vfs.txt 28.5 KB
Newer Older
L
Linus Torvalds 已提交
1

2
	      Overview of the Linux Virtual File System
L
Linus Torvalds 已提交
3

4
	Original author: Richard Gooch <rgooch@atnf.csiro.au>
L
Linus Torvalds 已提交
5

6
		  Last updated on October 28, 2005
L
Linus Torvalds 已提交
7

8 9
  Copyright (C) 1999 Richard Gooch
  Copyright (C) 2005 Pekka Enberg
L
Linus Torvalds 已提交
10

11
  This file is released under the GPLv2.
L
Linus Torvalds 已提交
12 13


14 15
Introduction
============
L
Linus Torvalds 已提交
16

17 18 19 20 21
The Virtual File System (also known as the Virtual Filesystem Switch)
is the software layer in the kernel that provides the filesystem
interface to userspace programs. It also provides an abstraction
within the kernel which allows different filesystem implementations to
coexist.
L
Linus Torvalds 已提交
22

23 24 25
VFS system calls open(2), stat(2), read(2), write(2), chmod(2) and so
on are called from a process context. Filesystem locking is described
in the document Documentation/filesystems/Locking.
L
Linus Torvalds 已提交
26 27


28 29
Directory Entry Cache (dcache)
------------------------------
L
Linus Torvalds 已提交
30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
The VFS implements the open(2), stat(2), chmod(2), and similar system
calls. The pathname argument that is passed to them is used by the VFS
to search through the directory entry cache (also known as the dentry
cache or dcache). This provides a very fast look-up mechanism to
translate a pathname (filename) into a specific dentry. Dentries live
in RAM and are never saved to disc: they exist only for performance.

The dentry cache is meant to be a view into your entire filespace. As
most computers cannot fit all dentries in the RAM at the same time,
some bits of the cache are missing. In order to resolve your pathname
into a dentry, the VFS may have to resort to creating dentries along
the way, and then loading the inode. This is done by looking up the
inode.


The Inode Object
----------------

An individual dentry usually has a pointer to an inode. Inodes are
filesystem objects such as regular files, directories, FIFOs and other
beasts.  They live either on the disc (for block device filesystems)
or in the memory (for pseudo filesystems). Inodes that live on the
disc are copied into the memory when required and changes to the inode
are written back to disc. A single inode can be pointed to by multiple
dentries (hard links, for example, do this).

To look up an inode requires that the VFS calls the lookup() method of
the parent directory inode. This method is installed by the specific
filesystem implementation that the inode lives in. Once the VFS has
the required dentry (and hence the inode), we can do all those boring
things like open(2) the file, or stat(2) it to peek at the inode
data. The stat(2) operation is fairly simple: once the VFS has the
dentry, it peeks at the inode data and passes some of it back to
userspace.


The File Object
---------------
L
Linus Torvalds 已提交
69 70 71

Opening a file requires another operation: allocation of a file
structure (this is the kernel-side implementation of file
72
descriptors). The freshly allocated file structure is initialized with
L
Linus Torvalds 已提交
73 74 75
a pointer to the dentry and a set of file operation member functions.
These are taken from the inode data. The open() file method is then
called so the specific filesystem implementation can do it's work. You
76 77
can see that this is another switch performed by the VFS. The file
structure is placed into the file descriptor table for the process.
L
Linus Torvalds 已提交
78 79 80

Reading, writing and closing files (and other assorted VFS operations)
is done by using the userspace file descriptor to grab the appropriate
81 82 83
file structure, and then calling the required file structure method to
do whatever is required. For as long as the file is open, it keeps the
dentry in use, which in turn means that the VFS inode is still in use.
L
Linus Torvalds 已提交
84

85 86

Registering and Mounting a Filesystem
87
=====================================
L
Linus Torvalds 已提交
88

89 90
To register and unregister a filesystem, use the following API
functions:
L
Linus Torvalds 已提交
91

92
   #include <linux/fs.h>
L
Linus Torvalds 已提交
93

94 95
   extern int register_filesystem(struct file_system_type *);
   extern int unregister_filesystem(struct file_system_type *);
L
Linus Torvalds 已提交
96

