fsl_esai.c 23.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/*
 * Freescale ESAI ALSA SoC Digital Audio Interface (DAI) driver
 *
 * Copyright (C) 2014 Freescale Semiconductor, Inc.
 *
 * This file is licensed under the terms of the GNU General Public License
 * version 2. This program is licensed "as is" without any warranty of any
 * kind, whether express or implied.
 */

#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/module.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>

#include "fsl_esai.h"
#include "imx-pcm.h"

#define FSL_ESAI_RATES		SNDRV_PCM_RATE_8000_192000
#define FSL_ESAI_FORMATS	(SNDRV_PCM_FMTBIT_S8 | \
				SNDRV_PCM_FMTBIT_S16_LE | \
				SNDRV_PCM_FMTBIT_S20_3LE | \
				SNDRV_PCM_FMTBIT_S24_LE)

/**
 * fsl_esai: ESAI private data
 *
 * @dma_params_rx: DMA parameters for receive channel
 * @dma_params_tx: DMA parameters for transmit channel
 * @pdev: platform device pointer
 * @regmap: regmap handler
 * @coreclk: clock source to access register
 * @extalclk: esai clock source to derive HCK, SCK and FS
 * @fsysclk: system clock source to derive HCK, SCK and FS
 * @fifo_depth: depth of tx/rx FIFO
 * @slot_width: width of each DAI slot
40
 * @slots: number of slots
41
 * @hck_rate: clock rate of desired HCKx clock
42 43
 * @sck_rate: clock rate of desired SCKx clock
 * @hck_dir: the direction of HCKx pads
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * @sck_div: if using PSR/PM dividers for SCKx clock
 * @slave_mode: if fully using DAI slave mode
 * @synchronous: if using tx/rx synchronous mode
 * @name: driver name
 */
struct fsl_esai {
	struct snd_dmaengine_dai_dma_data dma_params_rx;
	struct snd_dmaengine_dai_dma_data dma_params_tx;
	struct platform_device *pdev;
	struct regmap *regmap;
	struct clk *coreclk;
	struct clk *extalclk;
	struct clk *fsysclk;
	u32 fifo_depth;
	u32 slot_width;
59
	u32 slots;
60
	u32 hck_rate[2];
61 62
	u32 sck_rate[2];
	bool hck_dir[2];
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
	bool sck_div[2];
	bool slave_mode;
	bool synchronous;
	char name[32];
};

static irqreturn_t esai_isr(int irq, void *devid)
{
	struct fsl_esai *esai_priv = (struct fsl_esai *)devid;
	struct platform_device *pdev = esai_priv->pdev;
	u32 esr;

	regmap_read(esai_priv->regmap, REG_ESAI_ESR, &esr);

	if (esr & ESAI_ESR_TINIT_MASK)
		dev_dbg(&pdev->dev, "isr: Transmition Initialized\n");

	if (esr & ESAI_ESR_RFF_MASK)
		dev_warn(&pdev->dev, "isr: Receiving overrun\n");

	if (esr & ESAI_ESR_TFE_MASK)
		dev_warn(&pdev->dev, "isr: Transmition underrun\n");

	if (esr & ESAI_ESR_TLS_MASK)
		dev_dbg(&pdev->dev, "isr: Just transmitted the last slot\n");

	if (esr & ESAI_ESR_TDE_MASK)
		dev_dbg(&pdev->dev, "isr: Transmition data exception\n");

	if (esr & ESAI_ESR_TED_MASK)
		dev_dbg(&pdev->dev, "isr: Transmitting even slots\n");

	if (esr & ESAI_ESR_TD_MASK)
		dev_dbg(&pdev->dev, "isr: Transmitting data\n");

	if (esr & ESAI_ESR_RLS_MASK)
		dev_dbg(&pdev->dev, "isr: Just received the last slot\n");

	if (esr & ESAI_ESR_RDE_MASK)
		dev_dbg(&pdev->dev, "isr: Receiving data exception\n");

