process.c 14.4 KB
Newer Older
1 2 3 4
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
5
#include <linux/prctl.h>
6 7
#include <linux/slab.h>
#include <linux/sched.h>
8 9
#include <linux/module.h>
#include <linux/pm.h>
10
#include <linux/clockchips.h>
A
Amerigo Wang 已提交
11
#include <linux/random.h>
12
#include <trace/power.h>
Z
Zhao Yakui 已提交
13
#include <asm/system.h>
14
#include <asm/apic.h>
15
#include <asm/syscalls.h>
16 17 18
#include <asm/idle.h>
#include <asm/uaccess.h>
#include <asm/i387.h>
M
Markus Metzger 已提交
19
#include <asm/ds.h>
Z
Zhao Yakui 已提交
20 21 22

unsigned long idle_halt;
EXPORT_SYMBOL(idle_halt);
23 24
unsigned long idle_nomwait;
EXPORT_SYMBOL(idle_nomwait);
25

26
struct kmem_cache *task_xstate_cachep;
27

28 29 30
DEFINE_TRACE(power_start);
DEFINE_TRACE(power_end);

31 32 33
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
	*dst = *src;
34 35 36 37 38 39 40 41
	if (src->thread.xstate) {
		dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
						      GFP_KERNEL);
		if (!dst->thread.xstate)
			return -ENOMEM;
		WARN_ON((unsigned long)dst->thread.xstate & 15);
		memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
	}
42 43 44
	return 0;
}

45
void free_thread_xstate(struct task_struct *tsk)
46
{
47 48 49 50
	if (tsk->thread.xstate) {
		kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
		tsk->thread.xstate = NULL;
	}
M
Markus Metzger 已提交
51 52

	WARN(tsk->thread.ds_ctx, "leaking DS context\n");
53 54 55 56 57
}

void free_thread_info(struct thread_info *ti)
{
	free_thread_xstate(ti->task);
S
Suresh Siddha 已提交
58
	free_pages((unsigned long)ti, get_order(THREAD_SIZE));
59 60 61 62 63 64 65
}

void arch_task_cache_init(void)
{
        task_xstate_cachep =
        	kmem_cache_create("task_xstate", xstate_size,
				  __alignof__(union thread_xstate),
V
Vegard Nossum 已提交
66
				  SLAB_PANIC | SLAB_NOTRACK, NULL);
67
}
68

69 70 71 72 73 74 75
/*
 * Free current thread data structures etc..
 */
void exit_thread(void)
{
	struct task_struct *me = current;
	struct thread_struct *t = &me->thread;
76
	unsigned long *bp = t->io_bitmap_ptr;
77

78
	if (bp) {
79 80 81 82 83 84 85 86 87 88
		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());

		t->io_bitmap_ptr = NULL;
		clear_thread_flag(TIF_IO_BITMAP);
		/*
		 * Careful, clear this in the TSS too:
		 */
		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
		t->io_bitmap_max = 0;
		put_cpu();
89
		kfree(bp);
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
	}
}

void flush_thread(void)
{
	struct task_struct *tsk = current;

#ifdef CONFIG_X86_64
	if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
		clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
		if (test_tsk_thread_flag(tsk, TIF_IA32)) {
			clear_tsk_thread_flag(tsk, TIF_IA32);
		} else {
			set_tsk_thread_flag(tsk, TIF_IA32);
			current_thread_info()->status |= TS_COMPAT;
		}
	}
#endif

	clear_tsk_thread_flag(tsk, TIF_DEBUG);

	tsk->thread.debugreg0 = 0;
	tsk->thread.debugreg1 = 0;
	tsk->thread.debugreg2 = 0;
	tsk->thread.debugreg3 = 0;
	tsk->thread.debugreg6 = 0;
	tsk->thread.debugreg7 = 0;
	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
	/*
	 * Forget coprocessor state..
	 */
	tsk->fpu_counter = 0;
	clear_fpu(tsk);
	clear_used_math();
}

static void hard_disable_TSC(void)
{
	write_cr4(read_cr4() | X86_CR4_TSD);
}

void disable_TSC(void)
{
	preempt_disable();
	if (!test_and_set_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
		hard_disable_TSC();
	preempt_enable();
}

static void hard_enable_TSC(void)
{
	write_cr4(read_cr4() & ~X86_CR4_TSD);
}

static void enable_TSC(void)
{
	preempt_disable();
	if (test_and_clear_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
		hard_enable_TSC();
	preempt_enable();
}

