ixgbe_common.c 100.1 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel 10 Gigabit PCI Express Linux driver
D
Don Skidmore 已提交
4
  Copyright(c) 1999 - 2012 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/sched.h>
J
Jiri Pirko 已提交
31
#include <linux/netdevice.h>
32

33
#include "ixgbe.h"
34 35 36
#include "ixgbe_common.h"
#include "ixgbe_phy.h"

37
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
38 39
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
40 41 42 43 44 45 46 47
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
                                        u16 count);
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
48 49

static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
50
static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
51 52 53 54 55 56
static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					     u16 words, u16 *data);
static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					     u16 words, u16 *data);
static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
						 u16 offset);
57
static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
58

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
/**
 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
 *  control
 *  @hw: pointer to hardware structure
 *
 *  There are several phys that do not support autoneg flow control. This
 *  function check the device id to see if the associated phy supports
 *  autoneg flow control.
 **/
static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
{

	switch (hw->device_id) {
	case IXGBE_DEV_ID_X540T:
		return 0;
	case IXGBE_DEV_ID_82599_T3_LOM:
		return 0;
	default:
		return IXGBE_ERR_FC_NOT_SUPPORTED;
	}
}

/**
 *  ixgbe_setup_fc - Set up flow control
 *  @hw: pointer to hardware structure
 *
 *  Called at init time to set up flow control.
 **/
87
static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
{
	s32 ret_val = 0;
	u32 reg = 0, reg_bp = 0;
	u16 reg_cu = 0;

	/*
	 * Validate the requested mode.  Strict IEEE mode does not allow
	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
	 */
	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
		goto out;
	}

	/*
	 * 10gig parts do not have a word in the EEPROM to determine the
	 * default flow control setting, so we explicitly set it to full.
	 */
	if (hw->fc.requested_mode == ixgbe_fc_default)
		hw->fc.requested_mode = ixgbe_fc_full;

	/*
	 * Set up the 1G and 10G flow control advertisement registers so the
	 * HW will be able to do fc autoneg once the cable is plugged in.  If
	 * we link at 10G, the 1G advertisement is harmless and vice versa.
	 */
	switch (hw->phy.media_type) {
	case ixgbe_media_type_fiber:
	case ixgbe_media_type_backplane:
		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
		reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
		break;
	case ixgbe_media_type_copper:
		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
					MDIO_MMD_AN, &reg_cu);
		break;
	default:
126
		break;
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
	}

	/*
	 * The possible values of fc.requested_mode are:
	 * 0: Flow control is completely disabled
	 * 1: Rx flow control is enabled (we can receive pause frames,
	 *    but not send pause frames).
	 * 2: Tx flow control is enabled (we can send pause frames but
	 *    we do not support receiving pause frames).
	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
	 * other: Invalid.
	 */
	switch (hw->fc.requested_mode) {
	case ixgbe_fc_none:
		/* Flow control completely disabled by software override. */
		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
		if (hw->phy.media_type == ixgbe_media_type_backplane)
			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
				    IXGBE_AUTOC_ASM_PAUSE);
		else if (hw->phy.media_type == ixgbe_media_type_copper)
			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
		break;
	case ixgbe_fc_tx_pause:
		/*
		 * Tx Flow control is enabled, and Rx Flow control is
		 * disabled by software override.
		 */
154 155
		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
156
		if (hw->phy.media_type == ixgbe_media_type_backplane) {
157 158
			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
159
		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
160 161
			reg_cu |= IXGBE_TAF_ASM_PAUSE;
			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
162 163
		}
		break;
164 165 166 167 168 169 170 171 172 173
	case ixgbe_fc_rx_pause:
		/*
		 * Rx Flow control is enabled and Tx Flow control is
		 * disabled by software override. Since there really
		 * isn't a way to advertise that we are capable of RX
		 * Pause ONLY, we will advertise that we support both
		 * symmetric and asymmetric Rx PAUSE, as such we fall
		 * through to the fc_full statement.  Later, we will
		 * disable the adapter's ability to send PAUSE frames.
		 */
174 175
	case ixgbe_fc_full:
		/* Flow control (both Rx and Tx) is enabled by SW override. */
176
		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
177
		if (hw->phy.media_type == ixgbe_media_type_backplane)
178 179
			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
				  IXGBE_AUTOC_ASM_PAUSE;
180
		else if (hw->phy.media_type == ixgbe_media_type_copper)
181
			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
		break;
	default:
		hw_dbg(hw, "Flow control param set incorrectly\n");
		ret_val = IXGBE_ERR_CONFIG;
		goto out;
		break;
	}

	if (hw->mac.type != ixgbe_mac_X540) {
		/*
		 * Enable auto-negotiation between the MAC & PHY;
		 * the MAC will advertise clause 37 flow control.
		 */
		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);

		/* Disable AN timeout */
		if (hw->fc.strict_ieee)
			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;

		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
	}

	/*
	 * AUTOC restart handles negotiation of 1G and 10G on backplane
	 * and copper. There is no need to set the PCS1GCTL register.
	 *
	 */
	if (hw->phy.media_type == ixgbe_media_type_backplane) {
		reg_bp |= IXGBE_AUTOC_AN_RESTART;
		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
		    (ixgbe_device_supports_autoneg_fc(hw) == 0)) {
		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
				      MDIO_MMD_AN, reg_cu);
	}

	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
out:
	return ret_val;
}

225
/**
226
 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
227 228 229 230 231 232 233
 *  @hw: pointer to hardware structure
 *
 *  Starts the hardware by filling the bus info structure and media type, clears
 *  all on chip counters, initializes receive address registers, multicast
 *  table, VLAN filter table, calls routine to set up link and flow control
 *  settings, and leaves transmit and receive units disabled and uninitialized
 **/
234
s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
235 236 237 238 239 240 241
{
	u32 ctrl_ext;

	/* Set the media type */
	hw->phy.media_type = hw->mac.ops.get_media_type(hw);

	/* Identify the PHY */
242
	hw->phy.ops.identify(hw);
243 244

	/* Clear the VLAN filter table */
245
	hw->mac.ops.clear_vfta(hw);
246 247

	/* Clear statistics registers */
248
	hw->mac.ops.clear_hw_cntrs(hw);
249 250 251 252 253

	/* Set No Snoop Disable */
	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
254
	IXGBE_WRITE_FLUSH(hw);
255

256
	/* Setup flow control */
257
	ixgbe_setup_fc(hw);
258

259 260 261 262 263 264
	/* Clear adapter stopped flag */
	hw->adapter_stopped = false;

	return 0;
}

265 266 267 268 269 270 271 272 273 274 275 276 277
/**
 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 *  @hw: pointer to hw structure
 *
 * Performs the init sequence common to the second generation
 * of 10 GbE devices.
 * Devices in the second generation:
 *     82599
 *     X540
 **/
s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
{
	u32 i;
278
	u32 regval;
279 280 281 282 283 284 285 286

	/* Clear the rate limiters */
	for (i = 0; i < hw->mac.max_tx_queues; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
	}
	IXGBE_WRITE_FLUSH(hw);

287 288 289
	/* Disable relaxed ordering */
	for (i = 0; i < hw->mac.max_tx_queues; i++) {
		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
290
		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
291 292 293 294 295
		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
	}

	for (i = 0; i < hw->mac.max_rx_queues; i++) {
		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
296 297
		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
298 299 300
		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
	}

301 302 303
	return 0;
}

304
/**
305
 *  ixgbe_init_hw_generic - Generic hardware initialization
306 307
 *  @hw: pointer to hardware structure
 *
308
 *  Initialize the hardware by resetting the hardware, filling the bus info
309 310 311 312 313
 *  structure and media type, clears all on chip counters, initializes receive
 *  address registers, multicast table, VLAN filter table, calls routine to set
 *  up link and flow control settings, and leaves transmit and receive units
 *  disabled and uninitialized
 **/
314
s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
315
{
316 317
	s32 status;

318
	/* Reset the hardware */
319
	status = hw->mac.ops.reset_hw(hw);
320

321 322 323 324
	if (status == 0) {
		/* Start the HW */
		status = hw->mac.ops.start_hw(hw);
	}
325

326
	return status;
327 328 329
}

/**
330
 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
331 332 333 334 335
 *  @hw: pointer to hardware structure
 *
 *  Clears all hardware statistics counters by reading them from the hardware
 *  Statistics counters are clear on read.
 **/
336
s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
{
	u16 i = 0;

	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
	IXGBE_READ_REG(hw, IXGBE_ERRBC);
	IXGBE_READ_REG(hw, IXGBE_MSPDC);
	for (i = 0; i < 8; i++)
		IXGBE_READ_REG(hw, IXGBE_MPC(i));

	IXGBE_READ_REG(hw, IXGBE_MLFC);
	IXGBE_READ_REG(hw, IXGBE_MRFC);
	IXGBE_READ_REG(hw, IXGBE_RLEC);
	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
352 353 354 355 356 357 358
	if (hw->mac.type >= ixgbe_mac_82599EB) {
		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
	} else {
		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
	}
359 360 361 362

	for (i = 0; i < 8; i++) {
		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
363 364 365 366 367 368 369
		if (hw->mac.type >= ixgbe_mac_82599EB) {
			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
		} else {
			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
		}
370
	}
371 372 373
	if (hw->mac.type >= ixgbe_mac_82599EB)
		for (i = 0; i < 8; i++)
			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
374 375 376 377 378 379 380 381 382 383 384 385 386 387
	IXGBE_READ_REG(hw, IXGBE_PRC64);
	IXGBE_READ_REG(hw, IXGBE_PRC127);
	IXGBE_READ_REG(hw, IXGBE_PRC255);
	IXGBE_READ_REG(hw, IXGBE_PRC511);
	IXGBE_READ_REG(hw, IXGBE_PRC1023);
	IXGBE_READ_REG(hw, IXGBE_PRC1522);
	IXGBE_READ_REG(hw, IXGBE_GPRC);
	IXGBE_READ_REG(hw, IXGBE_BPRC);
	IXGBE_READ_REG(hw, IXGBE_MPRC);
	IXGBE_READ_REG(hw, IXGBE_GPTC);
	IXGBE_READ_REG(hw, IXGBE_GORCL);
	IXGBE_READ_REG(hw, IXGBE_GORCH);
	IXGBE_READ_REG(hw, IXGBE_GOTCL);
	IXGBE_READ_REG(hw, IXGBE_GOTCH);
E
Emil Tantilov 已提交
388 389 390
	if (hw->mac.type == ixgbe_mac_82598EB)
		for (i = 0; i < 8; i++)
			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
	IXGBE_READ_REG(hw, IXGBE_RUC);
	IXGBE_READ_REG(hw, IXGBE_RFC);
	IXGBE_READ_REG(hw, IXGBE_ROC);
	IXGBE_READ_REG(hw, IXGBE_RJC);
	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
	IXGBE_READ_REG(hw, IXGBE_TORL);
	IXGBE_READ_REG(hw, IXGBE_TORH);
	IXGBE_READ_REG(hw, IXGBE_TPR);
	IXGBE_READ_REG(hw, IXGBE_TPT);
	IXGBE_READ_REG(hw, IXGBE_PTC64);
	IXGBE_READ_REG(hw, IXGBE_PTC127);
	IXGBE_READ_REG(hw, IXGBE_PTC255);
	IXGBE_READ_REG(hw, IXGBE_PTC511);
	IXGBE_READ_REG(hw, IXGBE_PTC1023);
	IXGBE_READ_REG(hw, IXGBE_PTC1522);
	IXGBE_READ_REG(hw, IXGBE_MPTC);
	IXGBE_READ_REG(hw, IXGBE_BPTC);
	for (i = 0; i < 16; i++) {
		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
413 414 415 416 417 418 419 420 421 422
		if (hw->mac.type >= ixgbe_mac_82599EB) {
			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
		} else {
			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
		}
423 424
	}

