nic.c 47.2 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
4
 * Copyright 2006-2009 Solarflare Communications Inc.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "nic.h"
#include "regs.h"
#include "io.h"
#include "workarounds.h"

/**************************************************************************
 *
 * Configurable values
 *
 **************************************************************************
 */

/* This is set to 16 for a good reason.  In summary, if larger than
 * 16, the descriptor cache holds more than a default socket
 * buffer's worth of packets (for UDP we can only have at most one
 * socket buffer's worth outstanding).  This combined with the fact
 * that we only get 1 TX event per descriptor cache means the NIC
 * goes idle.
 */
#define TX_DC_ENTRIES 16
#define TX_DC_ENTRIES_ORDER 1

#define RX_DC_ENTRIES 64
#define RX_DC_ENTRIES_ORDER 3

/* RX FIFO XOFF watermark
 *
 * When the amount of the RX FIFO increases used increases past this
 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
 * This also has an effect on RX/TX arbitration
 */
int efx_nic_rx_xoff_thresh = -1;
module_param_named(rx_xoff_thresh_bytes, efx_nic_rx_xoff_thresh, int, 0644);
MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");

/* RX FIFO XON watermark
 *
 * When the amount of the RX FIFO used decreases below this
 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
 * This also has an effect on RX/TX arbitration
 */
int efx_nic_rx_xon_thresh = -1;
module_param_named(rx_xon_thresh_bytes, efx_nic_rx_xon_thresh, int, 0644);
MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");

/* If EFX_MAX_INT_ERRORS internal errors occur within
 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
 * disable it.
 */
#define EFX_INT_ERROR_EXPIRE 3600
#define EFX_MAX_INT_ERRORS 5

/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
 */
#define EFX_FLUSH_INTERVAL 10
#define EFX_FLUSH_POLL_COUNT 100

/* Size and alignment of special buffers (4KB) */
#define EFX_BUF_SIZE 4096

/* Depth of RX flush request fifo */
#define EFX_RX_FLUSH_COUNT 4

82 83 84 85
/* Magic value for efx_generate_test_event() */
#define EFX_CHANNEL_MAGIC(_channel)			\
	(0x00010100 + (_channel)->channel)

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
/**************************************************************************
 *
 * Solarstorm hardware access
 *
 **************************************************************************/

static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
				     unsigned int index)
{
	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
			value, index);
}

/* Read the current event from the event queue */
static inline efx_qword_t *efx_event(struct efx_channel *channel,
				     unsigned int index)
{
	return (((efx_qword_t *) (channel->eventq.addr)) + index);
}

/* See if an event is present
 *
 * We check both the high and low dword of the event for all ones.  We
 * wrote all ones when we cleared the event, and no valid event can
 * have all ones in either its high or low dwords.  This approach is
 * robust against reordering.
 *
 * Note that using a single 64-bit comparison is incorrect; even
 * though the CPU read will be atomic, the DMA write may not be.
 */
static inline int efx_event_present(efx_qword_t *event)
{
	return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
		  EFX_DWORD_IS_ALL_ONES(event->dword[1])));
}

static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
				     const efx_oword_t *mask)
{
	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
}

int efx_nic_test_registers(struct efx_nic *efx,
			   const struct efx_nic_register_test *regs,
			   size_t n_regs)
{
	unsigned address = 0, i, j;
	efx_oword_t mask, imask, original, reg, buf;

	/* Falcon should be in loopback to isolate the XMAC from the PHY */
	WARN_ON(!LOOPBACK_INTERNAL(efx));

	for (i = 0; i < n_regs; ++i) {
		address = regs[i].address;
		mask = imask = regs[i].mask;
		EFX_INVERT_OWORD(imask);

		efx_reado(efx, &original, address);

		/* bit sweep on and off */
		for (j = 0; j < 128; j++) {
			if (!EFX_EXTRACT_OWORD32(mask, j, j))
				continue;

			/* Test this testable bit can be set in isolation */
			EFX_AND_OWORD(reg, original, mask);
			EFX_SET_OWORD32(reg, j, j, 1);

			efx_writeo(efx, &reg, address);
			efx_reado(efx, &buf, address);

			if (efx_masked_compare_oword(&reg, &buf, &mask))
				goto fail;

			/* Test this testable bit can be cleared in isolation */
			EFX_OR_OWORD(reg, original, mask);
			EFX_SET_OWORD32(reg, j, j, 0);

			efx_writeo(efx, &reg, address);
			efx_reado(efx, &buf, address);

			if (efx_masked_compare_oword(&reg, &buf, &mask))
				goto fail;
		}

		efx_writeo(efx, &original, address);
	}

	return 0;

fail:
	EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
		" at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
		EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
	return -EIO;
}

/**************************************************************************
 *
 * Special buffer handling
 * Special buffers are used for event queues and the TX and RX
 * descriptor rings.
 *
 *************************************************************************/

/*
 * Initialise a special buffer
 *
 * This will define a buffer (previously allocated via
 * efx_alloc_special_buffer()) in the buffer table, allowing
 * it to be used for event queues, descriptor rings etc.
 */
static void
efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
	efx_qword_t buf_desc;
	int index;
	dma_addr_t dma_addr;
	int i;

	EFX_BUG_ON_PARANOID(!buffer->addr);

