omap-mcbsp.c 21.6 KB
Newer Older
1 2 3 4 5
/*
 * omap-mcbsp.c  --  OMAP ALSA SoC DAI driver using McBSP port
 *
 * Copyright (C) 2008 Nokia Corporation
 *
6
 * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
7
 *          Peter Ujfalusi <peter.ujfalusi@ti.com>
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
 * 02110-1301 USA
 *
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>

34 35
#include <plat/dma.h>
#include <plat/mcbsp.h>
36
#include "mcbsp.h"
37 38 39
#include "omap-mcbsp.h"
#include "omap-pcm.h"

40
#define OMAP_MCBSP_RATES	(SNDRV_PCM_RATE_8000_96000)
41

42 43 44 45 46 47 48 49
#define OMAP_MCBSP_SOC_SINGLE_S16_EXT(xname, xmin, xmax, \
	xhandler_get, xhandler_put) \
{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
	.info = omap_mcbsp_st_info_volsw, \
	.get = xhandler_get, .put = xhandler_put, \
	.private_value = (unsigned long) &(struct soc_mixer_control) \
	{.min = xmin, .max = xmax} }

50 51 52 53 54 55 56 57 58
enum {
	OMAP_MCBSP_WORD_8 = 0,
	OMAP_MCBSP_WORD_12,
	OMAP_MCBSP_WORD_16,
	OMAP_MCBSP_WORD_20,
	OMAP_MCBSP_WORD_24,
	OMAP_MCBSP_WORD_32,
};

59 60 61 62
/*
 * Stream DMA parameters. DMA request line and port address are set runtime
 * since they are different between OMAP1 and later OMAPs
 */
63 64 65
static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream)
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
66
	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
67 68
	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
	struct omap_mcbsp_data *mcbsp_data = &mcbsp->mcbsp_data;
69
	struct omap_pcm_dma_data *dma_data;
70
	int words;
71

72
	dma_data = snd_soc_dai_get_dma_data(rtd->cpu_dai, substream);
73

74
	/* TODO: Currently, MODE_ELEMENT == MODE_FRAME */
75
	if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD)
76 77 78 79 80 81 82 83 84
		/*
		 * Configure McBSP threshold based on either:
		 * packet_size, when the sDMA is in packet mode, or
		 * based on the period size.
		 */
		if (dma_data->packet_size)
			words = dma_data->packet_size;
		else
			words = snd_pcm_lib_period_bytes(substream) /
85
							(mcbsp_data->wlen / 8);
86
	else
87
		words = 1;
88 89 90

	/* Configure McBSP internal buffer usage */
	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
91
		omap_mcbsp_set_tx_threshold(mcbsp, words);
92
	else
93
		omap_mcbsp_set_rx_threshold(mcbsp, words);
94 95
}

96 97 98 99 100 101 102
static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
				    struct snd_pcm_hw_rule *rule)
{
	struct snd_interval *buffer_size = hw_param_interval(params,
					SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
	struct snd_interval *channels = hw_param_interval(params,
					SNDRV_PCM_HW_PARAM_CHANNELS);
103
	struct omap_mcbsp *mcbsp = rule->private;
104 105 106 107
	struct snd_interval frames;
	int size;

	snd_interval_any(&frames);
108
	size = mcbsp->pdata->buffer_size;
109 110 111 112 113 114

	frames.min = size / channels->min;
	frames.integer = 1;
	return snd_interval_refine(buffer_size, &frames);
}

115
static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
116
				  struct snd_soc_dai *cpu_dai)
117
{
118
	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
119 120
	int err = 0;

