t4vf_hw.c 49.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/*
 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
 * driver for Linux.
 *
 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <linux/pci.h>

#include "t4vf_common.h"
#include "t4vf_defs.h"

#include "../cxgb4/t4_regs.h"
42
#include "../cxgb4/t4_values.h"
43 44 45 46 47 48 49
#include "../cxgb4/t4fw_api.h"

/*
 * Wait for the device to become ready (signified by our "who am I" register
 * returning a value other than all 1's).  Return an error if it doesn't
 * become ready ...
 */
B
Bill Pemberton 已提交
50
int t4vf_wait_dev_ready(struct adapter *adapter)
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
{
	const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
	const u32 notready1 = 0xffffffff;
	const u32 notready2 = 0xeeeeeeee;
	u32 val;

	val = t4_read_reg(adapter, whoami);
	if (val != notready1 && val != notready2)
		return 0;
	msleep(500);
	val = t4_read_reg(adapter, whoami);
	if (val != notready1 && val != notready2)
		return 0;
	else
		return -EIO;
}

/*
 * Get the reply to a mailbox command and store it in @rpl in big-endian order
 * (since the firmware data structures are specified in a big-endian layout).
 */
static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
			 u32 mbox_data)
{
	for ( ; size; size -= 8, mbox_data += 8)
		*rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
}

/*
 * Dump contents of mailbox with a leading tag.
 */
static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data)
{
	dev_err(adapter->pdev_dev,
		"mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag,
		(unsigned long long)t4_read_reg64(adapter, mbox_data +  0),
		(unsigned long long)t4_read_reg64(adapter, mbox_data +  8),
		(unsigned long long)t4_read_reg64(adapter, mbox_data + 16),
		(unsigned long long)t4_read_reg64(adapter, mbox_data + 24),
		(unsigned long long)t4_read_reg64(adapter, mbox_data + 32),
		(unsigned long long)t4_read_reg64(adapter, mbox_data + 40),
		(unsigned long long)t4_read_reg64(adapter, mbox_data + 48),
		(unsigned long long)t4_read_reg64(adapter, mbox_data + 56));
}

/**
 *	t4vf_wr_mbox_core - send a command to FW through the mailbox
 *	@adapter: the adapter
 *	@cmd: the command to write
 *	@size: command length in bytes
 *	@rpl: where to optionally store the reply
 *	@sleep_ok: if true we may sleep while awaiting command completion
 *
 *	Sends the given command to FW through the mailbox and waits for the
 *	FW to execute the command.  If @rpl is not %NULL it is used to store
 *	the FW's reply to the command.  The command and its optional reply
 *	are of the same length.  FW can take up to 500 ms to respond.
 *	@sleep_ok determines whether we may sleep while awaiting the response.
 *	If sleeping is allowed we use progressive backoff otherwise we spin.
 *
 *	The return value is 0 on success or a negative errno on failure.  A
 *	failure can happen either because we are not able to execute the
 *	command or FW executes it but signals an error.  In the latter case
 *	the return value is the error code indicated by FW (negated).
 */
int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
		      void *rpl, bool sleep_ok)
{
J
Joe Perches 已提交
119
	static const int delay[] = {
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
		1, 1, 3, 5, 10, 10, 20, 50, 100
	};

	u32 v;
	int i, ms, delay_idx;
	const __be64 *p;
	u32 mbox_data = T4VF_MBDATA_BASE_ADDR;
	u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;

	/*
	 * Commands must be multiples of 16 bytes in length and may not be
	 * larger than the size of the Mailbox Data register array.
	 */
	if ((size % 16) != 0 ||
	    size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
		return -EINVAL;

	/*
	 * Loop trying to get ownership of the mailbox.  Return an error
	 * if we can't gain ownership.
	 */
141
	v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
142
	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
143
		v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
144 145 146 147 148 149
	if (v != MBOX_OWNER_DRV)
		return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT;

	/*
	 * Write the command array into the Mailbox Data register array and
	 * transfer ownership of the mailbox to the firmware.
150 151 152 153 154 155 156 157 158
	 *
	 * For the VFs, the Mailbox Data "registers" are actually backed by
	 * T4's "MA" interface rather than PL Registers (as is the case for
	 * the PFs).  Because these are in different coherency domains, the
	 * write to the VF's PL-register-backed Mailbox Control can race in
	 * front of the writes to the MA-backed VF Mailbox Data "registers".
	 * So we need to do a read-back on at least one byte of the VF Mailbox
	 * Data registers before doing the write to the VF Mailbox Control
	 * register.
159 160 161
	 */
	for (i = 0, p = cmd; i < size; i += 8)
		t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
162 163
	t4_read_reg(adapter, mbox_data);         /* flush write */

164
	t4_write_reg(adapter, mbox_ctl,
165
		     MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
166 167 168 169 170 171 172 173
	t4_read_reg(adapter, mbox_ctl);          /* flush write */

	/*
	 * Spin waiting for firmware to acknowledge processing our command.
	 */
	delay_idx = 0;
	ms = delay[0];

174
	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
175 176
		if (sleep_ok) {
			ms = delay[delay_idx];
177
			if (delay_idx < ARRAY_SIZE(delay) - 1)
178 179 180 181 182 183 184 185 186
				delay_idx++;
			msleep(ms);
		} else
			mdelay(ms);

		/*
		 * If we're the owner, see if this is the reply we wanted.
		 */
		v = t4_read_reg(adapter, mbox_ctl);
187
		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
188 189 190 191
			/*
			 * If the Message Valid bit isn't on, revoke ownership
			 * of the mailbox and continue waiting for our reply.
			 */
192
			if ((v & MBMSGVALID_F) == 0) {
193
				t4_write_reg(adapter, mbox_ctl,
194
					     MBOWNER_V(MBOX_OWNER_NONE));
195 196 197 198 199 200 201 202 203 204 205 206 207
				continue;
			}

			/*
			 * We now have our reply.  Extract the command return
			 * value, copy the reply back to our caller's buffer
			 * (if specified) and revoke ownership of the mailbox.
			 * We return the (negated) firmware command return
			 * code (this depends on FW_SUCCESS == 0).
			 */