	/* Write buffer descriptors to NIC */
	for (i = 0; i < buffer->entries; i++) {
		index = buffer->index + i;
		dma_addr = buffer->dma_addr + (i * 4096);
		EFX_LOG(efx, "mapping special buffer %d at %llx\n",
			index, (unsigned long long)dma_addr);
		EFX_POPULATE_QWORD_3(buf_desc,
				     FRF_AZ_BUF_ADR_REGION, 0,
				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
		efx_write_buf_tbl(efx, &buf_desc, index);
	}
}

/* Unmaps a buffer and clears the buffer table entries */
static void
efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
	efx_oword_t buf_tbl_upd;
	unsigned int start = buffer->index;
	unsigned int end = (buffer->index + buffer->entries - 1);

	if (!buffer->entries)
		return;

	EFX_LOG(efx, "unmapping special buffers %d-%d\n",
		buffer->index, buffer->index + buffer->entries - 1);

	EFX_POPULATE_OWORD_4(buf_tbl_upd,
			     FRF_AZ_BUF_UPD_CMD, 0,
			     FRF_AZ_BUF_CLR_CMD, 1,
			     FRF_AZ_BUF_CLR_END_ID, end,
			     FRF_AZ_BUF_CLR_START_ID, start);
	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
}

/*
 * Allocate a new special buffer
 *
 * This allocates memory for a new buffer, clears it and allocates a
 * new buffer ID range.  It does not write into the buffer table.
 *
 * This call will allocate 4KB buffers, since 8KB buffers can't be
 * used for event queues and descriptor rings.
 */
static int efx_alloc_special_buffer(struct efx_nic *efx,
				    struct efx_special_buffer *buffer,
				    unsigned int len)
{
	len = ALIGN(len, EFX_BUF_SIZE);

	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
					    &buffer->dma_addr);
	if (!buffer->addr)
		return -ENOMEM;
	buffer->len = len;
	buffer->entries = len / EFX_BUF_SIZE;
	BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));

	/* All zeros is a potentially valid event so memset to 0xff */
	memset(buffer->addr, 0xff, len);

	/* Select new buffer ID */
	buffer->index = efx->next_buffer_table;
	efx->next_buffer_table += buffer->entries;

	EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
		"(virt %p phys %llx)\n", buffer->index,
		buffer->index + buffer->entries - 1,
		(u64)buffer->dma_addr, len,
		buffer->addr, (u64)virt_to_phys(buffer->addr));

	return 0;
}

static void
efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
	if (!buffer->addr)
		return;

	EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
		"(virt %p phys %llx)\n", buffer->index,
		buffer->index + buffer->entries - 1,
		(u64)buffer->dma_addr, buffer->len,
		buffer->addr, (u64)virt_to_phys(buffer->addr));

	pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
			    buffer->dma_addr);
	buffer->addr = NULL;
	buffer->entries = 0;
}

/**************************************************************************
 *
 * Generic buffer handling
 * These buffers are used for interrupt status and MAC stats
 *
 **************************************************************************/

int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
			 unsigned int len)
{
	buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
					    &buffer->dma_addr);
	if (!buffer->addr)
		return -ENOMEM;
	buffer->len = len;
	memset(buffer->addr, 0, len);
	return 0;
}

void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
{
	if (buffer->addr) {
		pci_free_consistent(efx->pci_dev, buffer->len,
				    buffer->addr, buffer->dma_addr);
		buffer->addr = NULL;
	}
}

/**************************************************************************
 *
 * TX path
 *
 **************************************************************************/

/* Returns a pointer to the specified transmit descriptor in the TX
 * descriptor queue belonging to the specified channel.
 */
static inline efx_qword_t *
efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
{
	return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
}

/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
	unsigned write_ptr;
	efx_dword_t reg;

	write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
	efx_writed_page(tx_queue->efx, &reg,
			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
}


/* For each entry inserted into the software descriptor ring, create a
 * descriptor in the hardware TX descriptor ring (in host memory), and
 * write a doorbell.
 */
void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
{

	struct efx_tx_buffer *buffer;
	efx_qword_t *txd;
	unsigned write_ptr;

	BUG_ON(tx_queue->write_count == tx_queue->insert_count);

	do {
		write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
		buffer = &tx_queue->buffer[write_ptr];
		txd = efx_tx_desc(tx_queue, write_ptr);
		++tx_queue->write_count;

		/* Create TX descriptor ring entry */
		EFX_POPULATE_QWORD_4(*txd,
				     FSF_AZ_TX_KER_CONT, buffer->continuation,
				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
				     FSF_AZ_TX_KER_BUF_REGION, 0,
				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
	} while (tx_queue->write_count != tx_queue->insert_count);

	wmb(); /* Ensure descriptors are written before they are fetched */
	efx_notify_tx_desc(tx_queue);
}

/* Allocate hardware resources for a TX queue */
int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
		     EFX_TXQ_SIZE & EFX_TXQ_MASK);
	return efx_alloc_special_buffer(efx, &tx_queue->txd,
					EFX_TXQ_SIZE * sizeof(efx_qword_t));
}

void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
{
	efx_oword_t tx_desc_ptr;
	struct efx_nic *efx = tx_queue->efx;

	tx_queue->flushed = FLUSH_NONE;

	/* Pin TX descriptor ring */
	efx_init_special_buffer(efx, &tx_queue->txd);