	if (esr & ESAI_ESR_RED_MASK)
		dev_dbg(&pdev->dev, "isr: Receiving even slots\n");

	if (esr & ESAI_ESR_RD_MASK)
		dev_dbg(&pdev->dev, "isr: Receiving data\n");

	return IRQ_HANDLED;
}

/**
 * This function is used to calculate the divisors of psr, pm, fp and it is
 * supposed to be called in set_dai_sysclk() and set_bclk().
 *
 * @ratio: desired overall ratio for the paticipating dividers
 * @usefp: for HCK setting, there is no need to set fp divider
 * @fp: bypass other dividers by setting fp directly if fp != 0
 * @tx: current setting is for playback or capture
 */
static int fsl_esai_divisor_cal(struct snd_soc_dai *dai, bool tx, u32 ratio,
				bool usefp, u32 fp)
{
	struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
	u32 psr, pm = 999, maxfp, prod, sub, savesub, i, j;

	maxfp = usefp ? 16 : 1;

	if (usefp && fp)
		goto out_fp;

	if (ratio > 2 * 8 * 256 * maxfp || ratio < 2) {
		dev_err(dai->dev, "the ratio is out of range (2 ~ %d)\n",
				2 * 8 * 256 * maxfp);
		return -EINVAL;
	} else if (ratio % 2) {
		dev_err(dai->dev, "the raio must be even if using upper divider\n");
		return -EINVAL;
	}

	ratio /= 2;

	psr = ratio <= 256 * maxfp ? ESAI_xCCR_xPSR_BYPASS : ESAI_xCCR_xPSR_DIV8;

	/* Set the max fluctuation -- 0.1% of the max devisor */
	savesub = (psr ? 1 : 8)  * 256 * maxfp / 1000;

	/* Find the best value for PM */
	for (i = 1; i <= 256; i++) {
		for (j = 1; j <= maxfp; j++) {
			/* PSR (1 or 8) * PM (1 ~ 256) * FP (1 ~ 16) */
			prod = (psr ? 1 : 8) * i * j;

			if (prod == ratio)
				sub = 0;
			else if (prod / ratio == 1)
				sub = prod - ratio;
			else if (ratio / prod == 1)
				sub = ratio - prod;
			else
				continue;

			/* Calculate the fraction */
			sub = sub * 1000 / ratio;
			if (sub < savesub) {
				savesub = sub;
				pm = i;
				fp = j;
			}

			/* We are lucky */
			if (savesub == 0)
				goto out;
		}
	}

	if (pm == 999) {
		dev_err(dai->dev, "failed to calculate proper divisors\n");
		return -EINVAL;
	}

out:
	regmap_update_bits(esai_priv->regmap, REG_ESAI_xCCR(tx),
			   ESAI_xCCR_xPSR_MASK | ESAI_xCCR_xPM_MASK,
			   psr | ESAI_xCCR_xPM(pm));

out_fp:
	/* Bypass fp if not being required */
	if (maxfp <= 1)
		return 0;

	regmap_update_bits(esai_priv->regmap, REG_ESAI_xCCR(tx),
			   ESAI_xCCR_xFP_MASK, ESAI_xCCR_xFP(fp));

	return 0;
}

/**
 * This function mainly configures the clock frequency of MCLK (HCKT/HCKR)
 *
 * @Parameters:
 * clk_id: The clock source of HCKT/HCKR
 *	  (Input from outside; output from inside, FSYS or EXTAL)
 * freq: The required clock rate of HCKT/HCKR
 * dir: The clock direction of HCKT/HCKR
 *
 * Note: If the direction is input, we do not care about clk_id.
 */
static int fsl_esai_set_dai_sysclk(struct snd_soc_dai *dai, int clk_id,
				   unsigned int freq, int dir)
{
	struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
	struct clk *clksrc = esai_priv->extalclk;
	bool tx = clk_id <= ESAI_HCKT_EXTAL;
	bool in = dir == SND_SOC_CLOCK_IN;
217
	u32 ratio, ecr = 0;
218
	unsigned long clk_rate;
219
	int ret;
220

