dfp.c 24.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Copyright 2003 NVIDIA, Corporation
 * Copyright 2006 Dave Airlie
 * Copyright 2007 Maarten Maathuis
 * Copyright 2007-2009 Stuart Bennett
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

27 28
#include <drm/drmP.h>
#include <drm/drm_crtc_helper.h>
29

30 31
#include "nouveau_drm.h"
#include "nouveau_reg.h"
32 33 34
#include "nouveau_encoder.h"
#include "nouveau_connector.h"
#include "nouveau_crtc.h"
35
#include "hw.h"
36 37
#include "nvreg.h"

38
#include <drm/i2c/sil164.h>
39

40 41
#include <subdev/i2c.h>

42 43 44 45 46 47 48 49 50 51 52 53 54
#define FP_TG_CONTROL_ON  (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS |	\
			   NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS |		\
			   NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS)
#define FP_TG_CONTROL_OFF (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_DISABLE |	\
			   NV_PRAMDAC_FP_TG_CONTROL_HSYNC_DISABLE |	\
			   NV_PRAMDAC_FP_TG_CONTROL_VSYNC_DISABLE)

static inline bool is_fpc_off(uint32_t fpc)
{
	return ((fpc & (FP_TG_CONTROL_ON | FP_TG_CONTROL_OFF)) ==
			FP_TG_CONTROL_OFF);
}

55
int nv04_dfp_get_bound_head(struct drm_device *dev, struct dcb_output *dcbent)
56 57 58 59 60
{
	/* special case of nv_read_tmds to find crtc associated with an output.
	 * this does not give a correct answer for off-chip dvi, but there's no
	 * use for such an answer anyway
	 */
61
	int ramdac = (dcbent->or & DCB_OUTPUT_C) >> 2;
62 63 64 65 66 67

	NVWriteRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_CONTROL,
	NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE | 0x4);
	return ((NVReadRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_DATA) & 0x8) >> 3) ^ ramdac;
}

68
void nv04_dfp_bind_head(struct drm_device *dev, struct dcb_output *dcbent,
69 70 71 72 73 74 75 76 77
			int head, bool dl)
{
	/* The BIOS scripts don't do this for us, sadly
	 * Luckily we do know the values ;-)
	 *
	 * head < 0 indicates we wish to force a setting with the overrideval
	 * (for VT restore etc.)
	 */

78
	int ramdac = (dcbent->or & DCB_OUTPUT_C) >> 2;
79 80 81 82 83
	uint8_t tmds04 = 0x80;

	if (head != ramdac)
		tmds04 = 0x88;

84
	if (dcbent->type == DCB_OUTPUT_LVDS)
85 86 87 88 89 90 91 92 93 94
		tmds04 |= 0x01;

	nv_write_tmds(dev, dcbent->or, 0, 0x04, tmds04);

	if (dl)	/* dual link */
		nv_write_tmds(dev, dcbent->or, 1, 0x04, tmds04 ^ 0x08);
}

void nv04_dfp_disable(struct drm_device *dev, int head)
{
95
	struct nv04_crtc_reg *crtcstate = nv04_display(dev)->mode_reg.crtc_reg;
96 97 98 99 100 101 102 103 104 105 106 107 108

	if (NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL) &
	    FP_TG_CONTROL_ON) {
		/* digital remnants must be cleaned before new crtc
		 * values programmed.  delay is time for the vga stuff
		 * to realise it's in control again
		 */
		NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL,
			      FP_TG_CONTROL_OFF);
		msleep(50);
	}
	/* don't inadvertently turn it on when state written later */
	crtcstate[head].fp_control = FP_TG_CONTROL_OFF;
109 110
	crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX] &=
		~NV_CIO_CRE_LCD_ROUTE_MASK;
111 112 113 114 115 116 117 118 119 120 121
}