	/* Push TX descriptor ring to card */
	EFX_POPULATE_OWORD_10(tx_desc_ptr,
			      FRF_AZ_TX_DESCQ_EN, 1,
			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
			      FRF_AZ_TX_DESCQ_EVQ_ID,
			      tx_queue->channel->channel,
			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
			      FRF_AZ_TX_DESCQ_SIZE,
			      __ffs(tx_queue->txd.entries),
			      FRF_AZ_TX_DESCQ_TYPE, 0,
			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);

	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
B
Ben Hutchings 已提交
425
		int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
426 427 428 429 430 431 432 433 434 435 436 437
		EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
		EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
				    !csum);
	}

	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
			 tx_queue->queue);

	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
		efx_oword_t reg;

		/* Only 128 bits in this register */
B
Ben Hutchings 已提交
438
		BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
439 440

		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
B
Ben Hutchings 已提交
441
		if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
			clear_bit_le(tx_queue->queue, (void *)&reg);
		else
			set_bit_le(tx_queue->queue, (void *)&reg);
		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
	}
}

static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t tx_flush_descq;

	tx_queue->flushed = FLUSH_PENDING;

	/* Post a flush command */
	EFX_POPULATE_OWORD_2(tx_flush_descq,
			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
}

void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
{
	struct efx_nic *efx = tx_queue->efx;
	efx_oword_t tx_desc_ptr;

	/* The queue should have been flushed */
	WARN_ON(tx_queue->flushed != FLUSH_DONE);

	/* Remove TX descriptor ring from card */
	EFX_ZERO_OWORD(tx_desc_ptr);
	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
			 tx_queue->queue);

	/* Unpin TX descriptor ring */
	efx_fini_special_buffer(efx, &tx_queue->txd);
}

/* Free buffers backing TX queue */
void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
{
	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
}

/**************************************************************************
 *
 * RX path
 *
 **************************************************************************/

/* Returns a pointer to the specified descriptor in the RX descriptor queue */
static inline efx_qword_t *
efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
{
	return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
}

/* This creates an entry in the RX descriptor queue */
static inline void
efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
{
	struct efx_rx_buffer *rx_buf;
	efx_qword_t *rxd;

	rxd = efx_rx_desc(rx_queue, index);
	rx_buf = efx_rx_buffer(rx_queue, index);
	EFX_POPULATE_QWORD_3(*rxd,
			     FSF_AZ_RX_KER_BUF_SIZE,
			     rx_buf->len -
			     rx_queue->efx->type->rx_buffer_padding,
			     FSF_AZ_RX_KER_BUF_REGION, 0,
			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
}

/* This writes to the RX_DESC_WPTR register for the specified receive
 * descriptor ring.
 */
void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
{
	efx_dword_t reg;
	unsigned write_ptr;

	while (rx_queue->notified_count != rx_queue->added_count) {
		efx_build_rx_desc(rx_queue,
				  rx_queue->notified_count &
				  EFX_RXQ_MASK);
		++rx_queue->notified_count;
	}

	wmb();
	write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
	efx_writed_page(rx_queue->efx, &reg,
			FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
}

int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
	BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
		     EFX_RXQ_SIZE & EFX_RXQ_MASK);
	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
					EFX_RXQ_SIZE * sizeof(efx_qword_t));
}

void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
{
	efx_oword_t rx_desc_ptr;
	struct efx_nic *efx = rx_queue->efx;
	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
	bool iscsi_digest_en = is_b0;

	EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
		rx_queue->queue, rx_queue->rxd.index,
		rx_queue->rxd.index + rx_queue->rxd.entries - 1);

	rx_queue->flushed = FLUSH_NONE;

	/* Pin RX descriptor ring */
	efx_init_special_buffer(efx, &rx_queue->rxd);

	/* Push RX descriptor ring to card */
	EFX_POPULATE_OWORD_10(rx_desc_ptr,
			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
			      FRF_AZ_RX_DESCQ_EVQ_ID,
			      rx_queue->channel->channel,
			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
			      FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
			      FRF_AZ_RX_DESCQ_SIZE,
			      __ffs(rx_queue->rxd.entries),
			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
			      /* For >=B0 this is scatter so disable */
			      FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
			      FRF_AZ_RX_DESCQ_EN, 1);
	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
			 rx_queue->queue);
}

static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
	efx_oword_t rx_flush_descq;

	rx_queue->flushed = FLUSH_PENDING;

	/* Post a flush command */
	EFX_POPULATE_OWORD_2(rx_flush_descq,
			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
			     FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
}

void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
{
	efx_oword_t rx_desc_ptr;
	struct efx_nic *efx = rx_queue->efx;

	/* The queue should already have been flushed */
	WARN_ON(rx_queue->flushed != FLUSH_DONE);

	/* Remove RX descriptor ring from card */
	EFX_ZERO_OWORD(rx_desc_ptr);
	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
			 rx_queue->queue);

	/* Unpin RX descriptor ring */
	efx_fini_special_buffer(efx, &rx_queue->rxd);
}

/* Free buffers backing RX queue */
void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
{
	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
}

/**************************************************************************
 *
 * Event queue processing
 * Event queues are processed by per-channel tasklets.
 *
 **************************************************************************/