int get_tsc_mode(unsigned long adr)
{
	unsigned int val;

	if (test_thread_flag(TIF_NOTSC))
		val = PR_TSC_SIGSEGV;
	else
		val = PR_TSC_ENABLE;

	return put_user(val, (unsigned int __user *)adr);
}

int set_tsc_mode(unsigned int val)
{
	if (val == PR_TSC_SIGSEGV)
		disable_TSC();
	else if (val == PR_TSC_ENABLE)
		enable_TSC();
	else
		return -EINVAL;

	return 0;
}

void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
		      struct tss_struct *tss)
{
	struct thread_struct *prev, *next;

	prev = &prev_p->thread;
	next = &next_p->thread;

	if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
	    test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
		ds_switch_to(prev_p, next_p);
	else if (next->debugctlmsr != prev->debugctlmsr)
		update_debugctlmsr(next->debugctlmsr);

	if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
		set_debugreg(next->debugreg0, 0);
		set_debugreg(next->debugreg1, 1);
		set_debugreg(next->debugreg2, 2);
		set_debugreg(next->debugreg3, 3);
		/* no 4 and 5 */
		set_debugreg(next->debugreg6, 6);
		set_debugreg(next->debugreg7, 7);
	}

	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
		/* prev and next are different */
		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
			hard_disable_TSC();
		else
			hard_enable_TSC();
	}

	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
		/*
		 * Copy the relevant range of the IO bitmap.
		 * Normally this is 128 bytes or less:
		 */
		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
		       max(prev->io_bitmap_max, next->io_bitmap_max));
	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
		/*
		 * Clear any possible leftover bits:
		 */
		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
	}
}

int sys_fork(struct pt_regs *regs)
{
	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
}

/*
 * This is trivial, and on the face of it looks like it
 * could equally well be done in user mode.
 *
 * Not so, for quite unobvious reasons - register pressure.
 * In user mode vfork() cannot have a stack frame, and if
 * done by calling the "clone()" system call directly, you
 * do not have enough call-clobbered registers to hold all
 * the information you need.
 */
int sys_vfork(struct pt_regs *regs)
{
	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
		       NULL, NULL);
}


254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
/*
 * Idle related variables and functions
 */
unsigned long boot_option_idle_override = 0;
EXPORT_SYMBOL(boot_option_idle_override);

/*
 * Powermanagement idle function, if any..
 */
void (*pm_idle)(void);
EXPORT_SYMBOL(pm_idle);

#ifdef CONFIG_X86_32
/*
 * This halt magic was a workaround for ancient floppy DMA
 * wreckage. It should be safe to remove.
 */
static int hlt_counter;
void disable_hlt(void)
{
	hlt_counter++;
}
EXPORT_SYMBOL(disable_hlt);

void enable_hlt(void)
{
	hlt_counter--;
}
EXPORT_SYMBOL(enable_hlt);

static inline int hlt_use_halt(void)
{
	return (!hlt_counter && boot_cpu_data.hlt_works_ok);
}
#else
static inline int hlt_use_halt(void)
{
	return 1;
}
#endif

/*
 * We use this if we don't have any better
 * idle routine..
 */
void default_idle(void)
{
	if (hlt_use_halt()) {
302 303 304
		struct power_trace it;

		trace_power_start(&it, POWER_CSTATE, 1);
305 306 307 308 309 310 311 312 313 314 315 316
		current_thread_info()->status &= ~TS_POLLING;
		/*
		 * TS_POLLING-cleared state must be visible before we
		 * test NEED_RESCHED:
		 */
		smp_mb();

		if (!need_resched())
			safe_halt();	/* enables interrupts racelessly */
		else
			local_irq_enable();
		current_thread_info()->status |= TS_POLLING;
317
		trace_power_end(&it);
318 319 320 321 322 323 324 325 326 327
	} else {
		local_irq_enable();
		/* loop is done by the caller */
		cpu_relax();
	}
}
#ifdef CONFIG_APM_MODULE
EXPORT_SYMBOL(default_idle);
#endif

328 329 330 331 332 333
void stop_this_cpu(void *dummy)
{
	local_irq_disable();
	/*
	 * Remove this CPU:
	 */
334
	set_cpu_online(smp_processor_id(), false);
335 336 337 338 339 340 341 342
	disable_local_APIC();

	for (;;) {
		if (hlt_works(smp_processor_id()))
			halt();
	}
}

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
static void do_nothing(void *unused)
{
}