void nv04_dfp_update_fp_control(struct drm_encoder *encoder, int mode)
{
	struct drm_device *dev = encoder->dev;
	struct drm_crtc *crtc;
	struct nouveau_crtc *nv_crtc;
	uint32_t *fpc;

	if (mode == DRM_MODE_DPMS_ON) {
		nv_crtc = nouveau_crtc(encoder->crtc);
122
		fpc = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].fp_control;
123 124 125 126 127 128 129 130 131 132 133 134 135 136

		if (is_fpc_off(*fpc)) {
			/* using saved value is ok, as (is_digital && dpms_on &&
			 * fp_control==OFF) is (at present) *only* true when
			 * fpc's most recent change was by below "off" code
			 */
			*fpc = nv_crtc->dpms_saved_fp_control;
		}

		nv_crtc->fp_users |= 1 << nouveau_encoder(encoder)->dcb->index;
		NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_FP_TG_CONTROL, *fpc);
	} else {
		list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
			nv_crtc = nouveau_crtc(crtc);
137
			fpc = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].fp_control;
138 139 140 141 142 143 144 145 146 147 148 149 150 151

			nv_crtc->fp_users &= ~(1 << nouveau_encoder(encoder)->dcb->index);
			if (!is_fpc_off(*fpc) && !nv_crtc->fp_users) {
				nv_crtc->dpms_saved_fp_control = *fpc;
				/* cut the FP output */
				*fpc &= ~FP_TG_CONTROL_ON;
				*fpc |= FP_TG_CONTROL_OFF;
				NVWriteRAMDAC(dev, nv_crtc->index,
					      NV_PRAMDAC_FP_TG_CONTROL, *fpc);
			}
		}
	}
}

152 153 154
static struct drm_encoder *get_tmds_slave(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
155
	struct dcb_output *dcb = nouveau_encoder(encoder)->dcb;
156 157
	struct drm_encoder *slave;

158
	if (dcb->type != DCB_OUTPUT_TMDS || dcb->location == DCB_LOC_ON_CHIP)
159 160 161 162 163 164 165 166 167 168 169 170 171
		return NULL;

	/* Some BIOSes (e.g. the one in a Quadro FX1000) report several
	 * TMDS transmitters at the same I2C address, in the same I2C
	 * bus. This can still work because in that case one of them is
	 * always hard-wired to a reasonable configuration using straps,
	 * and the other one needs to be programmed.
	 *
	 * I don't think there's a way to know which is which, even the
	 * blob programs the one exposed via I2C for *both* heads, so
	 * let's do the same.
	 */
	list_for_each_entry(slave, &dev->mode_config.encoder_list, head) {
172
		struct dcb_output *slave_dcb = nouveau_encoder(slave)->dcb;
173

174
		if (slave_dcb->type == DCB_OUTPUT_TMDS && get_slave_funcs(slave) &&
175 176 177 178 179 180 181
		    slave_dcb->tmdsconf.slave_addr == dcb->tmdsconf.slave_addr)
			return slave;
	}

	return NULL;
}

182
static bool nv04_dfp_mode_fixup(struct drm_encoder *encoder,
183
				const struct drm_display_mode *mode,
184 185 186 187 188
				struct drm_display_mode *adjusted_mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_connector *nv_connector = nouveau_encoder_connector_get(nv_encoder);

189 190 191 192 193 194 195
	if (!nv_connector->native_mode ||
	    nv_connector->scaling_mode == DRM_MODE_SCALE_NONE ||
	    mode->hdisplay > nv_connector->native_mode->hdisplay ||
	    mode->vdisplay > nv_connector->native_mode->vdisplay) {
		nv_encoder->mode = *adjusted_mode;

	} else {
196 197 198 199 200 201 202 203 204 205
		nv_encoder->mode = *nv_connector->native_mode;
		adjusted_mode->clock = nv_connector->native_mode->clock;
	}

	return true;
}

static void nv04_dfp_prepare_sel_clk(struct drm_device *dev,
				     struct nouveau_encoder *nv_encoder, int head)
{
206
	struct nv04_mode_state *state = &nv04_display(dev)->mode_reg;
207
	uint32_t bits1618 = nv_encoder->dcb->or & DCB_OUTPUT_A ? 0x10000 : 0x40000;
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235

	if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP)
		return;

