xgene-dma.c 53.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
/*
 * Applied Micro X-Gene SoC DMA engine Driver
 *
 * Copyright (c) 2015, Applied Micro Circuits Corporation
 * Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
 *	    Loc Ho <lho@apm.com>
 *
 * This program is free software; you can redistribute  it and/or modify it
 * under  the terms of  the GNU General  Public License as published by the
 * Free Software Foundation;  either version 2 of the  License, or (at your
 * option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 * NOTE: PM support is currently not available.
 */

#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_device.h>

#include "dmaengine.h"

/* X-Gene DMA ring csr registers and bit definations */
#define XGENE_DMA_RING_CONFIG			0x04
#define XGENE_DMA_RING_ENABLE			BIT(31)
#define XGENE_DMA_RING_ID			0x08
#define XGENE_DMA_RING_ID_SETUP(v)		((v) | BIT(31))
#define XGENE_DMA_RING_ID_BUF			0x0C
#define XGENE_DMA_RING_ID_BUF_SETUP(v)		(((v) << 9) | BIT(21))
#define XGENE_DMA_RING_THRESLD0_SET1		0x30
#define XGENE_DMA_RING_THRESLD0_SET1_VAL	0X64
#define XGENE_DMA_RING_THRESLD1_SET1		0x34
#define XGENE_DMA_RING_THRESLD1_SET1_VAL	0xC8
#define XGENE_DMA_RING_HYSTERESIS		0x68
#define XGENE_DMA_RING_HYSTERESIS_VAL		0xFFFFFFFF
#define XGENE_DMA_RING_STATE			0x6C
#define XGENE_DMA_RING_STATE_WR_BASE		0x70
#define XGENE_DMA_RING_NE_INT_MODE		0x017C
#define XGENE_DMA_RING_NE_INT_MODE_SET(m, v)	\
	((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
#define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v)	\
	((m) &= (~BIT(31 - (v))))
#define XGENE_DMA_RING_CLKEN			0xC208
#define XGENE_DMA_RING_SRST			0xC200
#define XGENE_DMA_RING_MEM_RAM_SHUTDOWN		0xD070
#define XGENE_DMA_RING_BLK_MEM_RDY		0xD074
#define XGENE_DMA_RING_BLK_MEM_RDY_VAL		0xFFFFFFFF
#define XGENE_DMA_RING_DESC_CNT(v)		(((v) & 0x0001FFFE) >> 1)
#define XGENE_DMA_RING_ID_GET(owner, num)	(((owner) << 6) | (num))
#define XGENE_DMA_RING_DST_ID(v)		((1 << 10) | (v))
#define XGENE_DMA_RING_CMD_OFFSET		0x2C
#define XGENE_DMA_RING_CMD_BASE_OFFSET(v)	((v) << 6)
#define XGENE_DMA_RING_COHERENT_SET(m)		\
	(((u32 *)(m))[2] |= BIT(4))
#define XGENE_DMA_RING_ADDRL_SET(m, v)		\
	(((u32 *)(m))[2] |= (((v) >> 8) << 5))
#define XGENE_DMA_RING_ADDRH_SET(m, v)		\
	(((u32 *)(m))[3] |= ((v) >> 35))
#define XGENE_DMA_RING_ACCEPTLERR_SET(m)	\
	(((u32 *)(m))[3] |= BIT(19))
#define XGENE_DMA_RING_SIZE_SET(m, v)		\
	(((u32 *)(m))[3] |= ((v) << 23))
#define XGENE_DMA_RING_RECOMBBUF_SET(m)		\
	(((u32 *)(m))[3] |= BIT(27))
#define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m)	\
	(((u32 *)(m))[3] |= (0x7 << 28))
#define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m)	\
	(((u32 *)(m))[4] |= 0x3)
#define XGENE_DMA_RING_SELTHRSH_SET(m)		\
	(((u32 *)(m))[4] |= BIT(3))
#define XGENE_DMA_RING_TYPE_SET(m, v)		\
	(((u32 *)(m))[4] |= ((v) << 19))

/* X-Gene DMA device csr registers and bit definitions */
#define XGENE_DMA_IPBRR				0x0
#define XGENE_DMA_DEV_ID_RD(v)			((v) & 0x00000FFF)
#define XGENE_DMA_BUS_ID_RD(v)			(((v) >> 12) & 3)
#define XGENE_DMA_REV_NO_RD(v)			(((v) >> 14) & 3)
#define XGENE_DMA_GCR				0x10
#define XGENE_DMA_CH_SETUP(v)			\
	((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
#define XGENE_DMA_ENABLE(v)			((v) |= BIT(31))
#define XGENE_DMA_DISABLE(v)			((v) &= ~BIT(31))
#define XGENE_DMA_RAID6_CONT			0x14
#define XGENE_DMA_RAID6_MULTI_CTRL(v)		((v) << 24)
#define XGENE_DMA_INT				0x70
#define XGENE_DMA_INT_MASK			0x74
#define XGENE_DMA_INT_ALL_MASK			0xFFFFFFFF
#define XGENE_DMA_INT_ALL_UNMASK		0x0
#define XGENE_DMA_INT_MASK_SHIFT		0x14
#define XGENE_DMA_RING_INT0_MASK		0x90A0
#define XGENE_DMA_RING_INT1_MASK		0x90A8
#define XGENE_DMA_RING_INT2_MASK		0x90B0
#define XGENE_DMA_RING_INT3_MASK		0x90B8
#define XGENE_DMA_RING_INT4_MASK		0x90C0
#define XGENE_DMA_CFG_RING_WQ_ASSOC		0x90E0
#define XGENE_DMA_ASSOC_RING_MNGR1		0xFFFFFFFF
#define XGENE_DMA_MEM_RAM_SHUTDOWN		0xD070
#define XGENE_DMA_BLK_MEM_RDY			0xD074
#define XGENE_DMA_BLK_MEM_RDY_VAL		0xFFFFFFFF
114
#define XGENE_DMA_RING_CMD_SM_OFFSET		0x8000
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

/* X-Gene SoC EFUSE csr register and bit defination */
#define XGENE_SOC_JTAG1_SHADOW			0x18
#define XGENE_DMA_PQ_DISABLE_MASK		BIT(13)

/* X-Gene DMA Descriptor format */
#define XGENE_DMA_DESC_NV_BIT			BIT_ULL(50)
#define XGENE_DMA_DESC_IN_BIT			BIT_ULL(55)
#define XGENE_DMA_DESC_C_BIT			BIT_ULL(63)
#define XGENE_DMA_DESC_DR_BIT			BIT_ULL(61)
#define XGENE_DMA_DESC_ELERR_POS		46
#define XGENE_DMA_DESC_RTYPE_POS		56
#define XGENE_DMA_DESC_LERR_POS			60
#define XGENE_DMA_DESC_BUFLEN_POS		48
#define XGENE_DMA_DESC_HOENQ_NUM_POS		48
#define XGENE_DMA_DESC_ELERR_RD(m)		\
	(((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
#define XGENE_DMA_DESC_LERR_RD(m)		\
	(((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
#define XGENE_DMA_DESC_STATUS(elerr, lerr)	\
	(((elerr) << 4) | (lerr))

/* X-Gene DMA descriptor empty s/w signature */
#define XGENE_DMA_DESC_EMPTY_SIGNATURE		~0ULL

