tlb_uv.c 44.1 KB
Newer Older
1 2 3
/*
 *	SGI UltraViolet TLB flush routines.
 *
4
 *	(c) 2008-2010 Cliff Wickman <cpw@sgi.com>, SGI.
5 6 7 8
 *
 *	This code is released under the GNU General Public License version 2 or
 *	later.
 */
9
#include <linux/seq_file.h>
10
#include <linux/proc_fs.h>
11
#include <linux/debugfs.h>
12
#include <linux/kernel.h>
13
#include <linux/slab.h>
14 15

#include <asm/mmu_context.h>
T
Tejun Heo 已提交
16
#include <asm/uv/uv.h>
17
#include <asm/uv/uv_mmrs.h>
18
#include <asm/uv/uv_hub.h>
19
#include <asm/uv/uv_bau.h>
I
Ingo Molnar 已提交
20
#include <asm/apic.h>
21
#include <asm/idle.h>
22
#include <asm/tsc.h>
23
#include <asm/irq_vectors.h>
24
#include <asm/timer.h>
25

26 27 28 29 30 31 32 33 34 35 36 37
/* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
static int timeout_base_ns[] = {
		20,
		160,
		1280,
		10240,
		81920,
		655360,
		5242880,
		167772160
};
static int timeout_us;
38
static int nobau;
39 40 41
static int baudisabled;
static spinlock_t disable_lock;
static cycles_t congested_cycles;
42

43 44 45 46 47 48 49 50 51 52 53 54 55
/* tunables: */
static int max_bau_concurrent = MAX_BAU_CONCURRENT;
static int max_bau_concurrent_constant = MAX_BAU_CONCURRENT;
static int plugged_delay = PLUGGED_DELAY;
static int plugsb4reset = PLUGSB4RESET;
static int timeoutsb4reset = TIMEOUTSB4RESET;
static int ipi_reset_limit = IPI_RESET_LIMIT;
static int complete_threshold = COMPLETE_THRESHOLD;
static int congested_response_us = CONGESTED_RESPONSE_US;
static int congested_reps = CONGESTED_REPS;
static int congested_period = CONGESTED_PERIOD;
static struct dentry *tunables_dir;
static struct dentry *tunables_file;
56

57 58 59 60 61 62
static int __init setup_nobau(char *arg)
{
	nobau = 1;
	return 0;
}
early_param("nobau", setup_nobau);
63

64 65 66 67 68
/* base pnode in this partition */
static int uv_partition_base_pnode __read_mostly;
/* position of pnode (which is nasid>>1): */
static int uv_nshift __read_mostly;
static unsigned long uv_mmask __read_mostly;
69

70 71
static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
static DEFINE_PER_CPU(struct bau_control, bau_control);
72 73
static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);

74
/*
75 76
 * Determine the first node on a uvhub. 'Nodes' are used for kernel
 * memory allocation.
77
 */
78
static int __init uvhub_to_first_node(int uvhub)
79 80 81 82 83
{
	int node, b;

	for_each_online_node(node) {
		b = uv_node_to_blade_id(node);
84
		if (uvhub == b)
85 86
			return node;
	}
87
	return -1;
88 89 90
}

/*
91
 * Determine the apicid of the first cpu on a uvhub.
92
 */
93
static int __init uvhub_to_first_apicid(int uvhub)
94 95 96 97
{
	int cpu;

	for_each_present_cpu(cpu)
98
		if (uvhub == uv_cpu_to_blade_id(cpu))
99 100 101 102
			return per_cpu(x86_cpu_to_apicid, cpu);
	return -1;
}

103 104 105 106 107 108 109 110
/*
 * Free a software acknowledge hardware resource by clearing its Pending
 * bit. This will return a reply to the sender.
 * If the message has timed out, a reply has already been sent by the
 * hardware but the resource has not been released. In that case our
 * clear of the Timeout bit (as well) will free the resource. No reply will
 * be sent (the hardware will only do one reply per message).
 */
111 112
static inline void uv_reply_to_message(struct msg_desc *mdp,
				       struct bau_control *bcp)
113
{
114
	unsigned long dw;
115
	struct bau_payload_queue_entry *msg;
116

117 118 119 120 121 122 123
	msg = mdp->msg;
	if (!msg->canceled) {
		dw = (msg->sw_ack_vector << UV_SW_ACK_NPENDING) |
						msg->sw_ack_vector;
		uv_write_local_mmr(
				UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
	}
124 125 126 127 128
	msg->replied_to = 1;
	msg->sw_ack_vector = 0;
}

/*
129
 * Process the receipt of a RETRY message
130
 */
131 132
static inline void uv_bau_process_retry_msg(struct msg_desc *mdp,
					    struct bau_control *bcp)
133
{
134 135 136 137 138 139 140 141
	int i;
	int cancel_count = 0;
	int slot2;
	unsigned long msg_res;
	unsigned long mmr = 0;
	struct bau_payload_queue_entry *msg;
	struct bau_payload_queue_entry *msg2;
	struct ptc_stats *stat;
142

143
	msg = mdp->msg;
144
	stat = bcp->statp;
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	stat->d_retries++;
	/*
	 * cancel any message from msg+1 to the retry itself
	 */
	for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
		if (msg2 > mdp->va_queue_last)
			msg2 = mdp->va_queue_first;
		if (msg2 == msg)
			break;

		/* same conditions for cancellation as uv_do_reset */
		if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
		    (msg2->sw_ack_vector) && ((msg2->sw_ack_vector &
			msg->sw_ack_vector) == 0) &&
		    (msg2->sending_cpu == msg->sending_cpu) &&
		    (msg2->msg_type != MSG_NOOP)) {
			slot2 = msg2 - mdp->va_queue_first;
			mmr = uv_read_local_mmr
				(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE);
164
			msg_res = msg2->sw_ack_vector;
165 166 167 168 169 170
			/*
			 * This is a message retry; clear the resources held
			 * by the previous message only if they timed out.
			 * If it has not timed out we have an unexpected
			 * situation to report.
			 */
171
			if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
172 173 174 175 176 177 178 179 180
				/*
				 * is the resource timed out?
				 * make everyone ignore the cancelled message.
				 */
				msg2->canceled = 1;
				stat->d_canceled++;
				cancel_count++;
				uv_write_local_mmr(
				    UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS,
181 182 183
					(msg_res << UV_SW_ACK_NPENDING) |
					 msg_res);
			}
184 185 186 187 188
		}
	}
	if (!cancel_count)
		stat->d_nocanceled++;
}
189

190 191 192 193 194 195 196 197 198 199 200 201
/*
 * Do all the things a cpu should do for a TLB shootdown message.
 * Other cpu's may come here at the same time for this message.
 */
static void uv_bau_process_message(struct msg_desc *mdp,
				   struct bau_control *bcp)
{
	int msg_ack_count;
	short socket_ack_count = 0;
	struct ptc_stats *stat;
	struct bau_payload_queue_entry *msg;
	struct bau_control *smaster = bcp->socket_master;
202

203 204 205 206
	/*
	 * This must be a normal message, or retry of a normal message
	 */
	msg = mdp->msg;
207
	stat = bcp->statp;
208 209
	if (msg->address == TLB_FLUSH_ALL) {
		local_flush_tlb();
210
		stat->d_alltlb++;
211 212
	} else {
		__flush_tlb_one(msg->address);
213
		stat->d_onetlb++;
214
	}
215 216 217 218 219 220 221 222 223 224
	stat->d_requestee++;

