ep93xx_spi.c 31.5 KB
Newer Older
1 2 3
/*
 * Driver for Cirrus Logic EP93xx SPI controller.
 *
M
Mika Westerberg 已提交
4
 * Copyright (C) 2010-2011 Mika Westerberg
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 *
 * Explicit FIFO handling code was inspired by amba-pl022 driver.
 *
 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
 *
 * For more information about the SPI controller see documentation on Cirrus
 * Logic web site:
 *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/io.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/device.h>
M
Mika Westerberg 已提交
24
#include <linux/dmaengine.h>
25 26 27 28 29
#include <linux/bitops.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/workqueue.h>
#include <linux/sched.h>
M
Mika Westerberg 已提交
30
#include <linux/scatterlist.h>
31 32
#include <linux/spi/spi.h>

M
Mika Westerberg 已提交
33
#include <mach/dma.h>
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
#include <mach/ep93xx_spi.h>

#define SSPCR0			0x0000
#define SSPCR0_MODE_SHIFT	6
#define SSPCR0_SCR_SHIFT	8

#define SSPCR1			0x0004
#define SSPCR1_RIE		BIT(0)
#define SSPCR1_TIE		BIT(1)
#define SSPCR1_RORIE		BIT(2)
#define SSPCR1_LBM		BIT(3)
#define SSPCR1_SSE		BIT(4)
#define SSPCR1_MS		BIT(5)
#define SSPCR1_SOD		BIT(6)

#define SSPDR			0x0008

#define SSPSR			0x000c
#define SSPSR_TFE		BIT(0)
#define SSPSR_TNF		BIT(1)
#define SSPSR_RNE		BIT(2)
#define SSPSR_RFF		BIT(3)
#define SSPSR_BSY		BIT(4)
#define SSPCPSR			0x0010

#define SSPIIR			0x0014
#define SSPIIR_RIS		BIT(0)
#define SSPIIR_TIS		BIT(1)
#define SSPIIR_RORIS		BIT(2)
#define SSPICR			SSPIIR

/* timeout in milliseconds */
#define SPI_TIMEOUT		5
/* maximum depth of RX/TX FIFO */
#define SPI_FIFO_SIZE		8

/**
 * struct ep93xx_spi - EP93xx SPI controller structure
 * @lock: spinlock that protects concurrent accesses to fields @running,
 *        @current_msg and @msg_queue
 * @pdev: pointer to platform device
 * @clk: clock for the controller
 * @regs_base: pointer to ioremap()'d registers
M
Mika Westerberg 已提交
77
 * @sspdr_phys: physical address of the SSPDR register
78 79 80 81 82 83 84 85 86 87 88 89 90
 * @irq: IRQ number used by the driver
 * @min_rate: minimum clock rate (in Hz) supported by the controller
 * @max_rate: maximum clock rate (in Hz) supported by the controller
 * @running: is the queue running
 * @wq: workqueue used by the driver
 * @msg_work: work that is queued for the driver
 * @wait: wait here until given transfer is completed
 * @msg_queue: queue for the messages
 * @current_msg: message that is currently processed (or %NULL if none)
 * @tx: current byte in transfer to transmit
 * @rx: current byte in transfer to receive
 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
 *              frame decreases this level and sending one frame increases it.
M
Mika Westerberg 已提交
91 92 93 94 95 96 97 98
 * @dma_rx: RX DMA channel
 * @dma_tx: TX DMA channel
 * @dma_rx_data: RX parameters passed to the DMA engine
 * @dma_tx_data: TX parameters passed to the DMA engine
 * @rx_sgt: sg table for RX transfers
 * @tx_sgt: sg table for TX transfers
 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
 *            the client
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
 *
 * This structure holds EP93xx SPI controller specific information. When
 * @running is %true, driver accepts transfer requests from protocol drivers.
 * @current_msg is used to hold pointer to the message that is currently
 * processed. If @current_msg is %NULL, it means that no processing is going
 * on.
 *
 * Most of the fields are only written once and they can be accessed without
 * taking the @lock. Fields that are accessed concurrently are: @current_msg,
 * @running, and @msg_queue.
 */
struct ep93xx_spi {
	spinlock_t			lock;
	const struct platform_device	*pdev;
	struct clk			*clk;
	void __iomem			*regs_base;
M
Mika Westerberg 已提交
115
	unsigned long			sspdr_phys;
116 117 118 119 120 121 122 123 124 125 126 127
	int				irq;
	unsigned long			min_rate;
	unsigned long			max_rate;
	bool				running;
	struct workqueue_struct		*wq;
	struct work_struct		msg_work;
	struct completion		wait;
	struct list_head		msg_queue;
	struct spi_message		*current_msg;
	size_t				tx;
	size_t				rx;
	size_t				fifo_level;
M
Mika Westerberg 已提交
128 129 130 131 132 133 134
	struct dma_chan			*dma_rx;
	struct dma_chan			*dma_tx;
	struct ep93xx_dma_data		dma_rx_data;
	struct ep93xx_dma_data		dma_tx_data;
	struct sg_table			rx_sgt;
	struct sg_table			tx_sgt;
	void				*zeropage;
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
};

