 * Encode <page, obj_idx> as a single handle value.
 * On hardware platforms with physical memory starting at 0x0 the pfn
 * could be 0 so we ensure that the handle will never be 0 by adjusting the
 * encoded obj_idx value before encoding.
 */
551 552 553 554 555 556 557 558 559 560
static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
{
	unsigned long handle;

	if (!page) {
		BUG_ON(obj_idx);
		return NULL;
	}

	handle = page_to_pfn(page) << OBJ_INDEX_BITS;
561
	handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
562 563 564 565

	return (void *)handle;
}

566 567 568 569 570
/*
 * Decode <page, obj_idx> pair from the given object handle. We adjust the
 * decoded obj_idx back to its original value since it was adjusted in
 * obj_location_to_handle().
 */
571
static void obj_handle_to_location(unsigned long handle, struct page **page,
572 573
				unsigned long *obj_idx)
{
574
	*page = pfn_to_page(handle >> OBJ_INDEX_BITS);
575
	*obj_idx = (handle & OBJ_INDEX_MASK) - 1;
576 577 578 579 580 581 582 583 584 585 586 587 588
}

static unsigned long obj_idx_to_offset(struct page *page,
				unsigned long obj_idx, int class_size)
{
	unsigned long off = 0;

	if (!is_first_page(page))
		off = page->index;

	return off + obj_idx * class_size;
}

589 590 591 592 593 594 595
static void reset_page(struct page *page)
{
	clear_bit(PG_private, &page->flags);
	clear_bit(PG_private_2, &page->flags);
	set_page_private(page, 0);
	page->mapping = NULL;
	page->freelist = NULL;
596
	page_mapcount_reset(page);
597 598
}

599 600
static void free_zspage(struct page *first_page)
{
601
	struct page *nextp, *tmp, *head_extra;
602 603 604 605

	BUG_ON(!is_first_page(first_page));
	BUG_ON(first_page->inuse);

606
	head_extra = (struct page *)page_private(first_page);
607

608
	reset_page(first_page);
609 610 611
	__free_page(first_page);

	/* zspage with only 1 system page */
612
	if (!head_extra)
613 614
		return;

615
	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
616
		list_del(&nextp->lru);
617
		reset_page(nextp);
618 619
		__free_page(nextp);
	}
620 621
	reset_page(head_extra);
	__free_page(head_extra);
622 623 624 625 626 627 628 629 630 631 632 633
}

/* Initialize a newly allocated zspage */
static void init_zspage(struct page *first_page, struct size_class *class)
{
	unsigned long off = 0;
	struct page *page = first_page;

	BUG_ON(!is_first_page(first_page));
	while (page) {
		struct page *next_page;
		struct link_free *link;
634
		unsigned int i = 1;
635
		void *vaddr;
636 637 638 639 640 641 642 643 644 645

		/*
		 * page->index stores offset of first object starting
		 * in the page. For the first page, this is always 0,
		 * so we use first_page->index (aka ->freelist) to store
		 * head of corresponding zspage's freelist.
		 */
		if (page != first_page)
			page->index = off;

646 647
		vaddr = kmap_atomic(page);
		link = (struct link_free *)vaddr + off / sizeof(*link);
648 649 650 651

		while ((off += class->size) < PAGE_SIZE) {
			link->next = obj_location_to_handle(page, i++);
			link += class->size / sizeof(*link);
652 653 654 655 656 657 658 659 660
		}

		/*
		 * We now come to the last (full or partial) object on this
		 * page, which must point to the first object on the next
		 * page (if present)
		 */
		next_page = get_next_page(page);
		link->next = obj_location_to_handle(next_page, 0);
661
		kunmap_atomic(vaddr);
662
		page = next_page;
663
		off %= PAGE_SIZE;
664 665 666 667 668 669 670 671 672
	}
}

/*
 * Allocate a zspage for the given size class
 */
static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
{
	int i, error;
673
	struct page *first_page = NULL, *uninitialized_var(prev_page);
674 675 676 677 678 679 680 681 682 683 684 685 686

	/*
	 * Allocate individual pages and link them together as:
	 * 1. first page->private = first sub-page
	 * 2. all sub-pages are linked together using page->lru
	 * 3. each sub-page is linked to the first page using page->first_page
	 *
	 * For each size class, First/Head pages are linked together using
	 * page->lru. Also, we set PG_private to identify the first page
	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
	 * identify the last page.
	 */
	error = -ENOMEM;
687
	for (i = 0; i < class->pages_per_zspage; i++) {
688
		struct page *page;
689 690 691 692 693 694 695

		page = alloc_page(flags);
		if (!page)
			goto cleanup;