	/*
	 * One cpu on each uvhub has the additional job on a RETRY
	 * of releasing the resource held by the message that is
	 * being retried.  That message is identified by sending
	 * cpu number.
	 */
	if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
		uv_bau_process_retry_msg(mdp, bcp);
225

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
	/*
	 * This is a sw_ack message, so we have to reply to it.
	 * Count each responding cpu on the socket. This avoids
	 * pinging the count's cache line back and forth between
	 * the sockets.
	 */
	socket_ack_count = atomic_add_short_return(1, (struct atomic_short *)
			&smaster->socket_acknowledge_count[mdp->msg_slot]);
	if (socket_ack_count == bcp->cpus_in_socket) {
		/*
		 * Both sockets dump their completed count total into
		 * the message's count.
		 */
		smaster->socket_acknowledge_count[mdp->msg_slot] = 0;
		msg_ack_count = atomic_add_short_return(socket_ack_count,
				(struct atomic_short *)&msg->acknowledge_count);

		if (msg_ack_count == bcp->cpus_in_uvhub) {
			/*
			 * All cpus in uvhub saw it; reply
			 */
			uv_reply_to_message(mdp, bcp);
		}
	}
250

251
	return;
252 253 254
}

/*
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
 * Determine the first cpu on a uvhub.
 */
static int uvhub_to_first_cpu(int uvhub)
{
	int cpu;
	for_each_present_cpu(cpu)
		if (uvhub == uv_cpu_to_blade_id(cpu))
			return cpu;
	return -1;
}

/*
 * Last resort when we get a large number of destination timeouts is
 * to clear resources held by a given cpu.
 * Do this with IPI so that all messages in the BAU message queue
 * can be identified by their nonzero sw_ack_vector field.
271
 *
272 273 274
 * This is entered for a single cpu on the uvhub.
 * The sender want's this uvhub to free a specific message's
 * sw_ack resources.
275
 */
276 277
static void
uv_do_reset(void *ptr)
278
{
279
	int i;
280 281 282 283 284 285 286 287
	int slot;
	int count = 0;
	unsigned long mmr;
	unsigned long msg_res;
	struct bau_control *bcp;
	struct reset_args *rap;
	struct bau_payload_queue_entry *msg;
	struct ptc_stats *stat;
288

289 290
	bcp = &per_cpu(bau_control, smp_processor_id());
	rap = (struct reset_args *)ptr;
291
	stat = bcp->statp;
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
	stat->d_resets++;

	/*
	 * We're looking for the given sender, and
	 * will free its sw_ack resource.
	 * If all cpu's finally responded after the timeout, its
	 * message 'replied_to' was set.
	 */
	for (msg = bcp->va_queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
		/* uv_do_reset: same conditions for cancellation as
		   uv_bau_process_retry_msg() */
		if ((msg->replied_to == 0) &&
		    (msg->canceled == 0) &&
		    (msg->sending_cpu == rap->sender) &&
		    (msg->sw_ack_vector) &&
		    (msg->msg_type != MSG_NOOP)) {
			/*
			 * make everyone else ignore this message
			 */
			msg->canceled = 1;
			slot = msg - bcp->va_queue_first;
			count++;
			/*
			 * only reset the resource if it is still pending
			 */
			mmr = uv_read_local_mmr
					(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE);
319
			msg_res = msg->sw_ack_vector;
320 321 322 323
			if (mmr & msg_res) {
				stat->d_rcanceled++;
				uv_write_local_mmr(
				    UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS,
324 325
					(msg_res << UV_SW_ACK_NPENDING) |
					 msg_res);
326 327 328
			}
		}
	}
329
	return;
330 331 332
}

/*
333 334
 * Use IPI to get all target uvhubs to release resources held by
 * a given sending cpu number.
335
 */
336 337
static void uv_reset_with_ipi(struct bau_target_uvhubmask *distribution,
			      int sender)
338
{
339 340 341 342
	int uvhub;
	int cpu;
	cpumask_t mask;
	struct reset_args reset_args;
343

344
	reset_args.sender = sender;
345

346 347 348 349 350 351
	cpus_clear(mask);
	/* find a single cpu for each uvhub in this distribution mask */
	for (uvhub = 0;
		    uvhub < sizeof(struct bau_target_uvhubmask) * BITSPERBYTE;
		    uvhub++) {
		if (!bau_uvhub_isset(uvhub, distribution))
352
			continue;
353 354 355
		/* find a cpu for this uvhub */
		cpu = uvhub_to_first_cpu(uvhub);
		cpu_set(cpu, mask);
356
	}
357 358 359 360 361 362 363 364 365 366 367 368 369 370
	/* IPI all cpus; Preemption is already disabled */
	smp_call_function_many(&mask, uv_do_reset, (void *)&reset_args, 1);
	return;
}

static inline unsigned long
cycles_2_us(unsigned long long cyc)
{
	unsigned long long ns;
	unsigned long us;
	ns =  (cyc * per_cpu(cyc2ns, smp_processor_id()))
						>> CYC2NS_SCALE_FACTOR;
	us = ns / 1000;
	return us;
371 372
}

373
/*
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
 * wait for all cpus on this hub to finish their sends and go quiet
 * leaves uvhub_quiesce set so that no new broadcasts are started by
 * bau_flush_send_and_wait()
 */
static inline void
quiesce_local_uvhub(struct bau_control *hmaster)
{
	atomic_add_short_return(1, (struct atomic_short *)
		 &hmaster->uvhub_quiesce);
}

/*
 * mark this quiet-requestor as done
 */
static inline void
end_uvhub_quiesce(struct bau_control *hmaster)
{
	atomic_add_short_return(-1, (struct atomic_short *)
		&hmaster->uvhub_quiesce);
}

/*
 * Wait for completion of a broadcast software ack message
 * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
398
 */
399
static int uv_wait_completion(struct bau_desc *bau_desc,
400 401
	unsigned long mmr_offset, int right_shift, int this_cpu,
	struct bau_control *bcp, struct bau_control *smaster, long try)
402 403
{
	unsigned long descriptor_status;
404
	cycles_t ttime;
405
	struct ptc_stats *stat = bcp->statp;
406
	struct bau_control *hmaster;
407

408
	hmaster = bcp->uvhub_master;
409

410
	/* spin on the status MMR, waiting for it to go idle */
411 412 413 414 415
	while ((descriptor_status = (((unsigned long)
		uv_read_local_mmr(mmr_offset) >>
			right_shift) & UV_ACT_STATUS_MASK)) !=
			DESC_STATUS_IDLE) {
		/*
416 417 418 419
		 * Our software ack messages may be blocked because there are
		 * no swack resources available.  As long as none of them
		 * has timed out hardware will NACK our message and its
		 * state will stay IDLE.
420
		 */
421 422 423 424 425 426 427 428 429 430 431 432 433 434
		if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
			stat->s_stimeout++;
			return FLUSH_GIVEUP;
		} else if (descriptor_status ==
					DESC_STATUS_DESTINATION_TIMEOUT) {
			stat->s_dtimeout++;
			ttime = get_cycles();

