rcutree_plugin.h 17.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
 * or preemptable semantics.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */


#ifdef CONFIG_TREE_PREEMPT_RCU

struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);

/*
 * Tell them what RCU they are running.
 */
36
static void rcu_bootup_announce(void)
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
{
	printk(KERN_INFO
	       "Experimental preemptable hierarchical RCU implementation.\n");
}

/*
 * Return the number of RCU-preempt batches processed thus far
 * for debug and statistics.
 */
long rcu_batches_completed_preempt(void)
{
	return rcu_preempt_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_preempt();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Record a preemptable-RCU quiescent state for the specified CPU.  Note
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
 */
67
static void rcu_preempt_qs(int cpu)
68 69 70
{
	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
	rdp->passed_quiesc_completed = rdp->completed;
71 72
	barrier();
	rdp->passed_quiesc = 1;
73 74 75
}

/*
76 77 78 79 80 81 82 83 84 85 86
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
 * record that fact, so we enqueue the task on the appropriate entry
 * of the blocked_tasks[] array.  The task will dequeue itself when
 * it exits the outermost enclosing RCU read-side critical section.
 * Therefore, the current grace period cannot be permitted to complete
 * until the blocked_tasks[] entry indexed by the low-order bit of
 * rnp->gpnum empties.
 *
 * Caller must disable preemption.
87
 */
88
static void rcu_preempt_note_context_switch(int cpu)
89 90
{
	struct task_struct *t = current;
91
	unsigned long flags;
92 93 94 95 96 97 98 99 100 101
	int phase;
	struct rcu_data *rdp;
	struct rcu_node *rnp;

	if (t->rcu_read_lock_nesting &&
	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {

		/* Possibly blocking in an RCU read-side critical section. */
		rdp = rcu_preempt_state.rda[cpu];
		rnp = rdp->mynode;
102
		spin_lock_irqsave(&rnp->lock, flags);
103
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
104
		t->rcu_blocked_node = rnp;
105 106 107 108 109 110 111 112 113 114

		/*
		 * If this CPU has already checked in, then this task
		 * will hold up the next grace period rather than the
		 * current grace period.  Queue the task accordingly.
		 * If the task is queued for the current grace period
		 * (i.e., this CPU has not yet passed through a quiescent
		 * state for the current grace period), then as long
		 * as that task remains queued, the current grace period
		 * cannot end.
115 116 117
		 *
		 * But first, note that the current CPU must still be
		 * on line!
118
		 */
119
		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
120 121
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
		phase = (rnp->gpnum + !(rnp->qsmask & rdp->grpmask)) & 0x1;
122
		list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]);
123
		spin_unlock_irqrestore(&rnp->lock, flags);
124 125 126 127 128 129 130 131 132 133 134
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
135
	rcu_preempt_qs(cpu);
136
	local_irq_save(flags);
137
	t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
138
	local_irq_restore(flags);
139 140 141 142 143 144 145 146 147 148 149 150 151 152
}

/*
 * Tree-preemptable RCU implementation for rcu_read_lock().
 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 * if we block.
 */
void __rcu_read_lock(void)
{
	ACCESS_ONCE(current->rcu_read_lock_nesting)++;
	barrier();  /* needed if we ever invoke rcu_read_lock in rcutree.c */
}
EXPORT_SYMBOL_GPL(__rcu_read_lock);

153 154 155 156 157 158 159 160 161 162
/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
static int rcu_preempted_readers(struct rcu_node *rnp)
{
	return !list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
static void rcu_read_unlock_special(struct task_struct *t)
{
	int empty;
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp;
	int special;

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
	 * If RCU core is waiting for this CPU to exit critical section,
	 * let it know that we have done so.
	 */
	special = t->rcu_read_unlock_special;
	if (special & RCU_READ_UNLOCK_NEED_QS) {
		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
184
		rcu_preempt_qs(smp_processor_id());
185 186 187 188 189 190 191 192 193 194 195 196
	}