			/* return value in low-order little-endian word */
			v = t4_read_reg(adapter, mbox_data);
208
			if (FW_CMD_RETVAL_G(v))
209 210 211 212 213
				dump_mbox(adapter, "FW Error", mbox_data);

			if (rpl) {
				/* request bit in high-order BE word */
				WARN_ON((be32_to_cpu(*(const u32 *)cmd)
214
					 & FW_CMD_REQUEST_F) == 0);
215 216
				get_mbox_rpl(adapter, rpl, size, mbox_data);
				WARN_ON((be32_to_cpu(*(u32 *)rpl)
217
					 & FW_CMD_REQUEST_F) != 0);
218 219
			}
			t4_write_reg(adapter, mbox_ctl,
220
				     MBOWNER_V(MBOX_OWNER_NONE));
221
			return -FW_CMD_RETVAL_G(v);
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
		}
	}

	/*
	 * We timed out.  Return the error ...
	 */
	dump_mbox(adapter, "FW Timeout", mbox_data);
	return -ETIMEDOUT;
}

/**
 *	hash_mac_addr - return the hash value of a MAC address
 *	@addr: the 48-bit Ethernet MAC address
 *
 *	Hashes a MAC address according to the hash function used by hardware
 *	inexact (hash) address matching.
 */
static int hash_mac_addr(const u8 *addr)
{
	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
	a ^= b;
	a ^= (a >> 12);
	a ^= (a >> 6);
	return a & 0x3f;
}

249 250 251 252
#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
		     FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)

253 254 255 256 257 258 259 260
/**
 *	init_link_config - initialize a link's SW state
 *	@lc: structure holding the link state
 *	@caps: link capabilities
 *
 *	Initializes the SW state maintained for each link, including the link's
 *	capabilities and default speed/flow-control/autonegotiation settings.
 */
261
static void init_link_config(struct link_config *lc, unsigned int caps)
262 263 264 265 266
{
	lc->supported = caps;
	lc->requested_speed = 0;
	lc->speed = 0;
	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
267 268
	if (lc->supported & FW_PORT_CAP_ANEG) {
		lc->advertising = lc->supported & ADVERT_MASK;
269 270 271 272 273 274 275 276 277 278 279 280 281
		lc->autoneg = AUTONEG_ENABLE;
		lc->requested_fc |= PAUSE_AUTONEG;
	} else {
		lc->advertising = 0;
		lc->autoneg = AUTONEG_DISABLE;
	}
}

/**
 *	t4vf_port_init - initialize port hardware/software state
 *	@adapter: the adapter
 *	@pidx: the adapter port index
 */
B
Bill Pemberton 已提交
282
int t4vf_port_init(struct adapter *adapter, int pidx)
283 284 285 286 287 288 289 290 291 292 293
{
	struct port_info *pi = adap2pinfo(adapter, pidx);
	struct fw_vi_cmd vi_cmd, vi_rpl;
	struct fw_port_cmd port_cmd, port_rpl;
	int v;

	/*
	 * Execute a VI Read command to get our Virtual Interface information
	 * like MAC address, etc.
	 */
	memset(&vi_cmd, 0, sizeof(vi_cmd));
294 295 296
	vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
				       FW_CMD_REQUEST_F |
				       FW_CMD_READ_F);
297
	vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
298
	vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
299 300 301 302
	v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
	if (v)
		return v;

303 304
	BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
	pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
305 306 307 308 309 310 311 312 313 314
	t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);

	/*
	 * If we don't have read access to our port information, we're done
	 * now.  Otherwise, execute a PORT Read command to get it ...
	 */
	if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
		return 0;

	memset(&port_cmd, 0, sizeof(port_cmd));
315 316 317
	port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
					    FW_CMD_REQUEST_F |
					    FW_CMD_READ_F |
318
					    FW_PORT_CMD_PORTID_V(pi->port_id));
319
	port_cmd.action_to_len16 =
320
		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
321 322 323 324 325
			    FW_LEN16(port_cmd));
	v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
	if (v)
		return v;

326
	v = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
327 328
	pi->mdio_addr = (v & FW_PORT_CMD_MDIOCAP_F) ?
			FW_PORT_CMD_MDIOADDR_G(v) : -1;
329 330 331 332
	pi->port_type = FW_PORT_CMD_PTYPE_G(v);
	pi->mod_type = FW_PORT_MOD_TYPE_NA;

	init_link_config(&pi->link_cfg, be16_to_cpu(port_rpl.u.info.pcap));
333 334 335 336

	return 0;
}

337 338 339 340 341 342 343 344 345 346 347 348 349
/**
 *      t4vf_fw_reset - issue a reset to FW
 *      @adapter: the adapter
 *
 *	Issues a reset command to FW.  For a Physical Function this would
 *	result in the Firmware reseting all of its state.  For a Virtual
 *	Function this just resets the state associated with the VF.
 */
int t4vf_fw_reset(struct adapter *adapter)
{
	struct fw_reset_cmd cmd;

	memset(&cmd, 0, sizeof(cmd));
350 351
	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
				      FW_CMD_WRITE_F);
352 353 354 355
	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}

356 357 358 359 360 361 362 363 364 365
/**
 *	t4vf_query_params - query FW or device parameters
 *	@adapter: the adapter
 *	@nparams: the number of parameters
 *	@params: the parameter names
 *	@vals: the parameter values
 *
 *	Reads the values of firmware or device parameters.  Up to 7 parameters
 *	can be queried at once.
 */
366 367
static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
			     const u32 *params, u32 *vals)
368 369 370 371 372 373 374 375 376 377
{
	int i, ret;
	struct fw_params_cmd cmd, rpl;
	struct fw_params_param *p;
	size_t len16;

	if (nparams > 7)
		return -EINVAL;

	memset(&cmd, 0, sizeof(cmd));
378 379 380
	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
				    FW_CMD_REQUEST_F |
				    FW_CMD_READ_F);
381 382
	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
				      param[nparams].mnem), 16);
383
	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
		p->mnem = htonl(*params++);

