code-reading.c 14.0 KB
Newer Older
B
Borislav Petkov 已提交
1
#include <linux/types.h>
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <ctype.h>
#include <string.h>

#include "parse-events.h"
#include "evlist.h"
#include "evsel.h"
#include "thread_map.h"
#include "cpumap.h"
#include "machine.h"
#include "event.h"
#include "thread.h"

#include "tests.h"

#define BUFSZ	1024
#define READLEN	128

22 23 24 25 26
struct state {
	u64 done[1024];
	size_t done_cnt;
};

27 28 29 30 31 32 33 34 35
static unsigned int hex(char c)
{
	if (c >= '0' && c <= '9')
		return c - '0';
	if (c >= 'a' && c <= 'f')
		return c - 'a' + 10;
	return c - 'A' + 10;
}

36 37
static size_t read_objdump_chunk(const char **line, unsigned char **buf,
				 size_t *buf_len)
38
{
39 40
	size_t bytes_read = 0;
	unsigned char *chunk_start = *buf;
41 42

	/* Read bytes */
43
	while (*buf_len > 0) {
44 45 46
		char c1, c2;

		/* Get 2 hex digits */
47 48
		c1 = *(*line)++;
		if (!isxdigit(c1))
49
			break;
50 51
		c2 = *(*line)++;
		if (!isxdigit(c2))
52
			break;
53 54 55 56 57 58 59 60 61

		/* Store byte and advance buf */
		**buf = (hex(c1) << 4) | hex(c2);
		(*buf)++;
		(*buf_len)--;
		bytes_read++;

		/* End of chunk? */
		if (isspace(**line))
62 63
			break;
	}
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

	/*
	 * objdump will display raw insn as LE if code endian
	 * is LE and bytes_per_chunk > 1. In that case reverse
	 * the chunk we just read.
	 *
	 * see disassemble_bytes() at binutils/objdump.c for details
	 * how objdump chooses display endian)
	 */
	if (bytes_read > 1 && !bigendian()) {
		unsigned char *chunk_end = chunk_start + bytes_read - 1;
		unsigned char tmp;

		while (chunk_start < chunk_end) {
			tmp = *chunk_start;
			*chunk_start = *chunk_end;
			*chunk_end = tmp;
			chunk_start++;
			chunk_end--;
		}
	}

	return bytes_read;
}

static size_t read_objdump_line(const char *line, unsigned char *buf,
				size_t buf_len)
{
	const char *p;
	size_t ret, bytes_read = 0;

	/* Skip to a colon */
	p = strchr(line, ':');
	if (!p)
		return 0;
	p++;

	/* Skip initial spaces */
	while (*p) {
		if (!isspace(*p))
			break;
		p++;
	}

	do {
		ret = read_objdump_chunk(&p, &buf, &buf_len);
		bytes_read += ret;
		p++;
	} while (ret > 0);

114
	/* return number of successfully read bytes */
115
	return bytes_read;
116 117
}

118
static int read_objdump_output(FILE *f, void *buf, size_t *len, u64 start_addr)
119 120
{
	char *line = NULL;
121
	size_t line_len, off_last = 0;
122 123
	ssize_t ret;
	int err = 0;
124
	u64 addr, last_addr = start_addr;
125 126 127 128

	while (off_last < *len) {
		size_t off, read_bytes, written_bytes;
		unsigned char tmp[BUFSZ];
129 130 131 132 133 134 135 136 137

		ret = getline(&line, &line_len, f);
		if (feof(f))
			break;
		if (ret < 0) {
			pr_debug("getline failed\n");
			err = -1;
			break;
		}
138 139

		/* read objdump data into temporary buffer */
140
		read_bytes = read_objdump_line(line, tmp, sizeof(tmp));
141 142 143 144 145
		if (!read_bytes)
			continue;

		if (sscanf(line, "%"PRIx64, &addr) != 1)
			continue;
146 147 148 149 150
		if (addr < last_addr) {
			pr_debug("addr going backwards, read beyond section?\n");
			break;
		}
		last_addr = addr;
151 152 153 154 155 156 157 158 159