/**
 * struct ep93xx_spi_chip - SPI device hardware settings
 * @spi: back pointer to the SPI device
 * @rate: max rate in hz this chip supports
 * @div_cpsr: cpsr (pre-scaler) divider
 * @div_scr: scr divider
 * @dss: bits per word (4 - 16 bits)
 * @ops: private chip operations
 *
 * This structure is used to store hardware register specific settings for each
 * SPI device. Settings are written to hardware by function
 * ep93xx_spi_chip_setup().
 */
struct ep93xx_spi_chip {
	const struct spi_device		*spi;
	unsigned long			rate;
	u8				div_cpsr;
	u8				div_scr;
	u8				dss;
	struct ep93xx_spi_chip_ops	*ops;
};

/* converts bits per word to CR0.DSS value */
#define bits_per_word_to_dss(bpw)	((bpw) - 1)

static inline void
ep93xx_spi_write_u8(const struct ep93xx_spi *espi, u16 reg, u8 value)
{
	__raw_writeb(value, espi->regs_base + reg);
}

static inline u8
ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
{
	return __raw_readb(spi->regs_base + reg);
}

static inline void
ep93xx_spi_write_u16(const struct ep93xx_spi *espi, u16 reg, u16 value)
{
	__raw_writew(value, espi->regs_base + reg);
}

static inline u16
ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
{
	return __raw_readw(spi->regs_base + reg);
}

static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
{
	u8 regval;
	int err;

	err = clk_enable(espi->clk);
	if (err)
		return err;

	regval = ep93xx_spi_read_u8(espi, SSPCR1);
	regval |= SSPCR1_SSE;
	ep93xx_spi_write_u8(espi, SSPCR1, regval);

	return 0;
}

static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
{
	u8 regval;

	regval = ep93xx_spi_read_u8(espi, SSPCR1);
	regval &= ~SSPCR1_SSE;
	ep93xx_spi_write_u8(espi, SSPCR1, regval);

	clk_disable(espi->clk);
}

static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
{
	u8 regval;

	regval = ep93xx_spi_read_u8(espi, SSPCR1);
	regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
	ep93xx_spi_write_u8(espi, SSPCR1, regval);
}

static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
{
	u8 regval;

	regval = ep93xx_spi_read_u8(espi, SSPCR1);
	regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
	ep93xx_spi_write_u8(espi, SSPCR1, regval);
}

/**
 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
 * @espi: ep93xx SPI controller struct
 * @chip: divisors are calculated for this chip
 * @rate: desired SPI output clock rate
 *
 * Function calculates cpsr (clock pre-scaler) and scr divisors based on
 * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
 * for some reason, divisors cannot be calculated nothing is stored and
 * %-EINVAL is returned.
 */
static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
				    struct ep93xx_spi_chip *chip,
				    unsigned long rate)
{
	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
	int cpsr, scr;

	/*
	 * Make sure that max value is between values supported by the
	 * controller. Note that minimum value is already checked in
	 * ep93xx_spi_transfer().
	 */
	rate = clamp(rate, espi->min_rate, espi->max_rate);