	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
	if (ret == 0)
		for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
			*vals++ = be32_to_cpu(p->val);
	return ret;
}

/**
 *	t4vf_set_params - sets FW or device parameters
 *	@adapter: the adapter
 *	@nparams: the number of parameters
 *	@params: the parameter names
 *	@vals: the parameter values
 *
 *	Sets the values of firmware or device parameters.  Up to 7 parameters
 *	can be specified at once.
 */
int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
		    const u32 *params, const u32 *vals)
{
	int i;
	struct fw_params_cmd cmd;
	struct fw_params_param *p;
	size_t len16;

	if (nparams > 7)
		return -EINVAL;

	memset(&cmd, 0, sizeof(cmd));
416 417 418
	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
				    FW_CMD_REQUEST_F |
				    FW_CMD_WRITE_F);
419 420
	len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
				      param[nparams]), 16);
421
	cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
422 423 424 425 426 427 428 429
	for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
		p->mnem = cpu_to_be32(*params++);
		p->val = cpu_to_be32(*vals++);
	}

	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
/**
 *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
 *	@adapter: the adapter
 *	@qid: the Queue ID
 *	@qtype: the Ingress or Egress type for @qid
 *	@pbar2_qoffset: BAR2 Queue Offset
 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
 *
 *	Returns the BAR2 SGE Queue Registers information associated with the
 *	indicated Absolute Queue ID.  These are passed back in return value
 *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
 *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
 *
 *	This may return an error which indicates that BAR2 SGE Queue
 *	registers aren't available.  If an error is not returned, then the
 *	following values are returned:
 *
 *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
 *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
 *
 *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
 *	require the "Inferred Queue ID" ability may be used.  E.g. the
 *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
 *	then these "Inferred Queue ID" register may not be used.
 */
int t4_bar2_sge_qregs(struct adapter *adapter,
		      unsigned int qid,
		      enum t4_bar2_qtype qtype,
		      u64 *pbar2_qoffset,
		      unsigned int *pbar2_qid)
{
	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
	u64 bar2_page_offset, bar2_qoffset;
	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;

	/* T4 doesn't support BAR2 SGE Queue registers.
	 */
	if (is_t4(adapter->params.chip))
		return -EINVAL;

	/* Get our SGE Page Size parameters.
	 */
	page_shift = adapter->params.sge.sge_vf_hps + 10;
	page_size = 1 << page_shift;

	/* Get the right Queues per Page parameters for our Queue.
	 */
	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
		     ? adapter->params.sge.sge_vf_eq_qpp
		     : adapter->params.sge.sge_vf_iq_qpp);
	qpp_mask = (1 << qpp_shift) - 1;

	/* Calculate the basics of the BAR2 SGE Queue register area:
	 *  o The BAR2 page the Queue registers will be in.
	 *  o The BAR2 Queue ID.
	 *  o The BAR2 Queue ID Offset into the BAR2 page.
	 */
	bar2_page_offset = ((qid >> qpp_shift) << page_shift);
	bar2_qid = qid & qpp_mask;
	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;

	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
	 * hardware will infer the Absolute Queue ID simply from the writes to
	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
	 * from the BAR2 Page and BAR2 Queue ID.
	 *
	 * One important censequence of this is that some BAR2 SGE registers
	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
	 * there.  But other registers synthesize the SGE Queue ID purely
	 * from the writes to the registers -- the Write Combined Doorbell
	 * Buffer is a good example.  These BAR2 SGE Registers are only
	 * available for those BAR2 SGE Register areas where the SGE Absolute
	 * Queue ID can be inferred from simple writes.
	 */
	bar2_qoffset = bar2_page_offset;
	bar2_qinferred = (bar2_qid_offset < page_size);
	if (bar2_qinferred) {
		bar2_qoffset += bar2_qid_offset;
		bar2_qid = 0;
	}

	*pbar2_qoffset = bar2_qoffset;
	*pbar2_qid = bar2_qid;
	return 0;
}

519 520 521 522 523 524 525 526 527 528 529 530 531 532
/**
 *	t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
 *	@adapter: the adapter
 *
 *	Retrieves various core SGE parameters in the form of hardware SGE
 *	register values.  The caller is responsible for decoding these as
 *	needed.  The SGE parameters are stored in @adapter->params.sge.
 */
int t4vf_get_sge_params(struct adapter *adapter)
{
	struct sge_params *sge_params = &adapter->params.sge;
	u32 params[7], vals[7];
	int v;

533
	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
534
		     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
535
	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
536
		     FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
537
	params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
538
		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
539
	params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
540
		     FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
541
	params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
542
		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
543
	params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
544
		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
545
	params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
546
		     FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
547 548 549 550 551 552 553 554 555 556 557
	v = t4vf_query_params(adapter, 7, params, vals);
	if (v)
		return v;
	sge_params->sge_control = vals[0];
	sge_params->sge_host_page_size = vals[1];
	sge_params->sge_fl_buffer_size[0] = vals[2];
	sge_params->sge_fl_buffer_size[1] = vals[3];
	sge_params->sge_timer_value_0_and_1 = vals[4];
	sge_params->sge_timer_value_2_and_3 = vals[5];
	sge_params->sge_timer_value_4_and_5 = vals[6];

558 559 560 561 562 563 564 565 566 567 568
	/* T4 uses a single control field to specify both the PCIe Padding and
	 * Packing Boundary.  T5 introduced the ability to specify these
	 * separately with the Padding Boundary in SGE_CONTROL and and Packing
	 * Boundary in SGE_CONTROL2.  So for T5 and later we need to grab
	 * SGE_CONTROL in order to determine how ingress packet data will be
	 * laid out in Packed Buffer Mode.  Unfortunately, older versions of
	 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
	 * failure grabbing it we throw an error since we can't figure out the
	 * right value.
	 */
	if (!is_t4(adapter->params.chip)) {
569 570
		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
			     FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
571 572 573 574 575 576 577 578 579 580
		v = t4vf_query_params(adapter, 1, params, vals);
		if (v != FW_SUCCESS) {
			dev_err(adapter->pdev_dev,
				"Unable to get SGE Control2; "
				"probably old firmware.\n");
			return v;
		}
		sge_params->sge_control2 = vals[0];
	}