/*
 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
 * pm_idle and update to new pm_idle value. Required while changing pm_idle
 * handler on SMP systems.
 *
 * Caller must have changed pm_idle to the new value before the call. Old
 * pm_idle value will not be used by any CPU after the return of this function.
 */
void cpu_idle_wait(void)
{
	smp_mb();
	/* kick all the CPUs so that they exit out of pm_idle */
359
	smp_call_function(do_nothing, NULL, 1);
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
}
EXPORT_SYMBOL_GPL(cpu_idle_wait);

/*
 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
 * which can obviate IPI to trigger checking of need_resched.
 * We execute MONITOR against need_resched and enter optimized wait state
 * through MWAIT. Whenever someone changes need_resched, we would be woken
 * up from MWAIT (without an IPI).
 *
 * New with Core Duo processors, MWAIT can take some hints based on CPU
 * capability.
 */
void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
{
375 376 377
	struct power_trace it;

	trace_power_start(&it, POWER_CSTATE, (ax>>4)+1);
378
	if (!need_resched()) {
379 380 381
		if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
			clflush((void *)&current_thread_info()->flags);

382 383 384 385 386
		__monitor((void *)&current_thread_info()->flags, 0, 0);
		smp_mb();
		if (!need_resched())
			__mwait(ax, cx);
	}
387
	trace_power_end(&it);
388 389 390 391 392
}

/* Default MONITOR/MWAIT with no hints, used for default C1 state */
static void mwait_idle(void)
{
393
	struct power_trace it;
394
	if (!need_resched()) {
395
		trace_power_start(&it, POWER_CSTATE, 1);
396 397 398
		if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
			clflush((void *)&current_thread_info()->flags);

399 400 401 402 403 404
		__monitor((void *)&current_thread_info()->flags, 0, 0);
		smp_mb();
		if (!need_resched())
			__sti_mwait(0, 0);
		else
			local_irq_enable();
405
		trace_power_end(&it);
406 407 408 409 410 411 412 413 414 415 416
	} else
		local_irq_enable();
}

/*
 * On SMP it's slightly faster (but much more power-consuming!)
 * to poll the ->work.need_resched flag instead of waiting for the
 * cross-CPU IPI to arrive. Use this option with caution.
 */
static void poll_idle(void)
{
417 418 419
	struct power_trace it;

	trace_power_start(&it, POWER_CSTATE, 0);
420
	local_irq_enable();
421 422
	while (!need_resched())
		cpu_relax();
423
	trace_power_end(&it);
424 425
}

426 427 428 429 430 431 432 433 434 435 436 437
/*
 * mwait selection logic:
 *
 * It depends on the CPU. For AMD CPUs that support MWAIT this is
 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
 * then depend on a clock divisor and current Pstate of the core. If
 * all cores of a processor are in halt state (C1) the processor can
 * enter the C1E (C1 enhanced) state. If mwait is used this will never
 * happen.
 *
 * idle=mwait overrides this decision and forces the usage of mwait.
 */
J
Jan Beulich 已提交
438
static int __cpuinitdata force_mwait;
439 440 441 442 443

#define MWAIT_INFO			0x05
#define MWAIT_ECX_EXTENDED_INFO		0x01
#define MWAIT_EDX_C1			0xf0

444 445
static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
{
446 447
	u32 eax, ebx, ecx, edx;

448 449 450
	if (force_mwait)
		return 1;

451 452 453 454 455 456 457 458 459 460 461 462 463
	if (c->cpuid_level < MWAIT_INFO)
		return 0;

	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
	/* Check, whether EDX has extended info about MWAIT */
	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
		return 1;

	/*
	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
	 * C1  supports MWAIT
	 */
	return (edx & MWAIT_EDX_C1);
464 465
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
/*
 * Check for AMD CPUs, which have potentially C1E support
 */
static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
{
	if (c->x86_vendor != X86_VENDOR_AMD)
		return 0;

	if (c->x86 < 0x0F)
		return 0;