		INIT_LIST_HEAD(&page->lru);
		if (i == 0) {	/* first page */
696
			SetPagePrivate(page);
697 698 699 700 701
			set_page_private(page, 0);
			first_page = page;
			first_page->inuse = 0;
		}
		if (i == 1)
702
			set_page_private(first_page, (unsigned long)page);
703 704 705 706
		if (i >= 1)
			page->first_page = first_page;
		if (i >= 2)
			list_add(&page->lru, &prev_page->lru);
707
		if (i == class->pages_per_zspage - 1)	/* last page */
708
			SetPagePrivate2(page);
709 710 711 712 713 714 715
		prev_page = page;
	}

	init_zspage(first_page, class);

	first_page->freelist = obj_location_to_handle(first_page, 0);
	/* Maximum number of objects we can store in this zspage */
716
	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742

	error = 0; /* Success */

cleanup:
	if (unlikely(error) && first_page) {
		free_zspage(first_page);
		first_page = NULL;
	}

	return first_page;
}

static struct page *find_get_zspage(struct size_class *class)
{
	int i;
	struct page *page;

	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
		page = class->fullness_list[i];
		if (page)
			break;
	}

	return page;
}

743
#ifdef CONFIG_PGTABLE_MAPPING
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
static inline int __zs_cpu_up(struct mapping_area *area)
{
	/*
	 * Make sure we don't leak memory if a cpu UP notification
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
	 */
	if (area->vm)
		return 0;
	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
	if (!area->vm)
		return -ENOMEM;
	return 0;
}

static inline void __zs_cpu_down(struct mapping_area *area)
{
	if (area->vm)
		free_vm_area(area->vm);
	area->vm = NULL;
}

static inline void *__zs_map_object(struct mapping_area *area,
				struct page *pages[2], int off, int size)
{
768
	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
769 770 771 772 773 774 775 776 777
	area->vm_addr = area->vm->addr;
	return area->vm_addr + off;
}

static inline void __zs_unmap_object(struct mapping_area *area,
				struct page *pages[2], int off, int size)
{
	unsigned long addr = (unsigned long)area->vm_addr;

778
	unmap_kernel_range(addr, PAGE_SIZE * 2);
779 780
}

781
#else /* CONFIG_PGTABLE_MAPPING */
782 783 784 785 786 787 788 789 790

static inline int __zs_cpu_up(struct mapping_area *area)
{
	/*
	 * Make sure we don't leak memory if a cpu UP notification
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
	 */
	if (area->vm_buf)
		return 0;
791
	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
792 793 794 795 796 797 798
	if (!area->vm_buf)
		return -ENOMEM;
	return 0;
}

static inline void __zs_cpu_down(struct mapping_area *area)
{
799
	kfree(area->vm_buf);
800 801 802 803 804
	area->vm_buf = NULL;
}

static void *__zs_map_object(struct mapping_area *area,
			struct page *pages[2], int off, int size)
805 806 807
{
	int sizes[2];
	void *addr;
808
	char *buf = area->vm_buf;
809

810 811 812 813 814 815
	/* disable page faults to match kmap_atomic() return conditions */
	pagefault_disable();

	/* no read fastpath */
	if (area->vm_mm == ZS_MM_WO)
		goto out;
816 817 818 819 820 821 822 823 824 825 826

	sizes[0] = PAGE_SIZE - off;
	sizes[1] = size - sizes[0];

	/* copy object to per-cpu buffer */
	addr = kmap_atomic(pages[0]);
	memcpy(buf, addr + off, sizes[0]);
	kunmap_atomic(addr);
	addr = kmap_atomic(pages[1]);
	memcpy(buf + sizes[0], addr, sizes[1]);
	kunmap_atomic(addr);
827 828
out:
	return area->vm_buf;
829 830
}

831 832
static void __zs_unmap_object(struct mapping_area *area,
			struct page *pages[2], int off, int size)
833 834 835
{
	int sizes[2];
	void *addr;
836
	char *buf = area->vm_buf;
837