/* X-Gene DMA configurable parameters defines */
#define XGENE_DMA_RING_NUM		512
#define XGENE_DMA_BUFNUM		0x0
#define XGENE_DMA_CPU_BUFNUM		0x18
#define XGENE_DMA_RING_OWNER_DMA	0x03
#define XGENE_DMA_RING_OWNER_CPU	0x0F
#define XGENE_DMA_RING_TYPE_REGULAR	0x01
#define XGENE_DMA_RING_WQ_DESC_SIZE	32	/* 32 Bytes */
#define XGENE_DMA_RING_NUM_CONFIG	5
#define XGENE_DMA_MAX_CHANNEL		4
#define XGENE_DMA_XOR_CHANNEL		0
#define XGENE_DMA_PQ_CHANNEL		1
#define XGENE_DMA_MAX_BYTE_CNT		0x4000	/* 16 KB */
#define XGENE_DMA_MAX_64B_DESC_BYTE_CNT	0x14000	/* 80 KB */
#define XGENE_DMA_XOR_ALIGNMENT		6	/* 64 Bytes */
#define XGENE_DMA_MAX_XOR_SRC		5
#define XGENE_DMA_16K_BUFFER_LEN_CODE	0x0
157
#define XGENE_DMA_INVALID_LEN_CODE	0x7800000000000000ULL
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

/* X-Gene DMA descriptor error codes */
#define ERR_DESC_AXI			0x01
#define ERR_BAD_DESC			0x02
#define ERR_READ_DATA_AXI		0x03
#define ERR_WRITE_DATA_AXI		0x04
#define ERR_FBP_TIMEOUT			0x05
#define ERR_ECC				0x06
#define ERR_DIFF_SIZE			0x08
#define ERR_SCT_GAT_LEN			0x09
#define ERR_CRC_ERR			0x11
#define ERR_CHKSUM			0x12
#define ERR_DIF				0x13

/* X-Gene DMA error interrupt codes */
#define ERR_DIF_SIZE_INT		0x0
#define ERR_GS_ERR_INT			0x1
#define ERR_FPB_TIMEO_INT		0x2
#define ERR_WFIFO_OVF_INT		0x3
#define ERR_RFIFO_OVF_INT		0x4
#define ERR_WR_TIMEO_INT		0x5
#define ERR_RD_TIMEO_INT		0x6
#define ERR_WR_ERR_INT			0x7
#define ERR_RD_ERR_INT			0x8
#define ERR_BAD_DESC_INT		0x9
#define ERR_DESC_DST_INT		0xA
#define ERR_DESC_SRC_INT		0xB

/* X-Gene DMA flyby operation code */
187 188 189 190
#define FLYBY_2SRC_XOR			0x80
#define FLYBY_3SRC_XOR			0x90
#define FLYBY_4SRC_XOR			0xA0
#define FLYBY_5SRC_XOR			0xB0
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

/* X-Gene DMA SW descriptor flags */
#define XGENE_DMA_FLAG_64B_DESC		BIT(0)

/* Define to dump X-Gene DMA descriptor */
#define XGENE_DMA_DESC_DUMP(desc, m)	\
	print_hex_dump(KERN_ERR, (m),	\
			DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)

#define to_dma_desc_sw(tx)		\
	container_of(tx, struct xgene_dma_desc_sw, tx)
#define to_dma_chan(dchan)		\
	container_of(dchan, struct xgene_dma_chan, dma_chan)

#define chan_dbg(chan, fmt, arg...)	\
	dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
#define chan_err(chan, fmt, arg...)	\
	dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)

struct xgene_dma_desc_hw {
211 212 213 214
	__le64 m0;
	__le64 m1;
	__le64 m2;
	__le64 m3;
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
};

enum xgene_dma_ring_cfgsize {
	XGENE_DMA_RING_CFG_SIZE_512B,
	XGENE_DMA_RING_CFG_SIZE_2KB,
	XGENE_DMA_RING_CFG_SIZE_16KB,
	XGENE_DMA_RING_CFG_SIZE_64KB,
	XGENE_DMA_RING_CFG_SIZE_512KB,
	XGENE_DMA_RING_CFG_SIZE_INVALID
};

struct xgene_dma_ring {
	struct xgene_dma *pdma;
	u8 buf_num;
	u16 id;
	u16 num;
	u16 head;
	u16 owner;
	u16 slots;
	u16 dst_ring_num;
	u32 size;
	void __iomem *cmd;
	void __iomem *cmd_base;
	dma_addr_t desc_paddr;
	u32 state[XGENE_DMA_RING_NUM_CONFIG];
	enum xgene_dma_ring_cfgsize cfgsize;
	union {
		void *desc_vaddr;
		struct xgene_dma_desc_hw *desc_hw;
	};
};

struct xgene_dma_desc_sw {
	struct xgene_dma_desc_hw desc1;
	struct xgene_dma_desc_hw desc2;
	u32 flags;
	struct list_head node;
	struct list_head tx_list;
	struct dma_async_tx_descriptor tx;
};

/**
 * struct xgene_dma_chan - internal representation of an X-Gene DMA channel
 * @dma_chan: dmaengine channel object member
 * @pdma: X-Gene DMA device structure reference
 * @dev: struct device reference for dma mapping api
 * @id: raw id of this channel
 * @rx_irq: channel IRQ
 * @name: name of X-Gene DMA channel
 * @lock: serializes enqueue/dequeue operations to the descriptor pool
 * @pending: number of transaction request pushed to DMA controller for
 *	execution, but still waiting for completion,
 * @max_outstanding: max number of outstanding request we can push to channel
 * @ld_pending: descriptors which are queued to run, but have not yet been
 *	submitted to the hardware for execution
 * @ld_running: descriptors which are currently being executing by the hardware
 * @ld_completed: descriptors which have finished execution by the hardware.
 *	These descriptors have already had their cleanup actions run. They
 *	are waiting for the ACK bit to be set by the async tx API.
 * @desc_pool: descriptor pool for DMA operations
 * @tasklet: bottom half where all completed descriptors cleans
 * @tx_ring: transmit ring descriptor that we use to prepare actual
 *	descriptors for further executions
 * @rx_ring: receive ring descriptor that we use to get completed DMA
 *	descriptors during cleanup time
 */
struct xgene_dma_chan {
	struct dma_chan dma_chan;
	struct xgene_dma *pdma;
	struct device *dev;
	int id;
	int rx_irq;
287
	char name[10];
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
	spinlock_t lock;
	int pending;
	int max_outstanding;
	struct list_head ld_pending;
	struct list_head ld_running;
	struct list_head ld_completed;
	struct dma_pool *desc_pool;
	struct tasklet_struct tasklet;
	struct xgene_dma_ring tx_ring;
	struct xgene_dma_ring rx_ring;
};