221 222 223
	/* Bypass divider settings if the requirement doesn't change */
	if (freq == esai_priv->hck_rate[tx] && dir == esai_priv->hck_dir[tx])
		return 0;
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

	/* sck_div can be only bypassed if ETO/ERO=0 and SNC_SOC_CLOCK_OUT */
	esai_priv->sck_div[tx] = true;

	/* Set the direction of HCKT/HCKR pins */
	regmap_update_bits(esai_priv->regmap, REG_ESAI_xCCR(tx),
			   ESAI_xCCR_xHCKD, in ? 0 : ESAI_xCCR_xHCKD);

	if (in)
		goto out;

	switch (clk_id) {
	case ESAI_HCKT_FSYS:
	case ESAI_HCKR_FSYS:
		clksrc = esai_priv->fsysclk;
		break;
	case ESAI_HCKT_EXTAL:
		ecr |= ESAI_ECR_ETI;
	case ESAI_HCKR_EXTAL:
		ecr |= ESAI_ECR_ERI;
		break;
	default:
		return -EINVAL;
	}

	if (IS_ERR(clksrc)) {
		dev_err(dai->dev, "no assigned %s clock\n",
				clk_id % 2 ? "extal" : "fsys");
		return PTR_ERR(clksrc);
	}
	clk_rate = clk_get_rate(clksrc);

	ratio = clk_rate / freq;
	if (ratio * freq > clk_rate)
		ret = ratio * freq - clk_rate;
	else if (ratio * freq < clk_rate)
		ret = clk_rate - ratio * freq;
	else
		ret = 0;

	/* Block if clock source can not be divided into the required rate */
	if (ret != 0 && clk_rate / ret < 1000) {
		dev_err(dai->dev, "failed to derive required HCK%c rate\n",
				tx ? 'T' : 'R');
		return -EINVAL;
	}

271 272
	/* Only EXTAL source can be output directly without using PSR and PM */
	if (ratio == 1 && clksrc == esai_priv->extalclk) {
273 274 275
		/* Bypass all the dividers if not being needed */
		ecr |= tx ? ESAI_ECR_ETO : ESAI_ECR_ERO;
		goto out;
276 277 278 279 280
	} else if (ratio < 2) {
		/* The ratio should be no less than 2 if using other sources */
		dev_err(dai->dev, "failed to derive required HCK%c rate\n",
				tx ? 'T' : 'R');
		return -EINVAL;
281 282 283 284 285 286 287 288 289
	}

	ret = fsl_esai_divisor_cal(dai, tx, ratio, false, 0);
	if (ret)
		return ret;

	esai_priv->sck_div[tx] = false;

out:
290
	esai_priv->hck_dir[tx] = dir;
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	esai_priv->hck_rate[tx] = freq;

	regmap_update_bits(esai_priv->regmap, REG_ESAI_ECR,
			   tx ? ESAI_ECR_ETI | ESAI_ECR_ETO :
			   ESAI_ECR_ERI | ESAI_ECR_ERO, ecr);

	return 0;
}

/**
 * This function configures the related dividers according to the bclk rate
 */
static int fsl_esai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
{
	struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
	u32 hck_rate = esai_priv->hck_rate[tx];
	u32 sub, ratio = hck_rate / freq;
308
	int ret;
309

310 311
	/* Don't apply for fully slave mode or unchanged bclk */
	if (esai_priv->slave_mode || esai_priv->sck_rate[tx] == freq)
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
		return 0;

	if (ratio * freq > hck_rate)
		sub = ratio * freq - hck_rate;
	else if (ratio * freq < hck_rate)
		sub = hck_rate - ratio * freq;
	else
		sub = 0;

	/* Block if clock source can not be divided into the required rate */
	if (sub != 0 && hck_rate / sub < 1000) {
		dev_err(dai->dev, "failed to derive required SCK%c rate\n",
				tx ? 'T' : 'R');
		return -EINVAL;
	}