97 98 99 100 101
The passed struct file_system_type describes your filesystem. When a
request is made to mount a device onto a directory in your filespace,
the VFS will call the appropriate get_sb() method for the specific
filesystem. The dentry for the mount point will then be updated to
point to the root inode for the new filesystem.
L
Linus Torvalds 已提交
102

103 104
You can see all filesystems that are registered to the kernel in the
file /proc/filesystems.
L
Linus Torvalds 已提交
105 106


107
struct file_system_type
108
-----------------------
L
Linus Torvalds 已提交
109

110
This describes the filesystem. As of kernel 2.6.13, the following
L
Linus Torvalds 已提交
111 112 113 114 115
members are defined:

struct file_system_type {
	const char *name;
	int fs_flags;
116 117 118 119 120 121
        struct super_block *(*get_sb) (struct file_system_type *, int,
                                       const char *, void *);
        void (*kill_sb) (struct super_block *);
        struct module *owner;
        struct file_system_type * next;
        struct list_head fs_supers;
L
Linus Torvalds 已提交
122 123 124 125 126 127 128
};

  name: the name of the filesystem type, such as "ext2", "iso9660",
	"msdos" and so on

  fs_flags: various flags (i.e. FS_REQUIRES_DEV, FS_NO_DCACHE, etc.)

129
  get_sb: the method to call when a new instance of this
L
Linus Torvalds 已提交
130 131
	filesystem should be mounted

132 133 134 135 136
  kill_sb: the method to call when an instance of this filesystem
	should be unmounted

  owner: for internal VFS use: you should initialize this to THIS_MODULE in
  	most cases.
L
Linus Torvalds 已提交
137

138 139 140
  next: for internal VFS use: you should initialize this to NULL

The get_sb() method has the following arguments:
L
Linus Torvalds 已提交
141 142

  struct super_block *sb: the superblock structure. This is partially
143 144 145 146 147 148
	initialized by the VFS and the rest must be initialized by the
	get_sb() method

  int flags: mount flags

  const char *dev_name: the device name we are mounting.
L
Linus Torvalds 已提交
149 150 151 152 153 154

  void *data: arbitrary mount options, usually comes as an ASCII
	string

  int silent: whether or not to be silent on error

155
The get_sb() method must determine if the block device specified
L
Linus Torvalds 已提交
156 157 158 159 160
in the superblock contains a filesystem of the type the method
supports. On success the method returns the superblock pointer, on
failure it returns NULL.

The most interesting member of the superblock structure that the
161
get_sb() method fills in is the "s_op" field. This is a pointer to
L
Linus Torvalds 已提交
162 163 164
a "struct super_operations" which describes the next level of the
filesystem implementation.

165 166 167 168 169
Usually, a filesystem uses generic one of the generic get_sb()
implementations and provides a fill_super() method instead. The
generic methods are:

  get_sb_bdev: mount a filesystem residing on a block device
L
Linus Torvalds 已提交
170

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
  get_sb_nodev: mount a filesystem that is not backed by a device

  get_sb_single: mount a filesystem which shares the instance between
  	all mounts

A fill_super() method implementation has the following arguments:

  struct super_block *sb: the superblock structure. The method fill_super()
  	must initialize this properly.

  void *data: arbitrary mount options, usually comes as an ASCII
	string

  int silent: whether or not to be silent on error


187 188 189 190 191 192
The Superblock Object
=====================

A superblock object represents a mounted filesystem.


193
struct super_operations
194
-----------------------
L
Linus Torvalds 已提交
195 196

This describes how the VFS can manipulate the superblock of your
197
filesystem. As of kernel 2.6.13, the following members are defined:
L
Linus Torvalds 已提交
198 199

struct super_operations {
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        struct inode *(*alloc_inode)(struct super_block *sb);
        void (*destroy_inode)(struct inode *);

        void (*read_inode) (struct inode *);

        void (*dirty_inode) (struct inode *);
        int (*write_inode) (struct inode *, int);
        void (*put_inode) (struct inode *);
        void (*drop_inode) (struct inode *);
        void (*delete_inode) (struct inode *);
        void (*put_super) (struct super_block *);
        void (*write_super) (struct super_block *);
        int (*sync_fs)(struct super_block *sb, int wait);
        void (*write_super_lockfs) (struct super_block *);
        void (*unlockfs) (struct super_block *);
        int (*statfs) (struct super_block *, struct kstatfs *);
        int (*remount_fs) (struct super_block *, int *, char *);
        void (*clear_inode) (struct inode *);
        void (*umount_begin) (struct super_block *);

        void (*sync_inodes) (struct super_block *sb,
                                struct writeback_control *wbc);
        int (*show_options)(struct seq_file *, struct vfsmount *);

        ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
        ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
L
Linus Torvalds 已提交
226 227 228 229 230 231 232
};

All methods are called without any locks being held, unless otherwise
noted. This means that most methods can block safely. All methods are
only called from a process context (i.e. not from an interrupt handler
or bottom half).