	/* Family 0x0f models < rev F do not have C1E */
	if (c->x86 == 0x0f && c->x86_model < 0x40)
		return 0;

	return 1;
}

484
static cpumask_var_t c1e_mask;
485 486 487 488
static int c1e_detected;

void c1e_remove_cpu(int cpu)
{
489 490
	if (c1e_mask != NULL)
		cpumask_clear_cpu(cpu, c1e_mask);
491 492
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
/*
 * C1E aware idle routine. We check for C1E active in the interrupt
 * pending message MSR. If we detect C1E, then we handle it the same
 * way as C3 power states (local apic timer and TSC stop)
 */
static void c1e_idle(void)
{
	if (need_resched())
		return;

	if (!c1e_detected) {
		u32 lo, hi;

		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
			c1e_detected = 1;
509
			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
510 511
				mark_tsc_unstable("TSC halt in AMD C1E");
			printk(KERN_INFO "System has AMD C1E enabled\n");
512
			set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
513 514 515 516 517 518
		}
	}

	if (c1e_detected) {
		int cpu = smp_processor_id();

519 520
		if (!cpumask_test_cpu(cpu, c1e_mask)) {
			cpumask_set_cpu(cpu, c1e_mask);
521 522 523 524 525 526
			/*
			 * Force broadcast so ACPI can not interfere. Needs
			 * to run with interrupts enabled as it uses
			 * smp_function_call.
			 */
			local_irq_enable();
527 528 529 530
			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
					   &cpu);
			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
			       cpu);
531
			local_irq_disable();
532 533
		}
		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
534

535
		default_idle();
536 537 538 539 540 541 542 543

		/*
		 * The switch back from broadcast mode needs to be
		 * called with interrupts disabled.
		 */
		 local_irq_disable();
		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
		 local_irq_enable();
544 545 546 547
	} else
		default_idle();
}

548 549
void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
{
550
#ifdef CONFIG_SMP
551 552 553 554 555
	if (pm_idle == poll_idle && smp_num_siblings > 1) {
		printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
			" performance may degrade.\n");
	}
#endif
T
Thomas Gleixner 已提交
556 557 558
	if (pm_idle)
		return;

559
	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
560 561 562
		/*
		 * One CPU supports mwait => All CPUs supports mwait
		 */
T
Thomas Gleixner 已提交
563 564
		printk(KERN_INFO "using mwait in idle threads.\n");
		pm_idle = mwait_idle;
565 566 567
	} else if (check_c1e_idle(c)) {
		printk(KERN_INFO "using C1E aware idle routine\n");
		pm_idle = c1e_idle;
T
Thomas Gleixner 已提交
568 569
	} else
		pm_idle = default_idle;
570 571
}

572 573 574 575 576 577 578 579 580
void __init init_c1e_mask(void)
{
	/* If we're using c1e_idle, we need to allocate c1e_mask. */
	if (pm_idle == c1e_idle) {
		alloc_cpumask_var(&c1e_mask, GFP_KERNEL);
		cpumask_clear(c1e_mask);
	}
}

581 582
static int __init idle_setup(char *str)
{
583 584 585
	if (!str)
		return -EINVAL;

586 587 588 589 590
	if (!strcmp(str, "poll")) {
		printk("using polling idle threads.\n");
		pm_idle = poll_idle;
	} else if (!strcmp(str, "mwait"))
		force_mwait = 1;
Z
Zhao Yakui 已提交
591 592 593 594 595 596 597 598 599 600 601
	else if (!strcmp(str, "halt")) {
		/*
		 * When the boot option of idle=halt is added, halt is
		 * forced to be used for CPU idle. In such case CPU C2/C3
		 * won't be used again.
		 * To continue to load the CPU idle driver, don't touch
		 * the boot_option_idle_override.
		 */
		pm_idle = default_idle;
		idle_halt = 1;
		return 0;
602 603 604 605 606 607 608 609 610
	} else if (!strcmp(str, "nomwait")) {
		/*
		 * If the boot option of "idle=nomwait" is added,
		 * it means that mwait will be disabled for CPU C2/C3
		 * states. In such case it won't touch the variable
		 * of boot_option_idle_override.
		 */
		idle_nomwait = 1;
		return 0;
Z
Zhao Yakui 已提交
611
	} else
612 613 614 615 616 617 618
		return -1;

	boot_option_idle_override = 1;
	return 0;
}
early_param("idle", idle_setup);

A
Amerigo Wang 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() % 8192;
	return sp & ~0xf;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
	unsigned long range_end = mm->brk + 0x02000000;
	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
}