838 839 840
	/* no write fastpath */
	if (area->vm_mm == ZS_MM_RO)
		goto out;
841 842 843 844 845 846 847 848 849 850 851

	sizes[0] = PAGE_SIZE - off;
	sizes[1] = size - sizes[0];

	/* copy per-cpu buffer to object */
	addr = kmap_atomic(pages[0]);
	memcpy(addr + off, buf, sizes[0]);
	kunmap_atomic(addr);
	addr = kmap_atomic(pages[1]);
	memcpy(addr, buf + sizes[0], sizes[1]);
	kunmap_atomic(addr);
852 853 854 855

out:
	/* enable page faults to match kunmap_atomic() return conditions */
	pagefault_enable();
856
}
857

858
#endif /* CONFIG_PGTABLE_MAPPING */
859

860 861 862
static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
				void *pcpu)
{
863
	int ret, cpu = (long)pcpu;
864 865 866 867 868
	struct mapping_area *area;

	switch (action) {
	case CPU_UP_PREPARE:
		area = &per_cpu(zs_map_area, cpu);
869 870 871
		ret = __zs_cpu_up(area);
		if (ret)
			return notifier_from_errno(ret);
872 873 874 875
		break;
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		area = &per_cpu(zs_map_area, cpu);
876
		__zs_cpu_down(area);
877 878 879 880 881 882 883 884 885 886
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block zs_cpu_nb = {
	.notifier_call = zs_cpu_notifier
};

887
static void zs_unregister_cpu_notifier(void)
888 889 890
{
	int cpu;

891 892
	cpu_notifier_register_begin();

893 894
	for_each_online_cpu(cpu)
		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
895 896 897
	__unregister_cpu_notifier(&zs_cpu_nb);

	cpu_notifier_register_done();
898 899
}

900
static int zs_register_cpu_notifier(void)
901
{
902
	int cpu, uninitialized_var(ret);
903

904 905 906
	cpu_notifier_register_begin();

	__register_cpu_notifier(&zs_cpu_nb);
907 908
	for_each_online_cpu(cpu) {
		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
909 910
		if (notifier_to_errno(ret))
			break;
911
	}
912 913

	cpu_notifier_register_done();
914 915
	return notifier_to_errno(ret);
}
916

917 918 919 920 921 922 923 924 925 926 927
static void init_zs_size_classes(void)
{
	int nr;

	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
		nr += 1;

	zs_size_classes = nr;
}

928 929
static void __exit zs_exit(void)
{
930
#ifdef CONFIG_ZPOOL
931
	zpool_unregister_driver(&zs_zpool_driver);
932
#endif
933 934 935 936 937 938 939 940 941 942 943
	zs_unregister_cpu_notifier();
}

static int __init zs_init(void)
{
	int ret = zs_register_cpu_notifier();

	if (ret) {
		zs_unregister_cpu_notifier();
		return ret;
	}
944

945 946
	init_zs_size_classes();

947 948 949
#ifdef CONFIG_ZPOOL
	zpool_register_driver(&zs_zpool_driver);
#endif
950 951 952
	return 0;
}

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
{
	return pages_per_zspage * PAGE_SIZE / size;
}

static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
{
	if (prev->pages_per_zspage != pages_per_zspage)
		return false;

	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
		!= get_maxobj_per_zspage(size, pages_per_zspage))
		return false;

	return true;
}

970 971
/**
 * zs_create_pool - Creates an allocation pool to work from.
972
 * @flags: allocation flags used to allocate pool metadata
973 974 975 976 977 978 979
 *
 * This function must be called before anything when using
 * the zsmalloc allocator.
 *
 * On success, a pointer to the newly created pool is returned,
 * otherwise NULL.
 */
980
struct zs_pool *zs_create_pool(gfp_t flags)
981
{
982
	int i, ovhd_size;
983
	struct zs_pool *pool;
984
	struct size_class *prev_class = NULL;
985 986 987 988 989 990

	ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
	pool = kzalloc(ovhd_size, GFP_KERNEL);
	if (!pool)
		return NULL;

991 992 993 994 995 996 997
	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
			GFP_KERNEL);
	if (!pool->size_class) {
		kfree(pool);
		return NULL;
	}

998 999 1000 1001
	/*
	 * Iterate reversly, because, size of size_class that we want to use
	 * for merging should be larger or equal to current size.
	 */
1002
	for (i = zs_size_classes - 1; i >= 0; i--) {
1003
		int size;
1004
		int pages_per_zspage;
1005 1006 1007 1008 1009
		struct size_class *class;