581
	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
582
		     FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
583
	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
584
		     FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
585
	v = t4vf_query_params(adapter, 2, params, vals);
586 587 588
	if (v)
		return v;
	sge_params->sge_ingress_rx_threshold = vals[0];
589
	sge_params->sge_congestion_control = vals[1];
590

591 592 593 594 595 596
	/* For T5 and later we want to use the new BAR2 Doorbells.
	 * Unfortunately, older firmware didn't allow the this register to be
	 * read.
	 */
	if (!is_t4(adapter->params.chip)) {
		u32 whoami;
597
		unsigned int pf, s_hps, s_qpp;
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
			     FW_PARAMS_PARAM_XYZ_V(
				     SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
		params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
			     FW_PARAMS_PARAM_XYZ_V(
				     SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
		v = t4vf_query_params(adapter, 2, params, vals);
		if (v != FW_SUCCESS) {
			dev_warn(adapter->pdev_dev,
				 "Unable to get VF SGE Queues/Page; "
				 "probably old firmware.\n");
			return v;
		}
		sge_params->sge_egress_queues_per_page = vals[0];
		sge_params->sge_ingress_queues_per_page = vals[1];

		/* We need the Queues/Page for our VF.  This is based on the
		 * PF from which we're instantiated and is indexed in the
		 * register we just read. Do it once here so other code in
		 * the driver can just use it.
		 */
		whoami = t4_read_reg(adapter,
621 622
				     T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
		pf = SOURCEPF_G(whoami);
623 624 625 626 627 628 629

		s_hps = (HOSTPAGESIZEPF0_S +
			 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
		sge_params->sge_vf_hps =
			((sge_params->sge_host_page_size >> s_hps)
			 & HOSTPAGESIZEPF0_M);

630 631 632 633
		s_qpp = (QUEUESPERPAGEPF0_S +
			 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
		sge_params->sge_vf_eq_qpp =
			((sge_params->sge_egress_queues_per_page >> s_qpp)
634
			 & QUEUESPERPAGEPF0_M);
635 636
		sge_params->sge_vf_iq_qpp =
			((sge_params->sge_ingress_queues_per_page >> s_qpp)
637
			 & QUEUESPERPAGEPF0_M);
638 639
	}

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
	return 0;
}

/**
 *	t4vf_get_vpd_params - retrieve device VPD paremeters
 *	@adapter: the adapter
 *
 *	Retrives various device Vital Product Data parameters.  The parameters
 *	are stored in @adapter->params.vpd.
 */
int t4vf_get_vpd_params(struct adapter *adapter)
{
	struct vpd_params *vpd_params = &adapter->params.vpd;
	u32 params[7], vals[7];
	int v;

656 657
	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
	v = t4vf_query_params(adapter, 1, params, vals);
	if (v)
		return v;
	vpd_params->cclk = vals[0];

	return 0;
}

/**
 *	t4vf_get_dev_params - retrieve device paremeters
 *	@adapter: the adapter
 *
 *	Retrives various device parameters.  The parameters are stored in
 *	@adapter->params.dev.
 */
int t4vf_get_dev_params(struct adapter *adapter)
{
	struct dev_params *dev_params = &adapter->params.dev;
	u32 params[7], vals[7];
	int v;

679 680 681 682
	params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
	params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
	v = t4vf_query_params(adapter, 2, params, vals);
	if (v)
		return v;
	dev_params->fwrev = vals[0];
	dev_params->tprev = vals[1];

	return 0;
}

/**
 *	t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
 *	@adapter: the adapter
 *
 *	Retrieves global RSS mode and parameters with which we have to live
 *	and stores them in the @adapter's RSS parameters.
 */
int t4vf_get_rss_glb_config(struct adapter *adapter)
{
	struct rss_params *rss = &adapter->params.rss;
	struct fw_rss_glb_config_cmd cmd, rpl;
	int v;

	/*
	 * Execute an RSS Global Configuration read command to retrieve
	 * our RSS configuration.
	 */
	memset(&cmd, 0, sizeof(cmd));
710 711 712
	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
				      FW_CMD_REQUEST_F |
				      FW_CMD_READ_F);
713 714 715 716 717 718 719 720 721 722 723
	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
	if (v)
		return v;

	/*
	 * Transate the big-endian RSS Global Configuration into our
	 * cpu-endian format based on the RSS mode.  We also do first level
	 * filtering at this point to weed out modes which don't support
	 * VF Drivers ...
	 */
724
	rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
725 726 727 728 729 730 731
			be32_to_cpu(rpl.u.manual.mode_pkd));
	switch (rss->mode) {
	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
		u32 word = be32_to_cpu(
				rpl.u.basicvirtual.synmapen_to_hashtoeplitz);

		rss->u.basicvirtual.synmapen =
732
			((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
733
		rss->u.basicvirtual.syn4tupenipv6 =
734
			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
735
		rss->u.basicvirtual.syn2tupenipv6 =
736
			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
737
		rss->u.basicvirtual.syn4tupenipv4 =
738
			((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
739
		rss->u.basicvirtual.syn2tupenipv4 =
740
			((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
741 742

		rss->u.basicvirtual.ofdmapen =
743
			((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
744 745

		rss->u.basicvirtual.tnlmapen =
746
			((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
747
		rss->u.basicvirtual.tnlalllookup =
748
			((word  & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
749 750

		rss->u.basicvirtual.hashtoeplitz =
751
			((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785

		/* we need at least Tunnel Map Enable to be set */
		if (!rss->u.basicvirtual.tnlmapen)
			return -EINVAL;
		break;
	}

	default:
		/* all unknown/unsupported RSS modes result in an error */
		return -EINVAL;
	}

	return 0;
}

/**
 *	t4vf_get_vfres - retrieve VF resource limits
 *	@adapter: the adapter
 *
 *	Retrieves configured resource limits and capabilities for a virtual
 *	function.  The results are stored in @adapter->vfres.
 */
int t4vf_get_vfres(struct adapter *adapter)
{
	struct vf_resources *vfres = &adapter->params.vfres;
	struct fw_pfvf_cmd cmd, rpl;
	int v;
	u32 word;