	/* SEL_CLK is only used on the primary ramdac
	 * It toggles spread spectrum PLL output and sets the bindings of PLLs
	 * to heads on digital outputs
	 */
	if (head)
		state->sel_clk |= bits1618;
	else
		state->sel_clk &= ~bits1618;

	/* nv30:
	 *	bit 0		NVClk spread spectrum on/off
	 *	bit 2		MemClk spread spectrum on/off
	 * 	bit 4		PixClk1 spread spectrum on/off toggle
	 * 	bit 6		PixClk2 spread spectrum on/off toggle
	 *
	 * nv40 (observations from bios behaviour and mmio traces):
	 * 	bits 4&6	as for nv30
	 * 	bits 5&7	head dependent as for bits 4&6, but do not appear with 4&6;
	 * 			maybe a different spread mode
	 * 	bits 8&10	seen on dual-link dvi outputs, purpose unknown (set by POST scripts)
	 * 	The logic behind turning spread spectrum on/off in the first place,
	 * 	and which bit-pair to use, is unclear on nv40 (for earlier cards, the fp table
	 * 	entry has the necessary info)
	 */
236 237
	if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS && nv04_display(dev)->saved_reg.sel_clk & 0xf0) {
		int shift = (nv04_display(dev)->saved_reg.sel_clk & 0x50) ? 0 : 1;
238 239 240 241 242 243 244 245 246

		state->sel_clk &= ~0xf0;
		state->sel_clk |= (head ? 0x40 : 0x10) << shift;
	}
}

static void nv04_dfp_prepare(struct drm_encoder *encoder)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
247
	const struct drm_encoder_helper_funcs *helper = encoder->helper_private;
248 249
	struct drm_device *dev = encoder->dev;
	int head = nouveau_crtc(encoder->crtc)->index;
250
	struct nv04_crtc_reg *crtcstate = nv04_display(dev)->mode_reg.crtc_reg;
251 252 253 254 255 256 257
	uint8_t *cr_lcd = &crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX];
	uint8_t *cr_lcd_oth = &crtcstate[head ^ 1].CRTC[NV_CIO_CRE_LCD__INDEX];

	helper->dpms(encoder, DRM_MODE_DPMS_OFF);

	nv04_dfp_prepare_sel_clk(dev, nv_encoder, head);

258
	*cr_lcd = (*cr_lcd & ~NV_CIO_CRE_LCD_ROUTE_MASK) | 0x3;
259 260 261 262 263 264

	if (nv_two_heads(dev)) {
		if (nv_encoder->dcb->location == DCB_LOC_ON_CHIP)
			*cr_lcd |= head ? 0x0 : 0x8;
		else {
			*cr_lcd |= (nv_encoder->dcb->or << 4) & 0x30;
265
			if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS)
266 267 268 269 270 271 272
				*cr_lcd |= 0x30;
			if ((*cr_lcd & 0x30) == (*cr_lcd_oth & 0x30)) {
				/* avoid being connected to both crtcs */
				*cr_lcd_oth &= ~0x30;
				NVWriteVgaCrtc(dev, head ^ 1,
					       NV_CIO_CRE_LCD__INDEX,
					       *cr_lcd_oth);
273 274 275 276 277 278 279 280 281 282 283
			}
		}
	}
}


static void nv04_dfp_mode_set(struct drm_encoder *encoder,
			      struct drm_display_mode *mode,
			      struct drm_display_mode *adjusted_mode)
{
	struct drm_device *dev = encoder->dev;
284
	struct nvif_device *device = &nouveau_drm(dev)->device;
285
	struct nouveau_drm *drm = nouveau_drm(dev);
286
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
287 288
	struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
	struct nv04_crtc_reg *savep = &nv04_display(dev)->saved_reg.crtc_reg[nv_crtc->index];
289 290 291
	struct nouveau_connector *nv_connector = nouveau_crtc_connector_get(nv_crtc);
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct drm_display_mode *output_mode = &nv_encoder->mode;
292
	struct drm_connector *connector = &nv_connector->base;
293 294
	uint32_t mode_ratio, panel_ratio;