		/* copy it from temporary buffer to 'buf' according
		 * to address on current objdump line */
		off = addr - start_addr;
		if (off >= *len)
			break;
		written_bytes = MIN(read_bytes, *len - off);
		memcpy(buf + off, tmp, written_bytes);
		off_last = off + written_bytes;
160 161
	}

162 163 164
	/* len returns number of bytes that could not be read */
	*len -= off_last;

165 166 167 168 169 170 171 172 173 174 175 176 177
	free(line);

	return err;
}

static int read_via_objdump(const char *filename, u64 addr, void *buf,
			    size_t len)
{
	char cmd[PATH_MAX * 2];
	const char *fmt;
	FILE *f;
	int ret;

178
	fmt = "%s -z -d --start-address=0x%"PRIx64" --stop-address=0x%"PRIx64" %s";
179 180 181 182 183 184 185
	ret = snprintf(cmd, sizeof(cmd), fmt, "objdump", addr, addr + len,
		       filename);
	if (ret <= 0 || (size_t)ret >= sizeof(cmd))
		return -1;

	pr_debug("Objdump command is: %s\n", cmd);

186 187 188
	/* Ignore objdump errors */
	strcat(cmd, " 2>/dev/null");

189 190 191 192 193 194
	f = popen(cmd, "r");
	if (!f) {
		pr_debug("popen failed\n");
		return -1;
	}

195
	ret = read_objdump_output(f, buf, &len, addr);
196
	if (len) {
197
		pr_debug("objdump read too few bytes: %zd\n", len);
198 199 200 201 202 203 204 205 206
		if (!ret)
			ret = len;
	}

	pclose(f);

	return ret;
}

207 208 209 210 211 212 213 214 215 216 217 218
static void dump_buf(unsigned char *buf, size_t len)
{
	size_t i;

	for (i = 0; i < len; i++) {
		pr_debug("0x%02x ", buf[i]);
		if (i % 16 == 15)
			pr_debug("\n");
	}
	pr_debug("\n");
}

219
static int read_object_code(u64 addr, size_t len, u8 cpumode,
220
			    struct thread *thread, struct state *state)
221 222 223 224 225 226 227 228 229 230
{
	struct addr_location al;
	unsigned char buf1[BUFSZ];
	unsigned char buf2[BUFSZ];
	size_t ret_len;
	u64 objdump_addr;
	int ret;

	pr_debug("Reading object code for memory address: %#"PRIx64"\n", addr);

231
	thread__find_addr_map(thread, cpumode, MAP__FUNCTION, addr, &al);
232 233 234 235 236 237 238
	if (!al.map || !al.map->dso) {
		pr_debug("thread__find_addr_map failed\n");
		return -1;
	}

	pr_debug("File is: %s\n", al.map->dso->long_name);

239 240
	if (al.map->dso->symtab_type == DSO_BINARY_TYPE__KALLSYMS &&
	    !dso__is_kcore(al.map->dso)) {
241 242 243 244 245 246 247 248 249 250 251 252 253 254
		pr_debug("Unexpected kernel address - skipping\n");
		return 0;
	}

	pr_debug("On file address is: %#"PRIx64"\n", al.addr);

	if (len > BUFSZ)
		len = BUFSZ;

	/* Do not go off the map */
	if (addr + len > al.map->end)
		len = al.map->end - addr;

	/* Read the object code using perf */
255 256
	ret_len = dso__data_read_offset(al.map->dso, thread->mg->machine,
					al.addr, buf1, len);
257 258 259 260 261 262 263 264 265 266 267 268
	if (ret_len != len) {
		pr_debug("dso__data_read_offset failed\n");
		return -1;
	}

	/*
	 * Converting addresses for use by objdump requires more information.
	 * map__load() does that.  See map__rip_2objdump() for details.
	 */
	if (map__load(al.map, NULL))
		return -1;

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	/* objdump struggles with kcore - try each map only once */
	if (dso__is_kcore(al.map->dso)) {
		size_t d;

		for (d = 0; d < state->done_cnt; d++) {
			if (state->done[d] == al.map->start) {
				pr_debug("kcore map tested already");
				pr_debug(" - skipping\n");
				return 0;
			}
		}
		if (state->done_cnt >= ARRAY_SIZE(state->done)) {
			pr_debug("Too many kcore maps - skipping\n");
			return 0;
		}
		state->done[state->done_cnt++] = al.map->start;
	}