		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
		if (size > ZS_MAX_ALLOC_SIZE)
			size = ZS_MAX_ALLOC_SIZE;
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
		pages_per_zspage = get_pages_per_zspage(size);

		/*
		 * size_class is used for normal zsmalloc operation such
		 * as alloc/free for that size. Although it is natural that we
		 * have one size_class for each size, there is a chance that we
		 * can get more memory utilization if we use one size_class for
		 * many different sizes whose size_class have same
		 * characteristics. So, we makes size_class point to
		 * previous size_class if possible.
		 */
1021
		if (prev_class) {
1022 1023 1024 1025 1026 1027 1028 1029 1030
			if (can_merge(prev_class, size, pages_per_zspage)) {
				pool->size_class[i] = prev_class;
				continue;
			}
		}

		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
		if (!class)
			goto err;
1031 1032 1033

		class->size = size;
		class->index = i;
1034
		class->pages_per_zspage = pages_per_zspage;
1035
		spin_lock_init(&class->lock);
1036
		pool->size_class[i] = class;
1037 1038

		prev_class = class;
1039 1040 1041 1042 1043
	}

	pool->flags = flags;

	return pool;
1044 1045 1046 1047

err:
	zs_destroy_pool(pool);
	return NULL;
1048 1049 1050 1051 1052 1053 1054
}
EXPORT_SYMBOL_GPL(zs_create_pool);

void zs_destroy_pool(struct zs_pool *pool)
{
	int i;

1055
	for (i = 0; i < zs_size_classes; i++) {
1056
		int fg;
1057 1058 1059 1060 1061 1062 1063
		struct size_class *class = pool->size_class[i];

		if (!class)
			continue;

		if (class->index != i)
			continue;
1064 1065 1066

		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
			if (class->fullness_list[fg]) {
1067
				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1068 1069 1070
					class->size, fg);
			}
		}
1071
		kfree(class);
1072
	}
1073 1074

	kfree(pool->size_class);
1075 1076 1077 1078 1079 1080 1081 1082 1083
	kfree(pool);
}
EXPORT_SYMBOL_GPL(zs_destroy_pool);

/**
 * zs_malloc - Allocate block of given size from pool.
 * @pool: pool to allocate from
 * @size: size of block to allocate
 *
1084
 * On success, handle to the allocated object is returned,
1085
 * otherwise 0.
1086 1087
 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
 */
1088
unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1089
{
1090
	unsigned long obj;
1091 1092
	struct link_free *link;
	struct size_class *class;
1093
	void *vaddr;
1094 1095 1096 1097 1098

	struct page *first_page, *m_page;
	unsigned long m_objidx, m_offset;

	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1099
		return 0;
1100

1101
	class = pool->size_class[get_size_class_index(size)];
1102 1103 1104 1105 1106 1107 1108 1109

	spin_lock(&class->lock);
	first_page = find_get_zspage(class);

	if (!first_page) {
		spin_unlock(&class->lock);
		first_page = alloc_zspage(class, pool->flags);
		if (unlikely(!first_page))
1110
			return 0;
1111 1112

		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1113 1114
		atomic_long_add(class->pages_per_zspage,
					&pool->pages_allocated);
1115 1116 1117
		spin_lock(&class->lock);
	}

1118
	obj = (unsigned long)first_page->freelist;
1119 1120 1121
	obj_handle_to_location(obj, &m_page, &m_objidx);
	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);

1122 1123
	vaddr = kmap_atomic(m_page);
	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1124 1125
	first_page->freelist = link->next;
	memset(link, POISON_INUSE, sizeof(*link));
1126
	kunmap_atomic(vaddr);
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

	first_page->inuse++;
	/* Now move the zspage to another fullness group, if required */
	fix_fullness_group(pool, first_page);
	spin_unlock(&class->lock);

	return obj;
}
EXPORT_SYMBOL_GPL(zs_malloc);

1137
void zs_free(struct zs_pool *pool, unsigned long obj)
1138 1139 1140 1141
{
	struct link_free *link;
	struct page *first_page, *f_page;
	unsigned long f_objidx, f_offset;
1142
	void *vaddr;
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

	int class_idx;
	struct size_class *class;
	enum fullness_group fullness;

	if (unlikely(!obj))
		return;

	obj_handle_to_location(obj, &f_page, &f_objidx);
	first_page = get_first_page(f_page);

	get_zspage_mapping(first_page, &class_idx, &fullness);
1155
	class = pool->size_class[class_idx];
1156 1157 1158 1159 1160
	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);

	spin_lock(&class->lock);