295
	NV_DEBUG(drm, "Output mode on CRTC %d:\n", nv_crtc->index);
296 297 298 299 300 301 302
	drm_mode_debug_printmodeline(output_mode);

	/* Initialize the FP registers in this CRTC. */
	regp->fp_horiz_regs[FP_DISPLAY_END] = output_mode->hdisplay - 1;
	regp->fp_horiz_regs[FP_TOTAL] = output_mode->htotal - 1;
	if (!nv_gf4_disp_arch(dev) ||
	    (output_mode->hsync_start - output_mode->hdisplay) >=
303
					drm->vbios.digital_min_front_porch)
304 305
		regp->fp_horiz_regs[FP_CRTC] = output_mode->hdisplay;
	else
306
		regp->fp_horiz_regs[FP_CRTC] = output_mode->hsync_start - drm->vbios.digital_min_front_porch - 1;
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
	regp->fp_horiz_regs[FP_SYNC_START] = output_mode->hsync_start - 1;
	regp->fp_horiz_regs[FP_SYNC_END] = output_mode->hsync_end - 1;
	regp->fp_horiz_regs[FP_VALID_START] = output_mode->hskew;
	regp->fp_horiz_regs[FP_VALID_END] = output_mode->hdisplay - 1;

	regp->fp_vert_regs[FP_DISPLAY_END] = output_mode->vdisplay - 1;
	regp->fp_vert_regs[FP_TOTAL] = output_mode->vtotal - 1;
	regp->fp_vert_regs[FP_CRTC] = output_mode->vtotal - 5 - 1;
	regp->fp_vert_regs[FP_SYNC_START] = output_mode->vsync_start - 1;
	regp->fp_vert_regs[FP_SYNC_END] = output_mode->vsync_end - 1;
	regp->fp_vert_regs[FP_VALID_START] = 0;
	regp->fp_vert_regs[FP_VALID_END] = output_mode->vdisplay - 1;

	/* bit26: a bit seen on some g7x, no as yet discernable purpose */
	regp->fp_control = NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS |
			   (savep->fp_control & (1 << 26 | NV_PRAMDAC_FP_TG_CONTROL_READ_PROG));
	/* Deal with vsync/hsync polarity */
	/* LVDS screens do set this, but modes with +ve syncs are very rare */
	if (output_mode->flags & DRM_MODE_FLAG_PVSYNC)
		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS;
	if (output_mode->flags & DRM_MODE_FLAG_PHSYNC)
		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS;
	/* panel scaling first, as native would get set otherwise */
	if (nv_connector->scaling_mode == DRM_MODE_SCALE_NONE ||
	    nv_connector->scaling_mode == DRM_MODE_SCALE_CENTER)	/* panel handles it */
		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_CENTER;
	else if (adjusted_mode->hdisplay == output_mode->hdisplay &&
		 adjusted_mode->vdisplay == output_mode->vdisplay) /* native mode */
		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_NATIVE;
	else /* gpu needs to scale */
		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_SCALE;
338
	if (nvif_rd32(device, NV_PEXTDEV_BOOT_0) & NV_PEXTDEV_BOOT_0_STRAP_FP_IFACE_12BIT)
339 340 341 342
		regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_WIDTH_12;
	if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP &&
	    output_mode->clock > 165000)
		regp->fp_control |= (2 << 24);
343
	if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) {
344 345 346 347 348 349 350 351
		bool duallink = false, dummy;
		if (nv_connector->edid &&
		    nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
			duallink = (((u8 *)nv_connector->edid)[121] == 2);
		} else {
			nouveau_bios_parse_lvds_table(dev, output_mode->clock,
						      &duallink, &dummy);
		}
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

