st_pressure_core.c 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * STMicroelectronics pressures driver
 *
 * Copyright 2013 STMicroelectronics Inc.
 *
 * Denis Ciocca <denis.ciocca@st.com>
 *
 * Licensed under the GPL-2.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/mutex.h>
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/gpio.h>
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/buffer.h>
#include <asm/unaligned.h>

#include <linux/iio/common/st_sensors.h>
#include "st_pressure.h"

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
/*
 * About determining pressure scaling factors
 * ------------------------------------------
 *
 * Datasheets specify typical pressure sensitivity so that pressure is computed
 * according to the following equation :
 *     pressure[mBar] = raw / sensitivity
 * where :
 *     raw          the 24 bits long raw sampled pressure
 *     sensitivity  a scaling factor specified by the datasheet in LSB/mBar
 *
 * IIO ABI expects pressure to be expressed as kPascal, hence pressure should be
 * computed according to :
 *     pressure[kPascal] = pressure[mBar] / 10
 *                       = raw / (sensitivity * 10)                          (1)
 *
 * Finally, st_press_read_raw() returns pressure scaling factor as an
 * IIO_VAL_INT_PLUS_NANO with a zero integral part and "gain" as decimal part.
 * Therefore, from (1), "gain" becomes :
 *     gain = 10^9 / (sensitivity * 10)
 *          = 10^8 / sensitivity
 *
 * About determining temperature scaling factors and offsets
 * ---------------------------------------------------------
 *
 * Datasheets specify typical temperature sensitivity and offset so that
 * temperature is computed according to the following equation :
 *     temp[Celsius] = offset[Celsius] + (raw / sensitivity)
 * where :
 *     raw          the 16 bits long raw sampled temperature
 *     offset       a constant specified by the datasheet in degree Celsius
 *                  (sometimes zero)
 *     sensitivity  a scaling factor specified by the datasheet in LSB/Celsius
 *
 * IIO ABI expects temperature to be expressed as milli degree Celsius such as
 * user space should compute temperature according to :
 *     temp[mCelsius] = temp[Celsius] * 10^3
 *                    = (offset[Celsius] + (raw / sensitivity)) * 10^3
 *                    = ((offset[Celsius] * sensitivity) + raw) *
 *                      (10^3 / sensitivity)                                 (2)
 *
 * IIO ABI expects user space to apply offset and scaling factors to raw samples
 * according to :
 *     temp[mCelsius] = (OFFSET + raw) * SCALE
 * where :
 *     OFFSET an arbitrary constant exposed by device
 *     SCALE  an arbitrary scaling factor exposed by device
 *
 * Matching OFFSET and SCALE with members of (2) gives :
 *     OFFSET = offset[Celsius] * sensitivity                                (3)
 *     SCALE  = 10^3 / sensitivity                                           (4)
 *
 * st_press_read_raw() returns temperature scaling factor as an
 * IIO_VAL_FRACTIONAL with a 10^3 numerator and "gain2" as denominator.
 * Therefore, from (3), "gain2" becomes :
 *     gain2 = sensitivity
 *
 * When declared within channel, i.e. for a non zero specified offset,
 * st_press_read_raw() will return the latter as an IIO_VAL_FRACTIONAL such as :
 *     numerator = OFFSET * 10^3
 *     denominator = 10^3
 * giving from (4):
 *     numerator = offset[Celsius] * 10^3 * sensitivity
 *               = offset[mCelsius] * gain2
 */

97 98 99
#define MCELSIUS_PER_CELSIUS			1000

/* Default pressure sensitivity */
100 101 102
#define ST_PRESS_LSB_PER_MBAR			4096UL
#define ST_PRESS_KPASCAL_NANO_SCALE		(100000000UL / \
						 ST_PRESS_LSB_PER_MBAR)
103 104

/* Default temperature sensitivity */
105
#define ST_PRESS_LSB_PER_CELSIUS		480UL
106 107
#define ST_PRESS_MILLI_CELSIUS_OFFSET		42500UL