	/* Insert this object in containing zspage's freelist */
1161 1162
	vaddr = kmap_atomic(f_page);
	link = (struct link_free *)(vaddr + f_offset);
1163
	link->next = first_page->freelist;
1164
	kunmap_atomic(vaddr);
1165
	first_page->freelist = (void *)obj;
1166 1167 1168 1169 1170

	first_page->inuse--;
	fullness = fix_fullness_group(pool, first_page);
	spin_unlock(&class->lock);

1171 1172 1173
	if (fullness == ZS_EMPTY) {
		atomic_long_sub(class->pages_per_zspage,
				&pool->pages_allocated);
1174
		free_zspage(first_page);
1175
	}
1176 1177 1178
}
EXPORT_SYMBOL_GPL(zs_free);

1179 1180 1181 1182 1183 1184 1185
/**
 * zs_map_object - get address of allocated object from handle.
 * @pool: pool from which the object was allocated
 * @handle: handle returned from zs_malloc
 *
 * Before using an object allocated from zs_malloc, it must be mapped using
 * this function. When done with the object, it must be unmapped using
1186 1187 1188 1189 1190 1191
 * zs_unmap_object.
 *
 * Only one object can be mapped per cpu at a time. There is no protection
 * against nested mappings.
 *
 * This function returns with preemption and page faults disabled.
1192
 */
1193 1194
void *zs_map_object(struct zs_pool *pool, unsigned long handle,
			enum zs_mapmode mm)
1195 1196 1197 1198 1199 1200 1201 1202
{
	struct page *page;
	unsigned long obj_idx, off;

	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;
1203
	struct page *pages[2];
1204 1205 1206

	BUG_ON(!handle);

1207 1208 1209 1210 1211 1212 1213
	/*
	 * Because we use per-cpu mapping areas shared among the
	 * pools/users, we can't allow mapping in interrupt context
	 * because it can corrupt another users mappings.
	 */
	BUG_ON(in_interrupt());

1214 1215
	obj_handle_to_location(handle, &page, &obj_idx);
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1216
	class = pool->size_class[class_idx];
1217 1218 1219
	off = obj_idx_to_offset(page, obj_idx, class->size);

	area = &get_cpu_var(zs_map_area);
1220
	area->vm_mm = mm;
1221 1222 1223
	if (off + class->size <= PAGE_SIZE) {
		/* this object is contained entirely within a page */
		area->vm_addr = kmap_atomic(page);
1224
		return area->vm_addr + off;
1225 1226
	}

1227 1228 1229 1230
	/* this object spans two pages */
	pages[0] = page;
	pages[1] = get_next_page(page);
	BUG_ON(!pages[1]);
1231

1232
	return __zs_map_object(area, pages, off, class->size);
1233 1234 1235
}
EXPORT_SYMBOL_GPL(zs_map_object);

1236
void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
{
	struct page *page;
	unsigned long obj_idx, off;

	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;

	BUG_ON(!handle);

	obj_handle_to_location(handle, &page, &obj_idx);
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1250
	class = pool->size_class[class_idx];
1251 1252
	off = obj_idx_to_offset(page, obj_idx, class->size);

1253
	area = this_cpu_ptr(&zs_map_area);
1254 1255 1256 1257 1258 1259 1260 1261
	if (off + class->size <= PAGE_SIZE)
		kunmap_atomic(area->vm_addr);
	else {
		struct page *pages[2];

		pages[0] = page;
		pages[1] = get_next_page(page);
		BUG_ON(!pages[1]);
1262

1263 1264
		__zs_unmap_object(area, pages, off, class->size);
	}
1265 1266 1267 1268
	put_cpu_var(zs_map_area);
}
EXPORT_SYMBOL_GPL(zs_unmap_object);

1269
unsigned long zs_get_total_pages(struct zs_pool *pool)
1270
{
1271
	return atomic_long_read(&pool->pages_allocated);
1272
}
1273
EXPORT_SYMBOL_GPL(zs_get_total_pages);
1274 1275 1276 1277 1278 1279

module_init(zs_init);
module_exit(zs_exit);

MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
新手
引导
客服 返回
顶部