		if (duallink)
			regp->fp_control |= (8 << 28);
	} else
	if (output_mode->clock > 165000)
		regp->fp_control |= (8 << 28);

	regp->fp_debug_0 = NV_PRAMDAC_FP_DEBUG_0_YWEIGHT_ROUND |
			   NV_PRAMDAC_FP_DEBUG_0_XWEIGHT_ROUND |
			   NV_PRAMDAC_FP_DEBUG_0_YINTERP_BILINEAR |
			   NV_PRAMDAC_FP_DEBUG_0_XINTERP_BILINEAR |
			   NV_RAMDAC_FP_DEBUG_0_TMDS_ENABLED |
			   NV_PRAMDAC_FP_DEBUG_0_YSCALE_ENABLE |
			   NV_PRAMDAC_FP_DEBUG_0_XSCALE_ENABLE;

	/* We want automatic scaling */
	regp->fp_debug_1 = 0;
	/* This can override HTOTAL and VTOTAL */
	regp->fp_debug_2 = 0;

	/* Use 20.12 fixed point format to avoid floats */
	mode_ratio = (1 << 12) * adjusted_mode->hdisplay / adjusted_mode->vdisplay;
	panel_ratio = (1 << 12) * output_mode->hdisplay / output_mode->vdisplay;
	/* if ratios are equal, SCALE_ASPECT will automatically (and correctly)
	 * get treated the same as SCALE_FULLSCREEN */
	if (nv_connector->scaling_mode == DRM_MODE_SCALE_ASPECT &&
	    mode_ratio != panel_ratio) {
		uint32_t diff, scale;
		bool divide_by_2 = nv_gf4_disp_arch(dev);

		if (mode_ratio < panel_ratio) {
			/* vertical needs to expand to glass size (automatic)
			 * horizontal needs to be scaled at vertical scale factor
			 * to maintain aspect */

			scale = (1 << 12) * adjusted_mode->vdisplay / output_mode->vdisplay;
			regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_XSCALE_TESTMODE_ENABLE |
					   XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_XSCALE_VALUE);

			/* restrict area of screen used, horizontally */
			diff = output_mode->hdisplay -
			       output_mode->vdisplay * mode_ratio / (1 << 12);
			regp->fp_horiz_regs[FP_VALID_START] += diff / 2;
			regp->fp_horiz_regs[FP_VALID_END] -= diff / 2;
		}

		if (mode_ratio > panel_ratio) {
			/* horizontal needs to expand to glass size (automatic)
			 * vertical needs to be scaled at horizontal scale factor
			 * to maintain aspect */

			scale = (1 << 12) * adjusted_mode->hdisplay / output_mode->hdisplay;
			regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_YSCALE_TESTMODE_ENABLE |
					   XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_YSCALE_VALUE);

			/* restrict area of screen used, vertically */
			diff = output_mode->vdisplay -
			       (1 << 12) * output_mode->hdisplay / mode_ratio;
			regp->fp_vert_regs[FP_VALID_START] += diff / 2;
			regp->fp_vert_regs[FP_VALID_END] -= diff / 2;
		}
	}