	/*
	 * Calculate divisors so that we can get speed according the
	 * following formula:
	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
	 *
	 * cpsr must be even number and starts from 2, scr can be any number
	 * between 0 and 255.
	 */
	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
		for (scr = 0; scr <= 255; scr++) {
			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
				chip->div_scr = (u8)scr;
				chip->div_cpsr = (u8)cpsr;
				return 0;
			}
		}
	}

	return -EINVAL;
}

static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
{
	struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
	int value = (spi->mode & SPI_CS_HIGH) ? control : !control;

	if (chip->ops && chip->ops->cs_control)
		chip->ops->cs_control(spi, value);
}

/**
 * ep93xx_spi_setup() - setup an SPI device
 * @spi: SPI device to setup
 *
 * This function sets up SPI device mode, speed etc. Can be called multiple
 * times for a single device. Returns %0 in case of success, negative error in
 * case of failure. When this function returns success, the device is
 * deselected.
 */
static int ep93xx_spi_setup(struct spi_device *spi)
{
	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
	struct ep93xx_spi_chip *chip;

	if (spi->bits_per_word < 4 || spi->bits_per_word > 16) {
		dev_err(&espi->pdev->dev, "invalid bits per word %d\n",
			spi->bits_per_word);
		return -EINVAL;
	}

	chip = spi_get_ctldata(spi);
	if (!chip) {
		dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
			spi->modalias);

		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
		if (!chip)
			return -ENOMEM;

		chip->spi = spi;
		chip->ops = spi->controller_data;

		if (chip->ops && chip->ops->setup) {
			int ret = chip->ops->setup(spi);
			if (ret) {
				kfree(chip);
				return ret;
			}
		}

		spi_set_ctldata(spi, chip);
	}

	if (spi->max_speed_hz != chip->rate) {
		int err;

		err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz);
		if (err != 0) {
			spi_set_ctldata(spi, NULL);
			kfree(chip);
			return err;
		}
		chip->rate = spi->max_speed_hz;
	}

	chip->dss = bits_per_word_to_dss(spi->bits_per_word);

	ep93xx_spi_cs_control(spi, false);
	return 0;
}

/**
 * ep93xx_spi_transfer() - queue message to be transferred
 * @spi: target SPI device
 * @msg: message to be transferred
 *
 * This function is called by SPI device drivers when they are going to transfer
 * a new message. It simply puts the message in the queue and schedules
 * workqueue to perform the actual transfer later on.
 *
 * Returns %0 on success and negative error in case of failure.
 */
static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
{
	struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
	struct spi_transfer *t;
	unsigned long flags;

	if (!msg || !msg->complete)
		return -EINVAL;

	/* first validate each transfer */
	list_for_each_entry(t, &msg->transfers, transfer_list) {
		if (t->bits_per_word) {
			if (t->bits_per_word < 4 || t->bits_per_word > 16)
				return -EINVAL;
		}
		if (t->speed_hz && t->speed_hz < espi->min_rate)
				return -EINVAL;
	}

	/*
	 * Now that we own the message, let's initialize it so that it is
	 * suitable for us. We use @msg->status to signal whether there was
	 * error in transfer and @msg->state is used to hold pointer to the
	 * current transfer (or %NULL if no active current transfer).
	 */
	msg->state = NULL;
	msg->status = 0;
	msg->actual_length = 0;

	spin_lock_irqsave(&espi->lock, flags);
	if (!espi->running) {
		spin_unlock_irqrestore(&espi->lock, flags);
		return -ESHUTDOWN;
	}
	list_add_tail(&msg->queue, &espi->msg_queue);
	queue_work(espi->wq, &espi->msg_work);
	spin_unlock_irqrestore(&espi->lock, flags);

	return 0;
}

/**
 * ep93xx_spi_cleanup() - cleans up master controller specific state
 * @spi: SPI device to cleanup
 *
 * This function releases master controller specific state for given @spi
 * device.
 */
static void ep93xx_spi_cleanup(struct spi_device *spi)
{
	struct ep93xx_spi_chip *chip;

	chip = spi_get_ctldata(spi);
	if (chip) {
		if (chip->ops && chip->ops->cleanup)
			chip->ops->cleanup(spi);
		spi_set_ctldata(spi, NULL);
		kfree(chip);
	}
}

/**
 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
 * @espi: ep93xx SPI controller struct
 * @chip: chip specific settings
 *
 * This function sets up the actual hardware registers with settings given in
 * @chip. Note that no validation is done so make sure that callers validate
 * settings before calling this.
 */
static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
				  const struct ep93xx_spi_chip *chip)
{
	u16 cr0;

	cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
	cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
	cr0 |= chip->dss;

	dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
		chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss);
	dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);

	ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
	ep93xx_spi_write_u16(espi, SSPCR0, cr0);
}

static inline int bits_per_word(const struct ep93xx_spi *espi)
{
	struct spi_message *msg = espi->current_msg;
	struct spi_transfer *t = msg->state;

	return t->bits_per_word ? t->bits_per_word : msg->spi->bits_per_word;
}

static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
{
	if (bits_per_word(espi) > 8) {
		u16 tx_val = 0;

		if (t->tx_buf)
			tx_val = ((u16 *)t->tx_buf)[espi->tx];
		ep93xx_spi_write_u16(espi, SSPDR, tx_val);
		espi->tx += sizeof(tx_val);
	} else {
		u8 tx_val = 0;

		if (t->tx_buf)
			tx_val = ((u8 *)t->tx_buf)[espi->tx];
		ep93xx_spi_write_u8(espi, SSPDR, tx_val);
		espi->tx += sizeof(tx_val);
	}
}

static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
{
	if (bits_per_word(espi) > 8) {
		u16 rx_val;

		rx_val = ep93xx_spi_read_u16(espi, SSPDR);
		if (t->rx_buf)
			((u16 *)t->rx_buf)[espi->rx] = rx_val;
		espi->rx += sizeof(rx_val);
	} else {
		u8 rx_val;

		rx_val = ep93xx_spi_read_u8(espi, SSPDR);
		if (t->rx_buf)
			((u8 *)t->rx_buf)[espi->rx] = rx_val;
		espi->rx += sizeof(rx_val);
	}
}

/**
 * ep93xx_spi_read_write() - perform next RX/TX transfer
 * @espi: ep93xx SPI controller struct
 *
 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
 * called several times, the whole transfer will be completed. Returns
 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
 *
 * When this function is finished, RX FIFO should be empty and TX FIFO should be
 * full.
 */
static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
{
	struct spi_message *msg = espi->current_msg;
	struct spi_transfer *t = msg->state;

	/* read as long as RX FIFO has frames in it */
	while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
		ep93xx_do_read(espi, t);
		espi->fifo_level--;
	}

	/* write as long as TX FIFO has room */
	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
		ep93xx_do_write(espi, t);
		espi->fifo_level++;
	}

M
Mika Westerberg 已提交
519
	if (espi->rx == t->len)
520 521 522 523 524
		return 0;

	return -EINPROGRESS;
}

M
Mika Westerberg 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
{
	/*
	 * Now everything is set up for the current transfer. We prime the TX
	 * FIFO, enable interrupts, and wait for the transfer to complete.
	 */
	if (ep93xx_spi_read_write(espi)) {
		ep93xx_spi_enable_interrupts(espi);
		wait_for_completion(&espi->wait);
	}
}

/**
 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
 * @espi: ep93xx SPI controller struct
 * @dir: DMA transfer direction
 *
 * Function configures the DMA, maps the buffer and prepares the DMA
 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
 * in case of failure.
 */
static struct dma_async_tx_descriptor *
ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_data_direction dir)
{
	struct spi_transfer *t = espi->current_msg->state;
	struct dma_async_tx_descriptor *txd;
	enum dma_slave_buswidth buswidth;
	struct dma_slave_config conf;
	struct scatterlist *sg;
	struct sg_table *sgt;
	struct dma_chan *chan;
	const void *buf, *pbuf;
	size_t len = t->len;
	int i, ret, nents;

	if (bits_per_word(espi) > 8)
		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
	else
		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;

	memset(&conf, 0, sizeof(conf));
	conf.direction = dir;

	if (dir == DMA_FROM_DEVICE) {
		chan = espi->dma_rx;
		buf = t->rx_buf;
		sgt = &espi->rx_sgt;

		conf.src_addr = espi->sspdr_phys;
		conf.src_addr_width = buswidth;
	} else {
		chan = espi->dma_tx;
		buf = t->tx_buf;
		sgt = &espi->tx_sgt;

		conf.dst_addr = espi->sspdr_phys;
		conf.dst_addr_width = buswidth;
	}

	ret = dmaengine_slave_config(chan, &conf);
	if (ret)
		return ERR_PTR(ret);

	/*
	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
	 * because we are using @espi->zeropage to provide a zero RX buffer
	 * for the TX transfers and we have only allocated one page for that.
	 *
	 * For performance reasons we allocate a new sg_table only when
	 * needed. Otherwise we will re-use the current one. Eventually the
	 * last sg_table is released in ep93xx_spi_release_dma().
	 */

	nents = DIV_ROUND_UP(len, PAGE_SIZE);
	if (nents != sgt->nents) {
		sg_free_table(sgt);