/* Update a channel's event queue's read pointer (RPTR) register
 *
 * This writes the EVQ_RPTR_REG register for the specified channel's
 * event queue.
 */
void efx_nic_eventq_read_ack(struct efx_channel *channel)
{
	efx_dword_t reg;
	struct efx_nic *efx = channel->efx;

	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
	efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
			 channel->channel);
}

/* Use HW to insert a SW defined event */
void efx_generate_event(struct efx_channel *channel, efx_qword_t *event)
{
	efx_oword_t drv_ev_reg;

	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
	drv_ev_reg.u32[0] = event->u32[0];
	drv_ev_reg.u32[1] = event->u32[1];
	drv_ev_reg.u32[2] = 0;
	drv_ev_reg.u32[3] = 0;
	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
	efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
}

/* Handle a transmit completion event
 *
 * The NIC batches TX completion events; the message we receive is of
 * the form "complete all TX events up to this index".
 */
661
static int
662 663 664 665 666 667
efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
{
	unsigned int tx_ev_desc_ptr;
	unsigned int tx_ev_q_label;
	struct efx_tx_queue *tx_queue;
	struct efx_nic *efx = channel->efx;
668
	int tx_packets = 0;
669 670 671 672 673 674

	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
		/* Transmit completion */
		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
		tx_queue = &efx->tx_queue[tx_ev_q_label];
675 676 677
		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
			      EFX_TXQ_MASK);
		channel->irq_mod_score += tx_packets;
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
		/* Rewrite the FIFO write pointer */
		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
		tx_queue = &efx->tx_queue[tx_ev_q_label];

		if (efx_dev_registered(efx))
			netif_tx_lock(efx->net_dev);
		efx_notify_tx_desc(tx_queue);
		if (efx_dev_registered(efx))
			netif_tx_unlock(efx->net_dev);
	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
		   EFX_WORKAROUND_10727(efx)) {
		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
	} else {
		EFX_ERR(efx, "channel %d unexpected TX event "
			EFX_QWORD_FMT"\n", channel->channel,
			EFX_QWORD_VAL(*event));
	}
697 698

	return tx_packets;
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
}

/* Detect errors included in the rx_evt_pkt_ok bit. */
static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
				 const efx_qword_t *event,
				 bool *rx_ev_pkt_ok,
				 bool *discard)
{
	struct efx_nic *efx = rx_queue->efx;
	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
	bool rx_ev_other_err, rx_ev_pause_frm;
	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
	unsigned rx_ev_pkt_type;

	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);

	/* Every error apart from tobe_disc and pause_frm */
	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);

	/* Count errors that are not in MAC stats.  Ignore expected
	 * checksum errors during self-test. */
	if (rx_ev_frm_trunc)
		++rx_queue->channel->n_rx_frm_trunc;
	else if (rx_ev_tobe_disc)
		++rx_queue->channel->n_rx_tobe_disc;
	else if (!efx->loopback_selftest) {
		if (rx_ev_ip_hdr_chksum_err)
			++rx_queue->channel->n_rx_ip_hdr_chksum_err;
		else if (rx_ev_tcp_udp_chksum_err)
			++rx_queue->channel->n_rx_tcp_udp_chksum_err;
	}

	/* The frame must be discarded if any of these are true. */
	*discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
		    rx_ev_tobe_disc | rx_ev_pause_frm);

	/* TOBE_DISC is expected on unicast mismatches; don't print out an
	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
	 * to a FIFO overflow.
	 */
#ifdef EFX_ENABLE_DEBUG
	if (rx_ev_other_err) {
		EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
			    EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
			    rx_queue->queue, EFX_QWORD_VAL(*event),
			    rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
			    rx_ev_ip_hdr_chksum_err ?
			    " [IP_HDR_CHKSUM_ERR]" : "",
			    rx_ev_tcp_udp_chksum_err ?
			    " [TCP_UDP_CHKSUM_ERR]" : "",
			    rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
			    rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
			    rx_ev_drib_nib ? " [DRIB_NIB]" : "",
			    rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
			    rx_ev_pause_frm ? " [PAUSE]" : "");
	}
#endif
}

/* Handle receive events that are not in-order. */
static void
efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
{
	struct efx_nic *efx = rx_queue->efx;
	unsigned expected, dropped;

	expected = rx_queue->removed_count & EFX_RXQ_MASK;
	dropped = (index - expected) & EFX_RXQ_MASK;
	EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
		dropped, index, expected);

	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
}

/* Handle a packet received event
 *
 * The NIC gives a "discard" flag if it's a unicast packet with the
 * wrong destination address
 * Also "is multicast" and "matches multicast filter" flags can be used to
 * discard non-matching multicast packets.
 */
static void
efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
{
	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
	unsigned expected_ptr;
	bool rx_ev_pkt_ok, discard = false, checksummed;
	struct efx_rx_queue *rx_queue;
	struct efx_nic *efx = channel->efx;

	/* Basic packet information */
	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
		channel->channel);

	rx_queue = &efx->rx_queue[channel->channel];

	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
	expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
	if (unlikely(rx_ev_desc_ptr != expected_ptr))
		efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);

	if (likely(rx_ev_pkt_ok)) {
		/* If packet is marked as OK and packet type is TCP/IP or
		 * UDP/IP, then we can rely on the hardware checksum.
		 */
		checksummed =
			likely(efx->rx_checksum_enabled) &&
			(rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
			 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP);
	} else {
		efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard);
		checksummed = false;
	}