	/* Output property. */
416 417
	if ((nv_connector->dithering_mode == DITHERING_MODE_ON) ||
	    (nv_connector->dithering_mode == DITHERING_MODE_AUTO &&
418
	     encoder->crtc->primary->fb->depth > connector->display_info.bpc * 3)) {
419
		if (drm->device.info.chipset == 0x11)
420 421 422 423 424 425 426 427 428 429
			regp->dither = savep->dither | 0x00010000;
		else {
			int i;
			regp->dither = savep->dither | 0x00000001;
			for (i = 0; i < 3; i++) {
				regp->dither_regs[i] = 0xe4e4e4e4;
				regp->dither_regs[i + 3] = 0x44444444;
			}
		}
	} else {
430
		if (drm->device.info.chipset != 0x11) {
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
			/* reset them */
			int i;
			for (i = 0; i < 3; i++) {
				regp->dither_regs[i] = savep->dither_regs[i];
				regp->dither_regs[i + 3] = savep->dither_regs[i + 3];
			}
		}
		regp->dither = savep->dither;
	}

	regp->fp_margin_color = 0;
}

static void nv04_dfp_commit(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
447
	struct nouveau_drm *drm = nouveau_drm(dev);
448
	const struct drm_encoder_helper_funcs *helper = encoder->helper_private;
449 450
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
451
	struct dcb_output *dcbe = nv_encoder->dcb;
452
	int head = nouveau_crtc(encoder->crtc)->index;
453
	struct drm_encoder *slave_encoder;
454

455
	if (dcbe->type == DCB_OUTPUT_TMDS)
456
		run_tmds_table(dev, dcbe, head, nv_encoder->mode.clock);
457
	else if (dcbe->type == DCB_OUTPUT_LVDS)
458 459 460 461
		call_lvds_script(dev, dcbe, head, LVDS_RESET, nv_encoder->mode.clock);

	/* update fp_control state for any changes made by scripts,
	 * so correct value is written at DPMS on */
462
	nv04_display(dev)->mode_reg.crtc_reg[head].fp_control =
463 464 465
		NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL);

	/* This could use refinement for flatpanels, but it should work this way */
466
	if (drm->device.info.chipset < 0x44)
467 468 469 470
		NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0xf0000000);
	else
		NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0x00100000);

471
	/* Init external transmitters */
472 473 474 475
	slave_encoder = get_tmds_slave(encoder);
	if (slave_encoder)
		get_slave_funcs(slave_encoder)->mode_set(
			slave_encoder, &nv_encoder->mode, &nv_encoder->mode);
476

477 478
	helper->dpms(encoder, DRM_MODE_DPMS_ON);

479
	NV_DEBUG(drm, "Output %s is running on CRTC %d using output %c\n",
480
		 nouveau_encoder_connector_get(nv_encoder)->base.name,
481
		 nv_crtc->index, '@' + ffs(nv_encoder->dcb->or));
482 483
}

484 485 486 487
static void nv04_dfp_update_backlight(struct drm_encoder *encoder, int mode)
{
#ifdef __powerpc__
	struct drm_device *dev = encoder->dev;
488
	struct nvif_device *device = &nouveau_drm(dev)->device;
489 490 491 492

	/* BIOS scripts usually take care of the backlight, thanks
	 * Apple for your consistency.
	 */
493 494
	if (dev->pdev->device == 0x0174 || dev->pdev->device == 0x0179 ||
	    dev->pdev->device == 0x0189 || dev->pdev->device == 0x0329) {
495
		if (mode == DRM_MODE_DPMS_ON) {
496
			nv_mask(device, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 1 << 31);
497
			nv_mask(device, NV_PCRTC_GPIO_EXT, 3, 1);
498
		} else {
499 500
			nv_mask(device, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 0);
			nv_mask(device, NV_PCRTC_GPIO_EXT, 3, 0);
501 502 503 504 505
		}
	}
#endif
}

506 507
static inline bool is_powersaving_dpms(int mode)
{
508
	return mode != DRM_MODE_DPMS_ON && mode != NV_DPMS_CLEARED;
509 510 511 512 513 514
}

static void nv04_lvds_dpms(struct drm_encoder *encoder, int mode)
{
	struct drm_device *dev = encoder->dev;
	struct drm_crtc *crtc = encoder->crtc;
515
	struct nouveau_drm *drm = nouveau_drm(dev);
516 517 518 519 520 521 522
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	bool was_powersaving = is_powersaving_dpms(nv_encoder->last_dpms);

	if (nv_encoder->last_dpms == mode)
		return;
	nv_encoder->last_dpms = mode;

