nouveau_fence.c 11.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright (C) 2007 Ben Skeggs.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial
 * portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */

#include "drmP.h"
#include "drm.h"

#include "nouveau_drv.h"
31
#include "nouveau_ramht.h"
32 33
#include "nouveau_dma.h"

34
#define USE_REFCNT(dev) (nouveau_private(dev)->chipset >= 0x10)
35
#define USE_SEMA(dev) (nouveau_private(dev)->chipset >= 0x17)
36 37 38 39 40 41 42 43

struct nouveau_fence {
	struct nouveau_channel *channel;
	struct kref refcount;
	struct list_head entry;

	uint32_t sequence;
	bool signalled;
44 45 46

	void (*work)(void *priv, bool signalled);
	void *priv;
47 48
};

49 50 51 52 53 54
struct nouveau_semaphore {
	struct kref ref;
	struct drm_device *dev;
	struct drm_mm_node *mem;
};

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
static inline struct nouveau_fence *
nouveau_fence(void *sync_obj)
{
	return (struct nouveau_fence *)sync_obj;
}

static void
nouveau_fence_del(struct kref *ref)
{
	struct nouveau_fence *fence =
		container_of(ref, struct nouveau_fence, refcount);

	kfree(fence);
}

void
nouveau_fence_update(struct nouveau_channel *chan)
{
73 74
	struct drm_device *dev = chan->dev;
	struct nouveau_fence *tmp, *fence;
75 76
	uint32_t sequence;

77 78
	spin_lock(&chan->fence.lock);

79
	if (USE_REFCNT(dev))
80 81
		sequence = nvchan_rd32(chan, 0x48);
	else
82
		sequence = atomic_read(&chan->fence.last_sequence_irq);
83 84

	if (chan->fence.sequence_ack == sequence)
85
		goto out;
86 87
	chan->fence.sequence_ack = sequence;

88
	list_for_each_entry_safe(fence, tmp, &chan->fence.pending, entry) {
89 90 91
		sequence = fence->sequence;
		fence->signalled = true;
		list_del(&fence->entry);
92 93 94 95

		if (unlikely(fence->work))
			fence->work(fence->priv, true);

96 97 98 99 100
		kref_put(&fence->refcount, nouveau_fence_del);

		if (sequence == chan->fence.sequence_ack)
			break;
	}
101
out:
102
	spin_unlock(&chan->fence.lock);
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
}

int
nouveau_fence_new(struct nouveau_channel *chan, struct nouveau_fence **pfence,
		  bool emit)
{
	struct nouveau_fence *fence;
	int ret = 0;

	fence = kzalloc(sizeof(*fence), GFP_KERNEL);
	if (!fence)
		return -ENOMEM;
	kref_init(&fence->refcount);
	fence->channel = chan;

	if (emit)
		ret = nouveau_fence_emit(fence);

	if (ret)
		nouveau_fence_unref((void *)&fence);
	*pfence = fence;
	return ret;
}

struct nouveau_channel *
nouveau_fence_channel(struct nouveau_fence *fence)
{
	return fence ? fence->channel : NULL;
}

int
nouveau_fence_emit(struct nouveau_fence *fence)
{
	struct nouveau_channel *chan = fence->channel;
137
	struct drm_device *dev = chan->dev;
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
	int ret;

	ret = RING_SPACE(chan, 2);
	if (ret)
		return ret;

	if (unlikely(chan->fence.sequence == chan->fence.sequence_ack - 1)) {
		nouveau_fence_update(chan);

		BUG_ON(chan->fence.sequence ==
		       chan->fence.sequence_ack - 1);
	}

	fence->sequence = ++chan->fence.sequence;

	kref_get(&fence->refcount);
154
	spin_lock(&chan->fence.lock);
155
	list_add_tail(&fence->entry, &chan->fence.pending);
156
	spin_unlock(&chan->fence.lock);
157