/**
 * struct xgene_dma - internal representation of an X-Gene DMA device
 * @err_irq: DMA error irq number
 * @ring_num: start id number for DMA ring
 * @csr_dma: base for DMA register access
 * @csr_ring: base for DMA ring register access
 * @csr_ring_cmd: base for DMA ring command register access
 * @csr_efuse: base for efuse register access
 * @dma_dev: embedded struct dma_device
 * @chan: reference to X-Gene DMA channels
 */
struct xgene_dma {
	struct device *dev;
	struct clk *clk;
	int err_irq;
	int ring_num;
	void __iomem *csr_dma;
	void __iomem *csr_ring;
	void __iomem *csr_ring_cmd;
	void __iomem *csr_efuse;
	struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
	struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
};

static const char * const xgene_dma_desc_err[] = {
	[ERR_DESC_AXI] = "AXI error when reading src/dst link list",
	[ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
	[ERR_READ_DATA_AXI] = "AXI error when reading data",
	[ERR_WRITE_DATA_AXI] = "AXI error when writing data",
	[ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
	[ERR_ECC] = "ECC double bit error",
	[ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
	[ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
	[ERR_CRC_ERR] = "CRC error",
	[ERR_CHKSUM] = "Checksum error",
	[ERR_DIF] = "DIF error",
};

static const char * const xgene_dma_err[] = {
	[ERR_DIF_SIZE_INT] = "DIF size error",
	[ERR_GS_ERR_INT] = "Gather scatter not same size error",
	[ERR_FPB_TIMEO_INT] = "Free pool time out error",
	[ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
	[ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
	[ERR_WR_TIMEO_INT] = "Write time out error",
	[ERR_RD_TIMEO_INT] = "Read time out error",
	[ERR_WR_ERR_INT] = "HBF bus write error",
	[ERR_RD_ERR_INT] = "HBF bus read error",
	[ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
	[ERR_DESC_DST_INT] = "HFB reading dst link address error",
	[ERR_DESC_SRC_INT] = "HFB reading src link address error",
};

static bool is_pq_enabled(struct xgene_dma *pdma)
{
	u32 val;

	val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
	return !(val & XGENE_DMA_PQ_DISABLE_MASK);
}

361
static u64 xgene_dma_encode_len(size_t len)
362 363
{
	return (len < XGENE_DMA_MAX_BYTE_CNT) ?
364 365
		((u64)len << XGENE_DMA_DESC_BUFLEN_POS) :
		XGENE_DMA_16K_BUFFER_LEN_CODE;
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
}

static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
{
	static u8 flyby_type[] = {
		FLYBY_2SRC_XOR, /* Dummy */
		FLYBY_2SRC_XOR, /* Dummy */
		FLYBY_2SRC_XOR,
		FLYBY_3SRC_XOR,
		FLYBY_4SRC_XOR,
		FLYBY_5SRC_XOR
	};

	return flyby_type[src_cnt];
}

static u32 xgene_dma_ring_desc_cnt(struct xgene_dma_ring *ring)
{
	u32 __iomem *cmd_base = ring->cmd_base;
	u32 ring_state = ioread32(&cmd_base[1]);

	return XGENE_DMA_RING_DESC_CNT(ring_state);
}

390
static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len,
391 392 393 394 395
				     dma_addr_t *paddr)
{
	size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
			*len : XGENE_DMA_MAX_BYTE_CNT;

396 397
	*ext8 |= cpu_to_le64(*paddr);
	*ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes));
398 399 400 401
	*len -= nbytes;
	*paddr += nbytes;
}

402
static void xgene_dma_invalidate_buffer(__le64 *ext8)
403
{
404
	*ext8 |= cpu_to_le64(XGENE_DMA_INVALID_LEN_CODE);
405 406
}

407
static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx)
408
{
409 410 411 412 413 414 415 416 417 418 419 420 421 422
	switch (idx) {
	case 0:
		return &desc->m1;
	case 1:
		return &desc->m0;
	case 2:
		return &desc->m3;
	case 3:
		return &desc->m2;
	default:
		pr_err("Invalid dma descriptor index\n");
	}

	return NULL;
423 424
}

425 426
static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc,
				u16 dst_ring_num)
427
{
428 429 430 431 432 433
	desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT);
	desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA <<
				XGENE_DMA_DESC_RTYPE_POS);
	desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT);
	desc->m3 |= cpu_to_le64((u64)dst_ring_num <<
				XGENE_DMA_DESC_HOENQ_NUM_POS);
434 435 436 437 438 439 440
}

static void xgene_dma_prep_cpy_desc(struct xgene_dma_chan *chan,
				    struct xgene_dma_desc_sw *desc_sw,
				    dma_addr_t dst, dma_addr_t src,
				    size_t len)
{
441
	struct xgene_dma_desc_hw *desc1, *desc2;
442 443 444 445 446 447 448
	int i;

	/* Get 1st descriptor */
	desc1 = &desc_sw->desc1;
	xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);

	/* Set destination address */
449 450
	desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
	desc1->m3 |= cpu_to_le64(dst);
451 452

	/* Set 1st source address */
453
	xgene_dma_set_src_buffer(&desc1->m1, &len, &src);
454

455 456
	if (!len)
		return;
457 458 459 460 461 462

	/*
	 * We need to split this source buffer,
	 * and need to use 2nd descriptor
	 */
	desc2 = &desc_sw->desc2;
463
	desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483

	/* Set 2nd to 5th source address */
	for (i = 0; i < 4 && len; i++)
		xgene_dma_set_src_buffer(xgene_dma_lookup_ext8(desc2, i),
					 &len, &src);

	/* Invalidate unused source address field */
	for (; i < 4; i++)
		xgene_dma_invalidate_buffer(xgene_dma_lookup_ext8(desc2, i));

	/* Updated flag that we have prepared 64B descriptor */
	desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
}

static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
				    struct xgene_dma_desc_sw *desc_sw,
				    dma_addr_t *dst, dma_addr_t *src,
				    u32 src_cnt, size_t *nbytes,
				    const u8 *scf)
{
484
	struct xgene_dma_desc_hw *desc1, *desc2;
485 486 487 488 489 490 491 492 493 494
	size_t len = *nbytes;
	int i;

	desc1 = &desc_sw->desc1;
	desc2 = &desc_sw->desc2;

	/* Initialize DMA descriptor */
	xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);

	/* Set destination address */
495 496
	desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
	desc1->m3 |= cpu_to_le64(*dst);
497 498

	/* We have multiple source addresses, so need to set NV bit*/
499
	desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
500 501

	/* Set flyby opcode */
502
	desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt));
503 504 505 506

	/* Set 1st to 5th source addresses */
	for (i = 0; i < src_cnt; i++) {
		len = *nbytes;
507
		xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 :
508 509
					 xgene_dma_lookup_ext8(desc2, i - 1),
					 &len, &src[i]);
510
		desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8)));
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	}

	/* Update meta data */
	*nbytes = len;
	*dst += XGENE_DMA_MAX_BYTE_CNT;

	/* We need always 64B descriptor to perform xor or pq operations */
	desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
}

static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct xgene_dma_desc_sw *desc;
	struct xgene_dma_chan *chan;
	dma_cookie_t cookie;

	if (unlikely(!tx))
		return -EINVAL;

	chan = to_dma_chan(tx->chan);
	desc = to_dma_desc_sw(tx);

	spin_lock_bh(&chan->lock);

	cookie = dma_cookie_assign(tx);

	/* Add this transaction list onto the tail of the pending queue */
	list_splice_tail_init(&desc->tx_list, &chan->ld_pending);

	spin_unlock_bh(&chan->lock);

	return cookie;
}

static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
				       struct xgene_dma_desc_sw *desc)
{
	list_del(&desc->node);
	chan_dbg(chan, "LD %p free\n", desc);
	dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
}

static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
				 struct xgene_dma_chan *chan)
{
	struct xgene_dma_desc_sw *desc;
	dma_addr_t phys;

	desc = dma_pool_alloc(chan->desc_pool, GFP_NOWAIT, &phys);
	if (!desc) {
		chan_err(chan, "Failed to allocate LDs\n");
		return NULL;
	}

	memset(desc, 0, sizeof(*desc));