328 329
	/* The ratio should be contented by FP alone if bypassing PM and PSR */
	if (!esai_priv->sck_div[tx] && (ratio > 16 || ratio == 0)) {
330 331 332 333
		dev_err(dai->dev, "the ratio is out of range (1 ~ 16)\n");
		return -EINVAL;
	}

334
	ret = fsl_esai_divisor_cal(dai, tx, ratio, true,
335
			esai_priv->sck_div[tx] ? 0 : ratio);
336 337 338 339 340 341 342
	if (ret)
		return ret;

	/* Save current bclk rate */
	esai_priv->sck_rate[tx] = freq;

	return 0;
343 344 345 346 347 348 349 350 351 352 353 354 355
}

static int fsl_esai_set_dai_tdm_slot(struct snd_soc_dai *dai, u32 tx_mask,
				     u32 rx_mask, int slots, int slot_width)
{
	struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);

	regmap_update_bits(esai_priv->regmap, REG_ESAI_TCCR,
			   ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(slots));

	regmap_update_bits(esai_priv->regmap, REG_ESAI_TSMA,
			   ESAI_xSMA_xS_MASK, ESAI_xSMA_xS(tx_mask));
	regmap_update_bits(esai_priv->regmap, REG_ESAI_TSMB,
356
			   ESAI_xSMB_xS_MASK, ESAI_xSMB_xS(tx_mask));
357 358 359 360 361 362 363

	regmap_update_bits(esai_priv->regmap, REG_ESAI_RCCR,
			   ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(slots));

	regmap_update_bits(esai_priv->regmap, REG_ESAI_RSMA,
			   ESAI_xSMA_xS_MASK, ESAI_xSMA_xS(rx_mask));
	regmap_update_bits(esai_priv->regmap, REG_ESAI_RSMB,
364
			   ESAI_xSMB_xS_MASK, ESAI_xSMB_xS(rx_mask));
365 366

	esai_priv->slot_width = slot_width;
367
	esai_priv->slots = slots;
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

	return 0;
}

static int fsl_esai_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
	struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
	u32 xcr = 0, xccr = 0, mask;

	/* DAI mode */
	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
	case SND_SOC_DAIFMT_I2S:
		/* Data on rising edge of bclk, frame low, 1clk before data */
		xcr |= ESAI_xCR_xFSR;
		xccr |= ESAI_xCCR_xFSP | ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
		break;
	case SND_SOC_DAIFMT_LEFT_J:
		/* Data on rising edge of bclk, frame high */
		xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
		break;
	case SND_SOC_DAIFMT_RIGHT_J:
		/* Data on rising edge of bclk, frame high, right aligned */
		xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP | ESAI_xCR_xWA;
		break;
	case SND_SOC_DAIFMT_DSP_A:
		/* Data on rising edge of bclk, frame high, 1clk before data */
		xcr |= ESAI_xCR_xFSL | ESAI_xCR_xFSR;
		xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
		break;
	case SND_SOC_DAIFMT_DSP_B:
		/* Data on rising edge of bclk, frame high */
		xcr |= ESAI_xCR_xFSL;
		xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
		break;
	default:
		return -EINVAL;
	}

	/* DAI clock inversion */
	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
	case SND_SOC_DAIFMT_NB_NF:
		/* Nothing to do for both normal cases */
		break;
	case SND_SOC_DAIFMT_IB_NF:
		/* Invert bit clock */
		xccr ^= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
		break;
	case SND_SOC_DAIFMT_NB_IF:
		/* Invert frame clock */
		xccr ^= ESAI_xCCR_xFSP;
		break;
	case SND_SOC_DAIFMT_IB_IF:
		/* Invert both clocks */
		xccr ^= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP | ESAI_xCCR_xFSP;
		break;
	default:
		return -EINVAL;
	}

	esai_priv->slave_mode = false;