	/* Detect multicast packets that didn't match the filter */
	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
	if (rx_ev_mcast_pkt) {
		unsigned int rx_ev_mcast_hash_match =
			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);

		if (unlikely(!rx_ev_mcast_hash_match)) {
			++channel->n_rx_mcast_mismatch;
			discard = true;
		}
	}

	channel->irq_mod_score += 2;

	/* Handle received packet */
	efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
		      checksummed, discard);
}

/* Global events are basically PHY events */
static void
efx_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	bool handled = false;

	if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
		/* Ignored */
		handled = true;
	}

	if ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) &&
	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
		efx->xmac_poll_required = true;
		handled = true;
	}

	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
	    EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
		EFX_ERR(efx, "channel %d seen global RX_RESET "
			"event. Resetting.\n", channel->channel);

		atomic_inc(&efx->rx_reset);
		efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
		handled = true;
	}

	if (!handled)
		EFX_ERR(efx, "channel %d unknown global event "
			EFX_QWORD_FMT "\n", channel->channel,
			EFX_QWORD_VAL(*event));
}

static void
efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	unsigned int ev_sub_code;
	unsigned int ev_sub_data;

	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);

	switch (ev_sub_code) {
	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
		EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
			  channel->channel, ev_sub_data);
		break;
	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
		EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
			  channel->channel, ev_sub_data);
		break;
	case FSE_AZ_EVQ_INIT_DONE_EV:
		EFX_LOG(efx, "channel %d EVQ %d initialised\n",
			channel->channel, ev_sub_data);
		break;
	case FSE_AZ_SRM_UPD_DONE_EV:
		EFX_TRACE(efx, "channel %d SRAM update done\n",
			  channel->channel);
		break;
	case FSE_AZ_WAKE_UP_EV:
		EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
			  channel->channel, ev_sub_data);
		break;
	case FSE_AZ_TIMER_EV:
		EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
			  channel->channel, ev_sub_data);
		break;
	case FSE_AA_RX_RECOVER_EV:
		EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
			"Resetting.\n", channel->channel);
		atomic_inc(&efx->rx_reset);
		efx_schedule_reset(efx,
				   EFX_WORKAROUND_6555(efx) ?
				   RESET_TYPE_RX_RECOVERY :
				   RESET_TYPE_DISABLE);
		break;
	case FSE_BZ_RX_DSC_ERROR_EV:
		EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
			" RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
		efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
		break;
	case FSE_BZ_TX_DSC_ERROR_EV:
		EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
			" TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
		efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
		break;
	default:
		EFX_TRACE(efx, "channel %d unknown driver event code %d "
			  "data %04x\n", channel->channel, ev_sub_code,
			  ev_sub_data);
		break;
	}
}

957
int efx_nic_process_eventq(struct efx_channel *channel, int budget)
958 959 960 961
{
	unsigned int read_ptr;
	efx_qword_t event, *p_event;
	int ev_code;
962 963
	int tx_packets = 0;
	int spent = 0;
964 965 966

	read_ptr = channel->eventq_read_ptr;

967
	for (;;) {
968 969 970 971 972 973 974 975 976 977 978 979 980
		p_event = efx_event(channel, read_ptr);
		event = *p_event;

		if (!efx_event_present(&event))
			/* End of events */
			break;

		EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
			  channel->channel, EFX_QWORD_VAL(event));

		/* Clear this event by marking it all ones */
		EFX_SET_QWORD(*p_event);

981 982 983
		/* Increment read pointer */
		read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;

984 985 986 987 988
		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);

		switch (ev_code) {
		case FSE_AZ_EV_CODE_RX_EV:
			efx_handle_rx_event(channel, &event);
989 990
			if (++spent == budget)
				goto out;
991 992
			break;
		case FSE_AZ_EV_CODE_TX_EV:
993 994 995 996 997
			tx_packets += efx_handle_tx_event(channel, &event);
			if (tx_packets >= EFX_TXQ_SIZE) {
				spent = budget;
				goto out;
			}
998 999
			break;
		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1000 1001 1002 1003
			if (EFX_QWORD_FIELD(event, FSF_AZ_DRV_GEN_EV_MAGIC)
			    == EFX_CHANNEL_MAGIC(channel))
				++channel->magic_count;

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
			EFX_LOG(channel->efx, "channel %d received generated "
				"event "EFX_QWORD_FMT"\n", channel->channel,
				EFX_QWORD_VAL(event));
			break;
		case FSE_AZ_EV_CODE_GLOBAL_EV:
			efx_handle_global_event(channel, &event);
			break;
		case FSE_AZ_EV_CODE_DRIVER_EV:
			efx_handle_driver_event(channel, &event);
			break;
1014 1015 1016
		case FSE_CZ_EV_CODE_MCDI_EV:
			efx_mcdi_process_event(channel, &event);
			break;
1017 1018 1019 1020 1021
		default:
			EFX_ERR(channel->efx, "channel %d unknown event type %d"
				" (data " EFX_QWORD_FMT ")\n", channel->channel,
				ev_code, EFX_QWORD_VAL(event));
		}
1022
	}
1023

1024
out:
1025
	channel->eventq_read_ptr = read_ptr;
1026
	return spent;
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
}