	INIT_LIST_HEAD(&desc->tx_list);
	desc->tx.phys = phys;
	desc->tx.tx_submit = xgene_dma_tx_submit;
	dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);

	chan_dbg(chan, "LD %p allocated\n", desc);

	return desc;
}

/**
 * xgene_dma_clean_completed_descriptor - free all descriptors which
 * has been completed and acked
 * @chan: X-Gene DMA channel
 *
 * This function is used on all completed and acked descriptors.
 */
static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
{
	struct xgene_dma_desc_sw *desc, *_desc;

	/* Run the callback for each descriptor, in order */
	list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
		if (async_tx_test_ack(&desc->tx))
			xgene_dma_clean_descriptor(chan, desc);
	}
}

/**
 * xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
 * @chan: X-Gene DMA channel
 * @desc: descriptor to cleanup and free
 *
 * This function is used on a descriptor which has been executed by the DMA
 * controller. It will run any callbacks, submit any dependencies.
 */
static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
					      struct xgene_dma_desc_sw *desc)
{
	struct dma_async_tx_descriptor *tx = &desc->tx;

	/*
	 * If this is not the last transaction in the group,
	 * then no need to complete cookie and run any callback as
	 * this is not the tx_descriptor which had been sent to caller
	 * of this DMA request
	 */

	if (tx->cookie == 0)
		return;

	dma_cookie_complete(tx);

	/* Run the link descriptor callback function */
	if (tx->callback)
		tx->callback(tx->callback_param);

	dma_descriptor_unmap(tx);

	/* Run any dependencies */
	dma_run_dependencies(tx);
}

/**
 * xgene_dma_clean_running_descriptor - move the completed descriptor from
 * ld_running to ld_completed
 * @chan: X-Gene DMA channel
 * @desc: the descriptor which is completed
 *
 * Free the descriptor directly if acked by async_tx api,
 * else move it to queue ld_completed.
 */
static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
					       struct xgene_dma_desc_sw *desc)
{
	/* Remove from the list of running transactions */
	list_del(&desc->node);

	/*
	 * the client is allowed to attach dependent operations
	 * until 'ack' is set
	 */
	if (!async_tx_test_ack(&desc->tx)) {
		/*
		 * Move this descriptor to the list of descriptors which is
		 * completed, but still awaiting the 'ack' bit to be set.
		 */
		list_add_tail(&desc->node, &chan->ld_completed);
		return;
	}

	chan_dbg(chan, "LD %p free\n", desc);
	dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
}

static int xgene_chan_xfer_request(struct xgene_dma_ring *ring,
				   struct xgene_dma_desc_sw *desc_sw)
{
	struct xgene_dma_desc_hw *desc_hw;

	/* Check if can push more descriptor to hw for execution */
	if (xgene_dma_ring_desc_cnt(ring) > (ring->slots - 2))
		return -EBUSY;

	/* Get hw descriptor from DMA tx ring */
	desc_hw = &ring->desc_hw[ring->head];

	/*
	 * Increment the head count to point next
	 * descriptor for next time
	 */
	if (++ring->head == ring->slots)
		ring->head = 0;

	/* Copy prepared sw descriptor data to hw descriptor */
	memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));

	/*
	 * Check if we have prepared 64B descriptor,
	 * in this case we need one more hw descriptor
	 */
	if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
		desc_hw = &ring->desc_hw[ring->head];

		if (++ring->head == ring->slots)
			ring->head = 0;

		memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
	}

	/* Notify the hw that we have descriptor ready for execution */
	iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
		  2 : 1, ring->cmd);

	return 0;
}

/**
 * xgene_chan_xfer_ld_pending - push any pending transactions to hw
 * @chan : X-Gene DMA channel
 *
708
 * LOCKING: must hold chan->lock
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
 */
static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
{
	struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
	int ret;

	/*
	 * If the list of pending descriptors is empty, then we
	 * don't need to do any work at all
	 */
	if (list_empty(&chan->ld_pending)) {
		chan_dbg(chan, "No pending LDs\n");
		return;
	}

	/*
	 * Move elements from the queue of pending transactions onto the list
	 * of running transactions and push it to hw for further executions
	 */
	list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
		/*
		 * Check if have pushed max number of transactions to hw
		 * as capable, so let's stop here and will push remaining
		 * elements from pening ld queue after completing some
		 * descriptors that we have already pushed
		 */
		if (chan->pending >= chan->max_outstanding)
			return;

		ret = xgene_chan_xfer_request(&chan->tx_ring, desc_sw);
		if (ret)
			return;

		/*
		 * Delete this element from ld pending queue and append it to
		 * ld running queue
		 */
		list_move_tail(&desc_sw->node, &chan->ld_running);

		/* Increment the pending transaction count */
		chan->pending++;
	}
}

/**
 * xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
 * and move them to ld_completed to free until flag 'ack' is set
 * @chan: X-Gene DMA channel
 *
 * This function is used on descriptors which have been executed by the DMA
 * controller. It will run any callbacks, submit any dependencies, then
 * free these descriptors if flag 'ack' is set.
 */
static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
{
	struct xgene_dma_ring *ring = &chan->rx_ring;
	struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
	struct xgene_dma_desc_hw *desc_hw;
	u8 status;

	/* Clean already completed and acked descriptors */
	xgene_dma_clean_completed_descriptor(chan);

	/* Run the callback for each descriptor, in order */
	list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
		/* Get subsequent hw descriptor from DMA rx ring */
		desc_hw = &ring->desc_hw[ring->head];

		/* Check if this descriptor has been completed */
778 779
		if (unlikely(le64_to_cpu(desc_hw->m0) ==
			     XGENE_DMA_DESC_EMPTY_SIGNATURE))
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
			break;

		if (++ring->head == ring->slots)
			ring->head = 0;

		/* Check if we have any error with DMA transactions */
		status = XGENE_DMA_DESC_STATUS(
				XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
							desc_hw->m0)),
				XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
						       desc_hw->m0)));
		if (status) {
			/* Print the DMA error type */
			chan_err(chan, "%s\n", xgene_dma_desc_err[status]);

			/*
			 * We have DMA transactions error here. Dump DMA Tx
			 * and Rx descriptors for this request */
			XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
					    "X-Gene DMA TX DESC1: ");

			if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
				XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
						    "X-Gene DMA TX DESC2: ");

			XGENE_DMA_DESC_DUMP(desc_hw,
					    "X-Gene DMA RX ERR DESC: ");
		}

		/* Notify the hw about this completed descriptor */
		iowrite32(-1, ring->cmd);

		/* Mark this hw descriptor as processed */
813
		desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859

		xgene_dma_run_tx_complete_actions(chan, desc_sw);

		xgene_dma_clean_running_descriptor(chan, desc_sw);

		/*
		 * Decrement the pending transaction count
		 * as we have processed one
		 */
		chan->pending--;
	}

	/*
	 * Start any pending transactions automatically
	 * In the ideal case, we keep the DMA controller busy while we go
	 * ahead and free the descriptors below.
	 */
	xgene_chan_xfer_ld_pending(chan);
}

static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
{
	struct xgene_dma_chan *chan = to_dma_chan(dchan);

	/* Has this channel already been allocated? */
	if (chan->desc_pool)
		return 1;

	chan->desc_pool = dma_pool_create(chan->name, chan->dev,
					  sizeof(struct xgene_dma_desc_sw),
					  0, 0);
	if (!chan->desc_pool) {
		chan_err(chan, "Failed to allocate descriptor pool\n");
		return -ENOMEM;
	}

	chan_dbg(chan, "Allocate descripto pool\n");

	return 1;
}

/**
 * xgene_dma_free_desc_list - Free all descriptors in a queue
 * @chan: X-Gene DMA channel
 * @list: the list to free
 *
860
 * LOCKING: must hold chan->lock
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
 */
static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
				     struct list_head *list)
{
	struct xgene_dma_desc_sw *desc, *_desc;

	list_for_each_entry_safe(desc, _desc, list, node)
		xgene_dma_clean_descriptor(chan, desc);
}

static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
{
	struct xgene_dma_chan *chan = to_dma_chan(dchan);

	chan_dbg(chan, "Free all resources\n");

	if (!chan->desc_pool)
		return;

	spin_lock_bh(&chan->lock);