	/*
	 * Execute PFVF Read command to get VF resource limits; bail out early
	 * with error on command failure.
	 */
	memset(&cmd, 0, sizeof(cmd));
786 787 788
	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
				    FW_CMD_REQUEST_F |
				    FW_CMD_READ_F);
789 790 791 792 793 794 795 796 797
	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
	if (v)
		return v;

	/*
	 * Extract VF resource limits and return success.
	 */
	word = be32_to_cpu(rpl.niqflint_niq);
798 799
	vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
	vfres->niq = FW_PFVF_CMD_NIQ_G(word);
800 801

	word = be32_to_cpu(rpl.type_to_neq);
802 803
	vfres->neq = FW_PFVF_CMD_NEQ_G(word);
	vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
804 805

	word = be32_to_cpu(rpl.tc_to_nexactf);
806 807 808
	vfres->tc = FW_PFVF_CMD_TC_G(word);
	vfres->nvi = FW_PFVF_CMD_NVI_G(word);
	vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
809 810

	word = be32_to_cpu(rpl.r_caps_to_nethctrl);
811 812 813
	vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
	vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
	vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833

	return 0;
}

/**
 *	t4vf_read_rss_vi_config - read a VI's RSS configuration
 *	@adapter: the adapter
 *	@viid: Virtual Interface ID
 *	@config: pointer to host-native VI RSS Configuration buffer
 *
 *	Reads the Virtual Interface's RSS configuration information and
 *	translates it into CPU-native format.
 */
int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
			    union rss_vi_config *config)
{
	struct fw_rss_vi_config_cmd cmd, rpl;
	int v;

	memset(&cmd, 0, sizeof(cmd));
834 835 836
	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
				     FW_CMD_REQUEST_F |
				     FW_CMD_READ_F |
837 838 839 840 841 842 843 844 845 846 847
				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
	if (v)
		return v;

	switch (adapter->params.rss.mode) {
	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
		u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);

		config->basicvirtual.ip6fourtupen =
848
			((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
849
		config->basicvirtual.ip6twotupen =
850
			((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
851
		config->basicvirtual.ip4fourtupen =
852
			((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
853
		config->basicvirtual.ip4twotupen =
854
			((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
855
		config->basicvirtual.udpen =
856
			((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
857
		config->basicvirtual.defaultq =
858
			FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
		break;
	}

	default:
		return -EINVAL;
	}

	return 0;
}

/**
 *	t4vf_write_rss_vi_config - write a VI's RSS configuration
 *	@adapter: the adapter
 *	@viid: Virtual Interface ID
 *	@config: pointer to host-native VI RSS Configuration buffer
 *
 *	Write the Virtual Interface's RSS configuration information
 *	(translating it into firmware-native format before writing).
 */
int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
			     union rss_vi_config *config)
{
	struct fw_rss_vi_config_cmd cmd, rpl;

	memset(&cmd, 0, sizeof(cmd));
884 885 886
	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
				     FW_CMD_REQUEST_F |
				     FW_CMD_WRITE_F |
887 888 889 890 891 892 893
				     FW_RSS_VI_CONFIG_CMD_VIID(viid));
	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
	switch (adapter->params.rss.mode) {
	case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
		u32 word = 0;

		if (config->basicvirtual.ip6fourtupen)
894
			word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
895
		if (config->basicvirtual.ip6twotupen)
896
			word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
897
		if (config->basicvirtual.ip4fourtupen)
898
			word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
899
		if (config->basicvirtual.ip4twotupen)
900
			word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
901
		if (config->basicvirtual.udpen)
902 903
			word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
		word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
				config->basicvirtual.defaultq);
		cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
		break;
	}

	default:
		return -EINVAL;
	}

	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
}

/**
 *	t4vf_config_rss_range - configure a portion of the RSS mapping table
 *	@adapter: the adapter
 *	@viid: Virtual Interface of RSS Table Slice
 *	@start: starting entry in the table to write
 *	@n: how many table entries to write
 *	@rspq: values for the "Response Queue" (Ingress Queue) lookup table
 *	@nrspq: number of values in @rspq
 *
 *	Programs the selected part of the VI's RSS mapping table with the
 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
 *	until the full table range is populated.
 *
 *	The caller must ensure the values in @rspq are in the range 0..1023.
 */
int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
			  int start, int n, const u16 *rspq, int nrspq)
{
	const u16 *rsp = rspq;
	const u16 *rsp_end = rspq+nrspq;
	struct fw_rss_ind_tbl_cmd cmd;

	/*
	 * Initialize firmware command template to write the RSS table.
	 */
	memset(&cmd, 0, sizeof(cmd));
942 943 944
	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
				     FW_CMD_REQUEST_F |
				     FW_CMD_WRITE_F |
945
				     FW_RSS_IND_TBL_CMD_VIID_V(viid));
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));

	/*
	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
	 * reserved.
	 */
	while (n > 0) {
		__be32 *qp = &cmd.iq0_to_iq2;
		int nq = min(n, 32);
		int ret;

		/*
		 * Set up the firmware RSS command header to send the next
		 * "nq" Ingress Queue IDs to the firmware.
		 */
		cmd.niqid = cpu_to_be16(nq);
		cmd.startidx = cpu_to_be16(start);

		/*
		 * "nq" more done for the start of the next loop.
		 */
		start += nq;
		n -= nq;

		/*
		 * While there are still Ingress Queue IDs to stuff into the
		 * current firmware RSS command, retrieve them from the
		 * Ingress Queue ID array and insert them into the command.
		 */
		while (nq > 0) {
			/*
			 * Grab up to the next 3 Ingress Queue IDs (wrapping
			 * around the Ingress Queue ID array if necessary) and
			 * insert them into the firmware RSS command at the
			 * current 3-tuple position within the commad.
			 */
			u16 qbuf[3];
			u16 *qbp = qbuf;
			int nqbuf = min(3, nq);

			nq -= nqbuf;
			qbuf[0] = qbuf[1] = qbuf[2] = 0;
			while (nqbuf) {
				nqbuf--;
				*qbp++ = *rsp++;
				if (rsp >= rsp_end)
					rsp = rspq;
			}
996 997 998
			*qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
					    FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
					    FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
		}