523 524
	NV_DEBUG(drm, "Setting dpms mode %d on lvds encoder (output %d)\n",
		 mode, nv_encoder->dcb->index);
525 526 527 528 529 530 531 532 533 534 535 536 537

	if (was_powersaving && is_powersaving_dpms(mode))
		return;

	if (nv_encoder->dcb->lvdsconf.use_power_scripts) {
		/* when removing an output, crtc may not be set, but PANEL_OFF
		 * must still be run
		 */
		int head = crtc ? nouveau_crtc(crtc)->index :
			   nv04_dfp_get_bound_head(dev, nv_encoder->dcb);

		if (mode == DRM_MODE_DPMS_ON) {
			call_lvds_script(dev, nv_encoder->dcb, head,
538
					 LVDS_PANEL_ON, nv_encoder->mode.clock);
539 540 541 542 543 544 545 546
		} else
			/* pxclk of 0 is fine for PANEL_OFF, and for a
			 * disconnected LVDS encoder there is no native_mode
			 */
			call_lvds_script(dev, nv_encoder->dcb, head,
					 LVDS_PANEL_OFF, 0);
	}

547
	nv04_dfp_update_backlight(encoder, mode);
548 549 550 551 552
	nv04_dfp_update_fp_control(encoder, mode);

	if (mode == DRM_MODE_DPMS_ON)
		nv04_dfp_prepare_sel_clk(dev, nv_encoder, nouveau_crtc(crtc)->index);
	else {
553 554
		nv04_display(dev)->mode_reg.sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK);
		nv04_display(dev)->mode_reg.sel_clk &= ~0xf0;
555
	}
556
	NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, nv04_display(dev)->mode_reg.sel_clk);
557 558 559 560
}

static void nv04_tmds_dpms(struct drm_encoder *encoder, int mode)
{
561
	struct nouveau_drm *drm = nouveau_drm(encoder->dev);
562 563 564 565 566 567
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);

	if (nv_encoder->last_dpms == mode)
		return;
	nv_encoder->last_dpms = mode;

568 569
	NV_DEBUG(drm, "Setting dpms mode %d on tmds encoder (output %d)\n",
		 mode, nv_encoder->dcb->index);
570

571
	nv04_dfp_update_backlight(encoder, mode);
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
	nv04_dfp_update_fp_control(encoder, mode);
}

static void nv04_dfp_save(struct drm_encoder *encoder)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct drm_device *dev = encoder->dev;

	if (nv_two_heads(dev))
		nv_encoder->restore.head =
			nv04_dfp_get_bound_head(dev, nv_encoder->dcb);
}

static void nv04_dfp_restore(struct drm_encoder *encoder)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct drm_device *dev = encoder->dev;
	int head = nv_encoder->restore.head;

591
	if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) {
592 593 594 595 596 597 598
		struct nouveau_connector *connector =
			nouveau_encoder_connector_get(nv_encoder);

		if (connector && connector->native_mode)
			call_lvds_script(dev, nv_encoder->dcb, head,
					 LVDS_PANEL_ON,
					 connector->native_mode->clock);
599

600
	} else if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS) {
601
		int clock = nouveau_hw_pllvals_to_clk
602
					(&nv04_display(dev)->saved_reg.crtc_reg[head].pllvals);
603 604 605 606 607 608 609 610 611 612 613

		run_tmds_table(dev, nv_encoder->dcb, head, clock);
	}

	nv_encoder->last_dpms = NV_DPMS_CLEARED;
}

static void nv04_dfp_destroy(struct drm_encoder *encoder)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);

614 615 616
	if (get_slave_funcs(encoder))
		get_slave_funcs(encoder)->destroy(encoder);