		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
		if (ret)
			return ERR_PTR(ret);
	}

	pbuf = buf;
	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
		size_t bytes = min_t(size_t, len, PAGE_SIZE);

		if (buf) {
			sg_set_page(sg, virt_to_page(pbuf), bytes,
				    offset_in_page(pbuf));
		} else {
			sg_set_page(sg, virt_to_page(espi->zeropage),
				    bytes, 0);
		}

		pbuf += bytes;
		len -= bytes;
	}

	if (WARN_ON(len)) {
		dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
		return ERR_PTR(-EINVAL);
	}

	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
	if (!nents)
		return ERR_PTR(-ENOMEM);

	txd = chan->device->device_prep_slave_sg(chan, sgt->sgl, nents,
						 dir, DMA_CTRL_ACK);
	if (!txd) {
		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
		return ERR_PTR(-ENOMEM);
	}
	return txd;
}

/**
 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
 * @espi: ep93xx SPI controller struct
 * @dir: DMA transfer direction
 *
 * Function finishes with the DMA transfer. After this, the DMA buffer is
 * unmapped.
 */
static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
				  enum dma_data_direction dir)
{
	struct dma_chan *chan;
	struct sg_table *sgt;

	if (dir == DMA_FROM_DEVICE) {
		chan = espi->dma_rx;
		sgt = &espi->rx_sgt;
	} else {
		chan = espi->dma_tx;
		sgt = &espi->tx_sgt;
	}

	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
}

static void ep93xx_spi_dma_callback(void *callback_param)
{
	complete(callback_param);
}

static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
{
	struct spi_message *msg = espi->current_msg;
	struct dma_async_tx_descriptor *rxd, *txd;

	rxd = ep93xx_spi_dma_prepare(espi, DMA_FROM_DEVICE);
	if (IS_ERR(rxd)) {
		dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
		msg->status = PTR_ERR(rxd);
		return;
	}

	txd = ep93xx_spi_dma_prepare(espi, DMA_TO_DEVICE);
	if (IS_ERR(txd)) {
		ep93xx_spi_dma_finish(espi, DMA_FROM_DEVICE);
		dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
		msg->status = PTR_ERR(txd);
		return;
	}

	/* We are ready when RX is done */
	rxd->callback = ep93xx_spi_dma_callback;
	rxd->callback_param = &espi->wait;

	/* Now submit both descriptors and wait while they finish */
	dmaengine_submit(rxd);
	dmaengine_submit(txd);

	dma_async_issue_pending(espi->dma_rx);
	dma_async_issue_pending(espi->dma_tx);

	wait_for_completion(&espi->wait);

	ep93xx_spi_dma_finish(espi, DMA_TO_DEVICE);
	ep93xx_spi_dma_finish(espi, DMA_FROM_DEVICE);
}

708 709 710 711 712 713 714 715
/**
 * ep93xx_spi_process_transfer() - processes one SPI transfer
 * @espi: ep93xx SPI controller struct
 * @msg: current message
 * @t: transfer to process
 *
 * This function processes one SPI transfer given in @t. Function waits until
 * transfer is complete (may sleep) and updates @msg->status based on whether
L
Lucas De Marchi 已提交
716
 * transfer was successfully processed or not.
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
 */
static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
					struct spi_message *msg,
					struct spi_transfer *t)
{
	struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);

	msg->state = t;

	/*
	 * Handle any transfer specific settings if needed. We use
	 * temporary chip settings here and restore original later when
	 * the transfer is finished.
	 */
	if (t->speed_hz || t->bits_per_word) {
		struct ep93xx_spi_chip tmp_chip = *chip;

		if (t->speed_hz) {
			int err;

			err = ep93xx_spi_calc_divisors(espi, &tmp_chip,
						       t->speed_hz);
			if (err) {
				dev_err(&espi->pdev->dev,
					"failed to adjust speed\n");
				msg->status = err;
				return;
			}
		}

		if (t->bits_per_word)
			tmp_chip.dss = bits_per_word_to_dss(t->bits_per_word);

		/*
		 * Set up temporary new hw settings for this transfer.
		 */
		ep93xx_spi_chip_setup(espi, &tmp_chip);
	}

	espi->rx = 0;
	espi->tx = 0;