	/* Process all running descriptor */
	xgene_dma_cleanup_descriptors(chan);

	/* Clean all link descriptor queues */
	xgene_dma_free_desc_list(chan, &chan->ld_pending);
	xgene_dma_free_desc_list(chan, &chan->ld_running);
	xgene_dma_free_desc_list(chan, &chan->ld_completed);

	spin_unlock_bh(&chan->lock);

	/* Delete this channel DMA pool */
	dma_pool_destroy(chan->desc_pool);
	chan->desc_pool = NULL;
}

static struct dma_async_tx_descriptor *xgene_dma_prep_memcpy(
	struct dma_chan *dchan, dma_addr_t dst, dma_addr_t src,
	size_t len, unsigned long flags)
{
	struct xgene_dma_desc_sw *first = NULL, *new;
	struct xgene_dma_chan *chan;
	size_t copy;

	if (unlikely(!dchan || !len))
		return NULL;

	chan = to_dma_chan(dchan);

	do {
		/* Allocate the link descriptor from DMA pool */
		new = xgene_dma_alloc_descriptor(chan);
		if (!new)
			goto fail;

		/* Create the largest transaction possible */
		copy = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT);

		/* Prepare DMA descriptor */
		xgene_dma_prep_cpy_desc(chan, new, dst, src, copy);

		if (!first)
			first = new;

		new->tx.cookie = 0;
		async_tx_ack(&new->tx);

		/* Update metadata */
		len -= copy;
		dst += copy;
		src += copy;

		/* Insert the link descriptor to the LD ring */
		list_add_tail(&new->node, &first->tx_list);
	} while (len);

	new->tx.flags = flags; /* client is in control of this ack */
	new->tx.cookie = -EBUSY;
	list_splice(&first->tx_list, &new->tx_list);

	return &new->tx;

fail:
	if (!first)
		return NULL;

947
	xgene_dma_free_desc_list(chan, &first->tx_list);
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	return NULL;
}

static struct dma_async_tx_descriptor *xgene_dma_prep_sg(
	struct dma_chan *dchan, struct scatterlist *dst_sg,
	u32 dst_nents, struct scatterlist *src_sg,
	u32 src_nents, unsigned long flags)
{
	struct xgene_dma_desc_sw *first = NULL, *new = NULL;
	struct xgene_dma_chan *chan;
	size_t dst_avail, src_avail;
	dma_addr_t dst, src;
	size_t len;

	if (unlikely(!dchan))
		return NULL;

	if (unlikely(!dst_nents || !src_nents))
		return NULL;

	if (unlikely(!dst_sg || !src_sg))
		return NULL;

	chan = to_dma_chan(dchan);

	/* Get prepared for the loop */
	dst_avail = sg_dma_len(dst_sg);
	src_avail = sg_dma_len(src_sg);
	dst_nents--;
	src_nents--;

	/* Run until we are out of scatterlist entries */
	while (true) {
		/* Create the largest transaction possible */
		len = min_t(size_t, src_avail, dst_avail);
		len = min_t(size_t, len, XGENE_DMA_MAX_64B_DESC_BYTE_CNT);
		if (len == 0)
			goto fetch;

		dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
		src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;

		/* Allocate the link descriptor from DMA pool */
		new = xgene_dma_alloc_descriptor(chan);
		if (!new)
			goto fail;

		/* Prepare DMA descriptor */
		xgene_dma_prep_cpy_desc(chan, new, dst, src, len);

		if (!first)
			first = new;

		new->tx.cookie = 0;
		async_tx_ack(&new->tx);

		/* update metadata */
		dst_avail -= len;
		src_avail -= len;

		/* Insert the link descriptor to the LD ring */
		list_add_tail(&new->node, &first->tx_list);

fetch:
		/* fetch the next dst scatterlist entry */
		if (dst_avail == 0) {
			/* no more entries: we're done */
			if (dst_nents == 0)
				break;

			/* fetch the next entry: if there are no more: done */
			dst_sg = sg_next(dst_sg);
			if (!dst_sg)
				break;

			dst_nents--;
			dst_avail = sg_dma_len(dst_sg);
		}

		/* fetch the next src scatterlist entry */
		if (src_avail == 0) {
			/* no more entries: we're done */
			if (src_nents == 0)
				break;

			/* fetch the next entry: if there are no more: done */
			src_sg = sg_next(src_sg);
			if (!src_sg)
				break;

			src_nents--;
			src_avail = sg_dma_len(src_sg);
		}
	}

	if (!new)
		return NULL;

	new->tx.flags = flags; /* client is in control of this ack */
	new->tx.cookie = -EBUSY;
	list_splice(&first->tx_list, &new->tx_list);

	return &new->tx;
fail:
	if (!first)
		return NULL;

1055
	xgene_dma_free_desc_list(chan, &first->tx_list);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	return NULL;
}

static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
	struct dma_chan *dchan, dma_addr_t dst,	dma_addr_t *src,
	u32 src_cnt, size_t len, unsigned long flags)
{
	struct xgene_dma_desc_sw *first = NULL, *new;
	struct xgene_dma_chan *chan;
	static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
				0x01, 0x01, 0x01, 0x01, 0x01};

	if (unlikely(!dchan || !len))
		return NULL;

	chan = to_dma_chan(dchan);

	do {
		/* Allocate the link descriptor from DMA pool */
		new = xgene_dma_alloc_descriptor(chan);
		if (!new)
			goto fail;

		/* Prepare xor DMA descriptor */
		xgene_dma_prep_xor_desc(chan, new, &dst, src,
					src_cnt, &len, multi);

		if (!first)
			first = new;

		new->tx.cookie = 0;
		async_tx_ack(&new->tx);

		/* Insert the link descriptor to the LD ring */
		list_add_tail(&new->node, &first->tx_list);
	} while (len);

	new->tx.flags = flags; /* client is in control of this ack */
	new->tx.cookie = -EBUSY;
	list_splice(&first->tx_list, &new->tx_list);

	return &new->tx;

fail:
	if (!first)
		return NULL;

1103
	xgene_dma_free_desc_list(chan, &first->tx_list);
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	return NULL;
}

static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
	struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
	u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
{
	struct xgene_dma_desc_sw *first = NULL, *new;
	struct xgene_dma_chan *chan;
	size_t _len = len;
	dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
	static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};

	if (unlikely(!dchan || !len))
		return NULL;

	chan = to_dma_chan(dchan);

	/*
	 * Save source addresses on local variable, may be we have to
	 * prepare two descriptor to generate P and Q if both enabled
	 * in the flags by client
	 */
	memcpy(_src, src, sizeof(*src) * src_cnt);

	if (flags & DMA_PREP_PQ_DISABLE_P)
		len = 0;

	if (flags & DMA_PREP_PQ_DISABLE_Q)
		_len = 0;

	do {
		/* Allocate the link descriptor from DMA pool */
		new = xgene_dma_alloc_descriptor(chan);
		if (!new)
			goto fail;

		if (!first)
			first = new;

		new->tx.cookie = 0;
		async_tx_ack(&new->tx);