108
/* FULLSCALE */
109
#define ST_PRESS_FS_AVL_1100MB			1100
110 111
#define ST_PRESS_FS_AVL_1260MB			1260

112 113 114
#define ST_PRESS_1_OUT_XL_ADDR			0x28
#define ST_TEMP_1_OUT_L_ADDR			0x2b

115 116 117 118
/* LPS001WP pressure resolution */
#define ST_PRESS_LPS001WP_LSB_PER_MBAR		16UL
/* LPS001WP temperature resolution */
#define ST_PRESS_LPS001WP_LSB_PER_CELSIUS	64UL
119
/* LPS001WP pressure gain */
120 121
#define ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN \
	(100000000UL / ST_PRESS_LPS001WP_LSB_PER_MBAR)
122
/* LPS001WP pressure and temp L addresses */
123 124 125
#define ST_PRESS_LPS001WP_OUT_L_ADDR		0x28
#define ST_TEMP_LPS001WP_OUT_L_ADDR		0x2a

126
/* LPS25H pressure and temp L addresses */
127 128 129
#define ST_PRESS_LPS25H_OUT_XL_ADDR		0x28
#define ST_TEMP_LPS25H_OUT_L_ADDR		0x2b

130 131 132
/* LPS22HB temperature sensitivity */
#define ST_PRESS_LPS22HB_LSB_PER_CELSIUS	100UL

133
static const struct iio_chan_spec st_press_1_channels[] = {
134 135
	{
		.type = IIO_PRESSURE,
136
		.address = ST_PRESS_1_OUT_XL_ADDR,
137
		.scan_index = 0,
138
		.scan_type = {
M
Marcin Niestroj 已提交
139
			.sign = 's',
140
			.realbits = 24,
141
			.storagebits = 32,
142 143 144
			.endianness = IIO_LE,
		},
		.info_mask_separate =
145
			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
146
		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
147 148 149
	},
	{
		.type = IIO_TEMP,
150
		.address = ST_TEMP_1_OUT_L_ADDR,
151
		.scan_index = 1,
152
		.scan_type = {
M
Marcin Niestroj 已提交
153
			.sign = 's',
154 155 156 157 158 159 160 161
			.realbits = 16,
			.storagebits = 16,
			.endianness = IIO_LE,
		},
		.info_mask_separate =
			BIT(IIO_CHAN_INFO_RAW) |
			BIT(IIO_CHAN_INFO_SCALE) |
			BIT(IIO_CHAN_INFO_OFFSET),
162
		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
163
	},
164
	IIO_CHAN_SOFT_TIMESTAMP(2)
165 166
};

167 168 169 170
static const struct iio_chan_spec st_press_lps001wp_channels[] = {
	{
		.type = IIO_PRESSURE,
		.address = ST_PRESS_LPS001WP_OUT_L_ADDR,
171
		.scan_index = 0,
172
		.scan_type = {
M
Marcin Niestroj 已提交
173
			.sign = 's',
174 175 176 177
			.realbits = 16,
			.storagebits = 16,
			.endianness = IIO_LE,
		},
178 179 180
		.info_mask_separate =
			BIT(IIO_CHAN_INFO_RAW) |
			BIT(IIO_CHAN_INFO_SCALE),
181 182 183 184
	},
	{
		.type = IIO_TEMP,
		.address = ST_TEMP_LPS001WP_OUT_L_ADDR,
185
		.scan_index = 1,
186
		.scan_type = {
M
Marcin Niestroj 已提交
187
			.sign = 's',
188 189 190 191 192 193
			.realbits = 16,
			.storagebits = 16,
			.endianness = IIO_LE,
		},
		.info_mask_separate =
			BIT(IIO_CHAN_INFO_RAW) |
194
			BIT(IIO_CHAN_INFO_SCALE),
195
	},
196
	IIO_CHAN_SOFT_TIMESTAMP(2)
197 198
};