/* Allocate buffer table entries for event queue */
int efx_nic_probe_eventq(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;
	BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
		     EFX_EVQ_SIZE & EFX_EVQ_MASK);
	return efx_alloc_special_buffer(efx, &channel->eventq,
					EFX_EVQ_SIZE * sizeof(efx_qword_t));
}

void efx_nic_init_eventq(struct efx_channel *channel)
{
1042
	efx_oword_t reg;
1043 1044 1045 1046 1047 1048
	struct efx_nic *efx = channel->efx;

	EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
		channel->channel, channel->eventq.index,
		channel->eventq.index + channel->eventq.entries - 1);

1049 1050 1051 1052 1053 1054 1055 1056
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
		EFX_POPULATE_OWORD_3(reg,
				     FRF_CZ_TIMER_Q_EN, 1,
				     FRF_CZ_HOST_NOTIFY_MODE, 0,
				     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
	}

1057 1058 1059 1060 1061 1062 1063
	/* Pin event queue buffer */
	efx_init_special_buffer(efx, &channel->eventq);

	/* Fill event queue with all ones (i.e. empty events) */
	memset(channel->eventq.addr, 0xff, channel->eventq.len);

	/* Push event queue to card */
1064
	EFX_POPULATE_OWORD_3(reg,
1065 1066 1067
			     FRF_AZ_EVQ_EN, 1,
			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1068
	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1069 1070 1071 1072 1073 1074 1075
			 channel->channel);

	efx->type->push_irq_moderation(channel);
}

void efx_nic_fini_eventq(struct efx_channel *channel)
{
1076
	efx_oword_t reg;
1077 1078 1079
	struct efx_nic *efx = channel->efx;

	/* Remove event queue from card */
1080 1081
	EFX_ZERO_OWORD(reg);
	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1082
			 channel->channel);
1083 1084
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096

	/* Unpin event queue */
	efx_fini_special_buffer(efx, &channel->eventq);
}

/* Free buffers backing event queue */
void efx_nic_remove_eventq(struct efx_channel *channel)
{
	efx_free_special_buffer(channel->efx, &channel->eventq);
}


1097
void efx_nic_generate_test_event(struct efx_channel *channel)
1098
{
1099
	unsigned int magic = EFX_CHANNEL_MAGIC(channel);
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	efx_qword_t test_event;

	EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
			     FSE_AZ_EV_CODE_DRV_GEN_EV,
			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
	efx_generate_event(channel, &test_event);
}

/**************************************************************************
 *
 * Flush handling
 *
 **************************************************************************/


static void efx_poll_flush_events(struct efx_nic *efx)
{
	struct efx_channel *channel = &efx->channel[0];
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	unsigned int read_ptr = channel->eventq_read_ptr;
	unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;

	do {
		efx_qword_t *event = efx_event(channel, read_ptr);
		int ev_code, ev_sub_code, ev_queue;
		bool ev_failed;

		if (!efx_event_present(event))
			break;

		ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
		ev_sub_code = EFX_QWORD_FIELD(*event,
					      FSF_AZ_DRIVER_EV_SUBCODE);
		if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
		    ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
			ev_queue = EFX_QWORD_FIELD(*event,
						   FSF_AZ_DRIVER_EV_SUBDATA);
B
Ben Hutchings 已提交
1138
			if (ev_queue < EFX_TXQ_TYPES * efx->n_tx_channels) {
1139 1140 1141 1142 1143 1144 1145 1146 1147
				tx_queue = efx->tx_queue + ev_queue;
				tx_queue->flushed = FLUSH_DONE;
			}
		} else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
			   ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
			ev_queue = EFX_QWORD_FIELD(
				*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
			ev_failed = EFX_QWORD_FIELD(
				*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
B
Ben Hutchings 已提交
1148
			if (ev_queue < efx->n_rx_channels) {
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
				rx_queue = efx->rx_queue + ev_queue;
				rx_queue->flushed =
					ev_failed ? FLUSH_FAILED : FLUSH_DONE;
			}
		}

		/* We're about to destroy the queue anyway, so
		 * it's ok to throw away every non-flush event */
		EFX_SET_QWORD(*event);

		read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
	} while (read_ptr != end_ptr);

	channel->eventq_read_ptr = read_ptr;
}

/* Handle tx and rx flushes at the same time, since they run in
 * parallel in the hardware and there's no reason for us to
 * serialise them */
int efx_nic_flush_queues(struct efx_nic *efx)
{
	struct efx_rx_queue *rx_queue;
	struct efx_tx_queue *tx_queue;
	int i, tx_pending, rx_pending;

	/* If necessary prepare the hardware for flushing */
	efx->type->prepare_flush(efx);

	/* Flush all tx queues in parallel */
	efx_for_each_tx_queue(tx_queue, efx)
		efx_flush_tx_queue(tx_queue);