287 288 289 290 291 292 293 294 295 296 297
	/* Read the object code using objdump */
	objdump_addr = map__rip_2objdump(al.map, al.addr);
	ret = read_via_objdump(al.map->dso->long_name, objdump_addr, buf2, len);
	if (ret > 0) {
		/*
		 * The kernel maps are inaccurate - assume objdump is right in
		 * that case.
		 */
		if (cpumode == PERF_RECORD_MISC_KERNEL ||
		    cpumode == PERF_RECORD_MISC_GUEST_KERNEL) {
			len -= ret;
298
			if (len) {
299
				pr_debug("Reducing len to %zu\n", len);
300 301 302 303 304 305 306 307 308
			} else if (dso__is_kcore(al.map->dso)) {
				/*
				 * objdump cannot handle very large segments
				 * that may be found in kcore.
				 */
				pr_debug("objdump failed for kcore");
				pr_debug(" - skipping\n");
				return 0;
			} else {
309
				return -1;
310
			}
311 312 313 314 315 316 317 318 319 320
		}
	}
	if (ret < 0) {
		pr_debug("read_via_objdump failed\n");
		return -1;
	}

	/* The results should be identical */
	if (memcmp(buf1, buf2, len)) {
		pr_debug("Bytes read differ from those read by objdump\n");
321 322 323 324
		pr_debug("buf1 (dso):\n");
		dump_buf(buf1, len);
		pr_debug("buf2 (objdump):\n");
		dump_buf(buf2, len);
325 326 327 328 329 330 331 332 333
		return -1;
	}
	pr_debug("Bytes read match those read by objdump\n");

	return 0;
}

static int process_sample_event(struct machine *machine,
				struct perf_evlist *evlist,
334
				union perf_event *event, struct state *state)
335 336 337
{
	struct perf_sample sample;
	struct thread *thread;
338
	int ret;
339 340 341 342 343 344

	if (perf_evlist__parse_sample(evlist, event, &sample)) {
		pr_debug("perf_evlist__parse_sample failed\n");
		return -1;
	}

345
	thread = machine__findnew_thread(machine, sample.pid, sample.tid);
346 347 348 349 350
	if (!thread) {
		pr_debug("machine__findnew_thread failed\n");
		return -1;
	}

351
	ret = read_object_code(sample.ip, READLEN, sample.cpumode, thread, state);
352 353
	thread__put(thread);
	return ret;
354 355 356
}

static int process_event(struct machine *machine, struct perf_evlist *evlist,
357
			 union perf_event *event, struct state *state)
358 359
{
	if (event->header.type == PERF_RECORD_SAMPLE)
360
		return process_sample_event(machine, evlist, event, state);
361

362 363 364 365 366 367 368 369 370 371 372 373 374
	if (event->header.type == PERF_RECORD_THROTTLE ||
	    event->header.type == PERF_RECORD_UNTHROTTLE)
		return 0;

	if (event->header.type < PERF_RECORD_MAX) {
		int ret;

		ret = machine__process_event(machine, event, NULL);
		if (ret < 0)
			pr_debug("machine__process_event failed, event type %u\n",
				 event->header.type);
		return ret;
	}
375 376 377 378

	return 0;
}

379 380
static int process_events(struct machine *machine, struct perf_evlist *evlist,
			  struct state *state)
381 382 383 384 385 386
{
	union perf_event *event;
	int i, ret;

	for (i = 0; i < evlist->nr_mmaps; i++) {
		while ((event = perf_evlist__mmap_read(evlist, i)) != NULL) {
387
			ret = process_event(machine, evlist, event, state);
388
			perf_evlist__mmap_consume(evlist, i);
389 390 391 392 393 394 395 396 397 398 399 400 401 402
			if (ret < 0)
				return ret;
		}
	}
	return 0;
}

static int comp(const void *a, const void *b)
{
	return *(int *)a - *(int *)b;
}

static void do_sort_something(void)
{
403
	int buf[40960], i;
404

405 406
	for (i = 0; i < (int)ARRAY_SIZE(buf); i++)
		buf[i] = ARRAY_SIZE(buf) - i - 1;
407