233 234 235 236 237 238
  alloc_inode: this method is called by inode_alloc() to allocate memory
 	for struct inode and initialize it.

  destroy_inode: this method is called by destroy_inode() to release
  	resources allocated for struct inode.

L
Linus Torvalds 已提交
239
  read_inode: this method is called to read a specific inode from the
240 241 242 243 244 245 246 247 248
        mounted filesystem.  The i_ino member in the struct inode is
	initialized by the VFS to indicate which inode to read. Other
	members are filled in by this method.

	You can set this to NULL and use iget5_locked() instead of iget()
	to read inodes.  This is necessary for filesystems for which the
	inode number is not sufficient to identify an inode.

  dirty_inode: this method is called by the VFS to mark an inode dirty.
L
Linus Torvalds 已提交
249 250 251 252 253 254

  write_inode: this method is called when the VFS needs to write an
	inode to disc.  The second parameter indicates whether the write
	should be synchronous or not, not all filesystems check this flag.

  put_inode: called when the VFS inode is removed from the inode
255
	cache.
L
Linus Torvalds 已提交
256 257 258 259

  drop_inode: called when the last access to the inode is dropped,
	with the inode_lock spinlock held.

260
	This method should be either NULL (normal UNIX filesystem
L
Linus Torvalds 已提交
261 262 263 264
	semantics) or "generic_delete_inode" (for filesystems that do not
	want to cache inodes - causing "delete_inode" to always be
	called regardless of the value of i_nlink)

265
	The "generic_delete_inode()" behavior is equivalent to the
L
Linus Torvalds 已提交
266 267 268 269 270 271 272 273 274 275 276 277
	old practice of using "force_delete" in the put_inode() case,
	but does not have the races that the "force_delete()" approach
	had. 

  delete_inode: called when the VFS wants to delete an inode

  put_super: called when the VFS wishes to free the superblock
	(i.e. unmount). This is called with the superblock lock held

  write_super: called when the VFS superblock needs to be written to
	disc. This method is optional

278 279 280 281
  sync_fs: called when VFS is writing out all dirty data associated with
  	a superblock. The second parameter indicates whether the method
	should wait until the write out has been completed. Optional.

282 283 284
  write_super_lockfs: called when VFS is locking a filesystem and
  	forcing it into a consistent state.  This method is currently
  	used by the Logical Volume Manager (LVM).
285 286 287 288

  unlockfs: called when VFS is unlocking a filesystem and making it writable
  	again.

L
Linus Torvalds 已提交
289 290 291 292 293 294 295 296
  statfs: called when the VFS needs to get filesystem statistics. This
	is called with the kernel lock held

  remount_fs: called when the filesystem is remounted. This is called
	with the kernel lock held

  clear_inode: called then the VFS clears the inode. Optional

297 298 299 300 301 302 303 304 305 306 307
  umount_begin: called when the VFS is unmounting a filesystem.

  sync_inodes: called when the VFS is writing out dirty data associated with
  	a superblock.

  show_options: called by the VFS to show mount options for /proc/<pid>/mounts.

  quota_read: called by the VFS to read from filesystem quota file.

  quota_write: called by the VFS to write to filesystem quota file.

L
Linus Torvalds 已提交
308 309 310 311 312
The read_inode() method is responsible for filling in the "i_op"
field. This is a pointer to a "struct inode_operations" which
describes the methods that can be performed on individual inodes.


313 314 315 316 317 318
The Inode Object
================

An inode object represents an object within the filesystem.