121
	if (!cpu_dai->active)
122
		err = omap_mcbsp_request(mcbsp);
123

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
	/*
	 * OMAP3 McBSP FIFO is word structured.
	 * McBSP2 has 1024 + 256 = 1280 word long buffer,
	 * McBSP1,3,4,5 has 128 word long buffer
	 * This means that the size of the FIFO depends on the sample format.
	 * For example on McBSP3:
	 * 16bit samples: size is 128 * 2 = 256 bytes
	 * 32bit samples: size is 128 * 4 = 512 bytes
	 * It is simpler to place constraint for buffer and period based on
	 * channels.
	 * McBSP3 as example again (16 or 32 bit samples):
	 * 1 channel (mono): size is 128 frames (128 words)
	 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
	 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
	 */
139
	if (mcbsp->pdata->buffer_size) {
140
		/*
141
		* Rule for the buffer size. We should not allow
142 143 144 145 146
		* smaller buffer than the FIFO size to avoid underruns
		*/
		snd_pcm_hw_rule_add(substream->runtime, 0,
				    SNDRV_PCM_HW_PARAM_CHANNELS,
				    omap_mcbsp_hwrule_min_buffersize,
147
				    mcbsp,
148
				    SNDRV_PCM_HW_PARAM_BUFFER_SIZE, -1);
149

150 151 152
		/* Make sure, that the period size is always even */
		snd_pcm_hw_constraint_step(substream->runtime, 0,
					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
153 154
	}

155 156 157
	return err;
}

158
static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
159
				    struct snd_soc_dai *cpu_dai)
160
{
161 162
	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
	struct omap_mcbsp_data *mcbsp_data = &mcbsp->mcbsp_data;
163 164

	if (!cpu_dai->active) {
165
		omap_mcbsp_free(mcbsp);
166 167 168 169
		mcbsp_data->configured = 0;
	}
}

170
static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
171
				  struct snd_soc_dai *cpu_dai)
172
{
173 174
	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
	struct omap_mcbsp_data *mcbsp_data = &mcbsp->mcbsp_data;
175
	int err = 0, play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
176 177 178 179 180

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_RESUME:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
181
		mcbsp_data->active++;
182
		omap_mcbsp_start(mcbsp, play, !play);
183 184 185 186 187
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_SUSPEND:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
188
		omap_mcbsp_stop(mcbsp, play, !play);
189
		mcbsp_data->active--;
190 191 192 193 194 195 196 197
		break;
	default:
		err = -EINVAL;
	}

	return err;
}

198 199 200 201 202
static snd_pcm_sframes_t omap_mcbsp_dai_delay(
			struct snd_pcm_substream *substream,
			struct snd_soc_dai *dai)
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
203
	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
204
	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
205 206 207 208
	u16 fifo_use;
	snd_pcm_sframes_t delay;

	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
209
		fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
210
	else
211
		fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
212 213 214 215 216 217 218 219 220 221 222

	/*
	 * Divide the used locations with the channel count to get the
	 * FIFO usage in samples (don't care about partial samples in the
	 * buffer).
	 */
	delay = fifo_use / substream->runtime->channels;

	return delay;
}

223
static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
224
				    struct snd_pcm_hw_params *params,
225
				    struct snd_soc_dai *cpu_dai)
226
{
227 228
	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
	struct omap_mcbsp_data *mcbsp_data = &mcbsp->mcbsp_data;
229
	struct omap_mcbsp_reg_cfg *regs = &mcbsp_data->regs;
230
	struct omap_pcm_dma_data *dma_data;
231
	int dma;
232
	int wlen, channels, wpf, sync_mode = OMAP_DMA_SYNC_ELEMENT;
233
	int pkt_size = 0;
234
	unsigned long port;
235
	unsigned int format, div, framesize, master;
236

237
	dma_data = &mcbsp_data->dma_data[substream->stream];
238

239 240
	dma = omap_mcbsp_dma_ch_params(mcbsp, substream->stream);
	port = omap_mcbsp_dma_reg_params(mcbsp, substream->stream);
241

242 243
	switch (params_format(params)) {
	case SNDRV_PCM_FORMAT_S16_LE:
244
		dma_data->data_type = OMAP_DMA_DATA_TYPE_S16;
245
		wlen = 16;
246 247
		break;
	case SNDRV_PCM_FORMAT_S32_LE:
248
		dma_data->data_type = OMAP_DMA_DATA_TYPE_S32;
249
		wlen = 32;
250 251 252 253
		break;
	default:
		return -EINVAL;
	}
254
	if (mcbsp->pdata->buffer_size) {
255 256
		dma_data->set_threshold = omap_mcbsp_set_threshold;
		/* TODO: Currently, MODE_ELEMENT == MODE_FRAME */
257
		if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
258 259 260 261
			int period_words, max_thrsh;