425 426 427
	if (hw->mac.type == ixgbe_mac_X540) {
		if (hw->phy.id == 0)
			hw->phy.ops.identify(hw);
428 429 430 431
		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
432 433
	}

434 435 436 437
	return 0;
}

/**
438
 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
439
 *  @hw: pointer to hardware structure
440 441
 *  @pba_num: stores the part number string from the EEPROM
 *  @pba_num_size: part number string buffer length
442
 *
443
 *  Reads the part number string from the EEPROM.
444
 **/
445 446
s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
                                  u32 pba_num_size)
447 448 449
{
	s32 ret_val;
	u16 data;
450 451 452 453 454 455 456 457
	u16 pba_ptr;
	u16 offset;
	u16 length;

	if (pba_num == NULL) {
		hw_dbg(hw, "PBA string buffer was null\n");
		return IXGBE_ERR_INVALID_ARGUMENT;
	}
458 459 460 461 462 463 464

	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}

465
	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
466 467 468 469
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541

	/*
	 * if data is not ptr guard the PBA must be in legacy format which
	 * means pba_ptr is actually our second data word for the PBA number
	 * and we can decode it into an ascii string
	 */
	if (data != IXGBE_PBANUM_PTR_GUARD) {
		hw_dbg(hw, "NVM PBA number is not stored as string\n");

		/* we will need 11 characters to store the PBA */
		if (pba_num_size < 11) {
			hw_dbg(hw, "PBA string buffer too small\n");
			return IXGBE_ERR_NO_SPACE;
		}

		/* extract hex string from data and pba_ptr */
		pba_num[0] = (data >> 12) & 0xF;
		pba_num[1] = (data >> 8) & 0xF;
		pba_num[2] = (data >> 4) & 0xF;
		pba_num[3] = data & 0xF;
		pba_num[4] = (pba_ptr >> 12) & 0xF;
		pba_num[5] = (pba_ptr >> 8) & 0xF;
		pba_num[6] = '-';
		pba_num[7] = 0;
		pba_num[8] = (pba_ptr >> 4) & 0xF;
		pba_num[9] = pba_ptr & 0xF;

		/* put a null character on the end of our string */
		pba_num[10] = '\0';

		/* switch all the data but the '-' to hex char */
		for (offset = 0; offset < 10; offset++) {
			if (pba_num[offset] < 0xA)
				pba_num[offset] += '0';
			else if (pba_num[offset] < 0x10)
				pba_num[offset] += 'A' - 0xA;
		}

		return 0;
	}

	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
	if (ret_val) {
		hw_dbg(hw, "NVM Read Error\n");
		return ret_val;
	}

	if (length == 0xFFFF || length == 0) {
		hw_dbg(hw, "NVM PBA number section invalid length\n");
		return IXGBE_ERR_PBA_SECTION;
	}

	/* check if pba_num buffer is big enough */
	if (pba_num_size  < (((u32)length * 2) - 1)) {
		hw_dbg(hw, "PBA string buffer too small\n");
		return IXGBE_ERR_NO_SPACE;
	}

	/* trim pba length from start of string */
	pba_ptr++;
	length--;

	for (offset = 0; offset < length; offset++) {
		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
		if (ret_val) {
			hw_dbg(hw, "NVM Read Error\n");
			return ret_val;
		}
		pba_num[offset * 2] = (u8)(data >> 8);
		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
	}
	pba_num[offset * 2] = '\0';
542 543 544 545 546 547

	return 0;
}

/**
 *  ixgbe_get_mac_addr_generic - Generic get MAC address
548 549 550 551 552 553 554
 *  @hw: pointer to hardware structure
 *  @mac_addr: Adapter MAC address
 *
 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 *  A reset of the adapter must be performed prior to calling this function
 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 **/
555
s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
{
	u32 rar_high;
	u32 rar_low;
	u16 i;

	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));

	for (i = 0; i < 4; i++)
		mac_addr[i] = (u8)(rar_low >> (i*8));

	for (i = 0; i < 2; i++)
		mac_addr[i+4] = (u8)(rar_high >> (i*8));

	return 0;
}

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
/**
 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 *  @hw: pointer to hardware structure
 *
 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 **/
s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
{
	struct ixgbe_adapter *adapter = hw->back;
	struct ixgbe_mac_info *mac = &hw->mac;
	u16 link_status;

	hw->bus.type = ixgbe_bus_type_pci_express;

	/* Get the negotiated link width and speed from PCI config space */
	pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
	                     &link_status);

	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
	case IXGBE_PCI_LINK_WIDTH_1:
		hw->bus.width = ixgbe_bus_width_pcie_x1;
		break;
	case IXGBE_PCI_LINK_WIDTH_2:
		hw->bus.width = ixgbe_bus_width_pcie_x2;
		break;
	case IXGBE_PCI_LINK_WIDTH_4:
		hw->bus.width = ixgbe_bus_width_pcie_x4;
		break;
	case IXGBE_PCI_LINK_WIDTH_8:
		hw->bus.width = ixgbe_bus_width_pcie_x8;
		break;
	default:
		hw->bus.width = ixgbe_bus_width_unknown;
		break;
	}

	switch (link_status & IXGBE_PCI_LINK_SPEED) {
	case IXGBE_PCI_LINK_SPEED_2500:
		hw->bus.speed = ixgbe_bus_speed_2500;
		break;
	case IXGBE_PCI_LINK_SPEED_5000:
		hw->bus.speed = ixgbe_bus_speed_5000;
		break;
	default:
		hw->bus.speed = ixgbe_bus_speed_unknown;
		break;
	}

	mac->ops.set_lan_id(hw);

	return 0;
}

/**
 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 *  @hw: pointer to the HW structure
 *
 *  Determines the LAN function id by reading memory-mapped registers
 *  and swaps the port value if requested.
 **/
void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
{
	struct ixgbe_bus_info *bus = &hw->bus;
	u32 reg;

	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
	bus->lan_id = bus->func;

	/* check for a port swap */
	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
	if (reg & IXGBE_FACTPS_LFS)
		bus->func ^= 0x1;
}

648
/**
649
 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
650 651 652 653 654 655 656
 *  @hw: pointer to hardware structure
 *
 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 *  disables transmit and receive units. The adapter_stopped flag is used by
 *  the shared code and drivers to determine if the adapter is in a stopped
 *  state and should not touch the hardware.
 **/
657
s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
658 659 660 661 662 663 664 665 666 667 668
{
	u32 reg_val;
	u16 i;

	/*
	 * Set the adapter_stopped flag so other driver functions stop touching
	 * the hardware
	 */
	hw->adapter_stopped = true;

	/* Disable the receive unit */
669
	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
670

671
	/* Clear interrupt mask to stop interrupts from being generated */
672 673
	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);

674
	/* Clear any pending interrupts, flush previous writes */
675 676 677
	IXGBE_READ_REG(hw, IXGBE_EICR);

	/* Disable the transmit unit.  Each queue must be disabled. */
678 679 680 681 682 683 684 685 686
	for (i = 0; i < hw->mac.max_tx_queues; i++)
		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);

	/* Disable the receive unit by stopping each queue */
	for (i = 0; i < hw->mac.max_rx_queues; i++) {
		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
		reg_val &= ~IXGBE_RXDCTL_ENABLE;
		reg_val |= IXGBE_RXDCTL_SWFLSH;
		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
687 688
	}

689 690 691 692
	/* flush all queues disables */
	IXGBE_WRITE_FLUSH(hw);
	usleep_range(1000, 2000);

693 694 695 696
	/*
	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
	 * access and verify no pending requests
	 */
697
	return ixgbe_disable_pcie_master(hw);
698 699 700
}

/**
701
 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
702 703 704
 *  @hw: pointer to hardware structure
 *  @index: led number to turn on
 **/
705
s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
706 707 708 709 710 711 712
{
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

	/* To turn on the LED, set mode to ON. */
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
713
	IXGBE_WRITE_FLUSH(hw);
714 715 716 717 718

	return 0;
}

/**
719
 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
720 721 722
 *  @hw: pointer to hardware structure
 *  @index: led number to turn off
 **/
723
s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
724 725 726 727 728 729 730
{
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

	/* To turn off the LED, set mode to OFF. */
	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
731
	IXGBE_WRITE_FLUSH(hw);
732 733 734 735 736

	return 0;
}

/**
737
 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
738 739 740 741 742
 *  @hw: pointer to hardware structure
 *
 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 *  ixgbe_hw struct in order to set up EEPROM access.
 **/
743
s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
744 745 746 747 748 749 750
{
	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
	u32 eec;
	u16 eeprom_size;

	if (eeprom->type == ixgbe_eeprom_uninitialized) {
		eeprom->type = ixgbe_eeprom_none;
751 752 753
		/* Set default semaphore delay to 10ms which is a well
		 * tested value */
		eeprom->semaphore_delay = 10;
754 755
		/* Clear EEPROM page size, it will be initialized as needed */
		eeprom->word_page_size = 0;
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786

		/*
		 * Check for EEPROM present first.
		 * If not present leave as none
		 */
		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
		if (eec & IXGBE_EEC_PRES) {
			eeprom->type = ixgbe_eeprom_spi;

			/*
			 * SPI EEPROM is assumed here.  This code would need to
			 * change if a future EEPROM is not SPI.
			 */
			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
					    IXGBE_EEC_SIZE_SHIFT);
			eeprom->word_size = 1 << (eeprom_size +
						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
		}

		if (eec & IXGBE_EEC_ADDR_SIZE)
			eeprom->address_bits = 16;
		else
			eeprom->address_bits = 8;
		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
			  "%d\n", eeprom->type, eeprom->word_size,
			  eeprom->address_bits);
	}

	return 0;
}

787
/**
788
 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
789
 *  @hw: pointer to hardware structure
790 791 792
 *  @offset: offset within the EEPROM to write
 *  @words: number of words
 *  @data: 16 bit word(s) to write to EEPROM
793
 *
794
 *  Reads 16 bit word(s) from EEPROM through bit-bang method
795
 **/
796 797
s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
					       u16 words, u16 *data)
798
{
799 800
	s32 status = 0;
	u16 i, count;
801 802 803

	hw->eeprom.ops.init_params(hw);

804 805 806 807 808 809
	if (words == 0) {
		status = IXGBE_ERR_INVALID_ARGUMENT;
		goto out;
	}

	if (offset + words > hw->eeprom.word_size) {
810 811 812 813
		status = IXGBE_ERR_EEPROM;
		goto out;
	}

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
	/*
	 * The EEPROM page size cannot be queried from the chip. We do lazy
	 * initialization. It is worth to do that when we write large buffer.
	 */
	if ((hw->eeprom.word_page_size == 0) &&
	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
		ixgbe_detect_eeprom_page_size_generic(hw, offset);

	/*
	 * We cannot hold synchronization semaphores for too long
	 * to avoid other entity starvation. However it is more efficient
	 * to read in bursts than synchronizing access for each word.
	 */
	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
							    count, &data[i]);

		if (status != 0)
			break;
	}

out:
	return status;
}

/**
 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be written to
 *  @words: number of word(s)
 *  @data: 16 bit word(s) to be written to the EEPROM
 *
 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 *  EEPROM will most likely contain an invalid checksum.
 **/
static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					      u16 words, u16 *data)
{
	s32 status;
	u16 word;
	u16 page_size;
	u16 i;
	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;

860 861 862 863 864 865 866 867 868 869 870
	/* Prepare the EEPROM for writing  */
	status = ixgbe_acquire_eeprom(hw);

	if (status == 0) {
		if (ixgbe_ready_eeprom(hw) != 0) {
			ixgbe_release_eeprom(hw);
			status = IXGBE_ERR_EEPROM;
		}
	}

	if (status == 0) {
871 872
		for (i = 0; i < words; i++) {
			ixgbe_standby_eeprom(hw);
873