			/*
			 * Our retries may be blocked by all destination
			 * swack resources being consumed, and a timeout
			 * pending.  In that case hardware returns the
			 * ERROR that looks like a destination timeout.
			 */
435 436
			if (cycles_2_us(ttime - bcp->send_message) <
							timeout_us) {
437 438 439 440 441 442 443 444 445 446 447
				bcp->conseccompletes = 0;
				return FLUSH_RETRY_PLUGGED;
			}

			bcp->conseccompletes = 0;
			return FLUSH_RETRY_TIMEOUT;
		} else {
			/*
			 * descriptor_status is still BUSY
			 */
			cpu_relax();
448 449
		}
	}
450
	bcp->conseccompletes++;
451 452 453
	return FLUSH_COMPLETE;
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
static inline cycles_t
sec_2_cycles(unsigned long sec)
{
	unsigned long ns;
	cycles_t cyc;

	ns = sec * 1000000000;
	cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
	return cyc;
}

/*
 * conditionally add 1 to *v, unless *v is >= u
 * return 0 if we cannot add 1 to *v because it is >= u
 * return 1 if we can add 1 to *v because it is < u
 * the add is atomic
 *
 * This is close to atomic_add_unless(), but this allows the 'u' value
 * to be lowered below the current 'v'.  atomic_add_unless can only stop
 * on equal.
 */
static inline int atomic_inc_unless_ge(spinlock_t *lock, atomic_t *v, int u)
{
	spin_lock(lock);
	if (atomic_read(v) >= u) {
		spin_unlock(lock);
		return 0;
	}
	atomic_inc(v);
	spin_unlock(lock);
	return 1;
}

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
/*
 * Our retries are blocked by all destination swack resources being
 * in use, and a timeout is pending. In that case hardware immediately
 * returns the ERROR that looks like a destination timeout.
 */
static void
destination_plugged(struct bau_desc *bau_desc, struct bau_control *bcp,
			struct bau_control *hmaster, struct ptc_stats *stat)
{
	udelay(bcp->plugged_delay);
	bcp->plugged_tries++;
	if (bcp->plugged_tries >= bcp->plugsb4reset) {
		bcp->plugged_tries = 0;
		quiesce_local_uvhub(hmaster);
		spin_lock(&hmaster->queue_lock);
		uv_reset_with_ipi(&bau_desc->distribution, bcp->cpu);
		spin_unlock(&hmaster->queue_lock);
		end_uvhub_quiesce(hmaster);
		bcp->ipi_attempts++;
		stat->s_resets_plug++;
	}
}

static void
destination_timeout(struct bau_desc *bau_desc, struct bau_control *bcp,
			struct bau_control *hmaster, struct ptc_stats *stat)
{
	hmaster->max_bau_concurrent = 1;
	bcp->timeout_tries++;
	if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
		bcp->timeout_tries = 0;
		quiesce_local_uvhub(hmaster);
		spin_lock(&hmaster->queue_lock);
		uv_reset_with_ipi(&bau_desc->distribution, bcp->cpu);
		spin_unlock(&hmaster->queue_lock);
		end_uvhub_quiesce(hmaster);
		bcp->ipi_attempts++;
		stat->s_resets_timeout++;
	}
}

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
/*
 * Completions are taking a very long time due to a congested numalink
 * network.
 */
static void
disable_for_congestion(struct bau_control *bcp, struct ptc_stats *stat)
{
	int tcpu;
	struct bau_control *tbcp;

	/* let only one cpu do this disabling */
	spin_lock(&disable_lock);
	if (!baudisabled && bcp->period_requests &&
	    ((bcp->period_time / bcp->period_requests) > congested_cycles)) {
		/* it becomes this cpu's job to turn on the use of the
		   BAU again */
		baudisabled = 1;
		bcp->set_bau_off = 1;
		bcp->set_bau_on_time = get_cycles() +
			sec_2_cycles(bcp->congested_period);
		stat->s_bau_disabled++;
		for_each_present_cpu(tcpu) {
			tbcp = &per_cpu(bau_control, tcpu);
				tbcp->baudisabled = 1;
		}
	}
	spin_unlock(&disable_lock);
}

557 558 559
/**
 * uv_flush_send_and_wait
 *
560
 * Send a broadcast and wait for it to complete.
561
 *
562
 * The flush_mask contains the cpus the broadcast is to be sent to including
563
 * cpus that are on the local uvhub.
564
 *
565 566 567
 * Returns 0 if all flushing represented in the mask was done.
 * Returns 1 if it gives up entirely and the original cpu mask is to be
 * returned to the kernel.
568
 */
569 570
int uv_flush_send_and_wait(struct bau_desc *bau_desc,
			   struct cpumask *flush_mask, struct bau_control *bcp)
571 572
{
	int right_shift;
573 574 575 576 577
	int completion_status = 0;
	int seq_number = 0;
	long try = 0;
	int cpu = bcp->uvhub_cpu;
	int this_cpu = bcp->cpu;
578
	unsigned long mmr_offset;
579
	unsigned long index;
580 581
	cycles_t time1;
	cycles_t time2;
582
	cycles_t elapsed;
583
	struct ptc_stats *stat = bcp->statp;
584 585 586 587 588
	struct bau_control *smaster = bcp->socket_master;
	struct bau_control *hmaster = bcp->uvhub_master;

	if (!atomic_inc_unless_ge(&hmaster->uvhub_lock,
			&hmaster->active_descriptor_count,
589
			hmaster->max_bau_concurrent)) {
590 591 592 593 594
		stat->s_throttles++;
		do {
			cpu_relax();
		} while (!atomic_inc_unless_ge(&hmaster->uvhub_lock,
			&hmaster->active_descriptor_count,
595
			hmaster->max_bau_concurrent));
596 597 598
	}
	while (hmaster->uvhub_quiesce)
		cpu_relax();
599 600 601 602 603 604 605 606 607 608 609

	if (cpu < UV_CPUS_PER_ACT_STATUS) {
		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
		right_shift = cpu * UV_ACT_STATUS_SIZE;
	} else {
		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
		right_shift =
		    ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
	}
	time1 = get_cycles();
	do {
610
		if (try == 0) {
611
			bau_desc->header.msg_type = MSG_REGULAR;
612 613 614 615 616 617
			seq_number = bcp->message_number++;
		} else {
			bau_desc->header.msg_type = MSG_RETRY;
			stat->s_retry_messages++;
		}
		bau_desc->header.sequence = seq_number;
618
		index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
619 620
			bcp->uvhub_cpu;
		bcp->send_message = get_cycles();
621
		uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
622
		try++;
623
		completion_status = uv_wait_completion(bau_desc, mmr_offset,
624 625 626
			right_shift, this_cpu, bcp, smaster, try);

		if (completion_status == FLUSH_RETRY_PLUGGED) {
627
			destination_plugged(bau_desc, bcp, hmaster, stat);
628
		} else if (completion_status == FLUSH_RETRY_TIMEOUT) {
629
			destination_timeout(bau_desc, bcp, hmaster, stat);
630
		}
631
		if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
632 633 634 635 636 637 638
			bcp->ipi_attempts = 0;
			completion_status = FLUSH_GIVEUP;
			break;
		}
		cpu_relax();
	} while ((completion_status == FLUSH_RETRY_PLUGGED) ||
		 (completion_status == FLUSH_RETRY_TIMEOUT));
639
	time2 = get_cycles();
640 641 642 643 644 645 646
	bcp->plugged_tries = 0;
	bcp->timeout_tries = 0;
	if ((completion_status == FLUSH_COMPLETE) &&
	    (bcp->conseccompletes > bcp->complete_threshold) &&
	    (hmaster->max_bau_concurrent <
					hmaster->max_bau_concurrent_constant))
			hmaster->max_bau_concurrent++;
647 648 649
	while (hmaster->uvhub_quiesce)
		cpu_relax();
	atomic_dec(&hmaster->active_descriptor_count);
650 651 652
	if (time2 > time1) {
		elapsed = time2 - time1;
		stat->s_time += elapsed;
653 654 655 656 657 658 659 660
		if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
			bcp->period_requests++;
			bcp->period_time += elapsed;
			if ((elapsed > congested_cycles) &&
			    (bcp->period_requests > bcp->congested_reps)) {
				disable_for_congestion(bcp, stat);
			}
		}
661
	} else
662
		stat->s_requestor--;
663 664 665 666
	if (completion_status == FLUSH_COMPLETE && try > 1)
		stat->s_retriesok++;
	else if (completion_status == FLUSH_GIVEUP) {
		stat->s_giveup++;
667
		return 1;
668
	}
669
	return 0;
670 671
}