		/* Insert the link descriptor to the LD ring */
		list_add_tail(&new->node, &first->tx_list);

		/*
		 * Prepare DMA descriptor to generate P,
		 * if DMA_PREP_PQ_DISABLE_P flag is not set
		 */
		if (len) {
			xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
						src_cnt, &len, multi);
			continue;
		}

		/*
		 * Prepare DMA descriptor to generate Q,
		 * if DMA_PREP_PQ_DISABLE_Q flag is not set
		 */
		if (_len) {
			xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
						src_cnt, &_len, scf);
		}
	} while (len || _len);

	new->tx.flags = flags; /* client is in control of this ack */
	new->tx.cookie = -EBUSY;
	list_splice(&first->tx_list, &new->tx_list);

	return &new->tx;

fail:
	if (!first)
		return NULL;

1180
	xgene_dma_free_desc_list(chan, &first->tx_list);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	return NULL;
}

static void xgene_dma_issue_pending(struct dma_chan *dchan)
{
	struct xgene_dma_chan *chan = to_dma_chan(dchan);

	spin_lock_bh(&chan->lock);
	xgene_chan_xfer_ld_pending(chan);
	spin_unlock_bh(&chan->lock);
}

static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
					   dma_cookie_t cookie,
					   struct dma_tx_state *txstate)
{
	return dma_cookie_status(dchan, cookie, txstate);
}

static void xgene_dma_tasklet_cb(unsigned long data)
{
	struct xgene_dma_chan *chan = (struct xgene_dma_chan *)data;

	spin_lock_bh(&chan->lock);

	/* Run all cleanup for descriptors which have been completed */
	xgene_dma_cleanup_descriptors(chan);

	/* Re-enable DMA channel IRQ */
	enable_irq(chan->rx_irq);

	spin_unlock_bh(&chan->lock);
}

static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
{
	struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;

	BUG_ON(!chan);

	/*
	 * Disable DMA channel IRQ until we process completed
	 * descriptors
	 */
	disable_irq_nosync(chan->rx_irq);

	/*
	 * Schedule the tasklet to handle all cleanup of the current
	 * transaction. It will start a new transaction if there is
	 * one pending.
	 */
	tasklet_schedule(&chan->tasklet);

	return IRQ_HANDLED;
}

static irqreturn_t xgene_dma_err_isr(int irq, void *id)
{
	struct xgene_dma *pdma = (struct xgene_dma *)id;
	unsigned long int_mask;
	u32 val, i;

	val = ioread32(pdma->csr_dma + XGENE_DMA_INT);

	/* Clear DMA interrupts */
	iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);

	/* Print DMA error info */
	int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
	for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
		dev_err(pdma->dev,
			"Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);

	return IRQ_HANDLED;
}

static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
{
	int i;

	iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);

	for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
		iowrite32(ring->state[i], ring->pdma->csr_ring +
			  XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
}

static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
{
	memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
	xgene_dma_wr_ring_state(ring);
}

static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
{
	void *ring_cfg = ring->state;
	u64 addr = ring->desc_paddr;
	u32 i, val;

	ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;

	/* Clear DMA ring state */
	xgene_dma_clr_ring_state(ring);

	/* Set DMA ring type */
	XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);

	if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
		/* Set recombination buffer and timeout */
		XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
		XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
		XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
	}

	/* Initialize DMA ring state */
	XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
	XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
	XGENE_DMA_RING_COHERENT_SET(ring_cfg);
	XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
	XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
	XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);

	/* Write DMA ring configurations */
	xgene_dma_wr_ring_state(ring);

	/* Set DMA ring id */
	iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
		  ring->pdma->csr_ring + XGENE_DMA_RING_ID);

	/* Set DMA ring buffer */
	iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
		  ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);

	if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
		return;

	/* Set empty signature to DMA Rx ring descriptors */
	for (i = 0; i < ring->slots; i++) {
1319 1320
		struct xgene_dma_desc_hw *desc;

1321
		desc = &ring->desc_hw[i];
1322
		desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	}

	/* Enable DMA Rx ring interrupt */
	val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
	XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
	iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
}

static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
{
	u32 ring_id, val;

	if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
		/* Disable DMA Rx ring interrupt */
		val = ioread32(ring->pdma->csr_ring +
			       XGENE_DMA_RING_NE_INT_MODE);
		XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
		iowrite32(val, ring->pdma->csr_ring +
			  XGENE_DMA_RING_NE_INT_MODE);
	}

	/* Clear DMA ring state */
	ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
	iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);

	iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
	xgene_dma_clr_ring_state(ring);
}

static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
{
	ring->cmd_base = ring->pdma->csr_ring_cmd +
				XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
							  XGENE_DMA_RING_NUM));

	ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
}

static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
				   enum xgene_dma_ring_cfgsize cfgsize)
{
	int size;

	switch (cfgsize) {
	case XGENE_DMA_RING_CFG_SIZE_512B:
		size = 0x200;
		break;
	case XGENE_DMA_RING_CFG_SIZE_2KB:
		size = 0x800;
		break;
	case XGENE_DMA_RING_CFG_SIZE_16KB:
		size = 0x4000;
		break;
	case XGENE_DMA_RING_CFG_SIZE_64KB:
		size = 0x10000;
		break;
	case XGENE_DMA_RING_CFG_SIZE_512KB:
		size = 0x80000;
		break;
	default:
		chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
		return -EINVAL;
	}

	return size;
}

static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
{
	/* Clear DMA ring configurations */
	xgene_dma_clear_ring(ring);

	/* De-allocate DMA ring descriptor */
	if (ring->desc_vaddr) {
		dma_free_coherent(ring->pdma->dev, ring->size,
				  ring->desc_vaddr, ring->desc_paddr);
		ring->desc_vaddr = NULL;
	}
}

static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
{
	xgene_dma_delete_ring_one(&chan->rx_ring);
	xgene_dma_delete_ring_one(&chan->tx_ring);
}

static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
				     struct xgene_dma_ring *ring,
				     enum xgene_dma_ring_cfgsize cfgsize)
{
	/* Setup DMA ring descriptor variables */
	ring->pdma = chan->pdma;
	ring->cfgsize = cfgsize;
	ring->num = chan->pdma->ring_num++;
	ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);

	ring->size = xgene_dma_get_ring_size(chan, cfgsize);
	if (ring->size <= 0)
		return ring->size;

	/* Allocate memory for DMA ring descriptor */
	ring->desc_vaddr = dma_zalloc_coherent(chan->dev, ring->size,
					       &ring->desc_paddr, GFP_KERNEL);
	if (!ring->desc_vaddr) {
		chan_err(chan, "Failed to allocate ring desc\n");
		return -ENOMEM;
	}

	/* Configure and enable DMA ring */
	xgene_dma_set_ring_cmd(ring);
	xgene_dma_setup_ring(ring);

	return 0;
}

static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
{
	struct xgene_dma_ring *rx_ring = &chan->rx_ring;
	struct xgene_dma_ring *tx_ring = &chan->tx_ring;
	int ret;

	/* Create DMA Rx ring descriptor */
	rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
	rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;

	ret = xgene_dma_create_ring_one(chan, rx_ring,
					XGENE_DMA_RING_CFG_SIZE_64KB);
	if (ret)
		return ret;

	chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
		 rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);