	/*
M
Mika Westerberg 已提交
760 761 762
	 * There is no point of setting up DMA for the transfers which will
	 * fit into the FIFO and can be transferred with a single interrupt.
	 * So in these cases we will be using PIO and don't bother for DMA.
763
	 */
M
Mika Westerberg 已提交
764 765 766 767
	if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
		ep93xx_spi_dma_transfer(espi);
	else
		ep93xx_spi_pio_transfer(espi);
768 769 770 771 772 773 774 775

	/*
	 * In case of error during transmit, we bail out from processing
	 * the message.
	 */
	if (msg->status)
		return;

M
Mika Westerberg 已提交
776 777
	msg->actual_length += t->len;

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
	/*
	 * After this transfer is finished, perform any possible
	 * post-transfer actions requested by the protocol driver.
	 */
	if (t->delay_usecs) {
		set_current_state(TASK_UNINTERRUPTIBLE);
		schedule_timeout(usecs_to_jiffies(t->delay_usecs));
	}
	if (t->cs_change) {
		if (!list_is_last(&t->transfer_list, &msg->transfers)) {
			/*
			 * In case protocol driver is asking us to drop the
			 * chipselect briefly, we let the scheduler to handle
			 * any "delay" here.
			 */
			ep93xx_spi_cs_control(msg->spi, false);
			cond_resched();
			ep93xx_spi_cs_control(msg->spi, true);
		}
	}

	if (t->speed_hz || t->bits_per_word)
		ep93xx_spi_chip_setup(espi, chip);
}

/*
 * ep93xx_spi_process_message() - process one SPI message
 * @espi: ep93xx SPI controller struct
 * @msg: message to process
 *
 * This function processes a single SPI message. We go through all transfers in
 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
 * asserted during the whole message (unless per transfer cs_change is set).
 *
 * @msg->status contains %0 in case of success or negative error code in case of
 * failure.
 */
static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
				       struct spi_message *msg)
{
	unsigned long timeout;
	struct spi_transfer *t;
	int err;

	/*
	 * Enable the SPI controller and its clock.
	 */
	err = ep93xx_spi_enable(espi);
	if (err) {
		dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
		msg->status = err;
		return;
	}

	/*
	 * Just to be sure: flush any data from RX FIFO.
	 */
	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
	while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
		if (time_after(jiffies, timeout)) {
			dev_warn(&espi->pdev->dev,
				 "timeout while flushing RX FIFO\n");
			msg->status = -ETIMEDOUT;
			return;
		}
		ep93xx_spi_read_u16(espi, SSPDR);
	}

	/*
	 * We explicitly handle FIFO level. This way we don't have to check TX
	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
	 */
	espi->fifo_level = 0;

	/*
	 * Update SPI controller registers according to spi device and assert
	 * the chipselect.
	 */
	ep93xx_spi_chip_setup(espi, spi_get_ctldata(msg->spi));
	ep93xx_spi_cs_control(msg->spi, true);

	list_for_each_entry(t, &msg->transfers, transfer_list) {
		ep93xx_spi_process_transfer(espi, msg, t);
		if (msg->status)
			break;
	}

	/*
	 * Now the whole message is transferred (or failed for some reason). We
	 * deselect the device and disable the SPI controller.
	 */
	ep93xx_spi_cs_control(msg->spi, false);
	ep93xx_spi_disable(espi);
}

#define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))

/**
 * ep93xx_spi_work() - EP93xx SPI workqueue worker function
 * @work: work struct
 *
 * Workqueue worker function. This function is called when there are new
 * SPI messages to be processed. Message is taken out from the queue and then
 * passed to ep93xx_spi_process_message().
 *
 * After message is transferred, protocol driver is notified by calling
 * @msg->complete(). In case of error, @msg->status is set to negative error
 * number, otherwise it contains zero (and @msg->actual_length is updated).
 */
static void ep93xx_spi_work(struct work_struct *work)
{
	struct ep93xx_spi *espi = work_to_espi(work);
	struct spi_message *msg;

	spin_lock_irq(&espi->lock);
	if (!espi->running || espi->current_msg ||
		list_empty(&espi->msg_queue)) {
		spin_unlock_irq(&espi->lock);
		return;
	}
	msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
	list_del_init(&msg->queue);
	espi->current_msg = msg;
	spin_unlock_irq(&espi->lock);

	ep93xx_spi_process_message(espi, msg);

	/*
	 * Update the current message and re-schedule ourselves if there are
	 * more messages in the queue.
	 */
	spin_lock_irq(&espi->lock);
	espi->current_msg = NULL;
	if (espi->running && !list_empty(&espi->msg_queue))
		queue_work(espi->wq, &espi->msg_work);
	spin_unlock_irq(&espi->lock);