672 673 674
/**
 * uv_flush_tlb_others - globally purge translation cache of a virtual
 * address or all TLB's
T
Tejun Heo 已提交
675
 * @cpumask: mask of all cpu's in which the address is to be removed
676 677
 * @mm: mm_struct containing virtual address range
 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
T
Tejun Heo 已提交
678
 * @cpu: the current cpu
679 680 681 682 683 684
 *
 * This is the entry point for initiating any UV global TLB shootdown.
 *
 * Purges the translation caches of all specified processors of the given
 * virtual address, or purges all TLB's on specified processors.
 *
T
Tejun Heo 已提交
685 686
 * The caller has derived the cpumask from the mm_struct.  This function
 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
687
 *
688 689
 * The cpumask is converted into a uvhubmask of the uvhubs containing
 * those cpus.
690
 *
T
Tejun Heo 已提交
691 692 693 694 695
 * Note that this function should be called with preemption disabled.
 *
 * Returns NULL if all remote flushing was done.
 * Returns pointer to cpumask if some remote flushing remains to be
 * done.  The returned pointer is valid till preemption is re-enabled.
696
 */
T
Tejun Heo 已提交
697 698 699
const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
					  struct mm_struct *mm,
					  unsigned long va, unsigned int cpu)
700
{
701 702
	int tcpu;
	int uvhub;
703
	int locals = 0;
704 705
	int remotes = 0;
	int hubs = 0;
706
	struct bau_desc *bau_desc;
707 708 709
	struct cpumask *flush_mask;
	struct ptc_stats *stat;
	struct bau_control *bcp;
710
	struct bau_control *tbcp;
T
Tejun Heo 已提交
711

712
	/* kernel was booted 'nobau' */
713 714
	if (nobau)
		return cpumask;
T
Tejun Heo 已提交
715

716
	bcp = &per_cpu(bau_control, cpu);
717
	stat = bcp->statp;
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735

	/* bau was disabled due to slow response */
	if (bcp->baudisabled) {
		/* the cpu that disabled it must re-enable it */
		if (bcp->set_bau_off) {
			if (get_cycles() >= bcp->set_bau_on_time) {
				stat->s_bau_reenabled++;
				baudisabled = 0;
				for_each_present_cpu(tcpu) {
					tbcp = &per_cpu(bau_control, tcpu);
					tbcp->baudisabled = 0;
					tbcp->period_requests = 0;
					tbcp->period_time = 0;
				}
			}
		}
		return cpumask;
	}
736

737 738
	/*
	 * Each sending cpu has a per-cpu mask which it fills from the caller's
739 740
	 * cpu mask.  All cpus are converted to uvhubs and copied to the
	 * activation descriptor.
741 742
	 */
	flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
743
	/* don't actually do a shootdown of the local cpu */
744 745
	cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
	if (cpu_isset(cpu, *cpumask))
746
		stat->s_ntargself++;
747

748 749 750
	bau_desc = bcp->descriptor_base;
	bau_desc += UV_ITEMS_PER_DESCRIPTOR * bcp->uvhub_cpu;
	bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
751 752

	/* cpu statistics */
753 754 755
	for_each_cpu(tcpu, flush_mask) {
		uvhub = uv_cpu_to_blade_id(tcpu);
		bau_uvhub_set(uvhub, &bau_desc->distribution);
756 757
		if (uvhub == bcp->uvhub)
			locals++;
758
		else
759
			remotes++;
760
	}
761 762
	if ((locals + remotes) == 0)
		return NULL;
763
	stat->s_requestor++;
764 765 766
	stat->s_ntargcpu += remotes + locals;
	stat->s_ntargremotes += remotes;
	stat->s_ntarglocals += locals;
767
	remotes = bau_uvhub_weight(&bau_desc->distribution);
768 769 770 771 772 773 774 775 776 777

	/* uvhub statistics */
	hubs = bau_uvhub_weight(&bau_desc->distribution);
	if (locals) {
		stat->s_ntarglocaluvhub++;
		stat->s_ntargremoteuvhub += (hubs - 1);
	} else
		stat->s_ntargremoteuvhub += hubs;
	stat->s_ntarguvhub += hubs;
	if (hubs >= 16)
778
		stat->s_ntarguvhub16++;
779
	else if (hubs >= 8)
780
		stat->s_ntarguvhub8++;
781
	else if (hubs >= 4)
782
		stat->s_ntarguvhub4++;
783
	else if (hubs >= 2)
784 785 786
		stat->s_ntarguvhub2++;
	else
		stat->s_ntarguvhub1++;
787 788

	bau_desc->payload.address = va;
T
Tejun Heo 已提交
789
	bau_desc->payload.sending_cpu = cpu;
790

791
	/*
792 793
	 * uv_flush_send_and_wait returns 0 if all cpu's were messaged,
	 * or 1 if it gave up and the original cpumask should be returned.
794
	 */
795 796 797 798
	if (!uv_flush_send_and_wait(bau_desc, flush_mask, bcp))
		return NULL;
	else
		return cpumask;
799 800 801 802 803 804 805 806
}

/*
 * The BAU message interrupt comes here. (registered by set_intr_gate)
 * See entry_64.S
 *
 * We received a broadcast assist message.
 *
807
 * Interrupts are disabled; this interrupt could represent
808 809
 * the receipt of several messages.
 *
810 811
 * All cores/threads on this hub get this interrupt.
 * The last one to see it does the software ack.
812
 * (the resource will not be freed until noninterruptable cpus see this
813
 *  interrupt; hardware may timeout the s/w ack and reply ERROR)
814
 */
815
void uv_bau_message_interrupt(struct pt_regs *regs)
816 817
{
	int count = 0;
818 819 820 821 822 823 824 825
	cycles_t time_start;
	struct bau_payload_queue_entry *msg;
	struct bau_control *bcp;
	struct ptc_stats *stat;
	struct msg_desc msgdesc;

	time_start = get_cycles();
	bcp = &per_cpu(bau_control, smp_processor_id());
826
	stat = bcp->statp;
827 828 829
	msgdesc.va_queue_first = bcp->va_queue_first;
	msgdesc.va_queue_last = bcp->va_queue_last;
	msg = bcp->bau_msg_head;
830 831
	while (msg->sw_ack_vector) {
		count++;
832 833 834 835
		msgdesc.msg_slot = msg - msgdesc.va_queue_first;
		msgdesc.sw_ack_slot = ffs(msg->sw_ack_vector) - 1;
		msgdesc.msg = msg;
		uv_bau_process_message(&msgdesc, bcp);
836
		msg++;
837 838 839
		if (msg > msgdesc.va_queue_last)
			msg = msgdesc.va_queue_first;
		bcp->bau_msg_head = msg;
840
	}
841
	stat->d_time += (get_cycles() - time_start);
842
	if (!count)
843
		stat->d_nomsg++;
844
	else if (count > 1)
845 846
		stat->d_multmsg++;
	ack_APIC_irq();
847 848
}