	/* The hardware supports four concurrent rx flushes, each of which may
	 * need to be retried if there is an outstanding descriptor fetch */
	for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) {
		rx_pending = tx_pending = 0;
		efx_for_each_rx_queue(rx_queue, efx) {
			if (rx_queue->flushed == FLUSH_PENDING)
				++rx_pending;
		}
		efx_for_each_rx_queue(rx_queue, efx) {
			if (rx_pending == EFX_RX_FLUSH_COUNT)
				break;
			if (rx_queue->flushed == FLUSH_FAILED ||
			    rx_queue->flushed == FLUSH_NONE) {
				efx_flush_rx_queue(rx_queue);
				++rx_pending;
			}
		}
		efx_for_each_tx_queue(tx_queue, efx) {
			if (tx_queue->flushed != FLUSH_DONE)
				++tx_pending;
		}

		if (rx_pending == 0 && tx_pending == 0)
			return 0;

		msleep(EFX_FLUSH_INTERVAL);
		efx_poll_flush_events(efx);
	}

	/* Mark the queues as all flushed. We're going to return failure
	 * leading to a reset, or fake up success anyway */
	efx_for_each_tx_queue(tx_queue, efx) {
		if (tx_queue->flushed != FLUSH_DONE)
			EFX_ERR(efx, "tx queue %d flush command timed out\n",
				tx_queue->queue);
		tx_queue->flushed = FLUSH_DONE;
	}
	efx_for_each_rx_queue(rx_queue, efx) {
		if (rx_queue->flushed != FLUSH_DONE)
			EFX_ERR(efx, "rx queue %d flush command timed out\n",
				rx_queue->queue);
		rx_queue->flushed = FLUSH_DONE;
	}

	return -ETIMEDOUT;
}

/**************************************************************************
 *
 * Hardware interrupts
 * The hardware interrupt handler does very little work; all the event
 * queue processing is carried out by per-channel tasklets.
 *
 **************************************************************************/

/* Enable/disable/generate interrupts */
static inline void efx_nic_interrupts(struct efx_nic *efx,
				      bool enabled, bool force)
{
	efx_oword_t int_en_reg_ker;
1241 1242

	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1243
			     FRF_AZ_KER_INT_LEVE_SEL, efx->fatal_irq_level,
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
			     FRF_AZ_KER_INT_KER, force,
			     FRF_AZ_DRV_INT_EN_KER, enabled);
	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
}

void efx_nic_enable_interrupts(struct efx_nic *efx)
{
	struct efx_channel *channel;

	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */

	/* Enable interrupts */
	efx_nic_interrupts(efx, true, false);

	/* Force processing of all the channels to get the EVQ RPTRs up to
	   date */
	efx_for_each_channel(channel, efx)
		efx_schedule_channel(channel);
}

void efx_nic_disable_interrupts(struct efx_nic *efx)
{
	/* Disable interrupts */
	efx_nic_interrupts(efx, false, false);
}

/* Generate a test interrupt
 * Interrupt must already have been enabled, otherwise nasty things
 * may happen.
 */
void efx_nic_generate_interrupt(struct efx_nic *efx)
{
	efx_nic_interrupts(efx, true, true);
}

/* Process a fatal interrupt
 * Disable bus mastering ASAP and schedule a reset
 */
irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
{
	struct falcon_nic_data *nic_data = efx->nic_data;
	efx_oword_t *int_ker = efx->irq_status.addr;
	efx_oword_t fatal_intr;
	int error, mem_perr;

	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);

	EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
		EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
		EFX_OWORD_VAL(fatal_intr),
		error ? "disabling bus mastering" : "no recognised error");

	/* If this is a memory parity error dump which blocks are offending */
1299 1300
	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
	if (mem_perr) {
		efx_oword_t reg;
		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
		EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
			EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
	}

	/* Disable both devices */
	pci_clear_master(efx->pci_dev);
	if (efx_nic_is_dual_func(efx))
		pci_clear_master(nic_data->pci_dev2);
	efx_nic_disable_interrupts(efx);

	/* Count errors and reset or disable the NIC accordingly */
	if (efx->int_error_count == 0 ||
	    time_after(jiffies, efx->int_error_expire)) {
		efx->int_error_count = 0;
		efx->int_error_expire =
			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
	}
	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
		EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
	} else {
		EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
			"NIC will be disabled\n");
		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
	}
1329

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	return IRQ_HANDLED;
}

/* Handle a legacy interrupt
 * Acknowledges the interrupt and schedule event queue processing.
 */
static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
{
	struct efx_nic *efx = dev_id;
	efx_oword_t *int_ker = efx->irq_status.addr;
	irqreturn_t result = IRQ_NONE;
	struct efx_channel *channel;
	efx_dword_t reg;
	u32 queues;
	int syserr;

	/* Read the ISR which also ACKs the interrupts */
	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
	queues = EFX_EXTRACT_DWORD(reg, 0, 31);

	/* Check to see if we have a serious error condition */
1351 1352 1353 1354 1355
	if (queues & (1U << efx->fatal_irq_level)) {
		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
		if (unlikely(syserr))
			return efx_nic_fatal_interrupt(efx);
	}
1356

1357 1358 1359 1360 1361 1362 1363
	if (queues != 0) {
		if (EFX_WORKAROUND_15783(efx))
			efx->irq_zero_count = 0;

		/* Schedule processing of any interrupting queues */
		efx_for_each_channel(channel, efx) {
			if (queues & 1)
1364
				efx_schedule_channel(channel);
1365
			queues >>= 1;
1366
		}
1367 1368
		result = IRQ_HANDLED;

1369
	} else if (EFX_WORKAROUND_15783(efx)) {
1370 1371
		efx_qword_t *event;

1372 1373 1374 1375 1376 1377
		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
		 * because this might be a shared interrupt. */
		if (efx->irq_zero_count++ == 0)
			result = IRQ_HANDLED;