158
	BEGIN_RING(chan, NvSubSw, USE_REFCNT(dev) ? 0x0050 : 0x0150, 1);
159 160 161 162 163 164
	OUT_RING(chan, fence->sequence);
	FIRE_RING(chan);

	return 0;
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
void
nouveau_fence_work(struct nouveau_fence *fence,
		   void (*work)(void *priv, bool signalled),
		   void *priv)
{
	BUG_ON(fence->work);

	spin_lock(&fence->channel->fence.lock);

	if (fence->signalled) {
		work(priv, true);
	} else {
		fence->work = work;
		fence->priv = priv;
	}

	spin_unlock(&fence->channel->fence.lock);
}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
void
nouveau_fence_unref(void **sync_obj)
{
	struct nouveau_fence *fence = nouveau_fence(*sync_obj);

	if (fence)
		kref_put(&fence->refcount, nouveau_fence_del);
	*sync_obj = NULL;
}

void *
nouveau_fence_ref(void *sync_obj)
{
	struct nouveau_fence *fence = nouveau_fence(sync_obj);

	kref_get(&fence->refcount);
	return sync_obj;
}

bool
nouveau_fence_signalled(void *sync_obj, void *sync_arg)
{
	struct nouveau_fence *fence = nouveau_fence(sync_obj);
	struct nouveau_channel *chan = fence->channel;

	if (fence->signalled)
		return true;

	nouveau_fence_update(chan);
	return fence->signalled;
}

int
nouveau_fence_wait(void *sync_obj, void *sync_arg, bool lazy, bool intr)
{
	unsigned long timeout = jiffies + (3 * DRM_HZ);
	int ret = 0;

	while (1) {
		if (nouveau_fence_signalled(sync_obj, sync_arg))
			break;

		if (time_after_eq(jiffies, timeout)) {
			ret = -EBUSY;
			break;
		}

231 232
		__set_current_state(intr ? TASK_INTERRUPTIBLE
			: TASK_UNINTERRUPTIBLE);
233 234 235 236
		if (lazy)
			schedule_timeout(1);

		if (intr && signal_pending(current)) {
B
Ben Skeggs 已提交
237
			ret = -ERESTARTSYS;
238 239 240 241 242 243 244 245 246
			break;
		}
	}

	__set_current_state(TASK_RUNNING);

	return ret;
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
static struct nouveau_semaphore *
alloc_semaphore(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nouveau_semaphore *sema;

	if (!USE_SEMA(dev))
		return NULL;

	sema = kmalloc(sizeof(*sema), GFP_KERNEL);
	if (!sema)
		goto fail;

	spin_lock(&dev_priv->fence.lock);
	sema->mem = drm_mm_search_free(&dev_priv->fence.heap, 4, 0, 0);
	if (sema->mem)
		sema->mem = drm_mm_get_block(sema->mem, 4, 0);
	spin_unlock(&dev_priv->fence.lock);

	if (!sema->mem)
		goto fail;

	kref_init(&sema->ref);
	sema->dev = dev;
	nouveau_bo_wr32(dev_priv->fence.bo, sema->mem->start / 4, 0);

	return sema;
fail:
	kfree(sema);
	return NULL;
}

static void
free_semaphore(struct kref *ref)
{
	struct nouveau_semaphore *sema =
		container_of(ref, struct nouveau_semaphore, ref);
	struct drm_nouveau_private *dev_priv = sema->dev->dev_private;

	spin_lock(&dev_priv->fence.lock);
	drm_mm_put_block(sema->mem);
	spin_unlock(&dev_priv->fence.lock);

	kfree(sema);
}

static void
semaphore_work(void *priv, bool signalled)
{
	struct nouveau_semaphore *sema = priv;
	struct drm_nouveau_private *dev_priv = sema->dev->dev_private;

	if (unlikely(!signalled))
		nouveau_bo_wr32(dev_priv->fence.bo, sema->mem->start / 4, 1);

	kref_put(&sema->ref, free_semaphore);
}

static int
emit_semaphore(struct nouveau_channel *chan, int method,
	       struct nouveau_semaphore *sema)
{
	struct drm_nouveau_private *dev_priv = sema->dev->dev_private;
	struct nouveau_fence *fence;
311
	bool smart = (dev_priv->card_type >= NV_50);
312 313
	int ret;