C
Cliff Wickman 已提交
849 850 851
/*
 * uv_enable_timeouts
 *
852
 * Each target uvhub (i.e. a uvhub that has no cpu's) needs to have
C
Cliff Wickman 已提交
853 854 855 856
 * shootdown message timeouts enabled.  The timeout does not cause
 * an interrupt, but causes an error message to be returned to
 * the sender.
 */
857
static void uv_enable_timeouts(void)
858
{
859 860
	int uvhub;
	int nuvhubs;
861
	int pnode;
C
Cliff Wickman 已提交
862
	unsigned long mmr_image;
863

864
	nuvhubs = uv_num_possible_blades();
865

866 867
	for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
		if (!uv_blade_nr_possible_cpus(uvhub))
868
			continue;
C
Cliff Wickman 已提交
869

870
		pnode = uv_blade_to_pnode(uvhub);
C
Cliff Wickman 已提交
871 872 873 874 875 876 877 878 879
		mmr_image =
		    uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
		/*
		 * Set the timeout period and then lock it in, in three
		 * steps; captures and locks in the period.
		 *
		 * To program the period, the SOFT_ACK_MODE must be off.
		 */
		mmr_image &= ~((unsigned long)1 <<
880
		    UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);
C
Cliff Wickman 已提交
881 882 883 884 885 886
		uv_write_global_mmr64
		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
		/*
		 * Set the 4-bit period.
		 */
		mmr_image &= ~((unsigned long)0xf <<
887
		     UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT);
C
Cliff Wickman 已提交
888
		mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
889
		     UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT);
C
Cliff Wickman 已提交
890 891 892 893 894 895 896 897
		uv_write_global_mmr64
		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
		/*
		 * Subsequent reversals of the timebase bit (3) cause an
		 * immediate timeout of one or all INTD resources as
		 * indicated in bits 2:0 (7 causes all of them to timeout).
		 */
		mmr_image |= ((unsigned long)1 <<
898
		    UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);
C
Cliff Wickman 已提交
899 900
		uv_write_global_mmr64
		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
901 902 903
	}
}

904
static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
905 906 907 908 909 910
{
	if (*offset < num_possible_cpus())
		return offset;
	return NULL;
}

911
static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
912 913 914 915 916 917 918
{
	(*offset)++;
	if (*offset < num_possible_cpus())
		return offset;
	return NULL;
}

919
static void uv_ptc_seq_stop(struct seq_file *file, void *data)
920 921 922
{
}

923
static inline unsigned long long
924
microsec_2_cycles(unsigned long microsec)
925 926 927 928
{
	unsigned long ns;
	unsigned long long cyc;

929
	ns = microsec * 1000;
930 931 932 933
	cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
	return cyc;
}

934
/*
935 936
 * Display the statistics thru /proc.
 * 'data' points to the cpu number
937
 */
938
static int uv_ptc_seq_show(struct seq_file *file, void *data)
939 940 941 942 943 944 945 946
{
	struct ptc_stats *stat;
	int cpu;

	cpu = *(loff_t *)data;

	if (!cpu) {
		seq_printf(file,
947 948 949
			"# cpu sent stime self locals remotes ncpus localhub ");
		seq_printf(file,
			"remotehub numuvhubs numuvhubs16 numuvhubs8 ");
950
		seq_printf(file,
951
			"numuvhubs4 numuvhubs2 numuvhubs1 dto ");
952 953 954 955 956
		seq_printf(file,
			"retries rok resetp resett giveup sto bz throt ");
		seq_printf(file,
			"sw_ack recv rtime all ");
		seq_printf(file,
957 958 959
			"one mult none retry canc nocan reset rcan ");
		seq_printf(file,
			"disable enable\n");
960 961 962
	}
	if (cpu < num_possible_cpus() && cpu_online(cpu)) {
		stat = &per_cpu(ptcstats, cpu);
963 964 965 966
		/* source side statistics */
		seq_printf(file,
			"cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
			   cpu, stat->s_requestor, cycles_2_us(stat->s_time),
967 968 969 970 971
			   stat->s_ntargself, stat->s_ntarglocals,
			   stat->s_ntargremotes, stat->s_ntargcpu,
			   stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
			   stat->s_ntarguvhub, stat->s_ntarguvhub16);
		seq_printf(file, "%ld %ld %ld %ld %ld ",
972 973
			   stat->s_ntarguvhub8, stat->s_ntarguvhub4,
			   stat->s_ntarguvhub2, stat->s_ntarguvhub1,
974
			   stat->s_dtimeout);
975 976 977 978 979
		seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
			   stat->s_retry_messages, stat->s_retriesok,
			   stat->s_resets_plug, stat->s_resets_timeout,
			   stat->s_giveup, stat->s_stimeout,
			   stat->s_busy, stat->s_throttles);
980

981 982
		/* destination side statistics */
		seq_printf(file,
983
			   "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
984
			   uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
985
					UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
986 987 988 989 990
			   stat->d_requestee, cycles_2_us(stat->d_time),
			   stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
			   stat->d_nomsg, stat->d_retries, stat->d_canceled,
			   stat->d_nocanceled, stat->d_resets,
			   stat->d_rcanceled);
991 992
		seq_printf(file, "%ld %ld\n",
			stat->s_bau_disabled, stat->s_bau_reenabled);
993 994 995 996 997
	}

	return 0;
}

998 999 1000 1001 1002 1003
/*
 * Display the tunables thru debugfs
 */
static ssize_t tunables_read(struct file *file, char __user *userbuf,
						size_t count, loff_t *ppos)
{
1004
	char *buf;
1005 1006
	int ret;

1007
	buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d\n",
1008 1009 1010 1011 1012 1013 1014
		"max_bau_concurrent plugged_delay plugsb4reset",
		"timeoutsb4reset ipi_reset_limit complete_threshold",
		"congested_response_us congested_reps congested_period",
		max_bau_concurrent, plugged_delay, plugsb4reset,
		timeoutsb4reset, ipi_reset_limit, complete_threshold,
		congested_response_us, congested_reps, congested_period);

1015 1016 1017 1018 1019 1020
	if (!buf)
		return -ENOMEM;

	ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
	kfree(buf);
	return ret;
1021 1022
}

1023
/*
1024
 * -1: resetf the statistics
1025 1026
 *  0: display meaning of the statistics
 */
1027
static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
1028
				 size_t count, loff_t *data)
1029
{
1030 1031
	int cpu;
	long input_arg;
1032
	char optstr[64];
1033
	struct ptc_stats *stat;
1034

1035
	if (count == 0 || count > sizeof(optstr))
1036
		return -EINVAL;
1037 1038 1039
	if (copy_from_user(optstr, user, count))
		return -EFAULT;
	optstr[count - 1] = '\0';
1040
	if (strict_strtol(optstr, 10, &input_arg) < 0) {
1041 1042 1043 1044
		printk(KERN_DEBUG "%s is invalid\n", optstr);
		return -EINVAL;
	}