			period_words = params_period_bytes(params) / (wlen / 8);
			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
262
				max_thrsh = mcbsp->max_tx_thres;
263
			else
264
				max_thrsh = mcbsp->max_rx_thres;
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
			/*
			 * If the period contains less or equal number of words,
			 * we are using the original threshold mode setup:
			 * McBSP threshold = sDMA frame size = period_size
			 * Otherwise we switch to sDMA packet mode:
			 * McBSP threshold = sDMA packet size
			 * sDMA frame size = period size
			 */
			if (period_words > max_thrsh) {
				int divider = 0;

				/*
				 * Look for the biggest threshold value, which
				 * divides the period size evenly.
				 */
				divider = period_words / max_thrsh;
				if (period_words % max_thrsh)
					divider++;
				while (period_words % divider &&
					divider < period_words)
					divider++;
				if (divider == period_words)
					return -EINVAL;

				pkt_size = period_words / divider;
				sync_mode = OMAP_DMA_SYNC_PACKET;
			} else {
				sync_mode = OMAP_DMA_SYNC_FRAME;
			}
		}
295 296 297 298 299 300
	}

	dma_data->name = substream->stream ? "Audio Capture" : "Audio Playback";
	dma_data->dma_req = dma;
	dma_data->port_addr = port;
	dma_data->sync_mode = sync_mode;
301
	dma_data->packet_size = pkt_size;
302

303
	snd_soc_dai_set_dma_data(cpu_dai, substream, dma_data);
304 305 306 307 308 309

	if (mcbsp_data->configured) {
		/* McBSP already configured by another stream */
		return 0;
	}

310 311 312 313
	regs->rcr2	&= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
	regs->xcr2	&= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
	regs->rcr1	&= ~(RFRLEN1(0x7f) | RWDLEN1(7));
	regs->xcr1	&= ~(XFRLEN1(0x7f) | XWDLEN1(7));
314 315
	format = mcbsp_data->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
	wpf = channels = params_channels(params);
316 317
	if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
			      format == SND_SOC_DAIFMT_LEFT_J)) {
318 319 320 321 322 323 324
		/* Use dual-phase frames */
		regs->rcr2	|= RPHASE;
		regs->xcr2	|= XPHASE;
		/* Set 1 word per (McBSP) frame for phase1 and phase2 */
		wpf--;
		regs->rcr2	|= RFRLEN2(wpf - 1);
		regs->xcr2	|= XFRLEN2(wpf - 1);
325 326
	}

327 328 329
	regs->rcr1	|= RFRLEN1(wpf - 1);
	regs->xcr1	|= XFRLEN1(wpf - 1);

330 331 332 333 334 335 336 337
	switch (params_format(params)) {
	case SNDRV_PCM_FORMAT_S16_LE:
		/* Set word lengths */
		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_16);
		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_16);
		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_16);
		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_16);
		break;
338 339 340 341 342 343 344
	case SNDRV_PCM_FORMAT_S32_LE:
		/* Set word lengths */
		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_32);
		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_32);
		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_32);
		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_32);
		break;
345 346 347 348 349
	default:
		/* Unsupported PCM format */
		return -EINVAL;
	}

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
	/* In McBSP master modes, FRAME (i.e. sample rate) is generated
	 * by _counting_ BCLKs. Calculate frame size in BCLKs */
	master = mcbsp_data->fmt & SND_SOC_DAIFMT_MASTER_MASK;
	if (master ==	SND_SOC_DAIFMT_CBS_CFS) {
		div = mcbsp_data->clk_div ? mcbsp_data->clk_div : 1;
		framesize = (mcbsp_data->in_freq / div) / params_rate(params);

		if (framesize < wlen * channels) {
			printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
					"channels\n", __func__);
			return -EINVAL;
		}
	} else
		framesize = wlen * channels;