	/* DAI clock master masks */
	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
	case SND_SOC_DAIFMT_CBM_CFM:
		esai_priv->slave_mode = true;
		break;
	case SND_SOC_DAIFMT_CBS_CFM:
		xccr |= ESAI_xCCR_xCKD;
		break;
	case SND_SOC_DAIFMT_CBM_CFS:
		xccr |= ESAI_xCCR_xFSD;
		break;
	case SND_SOC_DAIFMT_CBS_CFS:
		xccr |= ESAI_xCCR_xFSD | ESAI_xCCR_xCKD;
		break;
	default:
		return -EINVAL;
	}

	mask = ESAI_xCR_xFSL | ESAI_xCR_xFSR;
	regmap_update_bits(esai_priv->regmap, REG_ESAI_TCR, mask, xcr);
	regmap_update_bits(esai_priv->regmap, REG_ESAI_RCR, mask, xcr);

	mask = ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP | ESAI_xCCR_xFSP |
		ESAI_xCCR_xFSD | ESAI_xCCR_xCKD | ESAI_xCR_xWA;
	regmap_update_bits(esai_priv->regmap, REG_ESAI_TCCR, mask, xccr);
	regmap_update_bits(esai_priv->regmap, REG_ESAI_RCCR, mask, xccr);

	return 0;
}

static int fsl_esai_startup(struct snd_pcm_substream *substream,
			    struct snd_soc_dai *dai)
{
	struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
463
	int ret;
464 465 466 467 468

	/*
	 * Some platforms might use the same bit to gate all three or two of
	 * clocks, so keep all clocks open/close at the same time for safety
	 */
469 470 471 472 473 474 475 476 477 478 479 480 481
	ret = clk_prepare_enable(esai_priv->coreclk);
	if (ret)
		return ret;
	if (!IS_ERR(esai_priv->extalclk)) {
		ret = clk_prepare_enable(esai_priv->extalclk);
		if (ret)
			goto err_extalck;
	}
	if (!IS_ERR(esai_priv->fsysclk)) {
		ret = clk_prepare_enable(esai_priv->fsysclk);
		if (ret)
			goto err_fsysclk;
	}
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496

	if (!dai->active) {
		/* Set synchronous mode */
		regmap_update_bits(esai_priv->regmap, REG_ESAI_SAICR,
				   ESAI_SAICR_SYNC, esai_priv->synchronous ?
				   ESAI_SAICR_SYNC : 0);

		/* Set a default slot number -- 2 */
		regmap_update_bits(esai_priv->regmap, REG_ESAI_TCCR,
				   ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(2));
		regmap_update_bits(esai_priv->regmap, REG_ESAI_RCCR,
				   ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(2));
	}

	return 0;
497 498 499 500 501 502 503 504

err_fsysclk:
	if (!IS_ERR(esai_priv->extalclk))
		clk_disable_unprepare(esai_priv->extalclk);
err_extalck:
	clk_disable_unprepare(esai_priv->coreclk);

	return ret;
505 506 507 508 509 510 511 512 513 514
}

static int fsl_esai_hw_params(struct snd_pcm_substream *substream,
			      struct snd_pcm_hw_params *params,
			      struct snd_soc_dai *dai)
{
	struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
	u32 width = snd_pcm_format_width(params_format(params));
	u32 channels = params_channels(params);
515
	u32 pins = DIV_ROUND_UP(channels, esai_priv->slots);
516
	u32 slot_width = width;
517 518
	u32 bclk, mask, val;
	int ret;
519

520
	/* Override slot_width if being specifically set */
521 522 523 524
	if (esai_priv->slot_width)
		slot_width = esai_priv->slot_width;

	bclk = params_rate(params) * slot_width * esai_priv->slots;
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

	ret = fsl_esai_set_bclk(dai, tx, bclk);
	if (ret)
		return ret;