	/* notify the protocol driver that we are done with this message */
	msg->complete(msg->context);
}

static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
{
	struct ep93xx_spi *espi = dev_id;
	u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);

	/*
	 * If we got ROR (receive overrun) interrupt we know that something is
	 * wrong. Just abort the message.
	 */
	if (unlikely(irq_status & SSPIIR_RORIS)) {
		/* clear the overrun interrupt */
		ep93xx_spi_write_u8(espi, SSPICR, 0);
		dev_warn(&espi->pdev->dev,
			 "receive overrun, aborting the message\n");
		espi->current_msg->status = -EIO;
	} else {
		/*
		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
		 * simply execute next data transfer.
		 */
		if (ep93xx_spi_read_write(espi)) {
			/*
			 * In normal case, there still is some processing left
			 * for current transfer. Let's wait for the next
			 * interrupt then.
			 */
			return IRQ_HANDLED;
		}
	}

	/*
	 * Current transfer is finished, either with error or with success. In
	 * any case we disable interrupts and notify the worker to handle
	 * any post-processing of the message.
	 */
	ep93xx_spi_disable_interrupts(espi);
	complete(&espi->wait);
	return IRQ_HANDLED;
}

M
Mika Westerberg 已提交
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
{
	if (ep93xx_dma_chan_is_m2p(chan))
		return false;

	chan->private = filter_param;
	return true;
}

static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
{
	dma_cap_mask_t mask;
	int ret;

	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
	if (!espi->zeropage)
		return -ENOMEM;

	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);

	espi->dma_rx_data.port = EP93XX_DMA_SSP;
	espi->dma_rx_data.direction = DMA_FROM_DEVICE;
	espi->dma_rx_data.name = "ep93xx-spi-rx";

	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
					   &espi->dma_rx_data);
	if (!espi->dma_rx) {
		ret = -ENODEV;
		goto fail_free_page;
	}

	espi->dma_tx_data.port = EP93XX_DMA_SSP;
	espi->dma_tx_data.direction = DMA_TO_DEVICE;
	espi->dma_tx_data.name = "ep93xx-spi-tx";

	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
					   &espi->dma_tx_data);
	if (!espi->dma_tx) {
		ret = -ENODEV;
		goto fail_release_rx;
	}

	return 0;

fail_release_rx:
	dma_release_channel(espi->dma_rx);
	espi->dma_rx = NULL;
fail_free_page:
	free_page((unsigned long)espi->zeropage);

	return ret;
}

static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
{
	if (espi->dma_rx) {
		dma_release_channel(espi->dma_rx);
		sg_free_table(&espi->rx_sgt);
	}
	if (espi->dma_tx) {
		dma_release_channel(espi->dma_tx);
		sg_free_table(&espi->tx_sgt);
	}

	if (espi->zeropage)
		free_page((unsigned long)espi->zeropage);
}

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
static int __init ep93xx_spi_probe(struct platform_device *pdev)
{
	struct spi_master *master;
	struct ep93xx_spi_info *info;
	struct ep93xx_spi *espi;
	struct resource *res;
	int error;

	info = pdev->dev.platform_data;

	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
	if (!master) {
		dev_err(&pdev->dev, "failed to allocate spi master\n");
		return -ENOMEM;
	}

	master->setup = ep93xx_spi_setup;
	master->transfer = ep93xx_spi_transfer;
	master->cleanup = ep93xx_spi_cleanup;
	master->bus_num = pdev->id;
	master->num_chipselect = info->num_chipselect;
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;

	platform_set_drvdata(pdev, master);

	espi = spi_master_get_devdata(master);

	espi->clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(espi->clk)) {
		dev_err(&pdev->dev, "unable to get spi clock\n");
		error = PTR_ERR(espi->clk);
		goto fail_release_master;
	}

	spin_lock_init(&espi->lock);
	init_completion(&espi->wait);

	/*
	 * Calculate maximum and minimum supported clock rates
	 * for the controller.
	 */
	espi->max_rate = clk_get_rate(espi->clk) / 2;
	espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
	espi->pdev = pdev;

	espi->irq = platform_get_irq(pdev, 0);
	if (espi->irq < 0) {
		error = -EBUSY;
		dev_err(&pdev->dev, "failed to get irq resources\n");
		goto fail_put_clock;
	}