365
	/* Set FS period and length in terms of bit clock periods */
366 367
	regs->srgr2	&= ~FPER(0xfff);
	regs->srgr1	&= ~FWID(0xff);
368
	switch (format) {
369
	case SND_SOC_DAIFMT_I2S:
370
	case SND_SOC_DAIFMT_LEFT_J:
371 372
		regs->srgr2	|= FPER(framesize - 1);
		regs->srgr1	|= FWID((framesize >> 1) - 1);
373
		break;
374
	case SND_SOC_DAIFMT_DSP_A:
375
	case SND_SOC_DAIFMT_DSP_B:
376
		regs->srgr2	|= FPER(framesize - 1);
377
		regs->srgr1	|= FWID(0);
378 379 380
		break;
	}

381
	omap_mcbsp_config(mcbsp, &mcbsp_data->regs);
382
	mcbsp_data->wlen = wlen;
383 384 385 386 387 388 389 390 391
	mcbsp_data->configured = 1;

	return 0;
}

/*
 * This must be called before _set_clkdiv and _set_sysclk since McBSP register
 * cache is initialized here
 */
392
static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
393 394
				      unsigned int fmt)
{
395 396
	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
	struct omap_mcbsp_data *mcbsp_data = &mcbsp->mcbsp_data;
397
	struct omap_mcbsp_reg_cfg *regs = &mcbsp_data->regs;
398
	bool inv_fs = false;
399 400 401 402

	if (mcbsp_data->configured)
		return 0;

403
	mcbsp_data->fmt = fmt;
404 405 406 407
	memset(regs, 0, sizeof(*regs));
	/* Generic McBSP register settings */
	regs->spcr2	|= XINTM(3) | FREE;
	regs->spcr1	|= RINTM(3);
408
	/* RFIG and XFIG are not defined in 34xx */
409
	if (!cpu_is_omap34xx() && !cpu_is_omap44xx()) {
410 411 412
		regs->rcr2	|= RFIG;
		regs->xcr2	|= XFIG;
	}
413
	if (cpu_is_omap2430() || cpu_is_omap34xx() || cpu_is_omap44xx()) {
414 415
		regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
		regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
416
	}
417 418 419 420 421 422 423

	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
	case SND_SOC_DAIFMT_I2S:
		/* 1-bit data delay */
		regs->rcr2	|= RDATDLY(1);
		regs->xcr2	|= XDATDLY(1);
		break;
424 425 426 427 428 429
	case SND_SOC_DAIFMT_LEFT_J:
		/* 0-bit data delay */
		regs->rcr2	|= RDATDLY(0);
		regs->xcr2	|= XDATDLY(0);
		regs->spcr1	|= RJUST(2);
		/* Invert FS polarity configuration */
430
		inv_fs = true;
431
		break;
432 433 434 435 436
	case SND_SOC_DAIFMT_DSP_A:
		/* 1-bit data delay */
		regs->rcr2      |= RDATDLY(1);
		regs->xcr2      |= XDATDLY(1);
		/* Invert FS polarity configuration */
437
		inv_fs = true;
438
		break;
439
	case SND_SOC_DAIFMT_DSP_B:
440 441 442
		/* 0-bit data delay */
		regs->rcr2      |= RDATDLY(0);
		regs->xcr2      |= XDATDLY(0);
443
		/* Invert FS polarity configuration */
444
		inv_fs = true;
445
		break;
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
	default:
		/* Unsupported data format */
		return -EINVAL;
	}

	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
	case SND_SOC_DAIFMT_CBS_CFS:
		/* McBSP master. Set FS and bit clocks as outputs */
		regs->pcr0	|= FSXM | FSRM |
				   CLKXM | CLKRM;
		/* Sample rate generator drives the FS */
		regs->srgr2	|= FSGM;
		break;
	case SND_SOC_DAIFMT_CBM_CFM:
		/* McBSP slave */
		break;
	default:
		/* Unsupported master/slave configuration */
		return -EINVAL;
	}