	/* Use Normal mode to support monaural audio */
	regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx),
			   ESAI_xCR_xMOD_MASK, params_channels(params) > 1 ?
			   ESAI_xCR_xMOD_NETWORK : 0);

	regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx),
			   ESAI_xFCR_xFR_MASK, ESAI_xFCR_xFR);

	mask = ESAI_xFCR_xFR_MASK | ESAI_xFCR_xWA_MASK | ESAI_xFCR_xFWM_MASK |
	      (tx ? ESAI_xFCR_TE_MASK | ESAI_xFCR_TIEN : ESAI_xFCR_RE_MASK);
	val = ESAI_xFCR_xWA(width) | ESAI_xFCR_xFWM(esai_priv->fifo_depth) |
541
	     (tx ? ESAI_xFCR_TE(pins) | ESAI_xFCR_TIEN : ESAI_xFCR_RE(pins));
542 543 544 545

	regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx), mask, val);

	mask = ESAI_xCR_xSWS_MASK | (tx ? ESAI_xCR_PADC : 0);
546
	val = ESAI_xCR_xSWS(slot_width, width) | (tx ? ESAI_xCR_PADC : 0);
547 548 549

	regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx), mask, val);

550 551 552 553 554
	/* Remove ESAI personal reset by configuring ESAI_PCRC and ESAI_PRRC */
	regmap_update_bits(esai_priv->regmap, REG_ESAI_PRRC,
			   ESAI_PRRC_PDC_MASK, ESAI_PRRC_PDC(ESAI_GPIO));
	regmap_update_bits(esai_priv->regmap, REG_ESAI_PCRC,
			   ESAI_PCRC_PC_MASK, ESAI_PCRC_PC(ESAI_GPIO));
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
	return 0;
}

static void fsl_esai_shutdown(struct snd_pcm_substream *substream,
			      struct snd_soc_dai *dai)
{
	struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);

	if (!IS_ERR(esai_priv->fsysclk))
		clk_disable_unprepare(esai_priv->fsysclk);
	if (!IS_ERR(esai_priv->extalclk))
		clk_disable_unprepare(esai_priv->extalclk);
	clk_disable_unprepare(esai_priv->coreclk);
}

static int fsl_esai_trigger(struct snd_pcm_substream *substream, int cmd,
			    struct snd_soc_dai *dai)
{
	struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
	u8 i, channels = substream->runtime->channels;
576
	u32 pins = DIV_ROUND_UP(channels, esai_priv->slots);
577 578 579 580 581 582 583 584 585 586 587 588 589 590

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_RESUME:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
		regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx),
				   ESAI_xFCR_xFEN_MASK, ESAI_xFCR_xFEN);

		/* Write initial words reqiured by ESAI as normal procedure */
		for (i = 0; tx && i < channels; i++)
			regmap_write(esai_priv->regmap, REG_ESAI_ETDR, 0x0);

		regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx),
				   tx ? ESAI_xCR_TE_MASK : ESAI_xCR_RE_MASK,
591
				   tx ? ESAI_xCR_TE(pins) : ESAI_xCR_RE(pins));
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
		break;
	case SNDRV_PCM_TRIGGER_SUSPEND:
	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx),
				   tx ? ESAI_xCR_TE_MASK : ESAI_xCR_RE_MASK, 0);

		/* Disable and reset FIFO */
		regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx),
				   ESAI_xFCR_xFR | ESAI_xFCR_xFEN, ESAI_xFCR_xFR);
		regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx),
				   ESAI_xFCR_xFR, 0);
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static struct snd_soc_dai_ops fsl_esai_dai_ops = {
	.startup = fsl_esai_startup,
	.shutdown = fsl_esai_shutdown,
	.trigger = fsl_esai_trigger,
	.hw_params = fsl_esai_hw_params,
	.set_sysclk = fsl_esai_set_dai_sysclk,
	.set_fmt = fsl_esai_set_dai_fmt,
	.set_tdm_slot = fsl_esai_set_dai_tdm_slot,
};

static int fsl_esai_dai_probe(struct snd_soc_dai *dai)
{
	struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);

	snd_soc_dai_init_dma_data(dai, &esai_priv->dma_params_tx,
				  &esai_priv->dma_params_rx);