199 200 201 202 203 204
static const struct iio_chan_spec st_press_lps22hb_channels[] = {
	{
		.type = IIO_PRESSURE,
		.address = ST_PRESS_1_OUT_XL_ADDR,
		.scan_index = 0,
		.scan_type = {
M
Marcin Niestroj 已提交
205
			.sign = 's',
206
			.realbits = 24,
207
			.storagebits = 32,
208 209 210 211 212 213 214
			.endianness = IIO_LE,
		},
		.info_mask_separate =
			BIT(IIO_CHAN_INFO_RAW) |
			BIT(IIO_CHAN_INFO_SCALE),
		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
	},
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
	{
		.type = IIO_TEMP,
		.address = ST_TEMP_1_OUT_L_ADDR,
		.scan_index = 1,
		.scan_type = {
			.sign = 's',
			.realbits = 16,
			.storagebits = 16,
			.endianness = IIO_LE,
		},
		.info_mask_separate =
			BIT(IIO_CHAN_INFO_RAW) |
			BIT(IIO_CHAN_INFO_SCALE),
		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
	},
	IIO_CHAN_SOFT_TIMESTAMP(2)
231 232
};

233
static const struct st_sensor_settings st_press_sensors_settings[] = {
234
	{
235 236 237 238 239 240
		/*
		 * CUSTOM VALUES FOR LPS331AP SENSOR
		 * See LPS331AP datasheet:
		 * http://www2.st.com/resource/en/datasheet/lps331ap.pdf
		 */
		.wai = 0xbb,
241
		.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
242 243 244
		.sensors_supported = {
			[0] = LPS331AP_PRESS_DEV_NAME,
		},
245 246
		.ch = (struct iio_chan_spec *)st_press_1_channels,
		.num_ch = ARRAY_SIZE(st_press_1_channels),
247
		.odr = {
248 249
			.addr = 0x20,
			.mask = 0x70,
250
			.odr_avl = {
251 252 253 254
				{ .hz = 1, .value = 0x01 },
				{ .hz = 7, .value = 0x05 },
				{ .hz = 13, .value = 0x06 },
				{ .hz = 25, .value = 0x07 },
255 256 257
			},
		},
		.pw = {
258 259
			.addr = 0x20,
			.mask = 0x80,
260 261 262 263
			.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
			.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
		},
		.fs = {
264 265
			.addr = 0x23,
			.mask = 0x30,
266
			.fs_avl = {
267 268 269 270
				/*
				 * Pressure and temperature sensitivity values
				 * as defined in table 3 of LPS331AP datasheet.
				 */
271 272
				[0] = {
					.num = ST_PRESS_FS_AVL_1260MB,
273 274
					.gain = ST_PRESS_KPASCAL_NANO_SCALE,
					.gain2 = ST_PRESS_LSB_PER_CELSIUS,
275 276 277 278
				},
			},
		},
		.bdu = {
279 280
			.addr = 0x20,
			.mask = 0x04,
281 282
		},
		.drdy_irq = {
283 284 285 286 287 288 289
			.addr = 0x22,
			.mask_int1 = 0x04,
			.mask_int2 = 0x20,
			.addr_ihl = 0x22,
			.mask_ihl = 0x80,
			.addr_od = 0x22,
			.mask_od = 0x40,
290
			.addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
291
		},
292
		.multi_read_bit = true,
293 294
		.bootime = 2,
	},
295
	{
296 297 298 299
		/*
		 * CUSTOM VALUES FOR LPS001WP SENSOR
		 */
		.wai = 0xba,
300
		.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
301 302 303 304 305 306
		.sensors_supported = {
			[0] = LPS001WP_PRESS_DEV_NAME,
		},
		.ch = (struct iio_chan_spec *)st_press_lps001wp_channels,
		.num_ch = ARRAY_SIZE(st_press_lps001wp_channels),
		.odr = {
307 308
			.addr = 0x20,
			.mask = 0x30,
309
			.odr_avl = {
310 311 312
				{ .hz = 1, .value = 0x01 },
				{ .hz = 7, .value = 0x02 },
				{ .hz = 13, .value = 0x03 },
313 314 315
			},
		},
		.pw = {
316 317
			.addr = 0x20,
			.mask = 0x40,
318 319 320 321
			.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
			.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
		},
		.fs = {
322 323 324 325 326 327 328 329 330 331 332
			.fs_avl = {
				/*
				 * Pressure and temperature resolution values
				 * as defined in table 3 of LPS001WP datasheet.
				 */