		/*
		 * Send this portion of the RRS table update to the firmware;
		 * bail out on any errors.
		 */
		ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
		if (ret)
			return ret;
	}
	return 0;
}

/**
 *	t4vf_alloc_vi - allocate a virtual interface on a port
 *	@adapter: the adapter
 *	@port_id: physical port associated with the VI
 *
 *	Allocate a new Virtual Interface and bind it to the indicated
 *	physical port.  Return the new Virtual Interface Identifier on
 *	success, or a [negative] error number on failure.
 */
int t4vf_alloc_vi(struct adapter *adapter, int port_id)
{
	struct fw_vi_cmd cmd, rpl;
	int v;

	/*
	 * Execute a VI command to allocate Virtual Interface and return its
	 * VIID.
	 */
	memset(&cmd, 0, sizeof(cmd));
1031 1032 1033 1034
	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
				    FW_CMD_REQUEST_F |
				    FW_CMD_WRITE_F |
				    FW_CMD_EXEC_F);
1035
	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1036 1037
					 FW_VI_CMD_ALLOC_F);
	cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1038 1039 1040 1041
	v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
	if (v)
		return v;

1042
	return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
}

/**
 *	t4vf_free_vi -- free a virtual interface
 *	@adapter: the adapter
 *	@viid: the virtual interface identifier
 *
 *	Free a previously allocated Virtual Interface.  Return an error on
 *	failure.
 */
int t4vf_free_vi(struct adapter *adapter, int viid)
{
	struct fw_vi_cmd cmd;

	/*
	 * Execute a VI command to free the Virtual Interface.
	 */
	memset(&cmd, 0, sizeof(cmd));
1061 1062 1063
	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
				    FW_CMD_REQUEST_F |
				    FW_CMD_EXEC_F);
1064
	cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1065 1066
					 FW_VI_CMD_FREE_F);
	cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}

/**
 *	t4vf_enable_vi - enable/disable a virtual interface
 *	@adapter: the adapter
 *	@viid: the Virtual Interface ID
 *	@rx_en: 1=enable Rx, 0=disable Rx
 *	@tx_en: 1=enable Tx, 0=disable Tx
 *
 *	Enables/disables a virtual interface.
 */
int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
		   bool rx_en, bool tx_en)
{
	struct fw_vi_enable_cmd cmd;

	memset(&cmd, 0, sizeof(cmd));
1085 1086 1087
	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
				     FW_CMD_REQUEST_F |
				     FW_CMD_EXEC_F |
1088 1089 1090
				     FW_VI_ENABLE_CMD_VIID_V(viid));
	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
				       FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
				       FW_LEN16(cmd));
	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}

/**
 *	t4vf_identify_port - identify a VI's port by blinking its LED
 *	@adapter: the adapter
 *	@viid: the Virtual Interface ID
 *	@nblinks: how many times to blink LED at 2.5 Hz
 *
 *	Identifies a VI's port by blinking its LED.
 */
int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
		       unsigned int nblinks)
{
	struct fw_vi_enable_cmd cmd;

	memset(&cmd, 0, sizeof(cmd));
1109 1110 1111
	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
				     FW_CMD_REQUEST_F |
				     FW_CMD_EXEC_F |
1112 1113
				     FW_VI_ENABLE_CMD_VIID_V(viid));
	cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
				       FW_LEN16(cmd));
	cmd.blinkdur = cpu_to_be16(nblinks);
	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}

/**
 *	t4vf_set_rxmode - set Rx properties of a virtual interface
 *	@adapter: the adapter
 *	@viid: the VI id
 *	@mtu: the new MTU or -1 for no change
 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
 *	@vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
 *		-1 no change
 *
 *	Sets Rx properties of a virtual interface.
 */
int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
		    int mtu, int promisc, int all_multi, int bcast, int vlanex,
		    bool sleep_ok)
{
	struct fw_vi_rxmode_cmd cmd;

	/* convert to FW values */
	if (mtu < 0)
1140
		mtu = FW_VI_RXMODE_CMD_MTU_M;
1141
	if (promisc < 0)
1142
		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1143
	if (all_multi < 0)
1144
		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1145
	if (bcast < 0)
1146
		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1147
	if (vlanex < 0)
1148
		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1149 1150

	memset(&cmd, 0, sizeof(cmd));
1151 1152 1153
	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
				     FW_CMD_REQUEST_F |
				     FW_CMD_WRITE_F |
1154
				     FW_VI_RXMODE_CMD_VIID_V(viid));
1155 1156
	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
	cmd.mtu_to_vlanexen =
1157 1158 1159 1160 1161
		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
}

/**
 *	t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
 *	@adapter: the adapter
 *	@viid: the Virtual Interface Identifier
 *	@free: if true any existing filters for this VI id are first removed
 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
 *	@addr: the MAC address(es)
 *	@idx: where to store the index of each allocated filter
 *	@hash: pointer to hash address filter bitmap
 *	@sleep_ok: call is allowed to sleep
 *
 *	Allocates an exact-match filter for each of the supplied addresses and
 *	sets it to the corresponding address.  If @idx is not %NULL it should
 *	have at least @naddr entries, each of which will be set to the index of
 *	the filter allocated for the corresponding MAC address.  If a filter
 *	could not be allocated for an address its index is set to 0xffff.
 *	If @hash is not %NULL addresses that fail to allocate an exact filter
 *	are hashed and update the hash filter bitmap pointed at by @hash.
 *
 *	Returns a negative error number or the number of filters allocated.
 */
int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
			unsigned int naddr, const u8 **addr, u16 *idx,
			u64 *hash, bool sleep_ok)
{
1190 1191 1192
	int offset, ret = 0;
	unsigned nfilters = 0;
	unsigned int rem = naddr;
1193
	struct fw_vi_mac_cmd cmd, rpl;
1194
	unsigned int max_naddr = is_t4(adapter->params.chip) ?
1195 1196
				 NUM_MPS_CLS_SRAM_L_INSTANCES :
				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1197