	return 0;
}

static struct snd_soc_dai_driver fsl_esai_dai = {
	.probe = fsl_esai_dai_probe,
	.playback = {
635
		.stream_name = "CPU-Playback",
636 637 638 639 640 641
		.channels_min = 1,
		.channels_max = 12,
		.rates = FSL_ESAI_RATES,
		.formats = FSL_ESAI_FORMATS,
	},
	.capture = {
642
		.stream_name = "CPU-Capture",
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
		.channels_min = 1,
		.channels_max = 8,
		.rates = FSL_ESAI_RATES,
		.formats = FSL_ESAI_FORMATS,
	},
	.ops = &fsl_esai_dai_ops,
};

static const struct snd_soc_component_driver fsl_esai_component = {
	.name		= "fsl-esai",
};

static bool fsl_esai_readable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case REG_ESAI_ERDR:
	case REG_ESAI_ECR:
	case REG_ESAI_ESR:
	case REG_ESAI_TFCR:
	case REG_ESAI_TFSR:
	case REG_ESAI_RFCR:
	case REG_ESAI_RFSR:
	case REG_ESAI_RX0:
	case REG_ESAI_RX1:
	case REG_ESAI_RX2:
	case REG_ESAI_RX3:
	case REG_ESAI_SAISR:
	case REG_ESAI_SAICR:
	case REG_ESAI_TCR:
	case REG_ESAI_TCCR:
	case REG_ESAI_RCR:
	case REG_ESAI_RCCR:
	case REG_ESAI_TSMA:
	case REG_ESAI_TSMB:
	case REG_ESAI_RSMA:
	case REG_ESAI_RSMB:
	case REG_ESAI_PRRC:
	case REG_ESAI_PCRC:
		return true;
	default:
		return false;
	}
}

static bool fsl_esai_writeable_reg(struct device *dev, unsigned int reg)
{
	switch (reg) {
	case REG_ESAI_ETDR:
	case REG_ESAI_ECR:
	case REG_ESAI_TFCR:
	case REG_ESAI_RFCR:
	case REG_ESAI_TX0:
	case REG_ESAI_TX1:
	case REG_ESAI_TX2:
	case REG_ESAI_TX3:
	case REG_ESAI_TX4:
	case REG_ESAI_TX5:
	case REG_ESAI_TSR:
	case REG_ESAI_SAICR:
	case REG_ESAI_TCR:
	case REG_ESAI_TCCR:
	case REG_ESAI_RCR:
	case REG_ESAI_RCCR:
	case REG_ESAI_TSMA:
	case REG_ESAI_TSMB:
	case REG_ESAI_RSMA:
	case REG_ESAI_RSMB:
	case REG_ESAI_PRRC:
	case REG_ESAI_PCRC:
		return true;
	default:
		return false;
	}
}

718
static const struct regmap_config fsl_esai_regmap_config = {
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
	.reg_bits = 32,
	.reg_stride = 4,
	.val_bits = 32,

	.max_register = REG_ESAI_PCRC,
	.readable_reg = fsl_esai_readable_reg,
	.writeable_reg = fsl_esai_writeable_reg,
};

static int fsl_esai_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct fsl_esai *esai_priv;
	struct resource *res;
	const uint32_t *iprop;
	void __iomem *regs;
	int irq, ret;

	esai_priv = devm_kzalloc(&pdev->dev, sizeof(*esai_priv), GFP_KERNEL);
	if (!esai_priv)
		return -ENOMEM;

	esai_priv->pdev = pdev;
742
	strncpy(esai_priv->name, np->name, sizeof(esai_priv->name) - 1);
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776