				[0] = {
					.num = ST_PRESS_FS_AVL_1100MB,
					.gain = ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN,
					.gain2 = ST_PRESS_LPS001WP_LSB_PER_CELSIUS,
				},
			},
333 334
		},
		.bdu = {
335 336
			.addr = 0x20,
			.mask = 0x04,
337 338 339 340
		},
		.drdy_irq = {
			.addr = 0,
		},
341
		.multi_read_bit = true,
342 343
		.bootime = 2,
	},
344
	{
345 346 347 348 349 350
		/*
		 * CUSTOM VALUES FOR LPS25H SENSOR
		 * See LPS25H datasheet:
		 * http://www2.st.com/resource/en/datasheet/lps25h.pdf
		 */
		.wai = 0xbd,
351
		.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
352 353 354 355 356 357
		.sensors_supported = {
			[0] = LPS25H_PRESS_DEV_NAME,
		},
		.ch = (struct iio_chan_spec *)st_press_1_channels,
		.num_ch = ARRAY_SIZE(st_press_1_channels),
		.odr = {
358 359
			.addr = 0x20,
			.mask = 0x70,
360
			.odr_avl = {
361 362 363 364
				{ .hz = 1, .value = 0x01 },
				{ .hz = 7, .value = 0x02 },
				{ .hz = 13, .value = 0x03 },
				{ .hz = 25, .value = 0x04 },
365 366 367
			},
		},
		.pw = {
368 369
			.addr = 0x20,
			.mask = 0x80,
370 371 372 373 374
			.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
			.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
		},
		.fs = {
			.fs_avl = {
375 376 377 378
				/*
				 * Pressure and temperature sensitivity values
				 * as defined in table 3 of LPS25H datasheet.
				 */
379 380
				[0] = {
					.num = ST_PRESS_FS_AVL_1260MB,
381 382
					.gain = ST_PRESS_KPASCAL_NANO_SCALE,
					.gain2 = ST_PRESS_LSB_PER_CELSIUS,
383 384 385 386
				},
			},
		},
		.bdu = {
387 388
			.addr = 0x20,
			.mask = 0x04,
389 390
		},
		.drdy_irq = {
391 392 393 394 395 396 397
			.addr = 0x23,
			.mask_int1 = 0x01,
			.mask_int2 = 0x10,
			.addr_ihl = 0x22,
			.mask_ihl = 0x80,
			.addr_od = 0x22,
			.mask_od = 0x40,
398
			.addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
399
		},
400
		.multi_read_bit = true,
401 402
		.bootime = 2,
	},
403
	{
404 405 406 407 408 409
		/*
		 * CUSTOM VALUES FOR LPS22HB SENSOR
		 * See LPS22HB datasheet:
		 * http://www2.st.com/resource/en/datasheet/lps22hb.pdf
		 */
		.wai = 0xb1,
410 411 412 413 414 415 416
		.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
		.sensors_supported = {
			[0] = LPS22HB_PRESS_DEV_NAME,
		},
		.ch = (struct iio_chan_spec *)st_press_lps22hb_channels,
		.num_ch = ARRAY_SIZE(st_press_lps22hb_channels),
		.odr = {
417 418
			.addr = 0x10,
			.mask = 0x70,
419
			.odr_avl = {
420 421 422 423 424
				{ .hz = 1, .value = 0x01 },
				{ .hz = 10, .value = 0x02 },
				{ .hz = 25, .value = 0x03 },
				{ .hz = 50, .value = 0x04 },
				{ .hz = 75, .value = 0x05 },
425 426 427
			},
		},
		.pw = {
428 429
			.addr = 0x10,
			.mask = 0x70,
430 431 432 433
			.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
		},
		.fs = {
			.fs_avl = {
434
				/*
435 436
				 * Pressure and temperature sensitivity values
				 * as defined in table 3 of LPS22HB datasheet.
437
				 */
438 439 440
				[0] = {
					.num = ST_PRESS_FS_AVL_1260MB,
					.gain = ST_PRESS_KPASCAL_NANO_SCALE,
441
					.gain2 = ST_PRESS_LPS22HB_LSB_PER_CELSIUS,
442 443 444 445
				},
			},
		},
		.bdu = {
446 447
			.addr = 0x10,
			.mask = 0x02,
448 449
		},
		.drdy_irq = {
450 451 452 453 454 455 456
			.addr = 0x12,
			.mask_int1 = 0x04,
			.mask_int2 = 0x08,
			.addr_ihl = 0x12,
			.mask_ihl = 0x80,
			.addr_od = 0x12,
			.mask_od = 0x40,
457
			.addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
458
		},
459
		.multi_read_bit = false,
460
		.bootime = 2,
461
	},
462 463
};