1198
	if (naddr > max_naddr)
1199 1200
		return -EINVAL;

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	for (offset = 0; offset < naddr; /**/) {
		unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
					 ? rem
					 : ARRAY_SIZE(cmd.u.exact));
		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
						     u.exact[fw_naddr]), 16);
		struct fw_vi_mac_exact *p;
		int i;

		memset(&cmd, 0, sizeof(cmd));
1211 1212 1213 1214
		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
					     FW_CMD_REQUEST_F |
					     FW_CMD_WRITE_F |
					     (free ? FW_CMD_EXEC_F : 0) |
1215
					     FW_VI_MAC_CMD_VIID_V(viid));
1216
		cmd.freemacs_to_len16 =
1217
			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1218
				    FW_CMD_LEN16_V(len16));
1219 1220 1221

		for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
			p->valid_to_idx = cpu_to_be16(
1222 1223
				FW_VI_MAC_CMD_VALID_F |
				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1224 1225
			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
		}
1226

1227 1228 1229 1230 1231 1232 1233

		ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
					sleep_ok);
		if (ret && ret != -ENOMEM)
			break;

		for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1234
			u16 index = FW_VI_MAC_CMD_IDX_G(
1235 1236 1237 1238
				be16_to_cpu(p->valid_to_idx));

			if (idx)
				idx[offset+i] =
1239
					(index >= max_naddr
1240 1241
					 ? 0xffff
					 : index);
1242
			if (index < max_naddr)
1243 1244 1245 1246 1247 1248 1249 1250
				nfilters++;
			else if (hash)
				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
		}

		free = false;
		offset += fw_naddr;
		rem -= fw_naddr;
1251
	}
1252 1253 1254 1255 1256 1257 1258

	/*
	 * If there were no errors or we merely ran out of room in our MAC
	 * address arena, return the number of filters actually written.
	 */
	if (ret == 0 || ret == -ENOMEM)
		ret = nfilters;
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	return ret;
}

/**
 *	t4vf_change_mac - modifies the exact-match filter for a MAC address
 *	@adapter: the adapter
 *	@viid: the Virtual Interface ID
 *	@idx: index of existing filter for old value of MAC address, or -1
 *	@addr: the new MAC address value
 *	@persist: if idx < 0, the new MAC allocation should be persistent
 *
 *	Modifies an exact-match filter and sets it to the new MAC address.
 *	Note that in general it is not possible to modify the value of a given
 *	filter so the generic way to modify an address filter is to free the
 *	one being used by the old address value and allocate a new filter for
 *	the new address value.  @idx can be -1 if the address is a new
 *	addition.
 *
 *	Returns a negative error number or the index of the filter with the new
 *	MAC value.
 */
int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
		    int idx, const u8 *addr, bool persist)
{
	int ret;
	struct fw_vi_mac_cmd cmd, rpl;
	struct fw_vi_mac_exact *p = &cmd.u.exact[0];
	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
					     u.exact[1]), 16);
1288
	unsigned int max_naddr = is_t4(adapter->params.chip) ?
1289 1290
				 NUM_MPS_CLS_SRAM_L_INSTANCES :
				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1291 1292 1293 1294 1295 1296 1297 1298 1299

	/*
	 * If this is a new allocation, determine whether it should be
	 * persistent (across a "freemacs" operation) or not.
	 */
	if (idx < 0)
		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;

	memset(&cmd, 0, sizeof(cmd));
1300 1301 1302
	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
				     FW_CMD_REQUEST_F |
				     FW_CMD_WRITE_F |
1303
				     FW_VI_MAC_CMD_VIID_V(viid));
1304
	cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1305 1306
	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
				      FW_VI_MAC_CMD_IDX_V(idx));
1307 1308 1309 1310 1311
	memcpy(p->macaddr, addr, sizeof(p->macaddr));

	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
	if (ret == 0) {
		p = &rpl.u.exact[0];
1312
		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1313
		if (ret >= max_naddr)
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
			ret = -ENOMEM;
	}
	return ret;
}

/**
 *	t4vf_set_addr_hash - program the MAC inexact-match hash filter
 *	@adapter: the adapter
 *	@viid: the Virtual Interface Identifier
 *	@ucast: whether the hash filter should also match unicast addresses
 *	@vec: the value to be written to the hash filter
 *	@sleep_ok: call is allowed to sleep
 *
 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
 */
int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
		       bool ucast, u64 vec, bool sleep_ok)
{
	struct fw_vi_mac_cmd cmd;
	size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
					     u.exact[0]), 16);

	memset(&cmd, 0, sizeof(cmd));
1337 1338 1339
	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
				     FW_CMD_REQUEST_F |
				     FW_CMD_WRITE_F |
1340 1341 1342
				     FW_VI_ENABLE_CMD_VIID_V(viid));
	cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
					    FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1343
					    FW_CMD_LEN16_V(len16));
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	cmd.u.hash.hashvec = cpu_to_be64(vec);
	return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
}

/**
 *	t4vf_get_port_stats - collect "port" statistics
 *	@adapter: the adapter
 *	@pidx: the port index
 *	@s: the stats structure to fill
 *
 *	Collect statistics for the "port"'s Virtual Interface.
 */
int t4vf_get_port_stats(struct adapter *adapter, int pidx,
			struct t4vf_port_stats *s)
{
	struct port_info *pi = adap2pinfo(adapter, pidx);
	struct fw_vi_stats_vf fwstats;
	unsigned int rem = VI_VF_NUM_STATS;
	__be64 *fwsp = (__be64 *)&fwstats;