	/* Create DMA Tx ring descriptor */
	tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
	tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;

	ret = xgene_dma_create_ring_one(chan, tx_ring,
					XGENE_DMA_RING_CFG_SIZE_64KB);
	if (ret) {
		xgene_dma_delete_ring_one(rx_ring);
		return ret;
	}

	tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);

	chan_dbg(chan,
		 "Tx ring id 0x%X num %d desc 0x%p\n",
		 tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);

	/* Set the max outstanding request possible to this channel */
	chan->max_outstanding = rx_ring->slots;

	return ret;
}

static int xgene_dma_init_rings(struct xgene_dma *pdma)
{
	int ret, i, j;

	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
		ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
		if (ret) {
			for (j = 0; j < i; j++)
				xgene_dma_delete_chan_rings(&pdma->chan[j]);
			return ret;
		}
	}

	return ret;
}

static void xgene_dma_enable(struct xgene_dma *pdma)
{
	u32 val;

	/* Configure and enable DMA engine */
	val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
	XGENE_DMA_CH_SETUP(val);
	XGENE_DMA_ENABLE(val);
	iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
}

static void xgene_dma_disable(struct xgene_dma *pdma)
{
	u32 val;

	val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
	XGENE_DMA_DISABLE(val);
	iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
}

static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
{
	/*
	 * Mask DMA ring overflow, underflow and
	 * AXI write/read error interrupts
	 */
	iowrite32(XGENE_DMA_INT_ALL_MASK,
		  pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
	iowrite32(XGENE_DMA_INT_ALL_MASK,
		  pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
	iowrite32(XGENE_DMA_INT_ALL_MASK,
		  pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
	iowrite32(XGENE_DMA_INT_ALL_MASK,
		  pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
	iowrite32(XGENE_DMA_INT_ALL_MASK,
		  pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);

	/* Mask DMA error interrupts */
	iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
}

static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
{
	/*
	 * Unmask DMA ring overflow, underflow and
	 * AXI write/read error interrupts
	 */
	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
		  pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
		  pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
		  pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
		  pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
		  pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);

	/* Unmask DMA error interrupts */
	iowrite32(XGENE_DMA_INT_ALL_UNMASK,
		  pdma->csr_dma + XGENE_DMA_INT_MASK);
}

static void xgene_dma_init_hw(struct xgene_dma *pdma)
{
	u32 val;

	/* Associate DMA ring to corresponding ring HW */
	iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
		  pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);

	/* Configure RAID6 polynomial control setting */
	if (is_pq_enabled(pdma))
		iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
			  pdma->csr_dma + XGENE_DMA_RAID6_CONT);
	else
		dev_info(pdma->dev, "PQ is disabled in HW\n");

	xgene_dma_enable(pdma);
	xgene_dma_unmask_interrupts(pdma);

	/* Get DMA id and version info */
	val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);

	/* DMA device info */
	dev_info(pdma->dev,
		 "X-Gene DMA v%d.%02d.%02d driver registered %d channels",
		 XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
		 XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
}

1586
static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
{
	if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
	    (!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
		return 0;

	iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
	iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);

	/* Bring up memory */
	iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);

	/* Force a barrier */
	ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);

	/* reset may take up to 1ms */
	usleep_range(1000, 1100);

	if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
		!= XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
		dev_err(pdma->dev,
			"Failed to release ring mngr memory from shutdown\n");
		return -ENODEV;
	}

	/* program threshold set 1 and all hysteresis */
	iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
		  pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
	iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
		  pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
	iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
		  pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);

	/* Enable QPcore and assign error queue */
	iowrite32(XGENE_DMA_RING_ENABLE,
		  pdma->csr_ring + XGENE_DMA_RING_CONFIG);

	return 0;
}

static int xgene_dma_init_mem(struct xgene_dma *pdma)
{
	int ret;

	ret = xgene_dma_init_ring_mngr(pdma);
	if (ret)
		return ret;

	/* Bring up memory */
	iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);

	/* Force a barrier */
	ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);

	/* reset may take up to 1ms */
	usleep_range(1000, 1100);

	if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
		!= XGENE_DMA_BLK_MEM_RDY_VAL) {
		dev_err(pdma->dev,
			"Failed to release DMA memory from shutdown\n");
		return -ENODEV;
	}

	return 0;
}

static int xgene_dma_request_irqs(struct xgene_dma *pdma)
{
	struct xgene_dma_chan *chan;
	int ret, i, j;

	/* Register DMA error irq */
	ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
			       0, "dma_error", pdma);
	if (ret) {
		dev_err(pdma->dev,
			"Failed to register error IRQ %d\n", pdma->err_irq);
		return ret;
	}

	/* Register DMA channel rx irq */
	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
		chan = &pdma->chan[i];
		ret = devm_request_irq(chan->dev, chan->rx_irq,
				       xgene_dma_chan_ring_isr,
				       0, chan->name, chan);
		if (ret) {
			chan_err(chan, "Failed to register Rx IRQ %d\n",
				 chan->rx_irq);
			devm_free_irq(pdma->dev, pdma->err_irq, pdma);

			for (j = 0; j < i; j++) {
				chan = &pdma->chan[i];
				devm_free_irq(chan->dev, chan->rx_irq, chan);
			}

			return ret;
		}
	}

	return 0;
}

static void xgene_dma_free_irqs(struct xgene_dma *pdma)
{
	struct xgene_dma_chan *chan;
	int i;

	/* Free DMA device error irq */
	devm_free_irq(pdma->dev, pdma->err_irq, pdma);

	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
		chan = &pdma->chan[i];
		devm_free_irq(chan->dev, chan->rx_irq, chan);
	}
}

static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
			       struct dma_device *dma_dev)
{
	/* Initialize DMA device capability mask */
	dma_cap_zero(dma_dev->cap_mask);

	/* Set DMA device capability */
	dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
	dma_cap_set(DMA_SG, dma_dev->cap_mask);

	/* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
	 * and channel 1 supports XOR, PQ both. First thing here is we have
	 * mechanism in hw to enable/disable PQ/XOR supports on channel 1,
	 * we can make sure this by reading SoC Efuse register.
	 * Second thing, we have hw errata that if we run channel 0 and
	 * channel 1 simultaneously with executing XOR and PQ request,
	 * suddenly DMA engine hangs, So here we enable XOR on channel 0 only
	 * if XOR and PQ supports on channel 1 is disabled.
	 */
	if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
	    is_pq_enabled(chan->pdma)) {
		dma_cap_set(DMA_PQ, dma_dev->cap_mask);
		dma_cap_set(DMA_XOR, dma_dev->cap_mask);
	} else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
		   !is_pq_enabled(chan->pdma)) {
		dma_cap_set(DMA_XOR, dma_dev->cap_mask);
	}

	/* Set base and prep routines */
	dma_dev->dev = chan->dev;
	dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
	dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
	dma_dev->device_issue_pending = xgene_dma_issue_pending;
	dma_dev->device_tx_status = xgene_dma_tx_status;
	dma_dev->device_prep_dma_memcpy = xgene_dma_prep_memcpy;
	dma_dev->device_prep_dma_sg = xgene_dma_prep_sg;

	if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
		dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
		dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
		dma_dev->xor_align = XGENE_DMA_XOR_ALIGNMENT;
	}

	if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
		dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
		dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
		dma_dev->pq_align = XGENE_DMA_XOR_ALIGNMENT;
	}
}

static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
{
	struct xgene_dma_chan *chan = &pdma->chan[id];
	struct dma_device *dma_dev = &pdma->dma_dev[id];
	int ret;

	chan->dma_chan.device = dma_dev;

	spin_lock_init(&chan->lock);
	INIT_LIST_HEAD(&chan->ld_pending);
	INIT_LIST_HEAD(&chan->ld_running);
	INIT_LIST_HEAD(&chan->ld_completed);
	tasklet_init(&chan->tasklet, xgene_dma_tasklet_cb,
		     (unsigned long)chan);

	chan->pending = 0;
	chan->desc_pool = NULL;
	dma_cookie_init(&chan->dma_chan);