874 875 876 877
			/*  Send the WRITE ENABLE command (8 bit opcode )  */
			ixgbe_shift_out_eeprom_bits(hw,
						  IXGBE_EEPROM_WREN_OPCODE_SPI,
						  IXGBE_EEPROM_OPCODE_BITS);
878

879
			ixgbe_standby_eeprom(hw);
880

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
			/*
			 * Some SPI eeproms use the 8th address bit embedded
			 * in the opcode
			 */
			if ((hw->eeprom.address_bits == 8) &&
			    ((offset + i) >= 128))
				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;

			/* Send the Write command (8-bit opcode + addr) */
			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
						    IXGBE_EEPROM_OPCODE_BITS);
			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
						    hw->eeprom.address_bits);

			page_size = hw->eeprom.word_page_size;

			/* Send the data in burst via SPI*/
			do {
				word = data[i];
				word = (word >> 8) | (word << 8);
				ixgbe_shift_out_eeprom_bits(hw, word, 16);

				if (page_size == 0)
					break;

				/* do not wrap around page */
				if (((offset + i) & (page_size - 1)) ==
				    (page_size - 1))
					break;
			} while (++i < words);

			ixgbe_standby_eeprom(hw);
			usleep_range(10000, 20000);
		}
		/* Done with writing - release the EEPROM */
		ixgbe_release_eeprom(hw);
	}
918

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
	return status;
}

/**
 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be written to
 *  @data: 16 bit word to be written to the EEPROM
 *
 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 *  EEPROM will most likely contain an invalid checksum.
 **/
s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
{
	s32 status;
934

935
	hw->eeprom.ops.init_params(hw);
936

937 938 939
	if (offset >= hw->eeprom.word_size) {
		status = IXGBE_ERR_EEPROM;
		goto out;
940 941
	}

942 943
	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);

944 945 946 947
out:
	return status;
}

948
/**
949
 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
950 951
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
952 953
 *  @words: number of word(s)
 *  @data: read 16 bit words(s) from EEPROM
954
 *
955
 *  Reads 16 bit word(s) from EEPROM through bit-bang method
956
 **/
957 958
s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
					      u16 words, u16 *data)
959
{
960 961
	s32 status = 0;
	u16 i, count;
962 963 964

	hw->eeprom.ops.init_params(hw);

965 966 967 968 969 970
	if (words == 0) {
		status = IXGBE_ERR_INVALID_ARGUMENT;
		goto out;
	}

	if (offset + words > hw->eeprom.word_size) {
971 972 973 974
		status = IXGBE_ERR_EEPROM;
		goto out;
	}

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	/*
	 * We cannot hold synchronization semaphores for too long
	 * to avoid other entity starvation. However it is more efficient
	 * to read in bursts than synchronizing access for each word.
	 */
	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);

		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
							   count, &data[i]);

		if (status != 0)
			break;
	}

out:
	return status;
}

/**
 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
 *  @words: number of word(s)
 *  @data: read 16 bit word(s) from EEPROM
 *
 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 **/
static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
					     u16 words, u16 *data)
{
	s32 status;
	u16 word_in;
	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
	u16 i;

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	/* Prepare the EEPROM for reading  */
	status = ixgbe_acquire_eeprom(hw);

	if (status == 0) {
		if (ixgbe_ready_eeprom(hw) != 0) {
			ixgbe_release_eeprom(hw);
			status = IXGBE_ERR_EEPROM;
		}
	}

	if (status == 0) {
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
		for (i = 0; i < words; i++) {
			ixgbe_standby_eeprom(hw);
			/*
			 * Some SPI eeproms use the 8th address bit embedded
			 * in the opcode
			 */
			if ((hw->eeprom.address_bits == 8) &&
			    ((offset + i) >= 128))
				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;

			/* Send the READ command (opcode + addr) */
			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
						    IXGBE_EEPROM_OPCODE_BITS);
			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
						    hw->eeprom.address_bits);

			/* Read the data. */
			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
			data[i] = (word_in >> 8) | (word_in << 8);
		}
1043

1044 1045 1046
		/* End this read operation */
		ixgbe_release_eeprom(hw);
	}
1047

1048 1049
	return status;
}
1050

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
/**
 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be read
 *  @data: read 16 bit value from EEPROM
 *
 *  Reads 16 bit value from EEPROM through bit-bang method
 **/
s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
				       u16 *data)
{
	s32 status;
1063

1064 1065 1066 1067 1068
	hw->eeprom.ops.init_params(hw);

	if (offset >= hw->eeprom.word_size) {
		status = IXGBE_ERR_EEPROM;
		goto out;
1069 1070
	}

1071 1072
	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);

1073 1074 1075 1076 1077
out:
	return status;
}

/**
1078
 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1079
 *  @hw: pointer to hardware structure
1080 1081 1082
 *  @offset: offset of word in the EEPROM to read
 *  @words: number of word(s)
 *  @data: 16 bit word(s) from the EEPROM
1083
 *
1084
 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1085
 **/
1086 1087
s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
				   u16 words, u16 *data)
1088 1089
{
	u32 eerd;
1090 1091
	s32 status = 0;
	u32 i;
1092

1093 1094
	hw->eeprom.ops.init_params(hw);

1095 1096 1097 1098 1099
	if (words == 0) {
		status = IXGBE_ERR_INVALID_ARGUMENT;
		goto out;
	}

1100 1101 1102 1103 1104
	if (offset >= hw->eeprom.word_size) {
		status = IXGBE_ERR_EEPROM;
		goto out;
	}

1105 1106 1107
	for (i = 0; i < words; i++) {
		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
		       IXGBE_EEPROM_RW_REG_START;
1108

1109 1110
		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1111

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
		if (status == 0) {
			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
				   IXGBE_EEPROM_RW_REG_DATA);
		} else {
			hw_dbg(hw, "Eeprom read timed out\n");
			goto out;
		}
	}
out:
	return status;
}
1123

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
/**
 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
 *  @hw: pointer to hardware structure
 *  @offset: offset within the EEPROM to be used as a scratch pad
 *
 *  Discover EEPROM page size by writing marching data at given offset.
 *  This function is called only when we are writing a new large buffer
 *  at given offset so the data would be overwritten anyway.
 **/
static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
						 u16 offset)
{
	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
	s32 status = 0;
	u16 i;

	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
		data[i] = i;

	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
	hw->eeprom.word_page_size = 0;
	if (status != 0)
		goto out;

	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
	if (status != 0)
		goto out;

	/*
	 * When writing in burst more than the actual page size
	 * EEPROM address wraps around current page.
	 */
	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];

	hw_dbg(hw, "Detected EEPROM page size = %d words.",
	       hw->eeprom.word_page_size);
1162
out:
1163 1164 1165
	return status;
}

1166
/**
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
 *  @hw: pointer to hardware structure
 *  @offset: offset of  word in the EEPROM to read
 *  @data: word read from the EEPROM
 *
 *  Reads a 16 bit word from the EEPROM using the EERD register.
 **/
s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
{
	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
}

/**
 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1181 1182
 *  @hw: pointer to hardware structure
 *  @offset: offset of  word in the EEPROM to write
1183 1184
 *  @words: number of words
 *  @data: word(s) write to the EEPROM
1185
 *
1186
 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1187
 **/
1188 1189
s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
				    u16 words, u16 *data)
1190 1191
{
	u32 eewr;
1192 1193
	s32 status = 0;
	u16 i;
1194 1195 1196

	hw->eeprom.ops.init_params(hw);

1197 1198 1199 1200 1201
	if (words == 0) {
		status = IXGBE_ERR_INVALID_ARGUMENT;
		goto out;
	}

1202 1203 1204 1205 1206
	if (offset >= hw->eeprom.word_size) {
		status = IXGBE_ERR_EEPROM;
		goto out;
	}

1207 1208 1209 1210
	for (i = 0; i < words; i++) {
		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
		       IXGBE_EEPROM_RW_REG_START;
1211

1212 1213 1214 1215 1216
		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
		if (status != 0) {
			hw_dbg(hw, "Eeprom write EEWR timed out\n");
			goto out;
		}
1217

1218
		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1219

1220 1221 1222 1223 1224
		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
		if (status != 0) {
			hw_dbg(hw, "Eeprom write EEWR timed out\n");
			goto out;
		}
1225 1226 1227 1228 1229 1230
	}

out:
	return status;
}

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
/**
 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
 *  @hw: pointer to hardware structure
 *  @offset: offset of  word in the EEPROM to write
 *  @data: word write to the EEPROM
 *
 *  Write a 16 bit word to the EEPROM using the EEWR register.
 **/
s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
{
	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
}

1244
/**
1245
 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1246
 *  @hw: pointer to hardware structure
1247
 *  @ee_reg: EEPROM flag for polling
1248
 *
1249 1250
 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
 *  read or write is done respectively.
1251
 **/
1252
static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1253 1254 1255 1256 1257
{
	u32 i;
	u32 reg;
	s32 status = IXGBE_ERR_EEPROM;

1258 1259 1260 1261 1262 1263 1264
	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
		if (ee_reg == IXGBE_NVM_POLL_READ)
			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
		else
			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);

		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1265 1266 1267 1268 1269 1270 1271 1272
			status = 0;
			break;
		}
		udelay(5);
	}
	return status;
}

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
/**
 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
 *  @hw: pointer to hardware structure
 *
 *  Prepares EEPROM for access using bit-bang method. This function should
 *  be called before issuing a command to the EEPROM.
 **/
static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
{
	s32 status = 0;
1283
	u32 eec;
1284 1285
	u32 i;

1286
	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
		status = IXGBE_ERR_SWFW_SYNC;

	if (status == 0) {
		eec = IXGBE_READ_REG(hw, IXGBE_EEC);

		/* Request EEPROM Access */
		eec |= IXGBE_EEC_REQ;
		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);

		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
			if (eec & IXGBE_EEC_GNT)
				break;
			udelay(5);
		}

		/* Release if grant not acquired */
		if (!(eec & IXGBE_EEC_GNT)) {
			eec &= ~IXGBE_EEC_REQ;
			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
			hw_dbg(hw, "Could not acquire EEPROM grant\n");

1309
			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1310 1311 1312
			status = IXGBE_ERR_EEPROM;
		}

1313 1314 1315 1316 1317 1318 1319 1320
		/* Setup EEPROM for Read/Write */
		if (status == 0) {
			/* Clear CS and SK */
			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
			IXGBE_WRITE_FLUSH(hw);
			udelay(1);
		}
1321 1322 1323 1324
	}
	return status;
}

1325 1326 1327 1328 1329 1330 1331 1332 1333
/**
 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
 *  @hw: pointer to hardware structure
 *
 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
 **/
static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
{
	s32 status = IXGBE_ERR_EEPROM;
1334
	u32 timeout = 2000;
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	u32 i;
	u32 swsm;

	/* Get SMBI software semaphore between device drivers first */
	for (i = 0; i < timeout; i++) {
		/*
		 * If the SMBI bit is 0 when we read it, then the bit will be
		 * set and we have the semaphore
		 */
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
		if (!(swsm & IXGBE_SWSM_SMBI)) {
			status = 0;
			break;
		}
1349
		udelay(50);
1350 1351
	}

E
Emil Tantilov 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	if (i == timeout) {
		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
		       "not granted.\n");
		/*
		 * this release is particularly important because our attempts
		 * above to get the semaphore may have succeeded, and if there
		 * was a timeout, we should unconditionally clear the semaphore
		 * bits to free the driver to make progress
		 */
		ixgbe_release_eeprom_semaphore(hw);

		udelay(50);
		/*
		 * one last try
		 * If the SMBI bit is 0 when we read it, then the bit will be
		 * set and we have the semaphore
		 */
		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
		if (!(swsm & IXGBE_SWSM_SMBI))
			status = 0;
	}