319
struct inode_operations
320
-----------------------
L
Linus Torvalds 已提交
321 322

This describes how the VFS can manipulate an inode in your
323
filesystem. As of kernel 2.6.13, the following members are defined:
L
Linus Torvalds 已提交
324 325

struct inode_operations {
326 327
	int (*create) (struct inode *,struct dentry *,int, struct nameidata *);
	struct dentry * (*lookup) (struct inode *,struct dentry *, struct nameidata *);
L
Linus Torvalds 已提交
328 329 330 331 332 333 334 335
	int (*link) (struct dentry *,struct inode *,struct dentry *);
	int (*unlink) (struct inode *,struct dentry *);
	int (*symlink) (struct inode *,struct dentry *,const char *);
	int (*mkdir) (struct inode *,struct dentry *,int);
	int (*rmdir) (struct inode *,struct dentry *);
	int (*mknod) (struct inode *,struct dentry *,int,dev_t);
	int (*rename) (struct inode *, struct dentry *,
			struct inode *, struct dentry *);
336 337 338
	int (*readlink) (struct dentry *, char __user *,int);
        void * (*follow_link) (struct dentry *, struct nameidata *);
        void (*put_link) (struct dentry *, struct nameidata *, void *);
L
Linus Torvalds 已提交
339
	void (*truncate) (struct inode *);
340 341 342 343 344 345 346
	int (*permission) (struct inode *, int, struct nameidata *);
	int (*setattr) (struct dentry *, struct iattr *);
	int (*getattr) (struct vfsmount *mnt, struct dentry *, struct kstat *);
	int (*setxattr) (struct dentry *, const char *,const void *,size_t,int);
	ssize_t (*getxattr) (struct dentry *, const char *, void *, size_t);
	ssize_t (*listxattr) (struct dentry *, char *, size_t);
	int (*removexattr) (struct dentry *, const char *);
L
Linus Torvalds 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
};

Again, all methods are called without any locks being held, unless
otherwise noted.

  create: called by the open(2) and creat(2) system calls. Only
	required if you want to support regular files. The dentry you
	get should not have an inode (i.e. it should be a negative
	dentry). Here you will probably call d_instantiate() with the
	dentry and the newly created inode

  lookup: called when the VFS needs to look up an inode in a parent
	directory. The name to look for is found in the dentry. This
	method must call d_add() to insert the found inode into the
	dentry. The "i_count" field in the inode structure should be
	incremented. If the named inode does not exist a NULL inode
	should be inserted into the dentry (this is called a negative
	dentry). Returning an error code from this routine must only
	be done on a real error, otherwise creating inodes with system
	calls like create(2), mknod(2), mkdir(2) and so on will fail.
	If you wish to overload the dentry methods then you should
	initialise the "d_dop" field in the dentry; this is a pointer
	to a struct "dentry_operations".
	This method is called with the directory inode semaphore held

  link: called by the link(2) system call. Only required if you want
	to support hard links. You will probably need to call
	d_instantiate() just as you would in the create() method

  unlink: called by the unlink(2) system call. Only required if you
	want to support deleting inodes

  symlink: called by the symlink(2) system call. Only required if you
	want to support symlinks. You will probably need to call
	d_instantiate() just as you would in the create() method

  mkdir: called by the mkdir(2) system call. Only required if you want
	to support creating subdirectories. You will probably need to
	call d_instantiate() just as you would in the create() method

  rmdir: called by the rmdir(2) system call. Only required if you want
	to support deleting subdirectories

  mknod: called by the mknod(2) system call to create a device (char,
	block) inode or a named pipe (FIFO) or socket. Only required
	if you want to support creating these types of inodes. You
	will probably need to call d_instantiate() just as you would
	in the create() method

396 397 398
  rename: called by the rename(2) system call to rename the object to
	have the parent and name given by the second inode and dentry.

L
Linus Torvalds 已提交
399 400 401 402
  readlink: called by the readlink(2) system call. Only required if
	you want to support reading symbolic links

  follow_link: called by the VFS to follow a symbolic link to the
403
	inode it points to.  Only required if you want to support
404
	symbolic links.  This method returns a void pointer cookie
405 406 407
	that is passed to put_link().

  put_link: called by the VFS to release resources allocated by
408 409 410 411 412 413 414 415 416 417 418
  	follow_link().  The cookie returned by follow_link() is passed
  	to to this method as the last parameter.  It is used by
  	filesystems such as NFS where page cache is not stable
  	(i.e. page that was installed when the symbolic link walk
  	started might not be in the page cache at the end of the
  	walk).

  truncate: called by the VFS to change the size of a file.  The
 	i_size field of the inode is set to the desired size by the
 	VFS before this method is called.  This method is called by
 	the truncate(2) system call and related functionality.
419 420 421 422

  permission: called by the VFS to check for access rights on a POSIX-like
  	filesystem.