	/* Set bit clock (CLKX/CLKR) and FS polarities */
468
	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
	case SND_SOC_DAIFMT_NB_NF:
		/*
		 * Normal BCLK + FS.
		 * FS active low. TX data driven on falling edge of bit clock
		 * and RX data sampled on rising edge of bit clock.
		 */
		regs->pcr0	|= FSXP | FSRP |
				   CLKXP | CLKRP;
		break;
	case SND_SOC_DAIFMT_NB_IF:
		regs->pcr0	|= CLKXP | CLKRP;
		break;
	case SND_SOC_DAIFMT_IB_NF:
		regs->pcr0	|= FSXP | FSRP;
		break;
	case SND_SOC_DAIFMT_IB_IF:
		break;
	default:
		return -EINVAL;
	}
489 490
	if (inv_fs == true)
		regs->pcr0 ^= FSXP | FSRP;
491 492 493 494

	return 0;
}

495
static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
496 497
				     int div_id, int div)
{
498 499
	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
	struct omap_mcbsp_data *mcbsp_data = &mcbsp->mcbsp_data;
500 501 502 503 504
	struct omap_mcbsp_reg_cfg *regs = &mcbsp_data->regs;

	if (div_id != OMAP_MCBSP_CLKGDV)
		return -ENODEV;

505
	mcbsp_data->clk_div = div;
506
	regs->srgr1	&= ~CLKGDV(0xff);
507 508 509 510 511
	regs->srgr1	|= CLKGDV(div - 1);

	return 0;
}

512
static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
513 514 515
					 int clk_id, unsigned int freq,
					 int dir)
{
516 517
	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
	struct omap_mcbsp_data *mcbsp_data = &mcbsp->mcbsp_data;
518 519 520
	struct omap_mcbsp_reg_cfg *regs = &mcbsp_data->regs;
	int err = 0;

521
	if (mcbsp_data->active) {
522 523 524 525
		if (freq == mcbsp_data->in_freq)
			return 0;
		else
			return -EBUSY;
526
	}
527

528 529 530 531 532
	/* The McBSP signal muxing functions are only available on McBSP1 */
	if (clk_id == OMAP_MCBSP_CLKR_SRC_CLKR ||
	    clk_id == OMAP_MCBSP_CLKR_SRC_CLKX ||
	    clk_id == OMAP_MCBSP_FSR_SRC_FSR ||
	    clk_id == OMAP_MCBSP_FSR_SRC_FSX)
533
		if (cpu_class_is_omap1() || cpu_dai->id != 1)
534 535
			return -EINVAL;

536
	mcbsp_data->in_freq = freq;
537 538
	regs->srgr2	&= ~CLKSM;
	regs->pcr0	&= ~SCLKME;
539

540 541 542 543 544
	switch (clk_id) {
	case OMAP_MCBSP_SYSCLK_CLK:
		regs->srgr2	|= CLKSM;
		break;
	case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
545 546 547 548
		if (cpu_class_is_omap1()) {
			err = -EINVAL;
			break;
		}
549
		err = omap2_mcbsp_set_clks_src(mcbsp,
550 551
					       MCBSP_CLKS_PRCM_SRC);
		break;
552
	case OMAP_MCBSP_SYSCLK_CLKS_EXT:
553 554 555 556
		if (cpu_class_is_omap1()) {
			err = 0;
			break;
		}
557
		err = omap2_mcbsp_set_clks_src(mcbsp,
558
					       MCBSP_CLKS_PAD_SRC);
559 560 561 562 563 564 565
		break;

	case OMAP_MCBSP_SYSCLK_CLKX_EXT:
		regs->srgr2	|= CLKSM;
	case OMAP_MCBSP_SYSCLK_CLKR_EXT:
		regs->pcr0	|= SCLKME;
		break;
566

567

568
	case OMAP_MCBSP_CLKR_SRC_CLKR:
569 570
		if (cpu_class_is_omap1())
			break;
571
		omap2_mcbsp1_mux_clkr_src(mcbsp, CLKR_SRC_CLKR);
572
		break;
573
	case OMAP_MCBSP_CLKR_SRC_CLKX:
574 575
		if (cpu_class_is_omap1())
			break;
576
		omap2_mcbsp1_mux_clkr_src(mcbsp, CLKR_SRC_CLKX);
577
		break;
578
	case OMAP_MCBSP_FSR_SRC_FSR:
579 580
		if (cpu_class_is_omap1())
			break;
581
		omap2_mcbsp1_mux_fsr_src(mcbsp, FSR_SRC_FSR);
582
		break;
583
	case OMAP_MCBSP_FSR_SRC_FSX:
584 585
		if (cpu_class_is_omap1())
			break;
586
		omap2_mcbsp1_mux_fsr_src(mcbsp, FSR_SRC_FSX);
587
		break;
588 589 590 591 592 593 594
	default:
		err = -ENODEV;
	}