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		dev_err(&pdev->dev, "unable to get iomem resource\n");
		error = -ENODEV;
		goto fail_put_clock;
	}

	res = request_mem_region(res->start, resource_size(res), pdev->name);
	if (!res) {
		dev_err(&pdev->dev, "unable to request iomem resources\n");
		error = -EBUSY;
		goto fail_put_clock;
	}

M
Mika Westerberg 已提交
1094
	espi->sspdr_phys = res->start + SSPDR;
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	espi->regs_base = ioremap(res->start, resource_size(res));
	if (!espi->regs_base) {
		dev_err(&pdev->dev, "failed to map resources\n");
		error = -ENODEV;
		goto fail_free_mem;
	}

	error = request_irq(espi->irq, ep93xx_spi_interrupt, 0,
			    "ep93xx-spi", espi);
	if (error) {
		dev_err(&pdev->dev, "failed to request irq\n");
		goto fail_unmap_regs;
	}

M
Mika Westerberg 已提交
1109 1110 1111
	if (info->use_dma && ep93xx_spi_setup_dma(espi))
		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");

1112 1113 1114
	espi->wq = create_singlethread_workqueue("ep93xx_spid");
	if (!espi->wq) {
		dev_err(&pdev->dev, "unable to create workqueue\n");
M
Mika Westerberg 已提交
1115
		goto fail_free_dma;
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	}
	INIT_WORK(&espi->msg_work, ep93xx_spi_work);
	INIT_LIST_HEAD(&espi->msg_queue);
	espi->running = true;

	/* make sure that the hardware is disabled */
	ep93xx_spi_write_u8(espi, SSPCR1, 0);

	error = spi_register_master(master);
	if (error) {
		dev_err(&pdev->dev, "failed to register SPI master\n");
		goto fail_free_queue;
	}

	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
		 (unsigned long)res->start, espi->irq);

	return 0;

fail_free_queue:
	destroy_workqueue(espi->wq);
M
Mika Westerberg 已提交
1137 1138
fail_free_dma:
	ep93xx_spi_release_dma(espi);
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	free_irq(espi->irq, espi);
fail_unmap_regs:
	iounmap(espi->regs_base);
fail_free_mem:
	release_mem_region(res->start, resource_size(res));
fail_put_clock:
	clk_put(espi->clk);
fail_release_master:
	spi_master_put(master);
	platform_set_drvdata(pdev, NULL);

	return error;
}

static int __exit ep93xx_spi_remove(struct platform_device *pdev)
{
	struct spi_master *master = platform_get_drvdata(pdev);
	struct ep93xx_spi *espi = spi_master_get_devdata(master);
	struct resource *res;

	spin_lock_irq(&espi->lock);
	espi->running = false;
	spin_unlock_irq(&espi->lock);

	destroy_workqueue(espi->wq);

	/*
	 * Complete remaining messages with %-ESHUTDOWN status.
	 */
	spin_lock_irq(&espi->lock);
	while (!list_empty(&espi->msg_queue)) {
		struct spi_message *msg;

		msg = list_first_entry(&espi->msg_queue,
				       struct spi_message, queue);
		list_del_init(&msg->queue);
		msg->status = -ESHUTDOWN;
		spin_unlock_irq(&espi->lock);
		msg->complete(msg->context);
		spin_lock_irq(&espi->lock);
	}
	spin_unlock_irq(&espi->lock);

M
Mika Westerberg 已提交
1182
	ep93xx_spi_release_dma(espi);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	free_irq(espi->irq, espi);
	iounmap(espi->regs_base);
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	release_mem_region(res->start, resource_size(res));
	clk_put(espi->clk);
	platform_set_drvdata(pdev, NULL);

	spi_unregister_master(master);
	return 0;
}

static struct platform_driver ep93xx_spi_driver = {
	.driver		= {
		.name	= "ep93xx-spi",
		.owner	= THIS_MODULE,
	},
	.remove		= __exit_p(ep93xx_spi_remove),
};

static int __init ep93xx_spi_init(void)
{
	return platform_driver_probe(&ep93xx_spi_driver, ep93xx_spi_probe);
}
module_init(ep93xx_spi_init);

static void __exit ep93xx_spi_exit(void)
{
	platform_driver_unregister(&ep93xx_spi_driver);
}
module_exit(ep93xx_spi_exit);

MODULE_DESCRIPTION("EP93xx SPI Controller driver");
MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:ep93xx-spi");