423 424
  setattr: called by the VFS to set attributes for a file. This method
  	is called by chmod(2) and related system calls.
425

426 427
  getattr: called by the VFS to get attributes of a file. This method
  	is called by stat(2) and related system calls.
428 429

  setxattr: called by the VFS to set an extended attribute for a file.
430 431 432 433 434 435 436 437 438
  	Extended attribute is a name:value pair associated with an
  	inode. This method is called by setxattr(2) system call.

  getxattr: called by the VFS to retrieve the value of an extended
  	attribute name. This method is called by getxattr(2) function
  	call.

  listxattr: called by the VFS to list all extended attributes for a
  	given file. This method is called by listxattr(2) system call.
439

440 441
  removexattr: called by the VFS to remove an extended attribute from
  	a file. This method is called by removexattr(2) system call.
442 443


444 445 446 447
The Address Space Object
========================

The address space object is used to identify pages in the page cache.
448 449 450


struct address_space_operations
451
-------------------------------
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489

This describes how the VFS can manipulate mapping of a file to page cache in
your filesystem. As of kernel 2.6.13, the following members are defined:

struct address_space_operations {
	int (*writepage)(struct page *page, struct writeback_control *wbc);
	int (*readpage)(struct file *, struct page *);
	int (*sync_page)(struct page *);
	int (*writepages)(struct address_space *, struct writeback_control *);
	int (*set_page_dirty)(struct page *page);
	int (*readpages)(struct file *filp, struct address_space *mapping,
			struct list_head *pages, unsigned nr_pages);
	int (*prepare_write)(struct file *, struct page *, unsigned, unsigned);
	int (*commit_write)(struct file *, struct page *, unsigned, unsigned);
	sector_t (*bmap)(struct address_space *, sector_t);
	int (*invalidatepage) (struct page *, unsigned long);
	int (*releasepage) (struct page *, int);
	ssize_t (*direct_IO)(int, struct kiocb *, const struct iovec *iov,
			loff_t offset, unsigned long nr_segs);
	struct page* (*get_xip_page)(struct address_space *, sector_t,
			int);
};

  writepage: called by the VM write a dirty page to backing store.

  readpage: called by the VM to read a page from backing store.

  sync_page: called by the VM to notify the backing store to perform all
  	queued I/O operations for a page. I/O operations for other pages
	associated with this address_space object may also be performed.

  writepages: called by the VM to write out pages associated with the
  	address_space object.

  set_page_dirty: called by the VM to set a page dirty.

  readpages: called by the VM to read pages associated with the address_space
  	object.
L
Linus Torvalds 已提交
490

491 492
  prepare_write: called by the generic write path in VM to set up a write
  	request for a page.
L
Linus Torvalds 已提交
493

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
  commit_write: called by the generic write path in VM to write page to
  	its backing store.

  bmap: called by the VFS to map a logical block offset within object to
  	physical block number. This method is use by for the legacy FIBMAP
	ioctl. Other uses are discouraged.

  invalidatepage: called by the VM on truncate to disassociate a page from its
  	address_space mapping.

  releasepage: called by the VFS to release filesystem specific metadata from
  	a page.

  direct_IO: called by the VM for direct I/O writes and reads.

  get_xip_page: called by the VM to translate a block number to a page.
	The page is valid until the corresponding filesystem is unmounted.
	Filesystems that want to use execute-in-place (XIP) need to implement
	it.  An example implementation can be found in fs/ext2/xip.c.


515 516 517 518 519 520
The File Object
===============

A file object represents a file opened by a process.