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	/* Now get the semaphore between SW/FW through the SWESMBI bit */
	if (status == 0) {
		for (i = 0; i < timeout; i++) {
			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);

			/* Set the SW EEPROM semaphore bit to request access */
			swsm |= IXGBE_SWSM_SWESMBI;
			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);

			/*
			 * If we set the bit successfully then we got the
			 * semaphore.
			 */
			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
			if (swsm & IXGBE_SWSM_SWESMBI)
				break;

			udelay(50);
		}

		/*
		 * Release semaphores and return error if SW EEPROM semaphore
		 * was not granted because we don't have access to the EEPROM
		 */
		if (i >= timeout) {
1399
			hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
1400
			       "not granted.\n");
1401 1402 1403
			ixgbe_release_eeprom_semaphore(hw);
			status = IXGBE_ERR_EEPROM;
		}
1404 1405 1406
	} else {
		hw_dbg(hw, "Software semaphore SMBI between device drivers "
		       "not granted.\n");
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
	}

	return status;
}

/**
 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
 *  @hw: pointer to hardware structure
 *
 *  This function clears hardware semaphore bits.
 **/
static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
{
	u32 swsm;

	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);

	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1427
	IXGBE_WRITE_FLUSH(hw);
1428 1429
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
/**
 *  ixgbe_ready_eeprom - Polls for EEPROM ready
 *  @hw: pointer to hardware structure
 **/
static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
{
	s32 status = 0;
	u16 i;
	u8 spi_stat_reg;

	/*
	 * Read "Status Register" repeatedly until the LSB is cleared.  The
	 * EEPROM will signal that the command has been completed by clearing
	 * bit 0 of the internal status register.  If it's not cleared within
	 * 5 milliseconds, then error out.
	 */
	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
		                            IXGBE_EEPROM_OPCODE_BITS);
		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
			break;

		udelay(5);
		ixgbe_standby_eeprom(hw);
1455
	}
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

	/*
	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
	 * devices (and only 0-5mSec on 5V devices)
	 */
	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
		hw_dbg(hw, "SPI EEPROM Status error\n");
		status = IXGBE_ERR_EEPROM;
	}

	return status;
}

/**
 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
 *  @hw: pointer to hardware structure
 **/
static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
{
	u32 eec;

	eec = IXGBE_READ_REG(hw, IXGBE_EEC);

	/* Toggle CS to flush commands */
	eec |= IXGBE_EEC_CS;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
	eec &= ~IXGBE_EEC_CS;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
 *  @hw: pointer to hardware structure
 *  @data: data to send to the EEPROM
 *  @count: number of bits to shift out
 **/
static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
                                        u16 count)
{
	u32 eec;
	u32 mask;
	u32 i;

	eec = IXGBE_READ_REG(hw, IXGBE_EEC);

	/*
	 * Mask is used to shift "count" bits of "data" out to the EEPROM
	 * one bit at a time.  Determine the starting bit based on count
	 */
	mask = 0x01 << (count - 1);

	for (i = 0; i < count; i++) {
		/*
		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
		 * "1", and then raising and then lowering the clock (the SK
		 * bit controls the clock input to the EEPROM).  A "0" is
		 * shifted out to the EEPROM by setting "DI" to "0" and then
		 * raising and then lowering the clock.
		 */
		if (data & mask)
			eec |= IXGBE_EEC_DI;
		else
			eec &= ~IXGBE_EEC_DI;

		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
		IXGBE_WRITE_FLUSH(hw);

		udelay(1);

		ixgbe_raise_eeprom_clk(hw, &eec);
		ixgbe_lower_eeprom_clk(hw, &eec);

		/*
		 * Shift mask to signify next bit of data to shift in to the
		 * EEPROM
		 */
		mask = mask >> 1;
1537
	}
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637

	/* We leave the "DI" bit set to "0" when we leave this routine. */
	eec &= ~IXGBE_EEC_DI;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
	IXGBE_WRITE_FLUSH(hw);
}

/**
 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
 *  @hw: pointer to hardware structure
 **/
static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
{
	u32 eec;
	u32 i;
	u16 data = 0;

	/*
	 * In order to read a register from the EEPROM, we need to shift
	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
	 * the clock input to the EEPROM (setting the SK bit), and then reading
	 * the value of the "DO" bit.  During this "shifting in" process the
	 * "DI" bit should always be clear.
	 */
	eec = IXGBE_READ_REG(hw, IXGBE_EEC);

	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);

	for (i = 0; i < count; i++) {
		data = data << 1;
		ixgbe_raise_eeprom_clk(hw, &eec);

		eec = IXGBE_READ_REG(hw, IXGBE_EEC);

		eec &= ~(IXGBE_EEC_DI);
		if (eec & IXGBE_EEC_DO)
			data |= 1;

		ixgbe_lower_eeprom_clk(hw, &eec);
	}

	return data;
}

/**
 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
 *  @hw: pointer to hardware structure
 *  @eec: EEC register's current value
 **/
static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
{
	/*
	 * Raise the clock input to the EEPROM
	 * (setting the SK bit), then delay
	 */
	*eec = *eec | IXGBE_EEC_SK;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
 *  @hw: pointer to hardware structure
 *  @eecd: EECD's current value
 **/
static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
{
	/*
	 * Lower the clock input to the EEPROM (clearing the SK bit), then
	 * delay
	 */
	*eec = *eec & ~IXGBE_EEC_SK;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
	IXGBE_WRITE_FLUSH(hw);
	udelay(1);
}

/**
 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
 *  @hw: pointer to hardware structure
 **/
static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
{
	u32 eec;

	eec = IXGBE_READ_REG(hw, IXGBE_EEC);

	eec |= IXGBE_EEC_CS;  /* Pull CS high */
	eec &= ~IXGBE_EEC_SK; /* Lower SCK */

	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
	IXGBE_WRITE_FLUSH(hw);

	udelay(1);

	/* Stop requesting EEPROM access */
	eec &= ~IXGBE_EEC_REQ;
	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);

1638
	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1639

1640 1641 1642 1643 1644 1645
	/*
	 * Delay before attempt to obtain semaphore again to allow FW
	 * access. semaphore_delay is in ms we need us for usleep_range
	 */
	usleep_range(hw->eeprom.semaphore_delay * 1000,
		     hw->eeprom.semaphore_delay * 2000);
1646 1647
}

1648
/**
1649
 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1650 1651
 *  @hw: pointer to hardware structure
 **/
1652
u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
{
	u16 i;
	u16 j;
	u16 checksum = 0;
	u16 length = 0;
	u16 pointer = 0;
	u16 word = 0;

	/* Include 0x0-0x3F in the checksum */
	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1663
		if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1664 1665 1666 1667 1668 1669 1670 1671
			hw_dbg(hw, "EEPROM read failed\n");
			break;
		}
		checksum += word;
	}

	/* Include all data from pointers except for the fw pointer */
	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1672
		hw->eeprom.ops.read(hw, i, &pointer);
1673 1674 1675

		/* Make sure the pointer seems valid */
		if (pointer != 0xFFFF && pointer != 0) {
1676
			hw->eeprom.ops.read(hw, pointer, &length);
1677 1678 1679

			if (length != 0xFFFF && length != 0) {
				for (j = pointer+1; j <= pointer+length; j++) {
1680
					hw->eeprom.ops.read(hw, j, &word);
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
					checksum += word;
				}
			}
		}
	}

	checksum = (u16)IXGBE_EEPROM_SUM - checksum;

	return checksum;
}

/**
1693
 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1694 1695 1696 1697 1698 1699
 *  @hw: pointer to hardware structure
 *  @checksum_val: calculated checksum
 *
 *  Performs checksum calculation and validates the EEPROM checksum.  If the
 *  caller does not need checksum_val, the value can be NULL.
 **/
1700 1701
s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
                                           u16 *checksum_val)
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
{
	s32 status;
	u16 checksum;
	u16 read_checksum = 0;

	/*
	 * Read the first word from the EEPROM. If this times out or fails, do
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
1712
	status = hw->eeprom.ops.read(hw, 0, &checksum);
1713 1714

	if (status == 0) {
1715
		checksum = hw->eeprom.ops.calc_checksum(hw);
1716

1717
		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735

		/*
		 * Verify read checksum from EEPROM is the same as
		 * calculated checksum
		 */
		if (read_checksum != checksum)
			status = IXGBE_ERR_EEPROM_CHECKSUM;

		/* If the user cares, return the calculated checksum */
		if (checksum_val)
			*checksum_val = checksum;
	} else {
		hw_dbg(hw, "EEPROM read failed\n");
	}

	return status;
}

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
/**
 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
 *  @hw: pointer to hardware structure
 **/
s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
{
	s32 status;
	u16 checksum;

	/*
	 * Read the first word from the EEPROM. If this times out or fails, do
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
	status = hw->eeprom.ops.read(hw, 0, &checksum);

	if (status == 0) {
1753
		checksum = hw->eeprom.ops.calc_checksum(hw);
1754
		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1755
					      checksum);
1756 1757 1758 1759 1760 1761 1762
	} else {
		hw_dbg(hw, "EEPROM read failed\n");
	}

	return status;
}

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
/**
 *  ixgbe_validate_mac_addr - Validate MAC address
 *  @mac_addr: pointer to MAC address.
 *
 *  Tests a MAC address to ensure it is a valid Individual Address
 **/
s32 ixgbe_validate_mac_addr(u8 *mac_addr)
{
	s32 status = 0;

	/* Make sure it is not a multicast address */
	if (IXGBE_IS_MULTICAST(mac_addr))
		status = IXGBE_ERR_INVALID_MAC_ADDR;
	/* Not a broadcast address */
	else if (IXGBE_IS_BROADCAST(mac_addr))
		status = IXGBE_ERR_INVALID_MAC_ADDR;
	/* Reject the zero address */
	else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1781
	         mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
1782 1783 1784 1785 1786 1787
		status = IXGBE_ERR_INVALID_MAC_ADDR;

	return status;
}

/**
1788
 *  ixgbe_set_rar_generic - Set Rx address register
1789 1790
 *  @hw: pointer to hardware structure
 *  @index: Receive address register to write
1791 1792
 *  @addr: Address to put into receive address register
 *  @vmdq: VMDq "set" or "pool" index
1793 1794 1795 1796
 *  @enable_addr: set flag that address is active
 *
 *  Puts an ethernet address into a receive address register.
 **/
1797 1798
s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
                          u32 enable_addr)
1799 1800
{
	u32 rar_low, rar_high;
1801 1802
	u32 rar_entries = hw->mac.num_rar_entries;

1803 1804 1805 1806 1807 1808
	/* Make sure we are using a valid rar index range */
	if (index >= rar_entries) {
		hw_dbg(hw, "RAR index %d is out of range.\n", index);
		return IXGBE_ERR_INVALID_ARGUMENT;
	}

1809 1810
	/* setup VMDq pool selection before this RAR gets enabled */
	hw->mac.ops.set_vmdq(hw, index, vmdq);
1811

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
	/*
	 * HW expects these in little endian so we reverse the byte
	 * order from network order (big endian) to little endian
	 */
	rar_low = ((u32)addr[0] |
		   ((u32)addr[1] << 8) |
		   ((u32)addr[2] << 16) |
		   ((u32)addr[3] << 24));
	/*
	 * Some parts put the VMDq setting in the extra RAH bits,
	 * so save everything except the lower 16 bits that hold part
	 * of the address and the address valid bit.
	 */
	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1828