	return err;
}

595
static const struct snd_soc_dai_ops mcbsp_dai_ops = {
596 597 598
	.startup	= omap_mcbsp_dai_startup,
	.shutdown	= omap_mcbsp_dai_shutdown,
	.trigger	= omap_mcbsp_dai_trigger,
599
	.delay		= omap_mcbsp_dai_delay,
600 601 602 603 604 605
	.hw_params	= omap_mcbsp_dai_hw_params,
	.set_fmt	= omap_mcbsp_dai_set_dai_fmt,
	.set_clkdiv	= omap_mcbsp_dai_set_clkdiv,
	.set_sysclk	= omap_mcbsp_dai_set_dai_sysclk,
};

606
static struct snd_soc_dai_driver omap_mcbsp_dai = {
607 608 609 610 611 612 613 614 615 616 617 618 619
	.playback = {
		.channels_min = 1,
		.channels_max = 16,
		.rates = OMAP_MCBSP_RATES,
		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
	},
	.capture = {
		.channels_min = 1,
		.channels_max = 16,
		.rates = OMAP_MCBSP_RATES,
		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
	},
	.ops = &mcbsp_dai_ops,
620
};
621

622
static int omap_mcbsp_st_info_volsw(struct snd_kcontrol *kcontrol,
623 624 625 626 627 628 629 630 631 632 633 634 635 636
			struct snd_ctl_elem_info *uinfo)
{
	struct soc_mixer_control *mc =
		(struct soc_mixer_control *)kcontrol->private_value;
	int max = mc->max;
	int min = mc->min;

	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = 1;
	uinfo->value.integer.min = min;
	uinfo->value.integer.max = max;
	return 0;
}

637
#define OMAP_MCBSP_ST_SET_CHANNEL_VOLUME(channel)			\
638
static int								\
639
omap_mcbsp_set_st_ch##channel##_volume(struct snd_kcontrol *kc,	\
640 641
					struct snd_ctl_elem_value *uc)	\
{									\
642 643
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kc);		\
	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);	\
644 645 646 647 648 649 650 651 652 653
	struct soc_mixer_control *mc =					\
		(struct soc_mixer_control *)kc->private_value;		\
	int max = mc->max;						\
	int min = mc->min;						\
	int val = uc->value.integer.value[0];				\
									\
	if (val < min || val > max)					\
		return -EINVAL;						\
									\
	/* OMAP McBSP implementation uses index values 0..4 */		\
654
	return omap_st_set_chgain(mcbsp, channel, val);			\
655 656
}

657
#define OMAP_MCBSP_ST_GET_CHANNEL_VOLUME(channel)			\
658
static int								\
659
omap_mcbsp_get_st_ch##channel##_volume(struct snd_kcontrol *kc,	\
660 661
					struct snd_ctl_elem_value *uc)	\
{									\
662 663
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kc);		\
	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);	\
664 665
	s16 chgain;							\
									\
666
	if (omap_st_get_chgain(mcbsp, channel, &chgain))		\
667 668 669 670 671 672
		return -EAGAIN;						\
									\
	uc->value.integer.value[0] = chgain;				\
	return 0;							\
}

673 674 675 676
OMAP_MCBSP_ST_SET_CHANNEL_VOLUME(0)
OMAP_MCBSP_ST_SET_CHANNEL_VOLUME(1)
OMAP_MCBSP_ST_GET_CHANNEL_VOLUME(0)
OMAP_MCBSP_ST_GET_CHANNEL_VOLUME(1)
677 678 679 680

static int omap_mcbsp_st_put_mode(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
681 682
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
683 684
	u8 value = ucontrol->value.integer.value[0];

685
	if (value == omap_st_is_enabled(mcbsp))
686 687 688
		return 0;

	if (value)
689
		omap_st_enable(mcbsp);
690
	else
691
		omap_st_disable(mcbsp);
692 693 694 695 696 697 698

	return 1;
}

static int omap_mcbsp_st_get_mode(struct snd_kcontrol *kcontrol,
				struct snd_ctl_elem_value *ucontrol)
{
699 700
	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
701