1045
	if (input_arg == 0) {
1046
		printk(KERN_DEBUG "# cpu:      cpu number\n");
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
		printk(KERN_DEBUG "Sender statistics:\n");
		printk(KERN_DEBUG
		"sent:     number of shootdown messages sent\n");
		printk(KERN_DEBUG
		"stime:    time spent sending messages\n");
		printk(KERN_DEBUG
		"numuvhubs: number of hubs targeted with shootdown\n");
		printk(KERN_DEBUG
		"numuvhubs16: number times 16 or more hubs targeted\n");
		printk(KERN_DEBUG
		"numuvhubs8: number times 8 or more hubs targeted\n");
		printk(KERN_DEBUG
		"numuvhubs4: number times 4 or more hubs targeted\n");
		printk(KERN_DEBUG
		"numuvhubs2: number times 2 or more hubs targeted\n");
		printk(KERN_DEBUG
		"numuvhubs1: number times 1 hub targeted\n");
		printk(KERN_DEBUG
		"numcpus:  number of cpus targeted with shootdown\n");
		printk(KERN_DEBUG
		"dto:      number of destination timeouts\n");
		printk(KERN_DEBUG
		"retries:  destination timeout retries sent\n");
		printk(KERN_DEBUG
		"rok:   :  destination timeouts successfully retried\n");
		printk(KERN_DEBUG
		"resetp:   ipi-style resource resets for plugs\n");
		printk(KERN_DEBUG
		"resett:   ipi-style resource resets for timeouts\n");
		printk(KERN_DEBUG
		"giveup:   fall-backs to ipi-style shootdowns\n");
		printk(KERN_DEBUG
		"sto:      number of source timeouts\n");
		printk(KERN_DEBUG
		"bz:       number of stay-busy's\n");
		printk(KERN_DEBUG
		"throt:    number times spun in throttle\n");
		printk(KERN_DEBUG "Destination side statistics:\n");
1085
		printk(KERN_DEBUG
1086
		"sw_ack:   image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
1087
		printk(KERN_DEBUG
1088
		"recv:     shootdown messages received\n");
1089
		printk(KERN_DEBUG
1090
		"rtime:    time spent processing messages\n");
1091
		printk(KERN_DEBUG
1092
		"all:      shootdown all-tlb messages\n");
1093
		printk(KERN_DEBUG
1094
		"one:      shootdown one-tlb messages\n");
1095
		printk(KERN_DEBUG
1096
		"mult:     interrupts that found multiple messages\n");
1097
		printk(KERN_DEBUG
1098
		"none:     interrupts that found no messages\n");
1099
		printk(KERN_DEBUG
1100
		"retry:    number of retry messages processed\n");
1101
		printk(KERN_DEBUG
1102
		"canc:     number messages canceled by retries\n");
1103
		printk(KERN_DEBUG
1104
		"nocan:    number retries that found nothing to cancel\n");
1105
		printk(KERN_DEBUG
1106 1107 1108
		"reset:    number of ipi-style reset requests processed\n");
		printk(KERN_DEBUG
		"rcan:     number messages canceled by reset requests\n");
1109 1110 1111 1112
		printk(KERN_DEBUG
		"disable:  number times use of the BAU was disabled\n");
		printk(KERN_DEBUG
		"enable:   number times use of the BAU was re-enabled\n");
1113 1114 1115 1116 1117
	} else if (input_arg == -1) {
		for_each_present_cpu(cpu) {
			stat = &per_cpu(ptcstats, cpu);
			memset(stat, 0, sizeof(struct ptc_stats));
		}
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	}

	return count;
}

static int local_atoi(const char *name)
{
	int val = 0;

	for (;; name++) {
		switch (*name) {
		case '0' ... '9':
			val = 10*val+(*name-'0');
			break;
		default:
			return val;
1134
		}
1135
	}
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
}

/*
 * set the tunables
 * 0 values reset them to defaults
 */
static ssize_t tunables_write(struct file *file, const char __user *user,
				 size_t count, loff_t *data)
{
	int cpu;
	int cnt = 0;
	int val;
	char *p;
	char *q;
	char instr[64];
	struct bau_control *bcp;
1152

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	if (count == 0 || count > sizeof(instr)-1)
		return -EINVAL;
	if (copy_from_user(instr, user, count))
		return -EFAULT;

	instr[count] = '\0';
	/* count the fields */
	p = instr + strspn(instr, WHITESPACE);
	q = p;
	for (; *p; p = q + strspn(q, WHITESPACE)) {
		q = p + strcspn(p, WHITESPACE);
		cnt++;
		if (q == p)
			break;
	}
	if (cnt != 9) {
		printk(KERN_INFO "bau tunable error: should be 9 numbers\n");
		return -EINVAL;
	}

	p = instr + strspn(instr, WHITESPACE);
	q = p;
	for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
		q = p + strcspn(p, WHITESPACE);
		val = local_atoi(p);
		switch (cnt) {
		case 0:
			if (val == 0) {
				max_bau_concurrent = MAX_BAU_CONCURRENT;
				max_bau_concurrent_constant =
							MAX_BAU_CONCURRENT;
				continue;
			}
			bcp = &per_cpu(bau_control, smp_processor_id());
			if (val < 1 || val > bcp->cpus_in_uvhub) {
				printk(KERN_DEBUG
				"Error: BAU max concurrent %d is invalid\n",
				val);
				return -EINVAL;
			}
			max_bau_concurrent = val;
			max_bau_concurrent_constant = val;
			continue;
		case 1:
			if (val == 0)
				plugged_delay = PLUGGED_DELAY;
			else
				plugged_delay = val;
			continue;
		case 2:
			if (val == 0)
				plugsb4reset = PLUGSB4RESET;
			else
				plugsb4reset = val;
			continue;
		case 3:
			if (val == 0)
				timeoutsb4reset = TIMEOUTSB4RESET;
			else
				timeoutsb4reset = val;
			continue;
		case 4:
			if (val == 0)
				ipi_reset_limit = IPI_RESET_LIMIT;
			else
				ipi_reset_limit = val;
			continue;
		case 5:
			if (val == 0)
				complete_threshold = COMPLETE_THRESHOLD;
			else
				complete_threshold = val;
			continue;
		case 6:
			if (val == 0)
				congested_response_us = CONGESTED_RESPONSE_US;
			else
				congested_response_us = val;
			continue;
		case 7:
			if (val == 0)
				congested_reps = CONGESTED_REPS;
			else
				congested_reps = val;
			continue;
		case 8:
			if (val == 0)
				congested_period = CONGESTED_PERIOD;
			else
				congested_period = val;
			continue;
		}
		if (q == p)
			break;
	}
	for_each_present_cpu(cpu) {
		bcp = &per_cpu(bau_control, cpu);
		bcp->max_bau_concurrent = max_bau_concurrent;
		bcp->max_bau_concurrent_constant = max_bau_concurrent;
		bcp->plugged_delay = plugged_delay;
		bcp->plugsb4reset = plugsb4reset;
		bcp->timeoutsb4reset = timeoutsb4reset;
		bcp->ipi_reset_limit = ipi_reset_limit;
		bcp->complete_threshold = complete_threshold;
		bcp->congested_response_us = congested_response_us;
		bcp->congested_reps = congested_reps;
		bcp->congested_period = congested_period;
	}
1261 1262 1263 1264
	return count;
}

static const struct seq_operations uv_ptc_seq_ops = {
1265 1266 1267 1268
	.start		= uv_ptc_seq_start,
	.next		= uv_ptc_seq_next,
	.stop		= uv_ptc_seq_stop,
	.show		= uv_ptc_seq_show
1269 1270
};