1829 1830
	if (enable_addr != 0)
		rar_high |= IXGBE_RAH_AV;
1831

1832 1833
	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

	return 0;
}

/**
 *  ixgbe_clear_rar_generic - Remove Rx address register
 *  @hw: pointer to hardware structure
 *  @index: Receive address register to write
 *
 *  Clears an ethernet address from a receive address register.
 **/
s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
{
	u32 rar_high;
	u32 rar_entries = hw->mac.num_rar_entries;

	/* Make sure we are using a valid rar index range */
1851
	if (index >= rar_entries) {
1852
		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1853
		return IXGBE_ERR_INVALID_ARGUMENT;
1854 1855
	}

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
	/*
	 * Some parts put the VMDq setting in the extra RAH bits,
	 * so save everything except the lower 16 bits that hold part
	 * of the address and the address valid bit.
	 */
	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);

	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);

1867 1868
	/* clear VMDq pool/queue selection for this RAR */
	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1869 1870 1871 1872

	return 0;
}

1873 1874
/**
 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1875 1876 1877
 *  @hw: pointer to hardware structure
 *
 *  Places the MAC address in receive address register 0 and clears the rest
1878
 *  of the receive address registers. Clears the multicast table. Assumes
1879 1880
 *  the receiver is in reset when the routine is called.
 **/
1881
s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1882 1883
{
	u32 i;
1884
	u32 rar_entries = hw->mac.num_rar_entries;
1885 1886 1887 1888 1889 1890 1891 1892 1893

	/*
	 * If the current mac address is valid, assume it is a software override
	 * to the permanent address.
	 * Otherwise, use the permanent address from the eeprom.
	 */
	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
	    IXGBE_ERR_INVALID_MAC_ADDR) {
		/* Get the MAC address from the RAR0 for later reference */
1894
		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1895

1896
		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1897 1898 1899
	} else {
		/* Setup the receive address. */
		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1900
		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1901

1902
		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1903 1904 1905

		/*  clear VMDq pool/queue selection for RAR 0 */
		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1906
	}
1907
	hw->addr_ctrl.overflow_promisc = 0;
1908 1909 1910 1911

	hw->addr_ctrl.rar_used_count = 1;

	/* Zero out the other receive addresses. */
1912
	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	for (i = 1; i < rar_entries; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
	}

	/* Clear the MTA */
	hw->addr_ctrl.mta_in_use = 0;
	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);

	hw_dbg(hw, " Clearing MTA\n");
1923
	for (i = 0; i < hw->mac.mcft_size; i++)
1924 1925
		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);

1926 1927 1928
	if (hw->mac.ops.init_uta_tables)
		hw->mac.ops.init_uta_tables(hw);

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	return 0;
}

/**
 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
 *  @hw: pointer to hardware structure
 *  @mc_addr: the multicast address
 *
 *  Extracts the 12 bits, from a multicast address, to determine which
 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
 *  incoming rx multicast addresses, to determine the bit-vector to check in
 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1941
 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1942 1943 1944 1945 1946 1947 1948
 *  to mc_filter_type.
 **/
static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
{
	u32 vector = 0;

	switch (hw->mac.mc_filter_type) {
1949
	case 0:   /* use bits [47:36] of the address */
1950 1951
		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
		break;
1952
	case 1:   /* use bits [46:35] of the address */
1953 1954
		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
		break;
1955
	case 2:   /* use bits [45:34] of the address */
1956 1957
		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
		break;
1958
	case 3:   /* use bits [43:32] of the address */
1959 1960
		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
		break;
1961
	default:  /* Invalid mc_filter_type */
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
		hw_dbg(hw, "MC filter type param set incorrectly\n");
		break;
	}

	/* vector can only be 12-bits or boundary will be exceeded */
	vector &= 0xFFF;
	return vector;
}

/**
 *  ixgbe_set_mta - Set bit-vector in multicast table
 *  @hw: pointer to hardware structure
 *  @hash_value: Multicast address hash value
 *
 *  Sets the bit-vector in the multicast table.
 **/
static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
{
	u32 vector;
	u32 vector_bit;
	u32 vector_reg;

	hw->addr_ctrl.mta_in_use++;

	vector = ixgbe_mta_vector(hw, mc_addr);
	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);

	/*
	 * The MTA is a register array of 128 32-bit registers. It is treated
	 * like an array of 4096 bits.  We want to set bit
	 * BitArray[vector_value]. So we figure out what register the bit is
	 * in, read it, OR in the new bit, then write back the new value.  The
	 * register is determined by the upper 7 bits of the vector value and
	 * the bit within that register are determined by the lower 5 bits of
	 * the value.
	 */
	vector_reg = (vector >> 5) & 0x7F;
	vector_bit = vector & 0x1F;
2000
	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2001 2002 2003
}

/**
2004
 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2005
 *  @hw: pointer to hardware structure
2006
 *  @netdev: pointer to net device structure
2007 2008
 *
 *  The given list replaces any existing list. Clears the MC addrs from receive
2009
 *  address registers and the multicast table. Uses unused receive address
2010 2011 2012
 *  registers for the first multicast addresses, and hashes the rest into the
 *  multicast table.
 **/
2013 2014
s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
				      struct net_device *netdev)
2015
{
2016
	struct netdev_hw_addr *ha;
2017 2018 2019 2020 2021 2022
	u32 i;

	/*
	 * Set the new number of MC addresses that we are being requested to
	 * use.
	 */
2023
	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2024 2025
	hw->addr_ctrl.mta_in_use = 0;

2026
	/* Clear mta_shadow */
2027
	hw_dbg(hw, " Clearing MTA\n");
2028
	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2029

2030
	/* Update mta shadow */
2031
	netdev_for_each_mc_addr(ha, netdev) {
2032
		hw_dbg(hw, " Adding the multicast addresses:\n");
2033
		ixgbe_set_mta(hw, ha->addr);
2034 2035 2036
	}

	/* Enable mta */
2037 2038 2039 2040
	for (i = 0; i < hw->mac.mcft_size; i++)
		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
				      hw->mac.mta_shadow[i]);

2041 2042
	if (hw->addr_ctrl.mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2043
		                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2044

2045
	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2046 2047 2048 2049
	return 0;
}

/**
2050
 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2051 2052
 *  @hw: pointer to hardware structure
 *
2053
 *  Enables multicast address in RAR and the use of the multicast hash table.
2054
 **/
2055
s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2056
{
2057
	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2058

2059 2060 2061
	if (a->mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
		                hw->mac.mc_filter_type);
2062 2063 2064 2065 2066

	return 0;
}

/**
2067
 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2068 2069
 *  @hw: pointer to hardware structure
 *
2070
 *  Disables multicast address in RAR and the use of the multicast hash table.
2071
 **/
2072
s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2073
{
2074
	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2075

2076 2077
	if (a->mta_in_use > 0)
		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2078 2079 2080 2081

	return 0;
}

2082
/**
2083
 *  ixgbe_fc_enable_generic - Enable flow control
2084 2085 2086 2087
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according to the current settings.
 **/
2088
s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2089 2090
{
	s32 ret_val = 0;
2091
	u32 mflcn_reg, fccfg_reg;
2092
	u32 reg;
2093
	u32 fcrtl, fcrth;
2094
	int i;
2095

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	/*
	 * Validate the water mark configuration for packet buffer 0.  Zero
	 * water marks indicate that the packet buffer was not configured
	 * and the watermarks for packet buffer 0 should always be configured.
	 */
	if (!hw->fc.low_water ||
	    !hw->fc.high_water[0] ||
	    !hw->fc.pause_time) {
		hw_dbg(hw, "Invalid water mark configuration\n");
		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2106
		goto out;
2107
	}
2108

2109
	/* Negotiate the fc mode to use */
2110
	ixgbe_fc_autoneg(hw);
2111

2112
	/* Disable any previous flow control settings */
2113
	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2114
	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2115 2116 2117 2118 2119 2120 2121 2122 2123

	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);

	/*
	 * The possible values of fc.current_mode are:
	 * 0: Flow control is completely disabled
	 * 1: Rx flow control is enabled (we can receive pause frames,
	 *    but not send pause frames).
2124 2125
	 * 2: Tx flow control is enabled (we can send pause frames but
	 *    we do not support receiving pause frames).
2126 2127 2128 2129 2130
	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
	 * other: Invalid.
	 */
	switch (hw->fc.current_mode) {
	case ixgbe_fc_none:
2131 2132 2133 2134
		/*
		 * Flow control is disabled by software override or autoneg.
		 * The code below will actually disable it in the HW.
		 */
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
		break;
	case ixgbe_fc_rx_pause:
		/*
		 * Rx Flow control is enabled and Tx Flow control is
		 * disabled by software override. Since there really
		 * isn't a way to advertise that we are capable of RX
		 * Pause ONLY, we will advertise that we support both
		 * symmetric and asymmetric Rx PAUSE.  Later, we will
		 * disable the adapter's ability to send PAUSE frames.
		 */
		mflcn_reg |= IXGBE_MFLCN_RFCE;
		break;
	case ixgbe_fc_tx_pause:
		/*
		 * Tx Flow control is enabled, and Rx Flow control is
		 * disabled by software override.
		 */
		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
		break;
	case ixgbe_fc_full:
		/* Flow control (both Rx and Tx) is enabled by SW override. */
		mflcn_reg |= IXGBE_MFLCN_RFCE;
		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
		break;
	default:
		hw_dbg(hw, "Flow control param set incorrectly\n");
2161
		ret_val = IXGBE_ERR_CONFIG;
2162 2163 2164 2165
		goto out;
		break;
	}

2166
	/* Set 802.3x based flow control settings. */
2167
	mflcn_reg |= IXGBE_MFLCN_DPF;
2168 2169 2170
	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);

2171
	fcrtl = (hw->fc.low_water << 10) | IXGBE_FCRTL_XONE;
2172

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
		    hw->fc.high_water[i]) {
			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
		} else {
			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
			/*
			 * In order to prevent Tx hangs when the internal Tx
			 * switch is enabled we must set the high water mark
			 * to the maximum FCRTH value.  This allows the Tx
			 * switch to function even under heavy Rx workloads.
			 */
			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
		}
2189

2190 2191
		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
	}
2192

2193
	/* Configure pause time (2 TCs per register) */
2194 2195 2196 2197 2198
	reg = hw->fc.pause_time * 0x00010001;
	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);

	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2199 2200 2201 2202 2203

out:
	return ret_val;
}

2204
/**
2205
 *  ixgbe_negotiate_fc - Negotiate flow control
2206
 *  @hw: pointer to hardware structure
2207 2208 2209 2210 2211 2212
 *  @adv_reg: flow control advertised settings
 *  @lp_reg: link partner's flow control settings
 *  @adv_sym: symmetric pause bit in advertisement
 *  @adv_asm: asymmetric pause bit in advertisement
 *  @lp_sym: symmetric pause bit in link partner advertisement
 *  @lp_asm: asymmetric pause bit in link partner advertisement
2213
 *
2214 2215
 *  Find the intersection between advertised settings and link partner's
 *  advertised settings
2216
 **/
2217 2218
static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2219
{
2220 2221
	if ((!(adv_reg)) ||  (!(lp_reg)))
		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2222

2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
		/*
		 * Now we need to check if the user selected Rx ONLY
		 * of pause frames.  In this case, we had to advertise
		 * FULL flow control because we could not advertise RX
		 * ONLY. Hence, we must now check to see if we need to
		 * turn OFF the TRANSMISSION of PAUSE frames.
		 */
		if (hw->fc.requested_mode == ixgbe_fc_full) {
			hw->fc.current_mode = ixgbe_fc_full;
			hw_dbg(hw, "Flow Control = FULL.\n");
		} else {
			hw->fc.current_mode = ixgbe_fc_rx_pause;
			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
		}
	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
		hw->fc.current_mode = ixgbe_fc_tx_pause;
		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
		hw->fc.current_mode = ixgbe_fc_rx_pause;
		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2246
	} else {
2247 2248
		hw->fc.current_mode = ixgbe_fc_none;
		hw_dbg(hw, "Flow Control = NONE.\n");
2249
	}
2250
	return 0;
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
}