	/* Get the addresses and IRQ */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(regs))
		return PTR_ERR(regs);

	esai_priv->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
			"core", regs, &fsl_esai_regmap_config);
	if (IS_ERR(esai_priv->regmap)) {
		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
				PTR_ERR(esai_priv->regmap));
		return PTR_ERR(esai_priv->regmap);
	}

	esai_priv->coreclk = devm_clk_get(&pdev->dev, "core");
	if (IS_ERR(esai_priv->coreclk)) {
		dev_err(&pdev->dev, "failed to get core clock: %ld\n",
				PTR_ERR(esai_priv->coreclk));
		return PTR_ERR(esai_priv->coreclk);
	}

	esai_priv->extalclk = devm_clk_get(&pdev->dev, "extal");
	if (IS_ERR(esai_priv->extalclk))
		dev_warn(&pdev->dev, "failed to get extal clock: %ld\n",
				PTR_ERR(esai_priv->extalclk));

	esai_priv->fsysclk = devm_clk_get(&pdev->dev, "fsys");
	if (IS_ERR(esai_priv->fsysclk))
		dev_warn(&pdev->dev, "failed to get fsys clock: %ld\n",
				PTR_ERR(esai_priv->fsysclk));

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
777
		dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
778 779 780 781 782 783 784 785 786 787
		return irq;
	}

	ret = devm_request_irq(&pdev->dev, irq, esai_isr, 0,
			       esai_priv->name, esai_priv);
	if (ret) {
		dev_err(&pdev->dev, "failed to claim irq %u\n", irq);
		return ret;
	}

788 789 790
	/* Set a default slot number */
	esai_priv->slots = 2;

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	/* Set a default master/slave state */
	esai_priv->slave_mode = true;

	/* Determine the FIFO depth */
	iprop = of_get_property(np, "fsl,fifo-depth", NULL);
	if (iprop)
		esai_priv->fifo_depth = be32_to_cpup(iprop);
	else
		esai_priv->fifo_depth = 64;

	esai_priv->dma_params_tx.maxburst = 16;
	esai_priv->dma_params_rx.maxburst = 16;
	esai_priv->dma_params_tx.addr = res->start + REG_ESAI_ETDR;
	esai_priv->dma_params_rx.addr = res->start + REG_ESAI_ERDR;

	esai_priv->synchronous =
		of_property_read_bool(np, "fsl,esai-synchronous");

	/* Implement full symmetry for synchronous mode */
	if (esai_priv->synchronous) {
		fsl_esai_dai.symmetric_rates = 1;
		fsl_esai_dai.symmetric_channels = 1;
		fsl_esai_dai.symmetric_samplebits = 1;
	}

	dev_set_drvdata(&pdev->dev, esai_priv);

	/* Reset ESAI unit */
	ret = regmap_write(esai_priv->regmap, REG_ESAI_ECR, ESAI_ECR_ERST);
	if (ret) {
		dev_err(&pdev->dev, "failed to reset ESAI: %d\n", ret);
		return ret;
	}

	/*
	 * We need to enable ESAI so as to access some of its registers.
	 * Otherwise, we would fail to dump regmap from user space.
	 */
	ret = regmap_write(esai_priv->regmap, REG_ESAI_ECR, ESAI_ECR_ESAIEN);
	if (ret) {
		dev_err(&pdev->dev, "failed to enable ESAI: %d\n", ret);
		return ret;
	}

	ret = devm_snd_soc_register_component(&pdev->dev, &fsl_esai_component,
					      &fsl_esai_dai, 1);
	if (ret) {
		dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
		return ret;
	}

	ret = imx_pcm_dma_init(pdev);
	if (ret)
		dev_err(&pdev->dev, "failed to init imx pcm dma: %d\n", ret);

	return ret;
}

static const struct of_device_id fsl_esai_dt_ids[] = {
	{ .compatible = "fsl,imx35-esai", },
851
	{ .compatible = "fsl,vf610-esai", },
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
	{}
};
MODULE_DEVICE_TABLE(of, fsl_esai_dt_ids);

static struct platform_driver fsl_esai_driver = {
	.probe = fsl_esai_probe,
	.driver = {
		.name = "fsl-esai-dai",
		.of_match_table = fsl_esai_dt_ids,
	},
};

module_platform_driver(fsl_esai_driver);

MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("Freescale ESAI CPU DAI driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:fsl-esai-dai");