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
static int st_press_write_raw(struct iio_dev *indio_dev,
			      struct iio_chan_spec const *ch,
			      int val,
			      int val2,
			      long mask)
{
	int err;

	switch (mask) {
	case IIO_CHAN_INFO_SAMP_FREQ:
		if (val2)
			return -EINVAL;
		mutex_lock(&indio_dev->mlock);
		err = st_sensors_set_odr(indio_dev, val);
		mutex_unlock(&indio_dev->mlock);
		return err;
	default:
		return -EINVAL;
	}
}

485 486 487 488 489
static int st_press_read_raw(struct iio_dev *indio_dev,
			struct iio_chan_spec const *ch, int *val,
							int *val2, long mask)
{
	int err;
490
	struct st_sensor_data *press_data = iio_priv(indio_dev);
491 492 493 494 495 496 497 498 499 500 501

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		err = st_sensors_read_info_raw(indio_dev, ch, val);
		if (err < 0)
			goto read_error;

		return IIO_VAL_INT;
	case IIO_CHAN_INFO_SCALE:
		switch (ch->type) {
		case IIO_PRESSURE:
502
			*val = 0;
503
			*val2 = press_data->current_fullscale->gain;
504
			return IIO_VAL_INT_PLUS_NANO;
505
		case IIO_TEMP:
506
			*val = MCELSIUS_PER_CELSIUS;
507
			*val2 = press_data->current_fullscale->gain2;
508
			return IIO_VAL_FRACTIONAL;
509 510 511 512 513 514 515 516
		default:
			err = -EINVAL;
			goto read_error;
		}

	case IIO_CHAN_INFO_OFFSET:
		switch (ch->type) {
		case IIO_TEMP:
517 518 519
			*val = ST_PRESS_MILLI_CELSIUS_OFFSET *
			       press_data->current_fullscale->gain2;
			*val2 = MCELSIUS_PER_CELSIUS;
520 521 522 523 524 525 526
			break;
		default:
			err = -EINVAL;
			goto read_error;
		}

		return IIO_VAL_FRACTIONAL;
527
	case IIO_CHAN_INFO_SAMP_FREQ:
528
		*val = press_data->odr;
529
		return IIO_VAL_INT;
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	default:
		return -EINVAL;
	}

read_error:
	return err;
}

static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL();

static struct attribute *st_press_attributes[] = {
	&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
	NULL,
};

static const struct attribute_group st_press_attribute_group = {
	.attrs = st_press_attributes,
};

static const struct iio_info press_info = {
	.driver_module = THIS_MODULE,
	.attrs = &st_press_attribute_group,
	.read_raw = &st_press_read_raw,
553
	.write_raw = &st_press_write_raw,
554
	.debugfs_reg_access = &st_sensors_debugfs_reg_access,
555 556 557 558 559 560
};