/**
 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according on 1 gig fiber.
 **/
static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
{
	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2262
	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2263 2264 2265 2266 2267 2268

	/*
	 * On multispeed fiber at 1g, bail out if
	 * - link is up but AN did not complete, or if
	 * - link is up and AN completed but timed out
	 */
2269 2270

	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2271
	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2272
	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2273
		goto out;
2274

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);

	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
			       IXGBE_PCS1GANA_ASM_PAUSE,
			       IXGBE_PCS1GANA_SYM_PAUSE,
			       IXGBE_PCS1GANA_ASM_PAUSE);

out:
	return ret_val;
}

/**
 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according to IEEE clause 37.
 **/
static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
{
	u32 links2, anlp1_reg, autoc_reg, links;
2297
	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2298

2299
	/*
2300 2301 2302
	 * On backplane, bail out if
	 * - backplane autoneg was not completed, or if
	 * - we are 82599 and link partner is not AN enabled
2303
	 */
2304
	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2305
	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2306 2307
		goto out;

2308 2309
	if (hw->mac.type == ixgbe_mac_82599EB) {
		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2310
		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2311 2312
			goto out;
	}
2313
	/*
2314
	 * Read the 10g AN autoc and LP ability registers and resolve
2315 2316
	 * local flow control settings accordingly
	 */
2317 2318
	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2319

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);

out:
	return ret_val;
}

/**
 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
 *  @hw: pointer to hardware structure
 *
 *  Enable flow control according to IEEE clause 37.
 **/
static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
{
	u16 technology_ability_reg = 0;
	u16 lp_technology_ability_reg = 0;

	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
			     MDIO_MMD_AN,
			     &technology_ability_reg);
	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
			     MDIO_MMD_AN,
			     &lp_technology_ability_reg);

	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
				  (u32)lp_technology_ability_reg,
				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
}

/**
2353
 *  ixgbe_fc_autoneg - Configure flow control
2354 2355
 *  @hw: pointer to hardware structure
 *
2356 2357
 *  Compares our advertised flow control capabilities to those advertised by
 *  our link partner, and determines the proper flow control mode to use.
2358
 **/
2359
void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2360
{
2361 2362 2363
	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
	ixgbe_link_speed speed;
	bool link_up;
2364 2365

	/*
2366 2367 2368 2369 2370 2371 2372
	 * AN should have completed when the cable was plugged in.
	 * Look for reasons to bail out.  Bail out if:
	 * - FC autoneg is disabled, or if
	 * - link is not up.
	 *
	 * Since we're being called from an LSC, link is already known to be up.
	 * So use link_up_wait_to_complete=false.
2373
	 */
2374
	if (hw->fc.disable_fc_autoneg)
2375
		goto out;
2376

2377 2378
	hw->mac.ops.check_link(hw, &speed, &link_up, false);
	if (!link_up)
2379
		goto out;
2380 2381

	switch (hw->phy.media_type) {
2382
	/* Autoneg flow control on fiber adapters */
2383
	case ixgbe_media_type_fiber:
2384 2385 2386 2387 2388
		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
			ret_val = ixgbe_fc_autoneg_fiber(hw);
		break;

	/* Autoneg flow control on backplane adapters */
2389
	case ixgbe_media_type_backplane:
2390
		ret_val = ixgbe_fc_autoneg_backplane(hw);
2391 2392
		break;

2393
	/* Autoneg flow control on copper adapters */
2394
	case ixgbe_media_type_copper:
2395 2396
		if (ixgbe_device_supports_autoneg_fc(hw) == 0)
			ret_val = ixgbe_fc_autoneg_copper(hw);
2397 2398 2399
		break;

	default:
2400
		break;
2401
	}
2402

2403
out:
2404 2405 2406 2407 2408 2409
	if (ret_val == 0) {
		hw->fc.fc_was_autonegged = true;
	} else {
		hw->fc.fc_was_autonegged = false;
		hw->fc.current_mode = hw->fc.requested_mode;
	}
2410 2411
}

2412 2413 2414 2415 2416 2417 2418 2419 2420
/**
 *  ixgbe_disable_pcie_master - Disable PCI-express master access
 *  @hw: pointer to hardware structure
 *
 *  Disables PCI-Express master access and verifies there are no pending
 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
 *  bit hasn't caused the master requests to be disabled, else 0
 *  is returned signifying master requests disabled.
 **/
2421
static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2422
{
2423 2424
	struct ixgbe_adapter *adapter = hw->back;
	s32 status = 0;
2425 2426 2427 2428 2429
	u32 i;
	u16 value;

	/* Always set this bit to ensure any future transactions are blocked */
	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2430

2431
	/* Exit if master requests are blocked */
2432 2433
	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
		goto out;
2434

2435
	/* Poll for master request bit to clear */
2436
	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2437
		udelay(100);
2438 2439
		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
			goto out;
2440 2441
	}

2442 2443 2444 2445 2446 2447 2448 2449
	/*
	 * Two consecutive resets are required via CTRL.RST per datasheet
	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
	 * of this need.  The first reset prevents new master requests from
	 * being issued by our device.  We then must wait 1usec or more for any
	 * remaining completions from the PCIe bus to trickle in, and then reset
	 * again to clear out any effects they may have had on our device.
	 */
2450
	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2451
	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2452 2453 2454 2455 2456 2457

	/*
	 * Before proceeding, make sure that the PCIe block does not have
	 * transactions pending.
	 */
	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2458
		udelay(100);
2459 2460 2461 2462
		pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
							 &value);
		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
			goto out;
2463 2464
	}

2465 2466
	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2467 2468

out:
2469 2470 2471 2472
	return status;
}

/**
2473
 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2474
 *  @hw: pointer to hardware structure
2475
 *  @mask: Mask to specify which semaphore to acquire
2476
 *
E
Emil Tantilov 已提交
2477
 *  Acquires the SWFW semaphore through the GSSR register for the specified
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
 **/
s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
{
	u32 gssr;
	u32 swmask = mask;
	u32 fwmask = mask << 5;
	s32 timeout = 200;

	while (timeout) {
2488 2489 2490 2491
		/*
		 * SW EEPROM semaphore bit is used for access to all
		 * SW_FW_SYNC/GSSR bits (not just EEPROM)
		 */
2492
		if (ixgbe_get_eeprom_semaphore(hw))
2493
			return IXGBE_ERR_SWFW_SYNC;
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503

		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
		if (!(gssr & (fwmask | swmask)))
			break;

		/*
		 * Firmware currently using resource (fwmask) or other software
		 * thread currently using resource (swmask)
		 */
		ixgbe_release_eeprom_semaphore(hw);
2504
		usleep_range(5000, 10000);
2505 2506 2507 2508
		timeout--;
	}

	if (!timeout) {
2509
		hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n");
2510
		return IXGBE_ERR_SWFW_SYNC;
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
	}

	gssr |= swmask;
	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);

	ixgbe_release_eeprom_semaphore(hw);
	return 0;
}

/**
 *  ixgbe_release_swfw_sync - Release SWFW semaphore
 *  @hw: pointer to hardware structure
2523
 *  @mask: Mask to specify which semaphore to release
2524
 *
E
Emil Tantilov 已提交
2525
 *  Releases the SWFW semaphore through the GSSR register for the specified
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
 **/
void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
{
	u32 gssr;
	u32 swmask = mask;

	ixgbe_get_eeprom_semaphore(hw);

	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
	gssr &= ~swmask;
	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);

	ixgbe_release_eeprom_semaphore(hw);
}

2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
/**
 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
 *  @hw: pointer to hardware structure
 *
 *  Stops the receive data path and waits for the HW to internally
 *  empty the Rx security block.
 **/
s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
{
#define IXGBE_MAX_SECRX_POLL 40
	int i;
	int secrxreg;

	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
			break;
		else
			/* Use interrupt-safe sleep just in case */
2564
			udelay(1000);
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
	}

	/* For informational purposes only */
	if (i >= IXGBE_MAX_SECRX_POLL)
		hw_dbg(hw, "Rx unit being enabled before security "
		       "path fully disabled.  Continuing with init.\n");

	return 0;

}

/**
 *  ixgbe_enable_rx_buff - Enables the receive data path
 *  @hw: pointer to hardware structure
 *
 *  Enables the receive data path
 **/
s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
{
	int secrxreg;

	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
	IXGBE_WRITE_FLUSH(hw);

	return 0;
}

2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
/**
 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
 *  @hw: pointer to hardware structure
 *  @regval: register value to write to RXCTRL
 *
 *  Enables the Rx DMA unit
 **/
s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
{
	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);

	return 0;
}
2607 2608 2609 2610 2611 2612 2613 2614 2615

/**
 *  ixgbe_blink_led_start_generic - Blink LED based on index.
 *  @hw: pointer to hardware structure
 *  @index: led number to blink
 **/
s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
{
	ixgbe_link_speed speed = 0;
2616
	bool link_up = false;
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

	/*
	 * Link must be up to auto-blink the LEDs;
	 * Force it if link is down.
	 */
	hw->mac.ops.check_link(hw, &speed, &link_up, false);

	if (!link_up) {
2627
		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2628 2629
		autoc_reg |= IXGBE_AUTOC_FLU;
		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2630
		IXGBE_WRITE_FLUSH(hw);
2631
		usleep_range(10000, 20000);
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
	}

	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg |= IXGBE_LED_BLINK(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
	IXGBE_WRITE_FLUSH(hw);

	return 0;
}

/**
 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
 *  @hw: pointer to hardware structure
 *  @index: led number to stop blinking
 **/
s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
{
	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);

	autoc_reg &= ~IXGBE_AUTOC_FLU;
	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);

	led_reg &= ~IXGBE_LED_MODE_MASK(index);
	led_reg &= ~IXGBE_LED_BLINK(index);
	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
	IXGBE_WRITE_FLUSH(hw);

	return 0;
}
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740

/**
 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
 *  @hw: pointer to hardware structure
 *  @san_mac_offset: SAN MAC address offset
 *
 *  This function will read the EEPROM location for the SAN MAC address
 *  pointer, and returns the value at that location.  This is used in both
 *  get and set mac_addr routines.
 **/
static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
                                        u16 *san_mac_offset)
{
	/*
	 * First read the EEPROM pointer to see if the MAC addresses are
	 * available.
	 */
	hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);

	return 0;
}

/**
 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
 *  @hw: pointer to hardware structure
 *  @san_mac_addr: SAN MAC address
 *
 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
 *  per-port, so set_lan_id() must be called before reading the addresses.
 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
 *  upon for non-SFP connections, so we must call it here.
 **/
s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
{
	u16 san_mac_data, san_mac_offset;
	u8 i;

	/*
	 * First read the EEPROM pointer to see if the MAC addresses are
	 * available.  If they're not, no point in calling set_lan_id() here.
	 */
	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);

	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
		/*
		 * No addresses available in this EEPROM.  It's not an
		 * error though, so just wipe the local address and return.
		 */
		for (i = 0; i < 6; i++)
			san_mac_addr[i] = 0xFF;

		goto san_mac_addr_out;
	}

	/* make sure we know which port we need to program */
	hw->mac.ops.set_lan_id(hw);
	/* apply the port offset to the address offset */
	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
	                 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
	for (i = 0; i < 3; i++) {
		hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
		san_mac_addr[i * 2] = (u8)(san_mac_data);
		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
		san_mac_offset++;
	}

san_mac_addr_out:
	return 0;
}

/**
 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
 *  @hw: pointer to hardware structure
 *
 *  Read PCIe configuration space, and get the MSI-X vector count from
 *  the capabilities table.
 **/
2741
u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2742 2743
{
	struct ixgbe_adapter *adapter = hw->back;
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
	u16 msix_count = 1;
	u16 max_msix_count;
	u16 pcie_offset;

	switch (hw->mac.type) {
	case ixgbe_mac_82598EB:
		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
		break;
	case ixgbe_mac_82599EB:
	case ixgbe_mac_X540:
		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
		break;
	default:
		return msix_count;
	}

	pci_read_config_word(adapter->pdev, pcie_offset, &msix_count);
2763 2764
	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;