	/* Setup dma device capabilities and prep routines */
	xgene_dma_set_caps(chan, dma_dev);

	/* Initialize DMA device list head */
	INIT_LIST_HEAD(&dma_dev->channels);
	list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);

	/* Register with Linux async DMA framework*/
	ret = dma_async_device_register(dma_dev);
	if (ret) {
		chan_err(chan, "Failed to register async device %d", ret);
		tasklet_kill(&chan->tasklet);

		return ret;
	}

	/* DMA capability info */
	dev_info(pdma->dev,
		 "%s: CAPABILITY ( %s%s%s%s)\n", dma_chan_name(&chan->dma_chan),
		 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "MEMCPY " : "",
		 dma_has_cap(DMA_SG, dma_dev->cap_mask) ? "SGCPY " : "",
		 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
		 dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");

	return 0;
}

static int xgene_dma_init_async(struct xgene_dma *pdma)
{
	int ret, i, j;

	for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
		ret = xgene_dma_async_register(pdma, i);
		if (ret) {
			for (j = 0; j < i; j++) {
				dma_async_device_unregister(&pdma->dma_dev[j]);
				tasklet_kill(&pdma->chan[j].tasklet);
			}

			return ret;
		}
	}

	return ret;
}

static void xgene_dma_async_unregister(struct xgene_dma *pdma)
{
	int i;

	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
		dma_async_device_unregister(&pdma->dma_dev[i]);
}

static void xgene_dma_init_channels(struct xgene_dma *pdma)
{
	struct xgene_dma_chan *chan;
	int i;

	pdma->ring_num = XGENE_DMA_RING_NUM;

	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
		chan = &pdma->chan[i];
		chan->dev = pdma->dev;
		chan->pdma = pdma;
		chan->id = i;
1839
		snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id);
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	}
}

static int xgene_dma_get_resources(struct platform_device *pdev,
				   struct xgene_dma *pdma)
{
	struct resource *res;
	int irq, i;

	/* Get DMA csr region */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		dev_err(&pdev->dev, "Failed to get csr region\n");
		return -ENXIO;
	}

	pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
				     resource_size(res));
1858
	if (!pdma->csr_dma) {
1859
		dev_err(&pdev->dev, "Failed to ioremap csr region");
1860
		return -ENOMEM;
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	}

	/* Get DMA ring csr region */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	if (!res) {
		dev_err(&pdev->dev, "Failed to get ring csr region\n");
		return -ENXIO;
	}

	pdma->csr_ring =  devm_ioremap(&pdev->dev, res->start,
				       resource_size(res));
1872
	if (!pdma->csr_ring) {
1873
		dev_err(&pdev->dev, "Failed to ioremap ring csr region");
1874
		return -ENOMEM;
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	}

	/* Get DMA ring cmd csr region */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
	if (!res) {
		dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
		return -ENXIO;
	}

	pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
					  resource_size(res));
1886
	if (!pdma->csr_ring_cmd) {
1887
		dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
1888
		return -ENOMEM;
1889 1890
	}

1891 1892
	pdma->csr_ring_cmd += XGENE_DMA_RING_CMD_SM_OFFSET;

1893 1894 1895 1896 1897 1898 1899 1900 1901
	/* Get efuse csr region */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
	if (!res) {
		dev_err(&pdev->dev, "Failed to get efuse csr region\n");
		return -ENXIO;
	}

	pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
				       resource_size(res));
1902
	if (!pdma->csr_efuse) {
1903
		dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
1904
		return -ENOMEM;
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
	}

	/* Get DMA error interrupt */
	irq = platform_get_irq(pdev, 0);
	if (irq <= 0) {
		dev_err(&pdev->dev, "Failed to get Error IRQ\n");
		return -ENXIO;
	}

	pdma->err_irq = irq;

	/* Get DMA Rx ring descriptor interrupts for all DMA channels */
	for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
		irq = platform_get_irq(pdev, i);
		if (irq <= 0) {
			dev_err(&pdev->dev, "Failed to get Rx IRQ\n");
			return -ENXIO;
		}

		pdma->chan[i - 1].rx_irq = irq;
	}

	return 0;
}

static int xgene_dma_probe(struct platform_device *pdev)
{
	struct xgene_dma *pdma;
	int ret, i;

	pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
	if (!pdma)
		return -ENOMEM;

	pdma->dev = &pdev->dev;
	platform_set_drvdata(pdev, pdma);

	ret = xgene_dma_get_resources(pdev, pdma);
	if (ret)
		return ret;

	pdma->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(pdma->clk)) {
		dev_err(&pdev->dev, "Failed to get clk\n");
		return PTR_ERR(pdma->clk);
	}

	/* Enable clk before accessing registers */
	ret = clk_prepare_enable(pdma->clk);
	if (ret) {
		dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
		return ret;
	}

	/* Remove DMA RAM out of shutdown */
	ret = xgene_dma_init_mem(pdma);
	if (ret)
		goto err_clk_enable;

	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
	if (ret) {
		dev_err(&pdev->dev, "No usable DMA configuration\n");
		goto err_dma_mask;
	}

	/* Initialize DMA channels software state */
	xgene_dma_init_channels(pdma);

	/* Configue DMA rings */
	ret = xgene_dma_init_rings(pdma);
	if (ret)
		goto err_clk_enable;

	ret = xgene_dma_request_irqs(pdma);
	if (ret)
		goto err_request_irq;

	/* Configure and enable DMA engine */
	xgene_dma_init_hw(pdma);

	/* Register DMA device with linux async framework */
	ret = xgene_dma_init_async(pdma);
	if (ret)
		goto err_async_init;

	return 0;

err_async_init:
	xgene_dma_free_irqs(pdma);

err_request_irq:
	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
		xgene_dma_delete_chan_rings(&pdma->chan[i]);

err_dma_mask:
err_clk_enable:
	clk_disable_unprepare(pdma->clk);

	return ret;
}

static int xgene_dma_remove(struct platform_device *pdev)
{
	struct xgene_dma *pdma = platform_get_drvdata(pdev);
	struct xgene_dma_chan *chan;
	int i;

	xgene_dma_async_unregister(pdma);

	/* Mask interrupts and disable DMA engine */
	xgene_dma_mask_interrupts(pdma);
	xgene_dma_disable(pdma);
	xgene_dma_free_irqs(pdma);

	for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
		chan = &pdma->chan[i];
		tasklet_kill(&chan->tasklet);
		xgene_dma_delete_chan_rings(chan);
	}

	clk_disable_unprepare(pdma->clk);

	return 0;
}

static const struct of_device_id xgene_dma_of_match_ptr[] = {
	{.compatible = "apm,xgene-storm-dma",},
	{},
};
MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);

static struct platform_driver xgene_dma_driver = {
	.probe = xgene_dma_probe,
	.remove = xgene_dma_remove,
	.driver = {
		.name = "X-Gene-DMA",
		.of_match_table = xgene_dma_of_match_ptr,
	},
};

module_platform_driver(xgene_dma_driver);

MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
MODULE_AUTHOR("Loc Ho <lho@apm.com>");
MODULE_LICENSE("GPL");
MODULE_VERSION("1.0");