408
	qsort(buf, ARRAY_SIZE(buf), sizeof(int), comp);
409

410
	for (i = 0; i < (int)ARRAY_SIZE(buf); i++) {
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
		if (buf[i] != i) {
			pr_debug("qsort failed\n");
			break;
		}
	}
}

static void sort_something(void)
{
	int i;

	for (i = 0; i < 10; i++)
		do_sort_something();
}

static void syscall_something(void)
{
	int pipefd[2];
	int i;

	for (i = 0; i < 1000; i++) {
		if (pipe(pipefd) < 0) {
			pr_debug("pipe failed\n");
			break;
		}
		close(pipefd[1]);
		close(pipefd[0]);
	}
}

static void fs_something(void)
{
	const char *test_file_name = "temp-perf-code-reading-test-file--";
	FILE *f;
	int i;

	for (i = 0; i < 1000; i++) {
		f = fopen(test_file_name, "w+");
		if (f) {
			fclose(f);
			unlink(test_file_name);
		}
	}
}

static void do_something(void)
{
	fs_something();

	sort_something();

	syscall_something();
}

enum {
	TEST_CODE_READING_OK,
	TEST_CODE_READING_NO_VMLINUX,
468
	TEST_CODE_READING_NO_KCORE,
469
	TEST_CODE_READING_NO_ACCESS,
470
	TEST_CODE_READING_NO_KERNEL_OBJ,
471 472
};

473
static int do_test_code_reading(bool try_kcore)
474 475 476
{
	struct machine *machine;
	struct thread *thread;
477
	struct record_opts opts = {
478 479 480
		.mmap_pages	     = UINT_MAX,
		.user_freq	     = UINT_MAX,
		.user_interval	     = ULLONG_MAX,
481
		.freq		     = 500,
482 483 484 485
		.target		     = {
			.uses_mmap   = true,
		},
	};
486 487 488
	struct state state = {
		.done_cnt = 0,
	};
489 490 491 492 493 494 495
	struct thread_map *threads = NULL;
	struct cpu_map *cpus = NULL;
	struct perf_evlist *evlist = NULL;
	struct perf_evsel *evsel = NULL;
	int err = -1, ret;
	pid_t pid;
	struct map *map;
496
	bool have_vmlinux, have_kcore, excl_kernel = false;
497 498 499

	pid = getpid();

500
	machine = machine__new_host();
501 502 503 504 505 506 507

	ret = machine__create_kernel_maps(machine);
	if (ret < 0) {
		pr_debug("machine__create_kernel_maps failed\n");
		goto out_err;
	}

508 509 510 511
	/* Force the use of kallsyms instead of vmlinux to try kcore */
	if (try_kcore)
		symbol_conf.kallsyms_name = "/proc/kallsyms";

512
	/* Load kernel map */
513
	map = machine__kernel_map(machine);
514 515 516 517 518
	ret = map__load(map, NULL);
	if (ret < 0) {
		pr_debug("map__load failed\n");
		goto out_err;
	}
519 520 521 522 523 524 525 526 527
	have_vmlinux = dso__is_vmlinux(map->dso);
	have_kcore = dso__is_kcore(map->dso);

	/* 2nd time through we just try kcore */
	if (try_kcore && !have_kcore)
		return TEST_CODE_READING_NO_KCORE;

	/* No point getting kernel events if there is no kernel object */
	if (!have_vmlinux && !have_kcore)
528 529 530 531 532 533 534 535 536
		excl_kernel = true;

	threads = thread_map__new_by_tid(pid);
	if (!threads) {
		pr_debug("thread_map__new_by_tid failed\n");
		goto out_err;
	}

	ret = perf_event__synthesize_thread_map(NULL, threads,
537
						perf_event__process, machine, false, 500);
538 539 540 541 542
	if (ret < 0) {
		pr_debug("perf_event__synthesize_thread_map failed\n");
		goto out_err;
	}