314
	ret = RING_SPACE(chan, smart ? 8 : 4);
315 316 317
	if (ret)
		return ret;

318
	if (smart) {
319 320 321 322 323
		BEGIN_RING(chan, NvSubSw, NV_SW_DMA_SEMAPHORE, 1);
		OUT_RING(chan, NvSema);
	}
	BEGIN_RING(chan, NvSubSw, NV_SW_SEMAPHORE_OFFSET, 1);
	OUT_RING(chan, sema->mem->start);
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

	if (smart && method == NV_SW_SEMAPHORE_ACQUIRE) {
		/*
		 * NV50 tries to be too smart and context-switch
		 * between semaphores instead of doing a "first come,
		 * first served" strategy like previous cards
		 * do.
		 *
		 * That's bad because the ACQUIRE latency can get as
		 * large as the PFIFO context time slice in the
		 * typical DRI2 case where you have several
		 * outstanding semaphores at the same moment.
		 *
		 * If we're going to ACQUIRE, force the card to
		 * context switch before, just in case the matching
		 * RELEASE is already scheduled to be executed in
		 * another channel.
		 */
		BEGIN_RING(chan, NvSubSw, NV_SW_YIELD, 1);
		OUT_RING(chan, 0);
	}

346 347 348
	BEGIN_RING(chan, NvSubSw, method, 1);
	OUT_RING(chan, 1);

349 350 351 352 353 354 355 356 357 358
	if (smart && method == NV_SW_SEMAPHORE_RELEASE) {
		/*
		 * Force the card to context switch, there may be
		 * another channel waiting for the semaphore we just
		 * released.
		 */
		BEGIN_RING(chan, NvSubSw, NV_SW_YIELD, 1);
		OUT_RING(chan, 0);
	}

359 360 361 362 363 364 365 366 367 368 369 370
	/* Delay semaphore destruction until its work is done */
	ret = nouveau_fence_new(chan, &fence, true);
	if (ret)
		return ret;

	kref_get(&sema->ref);
	nouveau_fence_work(fence, semaphore_work, sema);
	nouveau_fence_unref((void *)&fence);

	return 0;
}

371 372 373 374 375
int
nouveau_fence_sync(struct nouveau_fence *fence,
		   struct nouveau_channel *wchan)
{
	struct nouveau_channel *chan = nouveau_fence_channel(fence);
376 377 378
	struct drm_device *dev = wchan->dev;
	struct nouveau_semaphore *sema;
	int ret;
379 380 381 382 383

	if (likely(!fence || chan == wchan ||
		   nouveau_fence_signalled(fence, NULL)))
		return 0;

384 385 386 387 388 389 390 391 392
	sema = alloc_semaphore(dev);
	if (!sema) {
		/* Early card or broken userspace, fall back to
		 * software sync. */
		return nouveau_fence_wait(fence, NULL, false, false);
	}

	/* Make wchan wait until it gets signalled */
	ret = emit_semaphore(wchan, NV_SW_SEMAPHORE_ACQUIRE, sema);
393 394
	if (ret)
		goto out;
395

396 397
	/* Signal the semaphore from chan */
	ret = emit_semaphore(chan, NV_SW_SEMAPHORE_RELEASE, sema);
398 399 400
out:
	kref_put(&sema->ref, free_semaphore);
	return ret;
401 402
}