702
	ucontrol->value.integer.value[0] = omap_st_is_enabled(mcbsp);
703 704 705 706 707 708 709 710
	return 0;
}

static const struct snd_kcontrol_new omap_mcbsp2_st_controls[] = {
	SOC_SINGLE_EXT("McBSP2 Sidetone Switch", 1, 0, 1, 0,
			omap_mcbsp_st_get_mode, omap_mcbsp_st_put_mode),
	OMAP_MCBSP_SOC_SINGLE_S16_EXT("McBSP2 Sidetone Channel 0 Volume",
				      -32768, 32767,
711 712
				      omap_mcbsp_get_st_ch0_volume,
				      omap_mcbsp_set_st_ch0_volume),
713 714
	OMAP_MCBSP_SOC_SINGLE_S16_EXT("McBSP2 Sidetone Channel 1 Volume",
				      -32768, 32767,
715 716
				      omap_mcbsp_get_st_ch1_volume,
				      omap_mcbsp_set_st_ch1_volume),
717 718 719 720 721 722 723
};

static const struct snd_kcontrol_new omap_mcbsp3_st_controls[] = {
	SOC_SINGLE_EXT("McBSP3 Sidetone Switch", 2, 0, 1, 0,
			omap_mcbsp_st_get_mode, omap_mcbsp_st_put_mode),
	OMAP_MCBSP_SOC_SINGLE_S16_EXT("McBSP3 Sidetone Channel 0 Volume",
				      -32768, 32767,
724 725
				      omap_mcbsp_get_st_ch0_volume,
				      omap_mcbsp_set_st_ch0_volume),
726 727
	OMAP_MCBSP_SOC_SINGLE_S16_EXT("McBSP3 Sidetone Channel 1 Volume",
				      -32768, 32767,
728 729
				      omap_mcbsp_get_st_ch1_volume,
				      omap_mcbsp_set_st_ch1_volume),
730 731
};

732
int omap_mcbsp_st_add_controls(struct snd_soc_pcm_runtime *rtd)
733
{
734 735 736 737
	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);

	if (!mcbsp->st_data)
738 739
		return -ENODEV;

740 741 742 743
	switch (cpu_dai->id) {
	case 2: /* McBSP 2 */
		return snd_soc_add_dai_controls(cpu_dai,
					omap_mcbsp2_st_controls,
744
					ARRAY_SIZE(omap_mcbsp2_st_controls));
745 746 747
	case 3: /* McBSP 3 */
		return snd_soc_add_dai_controls(cpu_dai,
					omap_mcbsp3_st_controls,
748 749 750 751 752 753 754 755 756
					ARRAY_SIZE(omap_mcbsp3_st_controls));
	default:
		break;
	}

	return -EINVAL;
}
EXPORT_SYMBOL_GPL(omap_mcbsp_st_add_controls);

757 758
static __devinit int asoc_mcbsp_probe(struct platform_device *pdev)
{
759 760 761 762 763 764 765
	int ret;

	ret = omap_mcbsp_probe(pdev);
	if (!ret)
		return snd_soc_register_dai(&pdev->dev, &omap_mcbsp_dai);

	return ret;
766 767 768 769
}

static int __devexit asoc_mcbsp_remove(struct platform_device *pdev)
{
770
	omap_mcbsp_remove(pdev);
771 772 773 774 775 776
	snd_soc_unregister_dai(&pdev->dev);
	return 0;
}

static struct platform_driver asoc_mcbsp_driver = {
	.driver = {
777
			.name = "omap-mcbsp",
778 779 780 781 782 783 784
			.owner = THIS_MODULE,
	},

	.probe = asoc_mcbsp_probe,
	.remove = __devexit_p(asoc_mcbsp_remove),
};

785
module_platform_driver(asoc_mcbsp_driver);
M
Mark Brown 已提交
786

787
MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
788 789
MODULE_DESCRIPTION("OMAP I2S SoC Interface");
MODULE_LICENSE("GPL");