		/* Ensure we schedule or rearm all event queues */
1378 1379 1380 1381
		efx_for_each_channel(channel, efx) {
			event = efx_event(channel, channel->eventq_read_ptr);
			if (efx_event_present(event))
				efx_schedule_channel(channel);
1382 1383
			else
				efx_nic_eventq_read_ack(channel);
1384
		}
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	}

	if (result == IRQ_HANDLED) {
		efx->last_irq_cpu = raw_smp_processor_id();
		EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
			  irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
	}

	return result;
}

/* Handle an MSI interrupt
 *
 * Handle an MSI hardware interrupt.  This routine schedules event
 * queue processing.  No interrupt acknowledgement cycle is necessary.
 * Also, we never need to check that the interrupt is for us, since
 * MSI interrupts cannot be shared.
 */
static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
{
	struct efx_channel *channel = dev_id;
	struct efx_nic *efx = channel->efx;
	efx_oword_t *int_ker = efx->irq_status.addr;
	int syserr;

	efx->last_irq_cpu = raw_smp_processor_id();
	EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
		  irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));

	/* Check to see if we have a serious error condition */
1415 1416 1417 1418 1419
	if (channel->channel == efx->fatal_irq_level) {
		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
		if (unlikely(syserr))
			return efx_nic_fatal_interrupt(efx);
	}
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443

	/* Schedule processing of the channel */
	efx_schedule_channel(channel);

	return IRQ_HANDLED;
}


/* Setup RSS indirection table.
 * This maps from the hash value of the packet to RXQ
 */
static void efx_setup_rss_indir_table(struct efx_nic *efx)
{
	int i = 0;
	unsigned long offset;
	efx_dword_t dword;

	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
		return;

	for (offset = FR_BZ_RX_INDIRECTION_TBL;
	     offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
	     offset += 0x10) {
		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
B
Ben Hutchings 已提交
1444
				     i % efx->n_rx_channels);
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		efx_writed(efx, &dword, offset);
		i++;
	}
}

/* Hook interrupt handler(s)
 * Try MSI and then legacy interrupts.
 */
int efx_nic_init_interrupt(struct efx_nic *efx)
{
	struct efx_channel *channel;
	int rc;

	if (!EFX_INT_MODE_USE_MSI(efx)) {
		irq_handler_t handler;
		if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
			handler = efx_legacy_interrupt;
		else
			handler = falcon_legacy_interrupt_a1;

		rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
				 efx->name, efx);
		if (rc) {
			EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
				efx->pci_dev->irq);
			goto fail1;
		}
		return 0;
	}

	/* Hook MSI or MSI-X interrupt */
	efx_for_each_channel(channel, efx) {
		rc = request_irq(channel->irq, efx_msi_interrupt,
				 IRQF_PROBE_SHARED, /* Not shared */
				 channel->name, channel);
		if (rc) {
			EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
			goto fail2;
		}
	}

	return 0;

 fail2:
	efx_for_each_channel(channel, efx)
		free_irq(channel->irq, channel);
 fail1:
	return rc;
}

void efx_nic_fini_interrupt(struct efx_nic *efx)
{
	struct efx_channel *channel;
	efx_oword_t reg;

	/* Disable MSI/MSI-X interrupts */
	efx_for_each_channel(channel, efx) {
		if (channel->irq)
			free_irq(channel->irq, channel);
	}

	/* ACK legacy interrupt */
	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
		efx_reado(efx, &reg, FR_BZ_INT_ISR0);
	else
		falcon_irq_ack_a1(efx);

	/* Disable legacy interrupt */
	if (efx->legacy_irq)
		free_irq(efx->legacy_irq, efx);
}

u32 efx_nic_fpga_ver(struct efx_nic *efx)
{
	efx_oword_t altera_build;
	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
}

void efx_nic_init_common(struct efx_nic *efx)
{
	efx_oword_t temp;

	/* Set positions of descriptor caches in SRAM. */
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
			     efx->type->tx_dc_base / 8);
	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
			     efx->type->rx_dc_base / 8);
	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);

	/* Set TX descriptor cache size. */
	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);

	/* Set RX descriptor cache size.  Set low watermark to size-8, as
	 * this allows most efficient prefetching.
	 */
	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);

	/* Program INT_KER address */
	EFX_POPULATE_OWORD_2(temp,
			     FRF_AZ_NORM_INT_VEC_DIS_KER,
			     EFX_INT_MODE_USE_MSI(efx),
			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);

1557 1558 1559 1560 1561 1562 1563
	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
		/* Use an interrupt level unused by event queues */
		efx->fatal_irq_level = 0x1f;
	else
		/* Use a valid MSI-X vector */
		efx->fatal_irq_level = 0;

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	/* Enable all the genuinely fatal interrupts.  (They are still
	 * masked by the overall interrupt mask, controlled by
	 * falcon_interrupts()).
	 *
	 * Note: All other fatal interrupts are enabled
	 */
	EFX_POPULATE_OWORD_3(temp,
			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1574 1575
	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
		EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	EFX_INVERT_OWORD(temp);
	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);

	efx_setup_rss_indir_table(efx);

	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
	 */
	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
	/* Enable SW_EV to inherit in char driver - assume harmless here */
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1594 1595
	/* Disable hardware watchdog which can misfire */
	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1596 1597 1598 1599 1600
	/* Squash TX of packets of 16 bytes or less */
	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
}