1271
static int uv_ptc_proc_open(struct inode *inode, struct file *file)
1272 1273 1274 1275
{
	return seq_open(file, &uv_ptc_seq_ops);
}

1276 1277 1278 1279 1280
static int tunables_open(struct inode *inode, struct file *file)
{
	return 0;
}

1281
static const struct file_operations proc_uv_ptc_operations = {
1282 1283 1284 1285 1286
	.open		= uv_ptc_proc_open,
	.read		= seq_read,
	.write		= uv_ptc_proc_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
1287 1288
};

1289 1290 1291 1292
static const struct file_operations tunables_fops = {
	.open		= tunables_open,
	.read		= tunables_read,
	.write		= tunables_write,
1293
	.llseek		= default_llseek,
1294 1295
};

1296
static int __init uv_ptc_init(void)
1297
{
1298
	struct proc_dir_entry *proc_uv_ptc;
1299 1300 1301 1302

	if (!is_uv_system())
		return 0;

1303 1304
	proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
				  &proc_uv_ptc_operations);
1305 1306 1307 1308 1309
	if (!proc_uv_ptc) {
		printk(KERN_ERR "unable to create %s proc entry\n",
		       UV_PTC_BASENAME);
		return -EINVAL;
	}
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323

	tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
	if (!tunables_dir) {
		printk(KERN_ERR "unable to create debugfs directory %s\n",
		       UV_BAU_TUNABLES_DIR);
		return -EINVAL;
	}
	tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600,
			tunables_dir, NULL, &tunables_fops);
	if (!tunables_file) {
		printk(KERN_ERR "unable to create debugfs file %s\n",
		       UV_BAU_TUNABLES_FILE);
		return -EINVAL;
	}
1324 1325 1326 1327
	return 0;
}

/*
1328
 * initialize the sending side's sending buffers
1329
 */
1330
static void
1331
uv_activation_descriptor_init(int node, int pnode)
1332 1333
{
	int i;
1334
	int cpu;
1335 1336
	unsigned long pa;
	unsigned long m;
1337
	unsigned long n;
1338 1339 1340
	struct bau_desc *bau_desc;
	struct bau_desc *bd2;
	struct bau_control *bcp;
1341

1342 1343
	/*
	 * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR)
1344
	 * per cpu; and up to 32 (UV_ADP_SIZE) cpu's per uvhub
1345
	 */
1346 1347
	bau_desc = kmalloc_node(sizeof(struct bau_desc) * UV_ADP_SIZE
				* UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node);
1348
	BUG_ON(!bau_desc);
1349

1350 1351
	pa = uv_gpa(bau_desc); /* need the real nasid*/
	n = pa >> uv_nshift;
1352
	m = pa & uv_mmask;
1353

1354 1355
	uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE,
			      (n << UV_DESC_BASE_PNODE_SHIFT | m));
1356

1357 1358 1359
	/*
	 * initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each
	 * cpu even though we only use the first one; one descriptor can
1360
	 * describe a broadcast to 256 uv hubs.
1361
	 */
1362 1363 1364 1365
	for (i = 0, bd2 = bau_desc; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR);
		i++, bd2++) {
		memset(bd2, 0, sizeof(struct bau_desc));
		bd2->header.sw_ack_flag = 1;
1366
		/*
1367 1368 1369
		 * base_dest_nodeid is the nasid (pnode<<1) of the first uvhub
		 * in the partition. The bit map will indicate uvhub numbers,
		 * which are 0-N in a partition. Pnodes are unique system-wide.
1370
		 */
1371 1372 1373 1374
		bd2->header.base_dest_nodeid = uv_partition_base_pnode << 1;
		bd2->header.dest_subnodeid = 0x10; /* the LB */
		bd2->header.command = UV_NET_ENDPOINT_INTD;
		bd2->header.int_both = 1;
1375 1376 1377 1378 1379
		/*
		 * all others need to be set to zero:
		 *   fairness chaining multilevel count replied_to
		 */
	}
1380 1381 1382 1383 1384 1385
	for_each_present_cpu(cpu) {
		if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
			continue;
		bcp = &per_cpu(bau_control, cpu);
		bcp->descriptor_base = bau_desc;
	}
1386 1387 1388 1389
}

/*
 * initialize the destination side's receiving buffers
1390 1391 1392
 * entered for each uvhub in the partition
 * - node is first node (kernel memory notion) on the uvhub
 * - pnode is the uvhub's physical identifier
1393
 */
1394 1395
static void
uv_payload_queue_init(int node, int pnode)
1396
{
1397
	int pn;
1398
	int cpu;
1399
	char *cp;
1400 1401 1402 1403
	unsigned long pa;
	struct bau_payload_queue_entry *pqp;
	struct bau_payload_queue_entry *pqp_malloc;
	struct bau_control *bcp;
1404

1405 1406 1407
	pqp = kmalloc_node((DEST_Q_SIZE + 1)
			   * sizeof(struct bau_payload_queue_entry),
			   GFP_KERNEL, node);
1408
	BUG_ON(!pqp);
1409
	pqp_malloc = pqp;
1410

1411 1412
	cp = (char *)pqp + 31;
	pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

	for_each_present_cpu(cpu) {
		if (pnode != uv_cpu_to_pnode(cpu))
			continue;
		/* for every cpu on this pnode: */
		bcp = &per_cpu(bau_control, cpu);
		bcp->va_queue_first = pqp;
		bcp->bau_msg_head = pqp;
		bcp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
	}
1423 1424 1425 1426
	/*
	 * need the pnode of where the memory was really allocated
	 */
	pa = uv_gpa(pqp);
1427
	pn = pa >> uv_nshift;
1428 1429
	uv_write_global_mmr64(pnode,
			      UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
1430
			      ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) |
1431 1432 1433 1434 1435
			      uv_physnodeaddr(pqp));
	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
			      uv_physnodeaddr(pqp));
	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
			      (unsigned long)
1436 1437
			      uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1)));
	/* in effect, all msg_type's are set to MSG_NOOP */
1438
	memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
1439
}
1440

1441
/*
1442
 * Initialization of each UV hub's structures
1443
 */
1444
static void __init uv_init_uvhub(int uvhub, int vector)
1445
{
1446
	int node;
1447 1448
	int pnode;
	unsigned long apicid;
1449 1450 1451 1452 1453

	node = uvhub_to_first_node(uvhub);
	pnode = uv_blade_to_pnode(uvhub);
	uv_activation_descriptor_init(node, pnode);
	uv_payload_queue_init(node, pnode);
1454 1455 1456 1457
	/*
	 * the below initialization can't be in firmware because the
	 * messaging IRQ will be determined by the OS
	 */
1458
	apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
1459
	uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
1460 1461 1462
				      ((apicid << 32) | vector));
}

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
/*
 * We will set BAU_MISC_CONTROL with a timeout period.
 * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
 * So the destination timeout period has be be calculated from them.
 */
static int
calculate_destination_timeout(void)
{
	unsigned long mmr_image;
	int mult1;
	int mult2;
	int index;
	int base;
	int ret;
	unsigned long ts_ns;

	mult1 = UV_INTD_SOFT_ACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
	mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
	index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
	mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
	mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
	base = timeout_base_ns[index];
	ts_ns = base * mult1 * mult2;
	ret = ts_ns / 1000;
	return ret;
}