521
struct file_operations
522
----------------------
L
Linus Torvalds 已提交
523 524

This describes how the VFS can manipulate an open file. As of kernel
525
2.6.13, the following members are defined:
L
Linus Torvalds 已提交
526 527 528

struct file_operations {
	loff_t (*llseek) (struct file *, loff_t, int);
529 530 531 532
	ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
	ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);
	ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
	ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, loff_t);
L
Linus Torvalds 已提交
533 534 535
	int (*readdir) (struct file *, void *, filldir_t);
	unsigned int (*poll) (struct file *, struct poll_table_struct *);
	int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
536 537
	long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
	long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
L
Linus Torvalds 已提交
538 539
	int (*mmap) (struct file *, struct vm_area_struct *);
	int (*open) (struct inode *, struct file *);
540
	int (*flush) (struct file *);
L
Linus Torvalds 已提交
541
	int (*release) (struct inode *, struct file *);
542 543 544
	int (*fsync) (struct file *, struct dentry *, int datasync);
	int (*aio_fsync) (struct kiocb *, int datasync);
	int (*fasync) (int, struct file *, int);
L
Linus Torvalds 已提交
545
	int (*lock) (struct file *, int, struct file_lock *);
546 547 548 549 550 551 552 553
	ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *);
	ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *);
	ssize_t (*sendfile) (struct file *, loff_t *, size_t, read_actor_t, void *);
	ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
	unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
	int (*check_flags)(int);
	int (*dir_notify)(struct file *filp, unsigned long arg);
	int (*flock) (struct file *, int, struct file_lock *);
L
Linus Torvalds 已提交
554 555 556 557 558 559 560 561 562
};

Again, all methods are called without any locks being held, unless
otherwise noted.

  llseek: called when the VFS needs to move the file position index

  read: called by read(2) and related system calls

563 564
  aio_read: called by io_submit(2) and other asynchronous I/O operations

L
Linus Torvalds 已提交
565 566
  write: called by write(2) and related system calls

567 568
  aio_write: called by io_submit(2) and other asynchronous I/O operations

L
Linus Torvalds 已提交
569 570 571 572 573 574 575 576
  readdir: called when the VFS needs to read the directory contents

  poll: called by the VFS when a process wants to check if there is
	activity on this file and (optionally) go to sleep until there
	is activity. Called by the select(2) and poll(2) system calls

  ioctl: called by the ioctl(2) system call

577 578 579 580 581 582
  unlocked_ioctl: called by the ioctl(2) system call. Filesystems that do not
  	require the BKL should use this method instead of the ioctl() above.

  compat_ioctl: called by the ioctl(2) system call when 32 bit system calls
 	 are used on 64 bit kernels.

L
Linus Torvalds 已提交
583 584 585
  mmap: called by the mmap(2) system call

  open: called by the VFS when an inode should be opened. When the VFS
586 587 588 589 590 591 592 593 594 595
	opens a file, it creates a new "struct file". It then calls the
	open method for the newly allocated file structure. You might
	think that the open method really belongs in
	"struct inode_operations", and you may be right. I think it's
	done the way it is because it makes filesystems simpler to
	implement. The open() method is a good place to initialize the
	"private_data" member in the file structure if you want to point
	to a device structure

  flush: called by the close(2) system call to flush a file
L
Linus Torvalds 已提交
596 597 598 599 600 601 602 603

  release: called when the last reference to an open file is closed

  fsync: called by the fsync(2) system call

  fasync: called by the fcntl(2) system call when asynchronous
	(non-blocking) mode is enabled for a file

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
  lock: called by the fcntl(2) system call for F_GETLK, F_SETLK, and F_SETLKW
  	commands

  readv: called by the readv(2) system call

  writev: called by the writev(2) system call

  sendfile: called by the sendfile(2) system call

  get_unmapped_area: called by the mmap(2) system call

  check_flags: called by the fcntl(2) system call for F_SETFL command

  dir_notify: called by the fcntl(2) system call for F_NOTIFY command

  flock: called by the flock(2) system call

L
Linus Torvalds 已提交
621 622 623 624 625 626 627 628
Note that the file operations are implemented by the specific
filesystem in which the inode resides. When opening a device node
(character or block special) most filesystems will call special
support routines in the VFS which will locate the required device
driver information. These support routines replace the filesystem file
operations with those for the device driver, and then proceed to call
the new open() method for the file. This is how opening a device file
in the filesystem eventually ends up calling the device driver open()
629
method.
L
Linus Torvalds 已提交
630 631