#ifdef CONFIG_IIO_TRIGGER
static const struct iio_trigger_ops st_press_trigger_ops = {
	.owner = THIS_MODULE,
	.set_trigger_state = ST_PRESS_TRIGGER_SET_STATE,
561
	.validate_device = st_sensors_validate_device,
562 563 564 565 566 567
};
#define ST_PRESS_TRIGGER_OPS (&st_press_trigger_ops)
#else
#define ST_PRESS_TRIGGER_OPS NULL
#endif

568
int st_press_common_probe(struct iio_dev *indio_dev)
569
{
570
	struct st_sensor_data *press_data = iio_priv(indio_dev);
571 572
	struct st_sensors_platform_data *pdata =
		(struct st_sensors_platform_data *)press_data->dev->platform_data;
573
	int irq = press_data->get_irq_data_ready(indio_dev);
574
	int err;
575 576 577

	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->info = &press_info;
578
	mutex_init(&press_data->tb.buf_lock);
579

580 581 582
	err = st_sensors_power_enable(indio_dev);
	if (err)
		return err;
583

584
	err = st_sensors_check_device_support(indio_dev,
585 586
					ARRAY_SIZE(st_press_sensors_settings),
					st_press_sensors_settings);
587
	if (err < 0)
588
		goto st_press_power_off;
589

590 591 592 593 594 595 596
	/*
	 * Skip timestamping channel while declaring available channels to
	 * common st_sensor layer. Look at st_sensors_get_buffer_element() to
	 * see how timestamps are explicitly pushed as last samples block
	 * element.
	 */
	press_data->num_data_channels = press_data->sensor_settings->num_ch - 1;
597 598 599
	press_data->multiread_bit = press_data->sensor_settings->multi_read_bit;
	indio_dev->channels = press_data->sensor_settings->ch;
	indio_dev->num_channels = press_data->sensor_settings->num_ch;
600

601 602 603
	press_data->current_fullscale =
		(struct st_sensor_fullscale_avl *)
			&press_data->sensor_settings->fs.fs_avl[0];
604

605
	press_data->odr = press_data->sensor_settings->odr.odr_avl[0].hz;
606

607
	/* Some devices don't support a data ready pin. */
608 609
	if (!pdata && press_data->sensor_settings->drdy_irq.addr)
		pdata =	(struct st_sensors_platform_data *)&default_press_pdata;
610

611
	err = st_sensors_init_sensor(indio_dev, press_data->dev->platform_data);
612
	if (err < 0)
613
		goto st_press_power_off;
614

615 616
	err = st_press_allocate_ring(indio_dev);
	if (err < 0)
617
		goto st_press_power_off;
618

619
	if (irq > 0) {
620
		err = st_sensors_allocate_trigger(indio_dev,
621
						  ST_PRESS_TRIGGER_OPS);
622 623 624 625 626 627 628 629
		if (err < 0)
			goto st_press_probe_trigger_error;
	}

	err = iio_device_register(indio_dev);
	if (err)
		goto st_press_device_register_error;

630 631 632
	dev_info(&indio_dev->dev, "registered pressure sensor %s\n",
		 indio_dev->name);

633 634 635
	return err;

st_press_device_register_error:
636
	if (irq > 0)
637 638
		st_sensors_deallocate_trigger(indio_dev);
st_press_probe_trigger_error:
639
	st_press_deallocate_ring(indio_dev);
640 641
st_press_power_off:
	st_sensors_power_disable(indio_dev);
642

643 644 645 646 647 648
	return err;
}
EXPORT_SYMBOL(st_press_common_probe);

void st_press_common_remove(struct iio_dev *indio_dev)
{
649
	struct st_sensor_data *press_data = iio_priv(indio_dev);
650

651
	st_sensors_power_disable(indio_dev);
652

653
	iio_device_unregister(indio_dev);
654
	if (press_data->get_irq_data_ready(indio_dev) > 0)
655
		st_sensors_deallocate_trigger(indio_dev);
656 657

	st_press_deallocate_ring(indio_dev);
658 659 660 661 662 663
}
EXPORT_SYMBOL(st_press_common_remove);

MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>");
MODULE_DESCRIPTION("STMicroelectronics pressures driver");
MODULE_LICENSE("GPL v2");