2765
	/* MSI-X count is zero-based in HW */
2766 2767
	msix_count++;

2768 2769 2770
	if (msix_count > max_msix_count)
		msix_count = max_msix_count;

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
	return msix_count;
}

/**
 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
 *  @hw: pointer to hardware struct
 *  @rar: receive address register index to disassociate
 *  @vmdq: VMDq pool index to remove from the rar
 **/
s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
{
	u32 mpsar_lo, mpsar_hi;
	u32 rar_entries = hw->mac.num_rar_entries;

2785 2786 2787 2788 2789
	/* Make sure we are using a valid rar index range */
	if (rar >= rar_entries) {
		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
		return IXGBE_ERR_INVALID_ARGUMENT;
	}
2790

2791 2792
	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2793

2794 2795
	if (!mpsar_lo && !mpsar_hi)
		goto done;
2796

2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
		if (mpsar_lo) {
			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
			mpsar_lo = 0;
		}
		if (mpsar_hi) {
			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
			mpsar_hi = 0;
		}
	} else if (vmdq < 32) {
		mpsar_lo &= ~(1 << vmdq);
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2809
	} else {
2810 2811
		mpsar_hi &= ~(1 << (vmdq - 32));
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2812 2813
	}

2814 2815 2816
	/* was that the last pool using this rar? */
	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
		hw->mac.ops.clear_rar(hw, rar);
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
done:
	return 0;
}

/**
 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
 *  @hw: pointer to hardware struct
 *  @rar: receive address register index to associate with a VMDq index
 *  @vmdq: VMDq pool index
 **/
s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
{
	u32 mpsar;
	u32 rar_entries = hw->mac.num_rar_entries;

2832 2833
	/* Make sure we are using a valid rar index range */
	if (rar >= rar_entries) {
2834
		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
		return IXGBE_ERR_INVALID_ARGUMENT;
	}

	if (vmdq < 32) {
		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
		mpsar |= 1 << vmdq;
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
	} else {
		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
		mpsar |= 1 << (vmdq - 32);
		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
	}
	return 0;
}

/**
 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
 *  @hw: pointer to hardware structure
 **/
s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
{
	int i;

	for (i = 0; i < 128; i++)
		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);

	return 0;
}

/**
 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
 *  @hw: pointer to hardware structure
 *  @vlan: VLAN id to write to VLAN filter
 *
 *  return the VLVF index where this VLAN id should be placed
 *
 **/
E
Emil Tantilov 已提交
2872
static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
{
	u32 bits = 0;
	u32 first_empty_slot = 0;
	s32 regindex;

	/* short cut the special case */
	if (vlan == 0)
		return 0;

	/*
	  * Search for the vlan id in the VLVF entries. Save off the first empty
	  * slot found along the way
	  */
	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
		if (!bits && !(first_empty_slot))
			first_empty_slot = regindex;
		else if ((bits & 0x0FFF) == vlan)
			break;
	}

	/*
	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
	  * in the VLVF. Else use the first empty VLVF register for this
	  * vlan id.
	  */
	if (regindex >= IXGBE_VLVF_ENTRIES) {
		if (first_empty_slot)
			regindex = first_empty_slot;
		else {
			hw_dbg(hw, "No space in VLVF.\n");
			regindex = IXGBE_ERR_NO_SPACE;
		}
	}

	return regindex;
}

/**
 *  ixgbe_set_vfta_generic - Set VLAN filter table
 *  @hw: pointer to hardware structure
 *  @vlan: VLAN id to write to VLAN filter
 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
 *
 *  Turn on/off specified VLAN in the VLAN filter table.
 **/
s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
                           bool vlan_on)
{
	s32 regindex;
	u32 bitindex;
	u32 vfta;
	u32 bits;
	u32 vt;
	u32 targetbit;
	bool vfta_changed = false;

	if (vlan > 4095)
		return IXGBE_ERR_PARAM;

	/*
	 * this is a 2 part operation - first the VFTA, then the
	 * VLVF and VLVFB if VT Mode is set
	 * We don't write the VFTA until we know the VLVF part succeeded.
	 */

	/* Part 1
	 * The VFTA is a bitstring made up of 128 32-bit registers
	 * that enable the particular VLAN id, much like the MTA:
	 *    bits[11-5]: which register
	 *    bits[4-0]:  which bit in the register
	 */
	regindex = (vlan >> 5) & 0x7F;
	bitindex = vlan & 0x1F;
	targetbit = (1 << bitindex);
	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));

	if (vlan_on) {
		if (!(vfta & targetbit)) {
			vfta |= targetbit;
			vfta_changed = true;
		}
	} else {
		if ((vfta & targetbit)) {
			vfta &= ~targetbit;
			vfta_changed = true;
		}
	}

	/* Part 2
	 * If VT Mode is set
	 *   Either vlan_on
	 *     make sure the vlan is in VLVF
	 *     set the vind bit in the matching VLVFB
	 *   Or !vlan_on
	 *     clear the pool bit and possibly the vind
	 */
	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
		s32 vlvf_index;

		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
		if (vlvf_index < 0)
			return vlvf_index;

		if (vlan_on) {
			/* set the pool bit */
			if (vind < 32) {
				bits = IXGBE_READ_REG(hw,
						IXGBE_VLVFB(vlvf_index*2));
				bits |= (1 << vind);
				IXGBE_WRITE_REG(hw,
						IXGBE_VLVFB(vlvf_index*2),
						bits);
			} else {
				bits = IXGBE_READ_REG(hw,
						IXGBE_VLVFB((vlvf_index*2)+1));
				bits |= (1 << (vind-32));
				IXGBE_WRITE_REG(hw,
						IXGBE_VLVFB((vlvf_index*2)+1),
						bits);
			}
		} else {
			/* clear the pool bit */
			if (vind < 32) {
				bits = IXGBE_READ_REG(hw,
						IXGBE_VLVFB(vlvf_index*2));
				bits &= ~(1 << vind);
				IXGBE_WRITE_REG(hw,
						IXGBE_VLVFB(vlvf_index*2),
						bits);
				bits |= IXGBE_READ_REG(hw,
						IXGBE_VLVFB((vlvf_index*2)+1));
			} else {
				bits = IXGBE_READ_REG(hw,
						IXGBE_VLVFB((vlvf_index*2)+1));
				bits &= ~(1 << (vind-32));
				IXGBE_WRITE_REG(hw,
						IXGBE_VLVFB((vlvf_index*2)+1),
						bits);
				bits |= IXGBE_READ_REG(hw,
						IXGBE_VLVFB(vlvf_index*2));
			}
		}

		/*
		 * If there are still bits set in the VLVFB registers
		 * for the VLAN ID indicated we need to see if the
		 * caller is requesting that we clear the VFTA entry bit.
		 * If the caller has requested that we clear the VFTA
		 * entry bit but there are still pools/VFs using this VLAN
		 * ID entry then ignore the request.  We're not worried
		 * about the case where we're turning the VFTA VLAN ID
		 * entry bit on, only when requested to turn it off as
		 * there may be multiple pools and/or VFs using the
		 * VLAN ID entry.  In that case we cannot clear the
		 * VFTA bit until all pools/VFs using that VLAN ID have also
		 * been cleared.  This will be indicated by "bits" being
		 * zero.
		 */
		if (bits) {
			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
					(IXGBE_VLVF_VIEN | vlan));
			if (!vlan_on) {
				/* someone wants to clear the vfta entry
				 * but some pools/VFs are still using it.
				 * Ignore it. */
				vfta_changed = false;
			}
		}
		else
			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
	}

	if (vfta_changed)
		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);

	return 0;
}

/**
 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
 *  @hw: pointer to hardware structure
 *
 *  Clears the VLAN filer table, and the VMDq index associated with the filter
 **/
s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
{
	u32 offset;

	for (offset = 0; offset < hw->mac.vft_size; offset++)
		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);

	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
	}

	return 0;
}

/**
 *  ixgbe_check_mac_link_generic - Determine link and speed status
 *  @hw: pointer to hardware structure
 *  @speed: pointer to link speed
 *  @link_up: true when link is up
 *  @link_up_wait_to_complete: bool used to wait for link up or not
 *
 *  Reads the links register to determine if link is up and the current speed
 **/
s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3086
				 bool *link_up, bool link_up_wait_to_complete)
3087
{
3088
	u32 links_reg, links_orig;
3089 3090
	u32 i;

3091 3092 3093
	/* clear the old state */
	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);

3094
	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3095 3096 3097 3098 3099 3100

	if (links_orig != links_reg) {
		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
		       links_orig, links_reg);
	}

3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
	if (link_up_wait_to_complete) {
		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
			if (links_reg & IXGBE_LINKS_UP) {
				*link_up = true;
				break;
			} else {
				*link_up = false;
			}
			msleep(100);
			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
		}
	} else {
		if (links_reg & IXGBE_LINKS_UP)
			*link_up = true;
		else
			*link_up = false;
	}

	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
	    IXGBE_LINKS_SPEED_10G_82599)
		*speed = IXGBE_LINK_SPEED_10GB_FULL;
	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3123
		 IXGBE_LINKS_SPEED_1G_82599)
3124
		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3125 3126
	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
		 IXGBE_LINKS_SPEED_100_82599)
3127
		*speed = IXGBE_LINK_SPEED_100_FULL;
3128 3129
	else
		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3130 3131 3132

	return 0;
}
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177

/**
 *  ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from
 *  the EEPROM
 *  @hw: pointer to hardware structure
 *  @wwnn_prefix: the alternative WWNN prefix
 *  @wwpn_prefix: the alternative WWPN prefix
 *
 *  This function will read the EEPROM from the alternative SAN MAC address
 *  block to check the support for the alternative WWNN/WWPN prefix support.
 **/
s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
                                        u16 *wwpn_prefix)
{
	u16 offset, caps;
	u16 alt_san_mac_blk_offset;

	/* clear output first */
	*wwnn_prefix = 0xFFFF;
	*wwpn_prefix = 0xFFFF;

	/* check if alternative SAN MAC is supported */
	hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
	                    &alt_san_mac_blk_offset);

	if ((alt_san_mac_blk_offset == 0) ||
	    (alt_san_mac_blk_offset == 0xFFFF))
		goto wwn_prefix_out;

	/* check capability in alternative san mac address block */
	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
	hw->eeprom.ops.read(hw, offset, &caps);
	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
		goto wwn_prefix_out;

	/* get the corresponding prefix for WWNN/WWPN */
	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
	hw->eeprom.ops.read(hw, offset, wwnn_prefix);

	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
	hw->eeprom.ops.read(hw, offset, wwpn_prefix);

wwn_prefix_out:
	return 0;
}
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241

/**
 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
 *  @hw: pointer to hardware structure
 *  @enable: enable or disable switch for anti-spoofing
 *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
 *
 **/
void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
{
	int j;
	int pf_target_reg = pf >> 3;
	int pf_target_shift = pf % 8;
	u32 pfvfspoof = 0;

	if (hw->mac.type == ixgbe_mac_82598EB)
		return;

	if (enable)
		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;

	/*
	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
	 * MAC anti-spoof enables in each register array element.
	 */
	for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);

	/* If not enabling anti-spoofing then done */
	if (!enable)
		return;