403 404 405 406 407 408 409
int
nouveau_fence_flush(void *sync_obj, void *sync_arg)
{
	return 0;
}

int
410
nouveau_fence_channel_init(struct nouveau_channel *chan)
411
{
412 413
	struct drm_device *dev = chan->dev;
	struct drm_nouveau_private *dev_priv = dev->dev_private;
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	struct nouveau_gpuobj *obj = NULL;
	int ret;

	/* Create an NV_SW object for various sync purposes */
	ret = nouveau_gpuobj_sw_new(chan, NV_SW, &obj);
	if (ret)
		return ret;

	ret = nouveau_ramht_insert(chan, NvSw, obj);
	nouveau_gpuobj_ref(NULL, &obj);
	if (ret)
		return ret;

	ret = RING_SPACE(chan, 2);
	if (ret)
		return ret;
	BEGIN_RING(chan, NvSubSw, 0, 1);
	OUT_RING(chan, NvSw);

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
	/* Create a DMA object for the shared cross-channel sync area. */
	if (USE_SEMA(dev)) {
		struct drm_mm_node *mem = dev_priv->fence.bo->bo.mem.mm_node;

		ret = nouveau_gpuobj_dma_new(chan, NV_CLASS_DMA_IN_MEMORY,
					     mem->start << PAGE_SHIFT,
					     mem->size << PAGE_SHIFT,
					     NV_DMA_ACCESS_RW,
					     NV_DMA_TARGET_VIDMEM, &obj);
		if (ret)
			return ret;

		ret = nouveau_ramht_insert(chan, NvSema, obj);
		nouveau_gpuobj_ref(NULL, &obj);
		if (ret)
			return ret;

		ret = RING_SPACE(chan, 2);
		if (ret)
			return ret;
		BEGIN_RING(chan, NvSubSw, NV_SW_DMA_SEMAPHORE, 1);
		OUT_RING(chan, NvSema);
	}

457 458
	FIRE_RING(chan);

459 460
	INIT_LIST_HEAD(&chan->fence.pending);
	spin_lock_init(&chan->fence.lock);
461
	atomic_set(&chan->fence.last_sequence_irq, 0);
462

463 464 465 466
	return 0;
}

void
467
nouveau_fence_channel_fini(struct nouveau_channel *chan)
468
{
469
	struct nouveau_fence *tmp, *fence;
470

471
	list_for_each_entry_safe(fence, tmp, &chan->fence.pending, entry) {
472 473
		fence->signalled = true;
		list_del(&fence->entry);
474 475 476 477

		if (unlikely(fence->work))
			fence->work(fence->priv, false);

478 479 480 481
		kref_put(&fence->refcount, nouveau_fence_del);
	}
}

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
int
nouveau_fence_init(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	int ret;

	/* Create a shared VRAM heap for cross-channel sync. */
	if (USE_SEMA(dev)) {
		ret = nouveau_bo_new(dev, NULL, 4096, 0, TTM_PL_FLAG_VRAM,
				     0, 0, false, true, &dev_priv->fence.bo);
		if (ret)
			return ret;

		ret = nouveau_bo_pin(dev_priv->fence.bo, TTM_PL_FLAG_VRAM);
		if (ret)
			goto fail;

		ret = nouveau_bo_map(dev_priv->fence.bo);
		if (ret)
			goto fail;

		ret = drm_mm_init(&dev_priv->fence.heap, 0,
				  dev_priv->fence.bo->bo.mem.size);
		if (ret)
			goto fail;

		spin_lock_init(&dev_priv->fence.lock);
	}

	return 0;
fail:
	nouveau_bo_unmap(dev_priv->fence.bo);
	nouveau_bo_ref(NULL, &dev_priv->fence.bo);
	return ret;
}

void
nouveau_fence_fini(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;

	if (USE_SEMA(dev)) {
		drm_mm_takedown(&dev_priv->fence.heap);
		nouveau_bo_unmap(dev_priv->fence.bo);
		nouveau_bo_unpin(dev_priv->fence.bo);
		nouveau_bo_ref(NULL, &dev_priv->fence.bo);
	}
}