	/* Hardware IRQ handlers cannot block. */
	if (in_irq()) {
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
	if (special & RCU_READ_UNLOCK_BLOCKED) {
		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;

197 198 199 200 201 202
		/*
		 * Remove this task from the list it blocked on.  The
		 * task can migrate while we acquire the lock, but at
		 * most one time.  So at most two passes through loop.
		 */
		for (;;) {
203
			rnp = t->rcu_blocked_node;
204
			spin_lock(&rnp->lock);  /* irqs already disabled. */
205
			if (rnp == t->rcu_blocked_node)
206
				break;
207
			spin_unlock(&rnp->lock);  /* irqs remain disabled. */
208
		}
209
		empty = !rcu_preempted_readers(rnp);
210
		list_del_init(&t->rcu_node_entry);
211
		t->rcu_blocked_node = NULL;
212 213 214 215 216 217 218 219

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
		 * Note that both cpu_quiet_msk_finish() and cpu_quiet_msk()
		 * drop rnp->lock and restore irq.
		 */
		if (!empty && rnp->qsmask == 0 &&
220
		    !rcu_preempted_readers(rnp)) {
221 222
			struct rcu_node *rnp_p;

223 224 225 226 227 228 229 230
			if (rnp->parent == NULL) {
				/* Only one rcu_node in the tree. */
				cpu_quiet_msk_finish(&rcu_preempt_state, flags);
				return;
			}
			/* Report up the rest of the hierarchy. */
			mask = rnp->grpmask;
			spin_unlock_irqrestore(&rnp->lock, flags);
231 232 233 234
			rnp_p = rnp->parent;
			spin_lock_irqsave(&rnp_p->lock, flags);
			WARN_ON_ONCE(rnp->qsmask);
			cpu_quiet_msk(mask, &rcu_preempt_state, rnp_p, flags);
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
			return;
		}
		spin_unlock(&rnp->lock);
	}
	local_irq_restore(flags);
}

/*
 * Tree-preemptable RCU implementation for rcu_read_unlock().
 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 * invoke rcu_read_unlock_special() to clean up after a context switch
 * in an RCU read-side critical section and other special cases.
 */
void __rcu_read_unlock(void)
{
	struct task_struct *t = current;

	barrier();  /* needed if we ever invoke rcu_read_unlock in rcutree.c */
	if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 &&
	    unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
		rcu_read_unlock_special(t);
}
EXPORT_SYMBOL_GPL(__rcu_read_unlock);

#ifdef CONFIG_RCU_CPU_STALL_DETECTOR

/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
static void rcu_print_task_stall(struct rcu_node *rnp)
{
	unsigned long flags;
	struct list_head *lp;
270
	int phase;
271 272
	struct task_struct *t;

273
	if (rcu_preempted_readers(rnp)) {
274
		spin_lock_irqsave(&rnp->lock, flags);
275
		phase = rnp->gpnum & 0x1;
276 277 278 279 280 281 282 283 284
		lp = &rnp->blocked_tasks[phase];
		list_for_each_entry(t, lp, rcu_node_entry)
			printk(" P%d", t->pid);
		spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */

285 286 287 288 289 290 291 292 293
/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
294
	WARN_ON_ONCE(rcu_preempted_readers(rnp));
295
	WARN_ON_ONCE(rnp->qsmask);
296 297
}

298 299
#ifdef CONFIG_HOTPLUG_CPU

300 301 302 303 304 305 306
/*
 * Handle tasklist migration for case in which all CPUs covered by the
 * specified rcu_node have gone offline.  Move them up to the root
 * rcu_node.  The reason for not just moving them to the immediate
 * parent is to remove the need for rcu_read_unlock_special() to
 * make more than two attempts to acquire the target rcu_node's lock.
 *
307 308 309
 * Returns 1 if there was previously a task blocking the current grace
 * period on the specified rcu_node structure.
 *
310 311
 * The caller must hold rnp->lock with irqs disabled.
 */
312 313 314
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
315 316 317 318
{
	int i;
	struct list_head *lp;
	struct list_head *lp_root;
319
	int retval = rcu_preempted_readers(rnp);
320 321 322
	struct rcu_node *rnp_root = rcu_get_root(rsp);
	struct task_struct *tp;