	/*
	 * The PF should be allowed to spoof so that it can support
	 * emulation mode NICs.  Reset the bit assigned to the PF
	 */
	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg));
	pfvfspoof ^= (1 << pf_target_shift);
	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof);
}

/**
 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
 *  @hw: pointer to hardware structure
 *  @enable: enable or disable switch for VLAN anti-spoofing
 *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
 *
 **/
void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
{
	int vf_target_reg = vf >> 3;
	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
	u32 pfvfspoof;

	if (hw->mac.type == ixgbe_mac_82598EB)
		return;

	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
	if (enable)
		pfvfspoof |= (1 << vf_target_shift);
	else
		pfvfspoof &= ~(1 << vf_target_shift);
	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
}
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256

/**
 *  ixgbe_get_device_caps_generic - Get additional device capabilities
 *  @hw: pointer to hardware structure
 *  @device_caps: the EEPROM word with the extra device capabilities
 *
 *  This function will read the EEPROM location for the device capabilities,
 *  and return the word through device_caps.
 **/
s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
{
	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);

	return 0;
}
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322

/**
 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
 * @hw: pointer to hardware structure
 * @num_pb: number of packet buffers to allocate
 * @headroom: reserve n KB of headroom
 * @strategy: packet buffer allocation strategy
 **/
void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
			     int num_pb,
			     u32 headroom,
			     int strategy)
{
	u32 pbsize = hw->mac.rx_pb_size;
	int i = 0;
	u32 rxpktsize, txpktsize, txpbthresh;

	/* Reserve headroom */
	pbsize -= headroom;

	if (!num_pb)
		num_pb = 1;

	/* Divide remaining packet buffer space amongst the number
	 * of packet buffers requested using supplied strategy.
	 */
	switch (strategy) {
	case (PBA_STRATEGY_WEIGHTED):
		/* pba_80_48 strategy weight first half of packet buffer with
		 * 5/8 of the packet buffer space.
		 */
		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
		pbsize -= rxpktsize * (num_pb / 2);
		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
		for (; i < (num_pb / 2); i++)
			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
		/* Fall through to configure remaining packet buffers */
	case (PBA_STRATEGY_EQUAL):
		/* Divide the remaining Rx packet buffer evenly among the TCs */
		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
		for (; i < num_pb; i++)
			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
		break;
	default:
		break;
	}

	/*
	 * Setup Tx packet buffer and threshold equally for all TCs
	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
	 * 10 since the largest packet we support is just over 9K.
	 */
	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
	for (i = 0; i < num_pb; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
	}

	/* Clear unused TCs, if any, to zero buffer size*/
	for (; i < IXGBE_MAX_PB; i++) {
		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
	}
}
E
Emil Tantilov 已提交
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349

/**
 *  ixgbe_calculate_checksum - Calculate checksum for buffer
 *  @buffer: pointer to EEPROM
 *  @length: size of EEPROM to calculate a checksum for
 *  Calculates the checksum for some buffer on a specified length.  The
 *  checksum calculated is returned.
 **/
static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
{
	u32 i;
	u8 sum = 0;

	if (!buffer)
		return 0;

	for (i = 0; i < length; i++)
		sum += buffer[i];

	return (u8) (0 - sum);
}

/**
 *  ixgbe_host_interface_command - Issue command to manageability block
 *  @hw: pointer to the HW structure
 *  @buffer: contains the command to write and where the return status will
 *           be placed
D
Don Skidmore 已提交
3350
 *  @length: length of buffer, must be multiple of 4 bytes
E
Emil Tantilov 已提交
3351 3352 3353 3354
 *
 *  Communicates with the manageability block.  On success return 0
 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
 **/
3355
static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
E
Emil Tantilov 已提交
3356 3357
					u32 length)
{
3358
	u32 hicr, i, bi;
E
Emil Tantilov 已提交
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
	u8 buf_len, dword_len;

	s32 ret_val = 0;

	if (length == 0 || length & 0x3 ||
	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
		hw_dbg(hw, "Buffer length failure.\n");
		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
		goto out;
	}

	/* Check that the host interface is enabled. */
	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
	if ((hicr & IXGBE_HICR_EN) == 0) {
		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
		goto out;
	}

	/* Calculate length in DWORDs */
	dword_len = length >> 2;

	/*
	 * The device driver writes the relevant command block
	 * into the ram area.
	 */
	for (i = 0; i < dword_len; i++)
		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3388
				      i, cpu_to_le32(buffer[i]));
E
Emil Tantilov 已提交
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411

	/* Setting this bit tells the ARC that a new command is pending. */
	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);

	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
		if (!(hicr & IXGBE_HICR_C))
			break;
		usleep_range(1000, 2000);
	}

	/* Check command successful completion. */
	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
		hw_dbg(hw, "Command has failed with no status valid.\n");
		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
		goto out;
	}

	/* Calculate length in DWORDs */
	dword_len = hdr_size >> 2;

	/* first pull in the header so we know the buffer length */
3412 3413 3414
	for (bi = 0; bi < dword_len; bi++) {
		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
		le32_to_cpus(&buffer[bi]);
3415
	}
E
Emil Tantilov 已提交
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427

	/* If there is any thing in data position pull it in */
	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
	if (buf_len == 0)
		goto out;

	if (length < (buf_len + hdr_size)) {
		hw_dbg(hw, "Buffer not large enough for reply message.\n");
		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
		goto out;
	}

3428 3429
	/* Calculate length in DWORDs, add 3 for odd lengths */
	dword_len = (buf_len + 3) >> 2;
E
Emil Tantilov 已提交
3430

3431 3432 3433 3434 3435
	/* Pull in the rest of the buffer (bi is where we left off)*/
	for (; bi <= dword_len; bi++) {
		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
		le32_to_cpus(&buffer[bi]);
	}
E
Emil Tantilov 已提交
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480

out:
	return ret_val;
}

/**
 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
 *  @hw: pointer to the HW structure
 *  @maj: driver version major number
 *  @min: driver version minor number
 *  @build: driver version build number
 *  @sub: driver version sub build number
 *
 *  Sends driver version number to firmware through the manageability
 *  block.  On success return 0
 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
 **/
s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
				 u8 build, u8 sub)
{
	struct ixgbe_hic_drv_info fw_cmd;
	int i;
	s32 ret_val = 0;

	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
		ret_val = IXGBE_ERR_SWFW_SYNC;
		goto out;
	}

	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
	fw_cmd.port_num = (u8)hw->bus.func;
	fw_cmd.ver_maj = maj;
	fw_cmd.ver_min = min;
	fw_cmd.ver_build = build;
	fw_cmd.ver_sub = sub;
	fw_cmd.hdr.checksum = 0;
	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
	fw_cmd.pad = 0;
	fw_cmd.pad2 = 0;

	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3481
		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
E
Emil Tantilov 已提交
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
						       sizeof(fw_cmd));
		if (ret_val != 0)
			continue;

		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
		    FW_CEM_RESP_STATUS_SUCCESS)
			ret_val = 0;
		else
			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;

		break;
	}

	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
out:
	return ret_val;
}
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539

/**
 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
 * @hw: pointer to the hardware structure
 *
 * The 82599 and x540 MACs can experience issues if TX work is still pending
 * when a reset occurs.  This function prevents this by flushing the PCIe
 * buffers on the system.
 **/
void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
{
	u32 gcr_ext, hlreg0;

	/*
	 * If double reset is not requested then all transactions should
	 * already be clear and as such there is no work to do
	 */
	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
		return;

	/*
	 * Set loopback enable to prevent any transmits from being sent
	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
	 * has already been cleared.
	 */
	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);

	/* initiate cleaning flow for buffers in the PCIe transaction layer */
	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);

	/* Flush all writes and allow 20usec for all transactions to clear */
	IXGBE_WRITE_FLUSH(hw);
	udelay(20);

	/* restore previous register values */
	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
}
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604

static const u8 ixgbe_emc_temp_data[4] = {
	IXGBE_EMC_INTERNAL_DATA,
	IXGBE_EMC_DIODE1_DATA,
	IXGBE_EMC_DIODE2_DATA,
	IXGBE_EMC_DIODE3_DATA
};
static const u8 ixgbe_emc_therm_limit[4] = {
	IXGBE_EMC_INTERNAL_THERM_LIMIT,
	IXGBE_EMC_DIODE1_THERM_LIMIT,
	IXGBE_EMC_DIODE2_THERM_LIMIT,
	IXGBE_EMC_DIODE3_THERM_LIMIT
};

/**
 *  ixgbe_get_ets_data - Extracts the ETS bit data
 *  @hw: pointer to hardware structure
 *  @ets_cfg: extected ETS data
 *  @ets_offset: offset of ETS data
 *
 *  Returns error code.
 **/
static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
			      u16 *ets_offset)
{
	s32 status = 0;

	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
	if (status)
		goto out;

	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) {
		status = IXGBE_NOT_IMPLEMENTED;
		goto out;
	}

	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
	if (status)
		goto out;

	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) {
		status = IXGBE_NOT_IMPLEMENTED;
		goto out;
	}

out:
	return status;
}

/**
 *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
 *  @hw: pointer to hardware structure
 *
 *  Returns the thermal sensor data structure
 **/
s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
{
	s32 status = 0;
	u16 ets_offset;
	u16 ets_cfg;
	u16 ets_sensor;
	u8  num_sensors;
	u8  i;
	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;

3605 3606
	/* Only support thermal sensors attached to physical port 0 */
	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
		status = IXGBE_NOT_IMPLEMENTED;
		goto out;
	}

	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
	if (status)
		goto out;

	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
	if (num_sensors > IXGBE_MAX_SENSORS)
		num_sensors = IXGBE_MAX_SENSORS;

	for (i = 0; i < num_sensors; i++) {
		u8  sensor_index;
		u8  sensor_location;

		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
					     &ets_sensor);
		if (status)
			goto out;

		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
				IXGBE_ETS_DATA_INDEX_SHIFT);
		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
				   IXGBE_ETS_DATA_LOC_SHIFT);

		if (sensor_location != 0) {
			status = hw->phy.ops.read_i2c_byte(hw,
					ixgbe_emc_temp_data[sensor_index],
					IXGBE_I2C_THERMAL_SENSOR_ADDR,
					&data->sensor[i].temp);
			if (status)
				goto out;
		}
	}
out:
	return status;
}

/**
 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
 * @hw: pointer to hardware structure
 *
 * Inits the thermal sensor thresholds according to the NVM map
 * and save off the threshold and location values into mac.thermal_sensor_data
 **/
s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
{
	s32 status = 0;
	u16 ets_offset;
	u16 ets_cfg;
	u16 ets_sensor;
	u8  low_thresh_delta;
	u8  num_sensors;
	u8  therm_limit;
	u8  i;
	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;

	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));

3667 3668
	/* Only support thermal sensors attached to physical port 0 */
	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
		status = IXGBE_NOT_IMPLEMENTED;
		goto out;
	}

	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
	if (status)
		goto out;

	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
	if (num_sensors > IXGBE_MAX_SENSORS)
		num_sensors = IXGBE_MAX_SENSORS;

	for (i = 0; i < num_sensors; i++) {
		u8  sensor_index;
		u8  sensor_location;

		hw->eeprom.ops.read(hw, (ets_offset + 1 + i), &ets_sensor);
		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
				IXGBE_ETS_DATA_INDEX_SHIFT);
		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
				   IXGBE_ETS_DATA_LOC_SHIFT);
		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;

		hw->phy.ops.write_i2c_byte(hw,
			ixgbe_emc_therm_limit[sensor_index],
			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);

		if (sensor_location == 0)
			continue;

		data->sensor[i].location = sensor_location;
		data->sensor[i].caution_thresh = therm_limit;
		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
	}
out:
	return status;
}