1490 1491 1492
/*
 * initialize the bau_control structure for each cpu
 */
C
Cliff Wickman 已提交
1493
static void __init uv_init_per_cpu(int nuvhubs)
1494
{
1495
	int i;
1496 1497 1498
	int cpu;
	int pnode;
	int uvhub;
C
Cliff Wickman 已提交
1499
	int have_hmaster;
1500
	short socket = 0;
1501
	unsigned short socket_mask;
C
Cliff Wickman 已提交
1502
	unsigned char *uvhub_mask;
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	struct bau_control *bcp;
	struct uvhub_desc *bdp;
	struct socket_desc *sdp;
	struct bau_control *hmaster = NULL;
	struct bau_control *smaster = NULL;
	struct socket_desc {
		short num_cpus;
		short cpu_number[16];
	};
	struct uvhub_desc {
1513
		unsigned short socket_mask;
1514 1515 1516 1517 1518 1519 1520
		short num_cpus;
		short uvhub;
		short pnode;
		struct socket_desc socket[2];
	};
	struct uvhub_desc *uvhub_descs;

1521 1522
	timeout_us = calculate_destination_timeout();

1523
	uvhub_descs = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
1524
	memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
C
Cliff Wickman 已提交
1525
	uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
1526 1527 1528 1529 1530
	for_each_present_cpu(cpu) {
		bcp = &per_cpu(bau_control, cpu);
		memset(bcp, 0, sizeof(struct bau_control));
		pnode = uv_cpu_hub_info(cpu)->pnode;
		uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
C
Cliff Wickman 已提交
1531
		*(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
1532 1533 1534 1535
		bdp = &uvhub_descs[uvhub];
		bdp->num_cpus++;
		bdp->uvhub = uvhub;
		bdp->pnode = pnode;
1536 1537
		/* kludge: 'assuming' one node per socket, and assuming that
		   disabling a socket just leaves a gap in node numbers */
C
Cliff Wickman 已提交
1538
		socket = (cpu_to_node(cpu) & 1);
1539
		bdp->socket_mask |= (1 << socket);
1540 1541 1542 1543
		sdp = &bdp->socket[socket];
		sdp->cpu_number[sdp->num_cpus] = cpu;
		sdp->num_cpus++;
	}
C
Cliff Wickman 已提交
1544 1545 1546 1547
	for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
		if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
			continue;
		have_hmaster = 0;
1548
		bdp = &uvhub_descs[uvhub];
1549 1550 1551 1552 1553 1554 1555 1556
		socket_mask = bdp->socket_mask;
		socket = 0;
		while (socket_mask) {
			if (!(socket_mask & 1))
				goto nextsocket;
			sdp = &bdp->socket[socket];
			for (i = 0; i < sdp->num_cpus; i++) {
				cpu = sdp->cpu_number[i];
1557 1558
				bcp = &per_cpu(bau_control, cpu);
				bcp->cpu = cpu;
1559
				if (i == 0) {
1560
					smaster = bcp;
C
Cliff Wickman 已提交
1561 1562
					if (!have_hmaster) {
						have_hmaster++;
1563
						hmaster = bcp;
C
Cliff Wickman 已提交
1564
					}
1565 1566 1567 1568
				}
				bcp->cpus_in_uvhub = bdp->num_cpus;
				bcp->cpus_in_socket = sdp->num_cpus;
				bcp->socket_master = smaster;
1569
				bcp->uvhub = bdp->uvhub;
1570
				bcp->uvhub_master = hmaster;
1571 1572
				bcp->uvhub_cpu = uv_cpu_hub_info(cpu)->
						blade_processor_id;
1573
			}
1574
nextsocket:
1575
			socket++;
1576
			socket_mask = (socket_mask >> 1);
1577 1578 1579
		}
	}
	kfree(uvhub_descs);
C
Cliff Wickman 已提交
1580
	kfree(uvhub_mask);
1581 1582
	for_each_present_cpu(cpu) {
		bcp = &per_cpu(bau_control, cpu);
1583
		bcp->baudisabled = 0;
1584
		bcp->statp = &per_cpu(ptcstats, cpu);
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
		/* time interval to catch a hardware stay-busy bug */
		bcp->timeout_interval = microsec_2_cycles(2*timeout_us);
		bcp->max_bau_concurrent = max_bau_concurrent;
		bcp->max_bau_concurrent_constant = max_bau_concurrent;
		bcp->plugged_delay = plugged_delay;
		bcp->plugsb4reset = plugsb4reset;
		bcp->timeoutsb4reset = timeoutsb4reset;
		bcp->ipi_reset_limit = ipi_reset_limit;
		bcp->complete_threshold = complete_threshold;
		bcp->congested_response_us = congested_response_us;
		bcp->congested_reps = congested_reps;
		bcp->congested_period = congested_period;
	}
1598 1599 1600 1601 1602 1603 1604
}

/*
 * Initialization of BAU-related structures
 */
static int __init uv_bau_init(void)
{
1605 1606 1607
	int uvhub;
	int pnode;
	int nuvhubs;
1608
	int cur_cpu;
1609 1610
	int vector;
	unsigned long mmr;
1611 1612 1613

	if (!is_uv_system())
		return 0;
1614

1615 1616 1617
	if (nobau)
		return 0;

1618
	for_each_possible_cpu(cur_cpu)
1619
		zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu),
1620 1621
				       GFP_KERNEL, cpu_to_node(cur_cpu));

1622
	uv_nshift = uv_hub_info->m_val;
1623
	uv_mmask = (1UL << uv_hub_info->m_val) - 1;
1624
	nuvhubs = uv_num_possible_blades();
1625 1626
	spin_lock_init(&disable_lock);
	congested_cycles = microsec_2_cycles(congested_response_us);
1627

1628
	uv_init_per_cpu(nuvhubs);
1629

1630
	uv_partition_base_pnode = 0x7fffffff;
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	for (uvhub = 0; uvhub < nuvhubs; uvhub++)
		if (uv_blade_nr_possible_cpus(uvhub) &&
			(uv_blade_to_pnode(uvhub) < uv_partition_base_pnode))
			uv_partition_base_pnode = uv_blade_to_pnode(uvhub);

	vector = UV_BAU_MESSAGE;
	for_each_possible_blade(uvhub)
		if (uv_blade_nr_possible_cpus(uvhub))
			uv_init_uvhub(uvhub, vector);

1641
	uv_enable_timeouts();
1642 1643 1644
	alloc_intr_gate(vector, uv_bau_message_intr1);

	for_each_possible_blade(uvhub) {
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
		if (uv_blade_nr_possible_cpus(uvhub)) {
			pnode = uv_blade_to_pnode(uvhub);
			/* INIT the bau */
			uv_write_global_mmr64(pnode,
					UVH_LB_BAU_SB_ACTIVATION_CONTROL,
					((unsigned long)1 << 63));
			mmr = 1; /* should be 1 to broadcast to both sockets */
			uv_write_global_mmr64(pnode, UVH_BAU_DATA_BROADCAST,
						mmr);
		}
1655
	}
1656

1657 1658
	return 0;
}
1659
core_initcall(uv_bau_init);
1660
fs_initcall(uv_ptc_init);