632 633 634
Directory Entry Cache (dcache)
==============================

L
Linus Torvalds 已提交
635 636

struct dentry_operations
637
------------------------
L
Linus Torvalds 已提交
638 639 640 641 642

This describes how a filesystem can overload the standard dentry
operations. Dentries and the dcache are the domain of the VFS and the
individual filesystem implementations. Device drivers have no business
here. These methods may be set to NULL, as they are either optional or
643
the VFS uses a default. As of kernel 2.6.13, the following members are
L
Linus Torvalds 已提交
644 645 646
defined:

struct dentry_operations {
647
	int (*d_revalidate)(struct dentry *, struct nameidata *);
L
Linus Torvalds 已提交
648 649
	int (*d_hash) (struct dentry *, struct qstr *);
	int (*d_compare) (struct dentry *, struct qstr *, struct qstr *);
650
	int (*d_delete)(struct dentry *);
L
Linus Torvalds 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
	void (*d_release)(struct dentry *);
	void (*d_iput)(struct dentry *, struct inode *);
};

  d_revalidate: called when the VFS needs to revalidate a dentry. This
	is called whenever a name look-up finds a dentry in the
	dcache. Most filesystems leave this as NULL, because all their
	dentries in the dcache are valid

  d_hash: called when the VFS adds a dentry to the hash table

  d_compare: called when a dentry should be compared with another

  d_delete: called when the last reference to a dentry is
	deleted. This means no-one is using the dentry, however it is
	still valid and in the dcache

  d_release: called when a dentry is really deallocated

  d_iput: called when a dentry loses its inode (just prior to its
	being deallocated). The default when this is NULL is that the
	VFS calls iput(). If you define this method, you must call
	iput() yourself

Each dentry has a pointer to its parent dentry, as well as a hash list
of child dentries. Child dentries are basically like files in a
directory.

679

680
Directory Entry Cache API
L
Linus Torvalds 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
--------------------------

There are a number of functions defined which permit a filesystem to
manipulate dentries:

  dget: open a new handle for an existing dentry (this just increments
	the usage count)

  dput: close a handle for a dentry (decrements the usage count). If
	the usage count drops to 0, the "d_delete" method is called
	and the dentry is placed on the unused list if the dentry is
	still in its parents hash list. Putting the dentry on the
	unused list just means that if the system needs some RAM, it
	goes through the unused list of dentries and deallocates them.
	If the dentry has already been unhashed and the usage count
	drops to 0, in this case the dentry is deallocated after the
	"d_delete" method is called

  d_drop: this unhashes a dentry from its parents hash list. A
700
	subsequent call to dput() will deallocate the dentry if its
L
Linus Torvalds 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
	usage count drops to 0

  d_delete: delete a dentry. If there are no other open references to
	the dentry then the dentry is turned into a negative dentry
	(the d_iput() method is called). If there are other
	references, then d_drop() is called instead

  d_add: add a dentry to its parents hash list and then calls
	d_instantiate()

  d_instantiate: add a dentry to the alias hash list for the inode and
	updates the "d_inode" member. The "i_count" member in the
	inode structure should be set/incremented. If the inode
	pointer is NULL, the dentry is called a "negative
	dentry". This function is commonly called when an inode is
	created for an existing negative dentry

  d_lookup: look up a dentry given its parent and path name component
	It looks up the child of that given name from the dcache
	hash table. If it is found, the reference count is incremented
	and the dentry is returned. The caller must use d_put()
	to free the dentry when it finishes using it.

724 725
For further information on dentry locking, please refer to the document
Documentation/filesystems/dentry-locking.txt.
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744


Resources
=========

(Note some of these resources are not up-to-date with the latest kernel
 version.)

Creating Linux virtual filesystems. 2002
    <http://lwn.net/Articles/13325/>

The Linux Virtual File-system Layer by Neil Brown. 1999
    <http://www.cse.unsw.edu.au/~neilb/oss/linux-commentary/vfs.html>

A tour of the Linux VFS by Michael K. Johnson. 1996
    <http://www.tldp.org/LDP/khg/HyperNews/get/fs/vfstour.html>

A small trail through the Linux kernel by Andries Brouwer. 2001
    <http://www.win.tue.nl/~aeb/linux/vfs/trail.html>