617 618 619 620
	drm_encoder_cleanup(encoder);
	kfree(nv_encoder);
}

621 622 623
static void nv04_tmds_slave_init(struct drm_encoder *encoder)
{
	struct drm_device *dev = encoder->dev;
624
	struct dcb_output *dcb = nouveau_encoder(encoder)->dcb;
625
	struct nouveau_drm *drm = nouveau_drm(dev);
626 627 628
	struct nvkm_i2c *i2c = nvxx_i2c(&drm->device);
	struct nvkm_i2c_port *port = i2c->find(i2c, 2);
	struct nvkm_i2c_board_info info[] = {
629
		{
630 631 632 633 634 635 636
		    {
		        .type = "sil164",
		        .addr = (dcb->tmdsconf.slave_addr == 0x7 ? 0x3a : 0x38),
		        .platform_data = &(struct sil164_encoder_params) {
		            SIL164_INPUT_EDGE_RISING
		         }
		    }, 0
637 638 639 640 641
		},
		{ }
	};
	int type;

642
	if (!nv_gf4_disp_arch(dev) || !port ||
643
	    get_tmds_slave(encoder))
644 645
		return;

646
	type = i2c->identify(i2c, 2, "TMDS transmitter", info, NULL, NULL);
647 648 649 650
	if (type < 0)
		return;

	drm_i2c_encoder_init(dev, to_encoder_slave(encoder),
651
			     &port->adapter, &info[type].dev);
652 653
}

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
static const struct drm_encoder_helper_funcs nv04_lvds_helper_funcs = {
	.dpms = nv04_lvds_dpms,
	.save = nv04_dfp_save,
	.restore = nv04_dfp_restore,
	.mode_fixup = nv04_dfp_mode_fixup,
	.prepare = nv04_dfp_prepare,
	.commit = nv04_dfp_commit,
	.mode_set = nv04_dfp_mode_set,
	.detect = NULL,
};

static const struct drm_encoder_helper_funcs nv04_tmds_helper_funcs = {
	.dpms = nv04_tmds_dpms,
	.save = nv04_dfp_save,
	.restore = nv04_dfp_restore,
	.mode_fixup = nv04_dfp_mode_fixup,
	.prepare = nv04_dfp_prepare,
	.commit = nv04_dfp_commit,
	.mode_set = nv04_dfp_mode_set,
	.detect = NULL,
};

static const struct drm_encoder_funcs nv04_dfp_funcs = {
	.destroy = nv04_dfp_destroy,
};

680
int
681
nv04_dfp_create(struct drm_connector *connector, struct dcb_output *entry)
682 683 684
{
	const struct drm_encoder_helper_funcs *helper;
	struct nouveau_encoder *nv_encoder = NULL;
685
	struct drm_encoder *encoder;
686 687 688
	int type;

	switch (entry->type) {
689
	case DCB_OUTPUT_TMDS:
690 691 692
		type = DRM_MODE_ENCODER_TMDS;
		helper = &nv04_tmds_helper_funcs;
		break;
693
	case DCB_OUTPUT_LVDS:
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
		type = DRM_MODE_ENCODER_LVDS;
		helper = &nv04_lvds_helper_funcs;
		break;
	default:
		return -EINVAL;
	}

	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
	if (!nv_encoder)
		return -ENOMEM;

	encoder = to_drm_encoder(nv_encoder);

	nv_encoder->dcb = entry;
	nv_encoder->or = ffs(entry->or) - 1;

710
	drm_encoder_init(connector->dev, encoder, &nv04_dfp_funcs, type);
711 712 713 714 715
	drm_encoder_helper_add(encoder, helper);

	encoder->possible_crtcs = entry->heads;
	encoder->possible_clones = 0;

716
	if (entry->type == DCB_OUTPUT_TMDS &&
717 718 719
	    entry->location != DCB_LOC_ON_CHIP)
		nv04_tmds_slave_init(encoder);

720
	drm_mode_connector_attach_encoder(connector, encoder);
721 722
	return 0;
}