543
	thread = machine__findnew_thread(machine, pid, pid);
544 545
	if (!thread) {
		pr_debug("machine__findnew_thread failed\n");
546
		goto out_put;
547 548 549 550 551
	}

	cpus = cpu_map__new(NULL);
	if (!cpus) {
		pr_debug("cpu_map__new failed\n");
552
		goto out_put;
553 554 555 556 557 558 559 560
	}

	while (1) {
		const char *str;

		evlist = perf_evlist__new();
		if (!evlist) {
			pr_debug("perf_evlist__new failed\n");
561
			goto out_put;
562 563 564 565 566 567 568 569 570
		}

		perf_evlist__set_maps(evlist, cpus, threads);

		if (excl_kernel)
			str = "cycles:u";
		else
			str = "cycles";
		pr_debug("Parsing event '%s'\n", str);
571
		ret = parse_events(evlist, str, NULL);
572 573
		if (ret < 0) {
			pr_debug("parse_events failed\n");
574
			goto out_put;
575 576
		}

577
		perf_evlist__config(evlist, &opts, NULL);
578 579 580 581 582 583 584 585 586 587 588

		evsel = perf_evlist__first(evlist);

		evsel->attr.comm = 1;
		evsel->attr.disabled = 1;
		evsel->attr.enable_on_exec = 0;

		ret = perf_evlist__open(evlist);
		if (ret < 0) {
			if (!excl_kernel) {
				excl_kernel = true;
589 590 591 592 593 594 595
				/*
				 * Both cpus and threads are now owned by evlist
				 * and will be freed by following perf_evlist__set_maps
				 * call. Getting refference to keep them alive.
				 */
				cpu_map__get(cpus);
				thread_map__get(threads);
596
				perf_evlist__set_maps(evlist, NULL, NULL);
597 598 599 600
				perf_evlist__delete(evlist);
				evlist = NULL;
				continue;
			}
601 602 603 604 605 606 607

			if (verbose) {
				char errbuf[512];
				perf_evlist__strerror_open(evlist, errno, errbuf, sizeof(errbuf));
				pr_debug("perf_evlist__open() failed!\n%s\n", errbuf);
			}

608
			goto out_put;
609 610 611 612 613 614 615
		}
		break;
	}

	ret = perf_evlist__mmap(evlist, UINT_MAX, false);
	if (ret < 0) {
		pr_debug("perf_evlist__mmap failed\n");
616
		goto out_put;
617 618 619 620 621 622 623 624
	}

	perf_evlist__enable(evlist);

	do_something();

	perf_evlist__disable(evlist);

625
	ret = process_events(machine, evlist, &state);
626
	if (ret < 0)
627
		goto out_put;
628

629 630 631
	if (!have_vmlinux && !have_kcore && !try_kcore)
		err = TEST_CODE_READING_NO_KERNEL_OBJ;
	else if (!have_vmlinux && !try_kcore)
632 633 634 635 636
		err = TEST_CODE_READING_NO_VMLINUX;
	else if (excl_kernel)
		err = TEST_CODE_READING_NO_ACCESS;
	else
		err = TEST_CODE_READING_OK;
637 638
out_put:
	thread__put(thread);
639
out_err:
640

641 642
	if (evlist) {
		perf_evlist__delete(evlist);
643
	} else {
644
		cpu_map__put(cpus);
645
		thread_map__put(threads);
646
	}
647
	machine__delete_threads(machine);
648
	machine__delete(machine);
649 650 651 652

	return err;
}

653
int test__code_reading(int subtest __maybe_unused)
654 655 656
{
	int ret;

657 658 659
	ret = do_test_code_reading(false);
	if (!ret)
		ret = do_test_code_reading(true);
660 661 662 663 664

	switch (ret) {
	case TEST_CODE_READING_OK:
		return 0;
	case TEST_CODE_READING_NO_VMLINUX:
665
		pr_debug("no vmlinux\n");
666
		return 0;
667
	case TEST_CODE_READING_NO_KCORE:
668
		pr_debug("no kcore\n");
669
		return 0;
670
	case TEST_CODE_READING_NO_ACCESS:
671
		pr_debug("no access\n");
672
		return 0;
673
	case TEST_CODE_READING_NO_KERNEL_OBJ:
674
		pr_debug("no kernel obj\n");
675
		return 0;
676 677 678 679
	default:
		return -1;
	};
}