323 324
	if (rnp == rnp_root) {
		WARN_ONCE(1, "Last CPU thought to be offlined?");
325
		return 0;  /* Shouldn't happen: at least one CPU online. */
326
	}
327 328 329
	WARN_ON_ONCE(rnp != rdp->mynode &&
		     (!list_empty(&rnp->blocked_tasks[0]) ||
		      !list_empty(&rnp->blocked_tasks[1])));
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348

	/*
	 * Move tasks up to root rcu_node.  Rely on the fact that the
	 * root rcu_node can be at most one ahead of the rest of the
	 * rcu_nodes in terms of gp_num value.  This fact allows us to
	 * move the blocked_tasks[] array directly, element by element.
	 */
	for (i = 0; i < 2; i++) {
		lp = &rnp->blocked_tasks[i];
		lp_root = &rnp_root->blocked_tasks[i];
		while (!list_empty(lp)) {
			tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
			spin_lock(&rnp_root->lock); /* irqs already disabled */
			list_del(&tp->rcu_node_entry);
			tp->rcu_blocked_node = rnp_root;
			list_add(&tp->rcu_node_entry, lp_root);
			spin_unlock(&rnp_root->lock); /* irqs remain disabled */
		}
	}
349 350

	return retval;
351 352
}

353 354 355 356 357 358 359 360 361 362
/*
 * Do CPU-offline processing for preemptable RCU.
 */
static void rcu_preempt_offline_cpu(int cpu)
{
	__rcu_offline_cpu(cpu, &rcu_preempt_state);
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

363 364 365 366 367 368 369 370 371 372 373 374
/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
static void rcu_preempt_check_callbacks(int cpu)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
375 376
		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
		rcu_preempt_qs(cpu);
377 378
		return;
	}
379
	if (per_cpu(rcu_preempt_data, cpu).qs_pending)
380
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
}

/*
 * Process callbacks for preemptable RCU.
 */
static void rcu_preempt_process_callbacks(void)
{
	__rcu_process_callbacks(&rcu_preempt_state,
				&__get_cpu_var(rcu_preempt_data));
}

/*
 * Queue a preemptable-RCU callback for invocation after a grace period.
 */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, &rcu_preempt_state);
}
EXPORT_SYMBOL_GPL(call_rcu);

401 402 403 404 405 406 407 408 409 410 411
/*
 * Wait for an rcu-preempt grace period.  We are supposed to expedite the
 * grace period, but this is the crude slow compatability hack, so just
 * invoke synchronize_rcu().
 */
void synchronize_rcu_expedited(void)
{
	synchronize_rcu();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
/*
 * Check to see if there is any immediate preemptable-RCU-related work
 * to be done.
 */
static int rcu_preempt_pending(int cpu)
{
	return __rcu_pending(&rcu_preempt_state,
			     &per_cpu(rcu_preempt_data, cpu));
}

/*
 * Does preemptable RCU need the CPU to stay out of dynticks mode?
 */
static int rcu_preempt_needs_cpu(int cpu)
{
	return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
}

430 431 432 433 434 435 436 437 438
/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 */
void rcu_barrier(void)
{
	_rcu_barrier(&rcu_preempt_state, call_rcu);
}
EXPORT_SYMBOL_GPL(rcu_barrier);

439 440 441 442 443 444 445 446
/*
 * Initialize preemptable RCU's per-CPU data.
 */
static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
{
	rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
}

447 448 449 450 451 452 453 454
/*
 * Move preemptable RCU's callbacks to ->orphan_cbs_list.
 */
static void rcu_preempt_send_cbs_to_orphanage(void)
{
	rcu_send_cbs_to_orphanage(&rcu_preempt_state);
}