	/*
	 * Grab the Virtual Interface statistics a chunk at a time via mailbox
	 * commands.  We could use a Work Request and get all of them at once
	 * but that's an asynchronous interface which is awkward to use.
	 */
	while (rem) {
		unsigned int ix = VI_VF_NUM_STATS - rem;
		unsigned int nstats = min(6U, rem);
		struct fw_vi_stats_cmd cmd, rpl;
		size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
			      sizeof(struct fw_vi_stats_ctl));
		size_t len16 = DIV_ROUND_UP(len, 16);
		int ret;

		memset(&cmd, 0, sizeof(cmd));
1379
		cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1380
					     FW_VI_STATS_CMD_VIID_V(pi->viid) |
1381 1382 1383
					     FW_CMD_REQUEST_F |
					     FW_CMD_READ_F);
		cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1384
		cmd.u.ctl.nstats_ix =
1385 1386
			cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
				    FW_VI_STATS_CMD_NSTATS_V(nstats));
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
		ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
		if (ret)
			return ret;

		memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);

		rem -= nstats;
		fwsp += nstats;
	}

	/*
	 * Translate firmware statistics into host native statistics.
	 */
	s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
	s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
	s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
	s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
	s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
	s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
	s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
	s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
	s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);

	s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
	s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
	s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
	s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
	s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
	s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);

	s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);

	return 0;
}

/**
 *	t4vf_iq_free - free an ingress queue and its free lists
 *	@adapter: the adapter
 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
 *	@iqid: ingress queue ID
 *	@fl0id: FL0 queue ID or 0xffff if no attached FL0
 *	@fl1id: FL1 queue ID or 0xffff if no attached FL1
 *
 *	Frees an ingress queue and its associated free lists, if any.
 */
int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
		 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
{
	struct fw_iq_cmd cmd;

	memset(&cmd, 0, sizeof(cmd));
1438 1439 1440
	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
				    FW_CMD_REQUEST_F |
				    FW_CMD_EXEC_F);
1441
	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1442 1443
					 FW_LEN16(cmd));
	cmd.type_to_iqandstindex =
1444
		cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463

	cmd.iqid = cpu_to_be16(iqid);
	cmd.fl0id = cpu_to_be16(fl0id);
	cmd.fl1id = cpu_to_be16(fl1id);
	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}

/**
 *	t4vf_eth_eq_free - free an Ethernet egress queue
 *	@adapter: the adapter
 *	@eqid: egress queue ID
 *
 *	Frees an Ethernet egress queue.
 */
int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
{
	struct fw_eq_eth_cmd cmd;

	memset(&cmd, 0, sizeof(cmd));
1464 1465 1466
	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
				    FW_CMD_REQUEST_F |
				    FW_CMD_EXEC_F);
1467
	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1468
					 FW_LEN16(cmd));
1469
	cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
	return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}

/**
 *	t4vf_handle_fw_rpl - process a firmware reply message
 *	@adapter: the adapter
 *	@rpl: start of the firmware message
 *
 *	Processes a firmware message, such as link state change messages.
 */
int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
{
1482
	const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
1483
	u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
1484 1485 1486 1487 1488 1489

	switch (opcode) {
	case FW_PORT_CMD: {
		/*
		 * Link/module state change message.
		 */
1490 1491
		const struct fw_port_cmd *port_cmd =
			(const struct fw_port_cmd *)rpl;
1492
		u32 stat, mod;
1493 1494 1495 1496 1497
		int action, port_id, link_ok, speed, fc, pidx;

		/*
		 * Extract various fields from port status change message.
		 */
1498
		action = FW_PORT_CMD_ACTION_G(
1499 1500 1501 1502 1503 1504 1505 1506
			be32_to_cpu(port_cmd->action_to_len16));
		if (action != FW_PORT_ACTION_GET_PORT_INFO) {
			dev_err(adapter->pdev_dev,
				"Unknown firmware PORT reply action %x\n",
				action);
			break;
		}

1507
		port_id = FW_PORT_CMD_PORTID_G(
1508 1509
			be32_to_cpu(port_cmd->op_to_portid));

1510 1511
		stat = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
		link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
1512 1513
		speed = 0;
		fc = 0;
1514
		if (stat & FW_PORT_CMD_RXPAUSE_F)
1515
			fc |= PAUSE_RX;
1516
		if (stat & FW_PORT_CMD_TXPAUSE_F)
1517
			fc |= PAUSE_TX;
1518
		if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1519
			speed = 100;
1520
		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1521
			speed = 1000;
1522
		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1523
			speed = 10000;
1524
		else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1525
			speed = 40000;
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

		/*
		 * Scan all of our "ports" (Virtual Interfaces) looking for
		 * those bound to the physical port which has changed.  If
		 * our recorded state doesn't match the current state,
		 * signal that change to the OS code.
		 */
		for_each_port(adapter, pidx) {
			struct port_info *pi = adap2pinfo(adapter, pidx);
			struct link_config *lc;

			if (pi->port_id != port_id)
				continue;

			lc = &pi->link_cfg;
1541 1542 1543 1544 1545 1546 1547

			mod = FW_PORT_CMD_MODTYPE_G(stat);
			if (mod != pi->mod_type) {
				pi->mod_type = mod;
				t4vf_os_portmod_changed(adapter, pidx);
			}

1548 1549 1550 1551 1552 1553
			if (link_ok != lc->link_ok || speed != lc->speed ||
			    fc != lc->fc) {
				/* something changed */
				lc->link_ok = link_ok;
				lc->speed = speed;
				lc->fc = fc;
1554 1555
				lc->supported =
					be16_to_cpu(port_cmd->u.info.pcap);
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
				t4vf_os_link_changed(adapter, pidx, link_ok);
			}
		}
		break;
	}

	default:
		dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
			opcode);
	}
	return 0;
}
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595

/**
 */
int t4vf_prep_adapter(struct adapter *adapter)
{
	int err;
	unsigned int chipid;

	/* Wait for the device to become ready before proceeding ...
	 */
	err = t4vf_wait_dev_ready(adapter);
	if (err)
		return err;

	/* Default port and clock for debugging in case we can't reach
	 * firmware.
	 */
	adapter->params.nports = 1;
	adapter->params.vfres.pmask = 1;
	adapter->params.vpd.cclk = 50000;

	adapter->params.chip = 0;
	switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
	case CHELSIO_T4:
		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
		break;

	case CHELSIO_T5:
1596
		chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
1597 1598 1599 1600 1601 1602
		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
		break;
	}

	return 0;
}