455 456 457 458 459 460 461 462
/*
 * Initialize preemptable RCU's state structures.
 */
static void __init __rcu_init_preempt(void)
{
	RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data);
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
/*
 * Check for a task exiting while in a preemptable-RCU read-side
 * critical section, clean up if so.  No need to issue warnings,
 * as debug_check_no_locks_held() already does this if lockdep
 * is enabled.
 */
void exit_rcu(void)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0)
		return;
	t->rcu_read_lock_nesting = 1;
	rcu_read_unlock();
}

#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */

/*
 * Tell them what RCU they are running.
 */
484
static void rcu_bootup_announce(void)
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
{
	printk(KERN_INFO "Hierarchical RCU implementation.\n");
}

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_sched();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Because preemptable RCU does not exist, we never have to check for
 * CPUs being in quiescent states.
 */
502
static void rcu_preempt_note_context_switch(int cpu)
503 504 505
{
}

506 507 508 509 510 511 512 513 514
/*
 * Because preemptable RCU does not exist, there are never any preempted
 * RCU readers.
 */
static int rcu_preempted_readers(struct rcu_node *rnp)
{
	return 0;
}

515 516 517 518 519 520 521 522 523 524 525 526
#ifdef CONFIG_RCU_CPU_STALL_DETECTOR

/*
 * Because preemptable RCU does not exist, we never have to check for
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_task_stall(struct rcu_node *rnp)
{
}

#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */

527 528
/*
 * Because there is no preemptable RCU, there can be no readers blocked,
529 530
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
531 532 533
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
534
	WARN_ON_ONCE(rnp->qsmask);
535 536
}

537 538
#ifdef CONFIG_HOTPLUG_CPU

539 540
/*
 * Because preemptable RCU does not exist, it never needs to migrate
541 542 543
 * tasks that were blocked within RCU read-side critical sections, and
 * such non-existent tasks cannot possibly have been blocking the current
 * grace period.
544
 */
545 546 547
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
548
{
549
	return 0;
550 551
}

552 553 554 555 556 557 558 559 560 561
/*
 * Because preemptable RCU does not exist, it never needs CPU-offline
 * processing.
 */
static void rcu_preempt_offline_cpu(int cpu)
{
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

562 563 564 565
/*
 * Because preemptable RCU does not exist, it never has any callbacks
 * to check.
 */
566
static void rcu_preempt_check_callbacks(int cpu)
567 568 569 570 571 572 573
{
}

/*
 * Because preemptable RCU does not exist, it never has any callbacks
 * to process.
 */
574
static void rcu_preempt_process_callbacks(void)
575 576 577 578 579 580 581 582 583 584 585 586
{
}

/*
 * In classic RCU, call_rcu() is just call_rcu_sched().
 */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
	call_rcu_sched(head, func);
}
EXPORT_SYMBOL_GPL(call_rcu);

587 588 589 590 591 592 593 594 595 596
/*
 * Wait for an rcu-preempt grace period, but make it happen quickly.
 * But because preemptable RCU does not exist, map to rcu-sched.
 */
void synchronize_rcu_expedited(void)
{
	synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
/*
 * Because preemptable RCU does not exist, it never has any work to do.
 */
static int rcu_preempt_pending(int cpu)
{
	return 0;
}

/*
 * Because preemptable RCU does not exist, it never needs any CPU.
 */
static int rcu_preempt_needs_cpu(int cpu)
{
	return 0;
}

613 614 615 616 617 618 619 620 621 622
/*
 * Because preemptable RCU does not exist, rcu_barrier() is just
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

623 624 625 626 627 628 629 630
/*
 * Because preemptable RCU does not exist, there is no per-CPU
 * data to initialize.
 */
static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
{
}

631 632 633 634 635 636 637
/*
 * Because there is no preemptable RCU, there are no callbacks to move.
 */
static void rcu_preempt_send_cbs_to_orphanage(void)
{
}

638 639 640 641 642 643 644
/*
 * Because preemptable RCU does not exist, it need not be initialized.
 */
static void __init __rcu_init_preempt(void)
{
}

645
#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */