nuvoton-cir.c 33.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
 *
 * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
 * Copyright (C) 2009 Nuvoton PS Team
 *
 * Special thanks to Nuvoton for providing hardware, spec sheets and
 * sample code upon which portions of this driver are based. Indirect
 * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
 * modeled after.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
 * USA
 */

28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pnp.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/slab.h>
37
#include <media/rc-core.h>
38 39 40 41
#include <linux/pci_ids.h>

#include "nuvoton-cir.h"

42 43
static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt);

44 45 46 47
static const struct nvt_chip nvt_chips[] = {
	{ "w83667hg", NVT_W83667HG },
	{ "NCT6775F", NVT_6775F },
	{ "NCT6776F", NVT_6776F },
48
	{ "NCT6779D", NVT_6779D },
49 50 51 52 53 54 55
};

static inline bool is_w83667hg(struct nvt_dev *nvt)
{
	return nvt->chip_ver == NVT_W83667HG;
}

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
/* write val to config reg */
static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
{
	outb(reg, nvt->cr_efir);
	outb(val, nvt->cr_efdr);
}

/* read val from config reg */
static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
{
	outb(reg, nvt->cr_efir);
	return inb(nvt->cr_efdr);
}

/* update config register bit without changing other bits */
static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
{
	u8 tmp = nvt_cr_read(nvt, reg) | val;
	nvt_cr_write(nvt, tmp, reg);
}

/* clear config register bit without changing other bits */
static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
{
	u8 tmp = nvt_cr_read(nvt, reg) & ~val;
	nvt_cr_write(nvt, tmp, reg);
}

/* enter extended function mode */
85
static inline int nvt_efm_enable(struct nvt_dev *nvt)
86
{
87 88 89
	if (!request_muxed_region(nvt->cr_efir, 2, NVT_DRIVER_NAME))
		return -EBUSY;

90 91 92
	/* Enabling Extended Function Mode explicitly requires writing 2x */
	outb(EFER_EFM_ENABLE, nvt->cr_efir);
	outb(EFER_EFM_ENABLE, nvt->cr_efir);
93 94

	return 0;
95 96 97 98 99 100
}

/* exit extended function mode */
static inline void nvt_efm_disable(struct nvt_dev *nvt)
{
	outb(EFER_EFM_DISABLE, nvt->cr_efir);
101 102

	release_region(nvt->cr_efir, 2);
103 104 105 106 107 108 109 110 111
}

/*
 * When you want to address a specific logical device, write its logical
 * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
 * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
 */
static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
{
112
	nvt_cr_write(nvt, ldev, CR_LOGICAL_DEV_SEL);
113 114
}

115 116 117 118 119 120 121 122 123
/* select and enable logical device with setting EFM mode*/
static inline void nvt_enable_logical_dev(struct nvt_dev *nvt, u8 ldev)
{
	nvt_efm_enable(nvt);
	nvt_select_logical_dev(nvt, ldev);
	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
	nvt_efm_disable(nvt);
}

124 125 126 127 128 129 130 131 132
/* select and disable logical device with setting EFM mode*/
static inline void nvt_disable_logical_dev(struct nvt_dev *nvt, u8 ldev)
{
	nvt_efm_enable(nvt);
	nvt_select_logical_dev(nvt, ldev);
	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
	nvt_efm_disable(nvt);
}

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
/* write val to cir config register */
static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
{
	outb(val, nvt->cir_addr + offset);
}

/* read val from cir config register */
static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
{
	u8 val;

	val = inb(nvt->cir_addr + offset);

	return val;
}

/* write val to cir wake register */
static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
					  u8 val, u8 offset)
{
	outb(val, nvt->cir_wake_addr + offset);
}

/* read val from cir wake config register */
static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
{
	u8 val;

	val = inb(nvt->cir_wake_addr + offset);

	return val;
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/* don't override io address if one is set already */
static void nvt_set_ioaddr(struct nvt_dev *nvt, unsigned long *ioaddr)
{
	unsigned long old_addr;

	old_addr = nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8;
	old_addr |= nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO);

	if (old_addr)
		*ioaddr = old_addr;
	else {
		nvt_cr_write(nvt, *ioaddr >> 8, CR_CIR_BASE_ADDR_HI);
		nvt_cr_write(nvt, *ioaddr & 0xff, CR_CIR_BASE_ADDR_LO);
	}
}

182 183 184
static ssize_t wakeup_data_show(struct device *dev,
				struct device_attribute *attr,
				char *buf)
185 186 187
{
	struct rc_dev *rc_dev = to_rc_dev(dev);
	struct nvt_dev *nvt = rc_dev->priv;
188
	int fifo_len, duration;
189
	unsigned long flags;
190
	ssize_t buf_len = 0;
191 192 193 194 195
	int i;

	spin_lock_irqsave(&nvt->nvt_lock, flags);

	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
196
	fifo_len = min(fifo_len, WAKEUP_MAX_SIZE);
197 198

	/* go to first element to be read */
199
	while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX))
200 201
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);

202 203 204 205 206 207 208
	for (i = 0; i < fifo_len; i++) {
		duration = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
		duration = (duration & BUF_LEN_MASK) * SAMPLE_PERIOD;
		buf_len += snprintf(buf + buf_len, PAGE_SIZE - buf_len,
				    "%d ", duration);
	}
	buf_len += snprintf(buf + buf_len, PAGE_SIZE - buf_len, "\n");
209 210 211

	spin_unlock_irqrestore(&nvt->nvt_lock, flags);

212
	return buf_len;
213 214
}

215 216 217
static ssize_t wakeup_data_store(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t len)
218 219 220 221
{
	struct rc_dev *rc_dev = to_rc_dev(dev);
	struct nvt_dev *nvt = rc_dev->priv;
	unsigned long flags;
222 223 224 225 226 227 228 229 230 231 232 233 234
	u8 tolerance, config, wake_buf[WAKEUP_MAX_SIZE];
	char **argv;
	int i, count;
	unsigned int val;
	ssize_t ret;

	argv = argv_split(GFP_KERNEL, buf, &count);
	if (!argv)
		return -ENOMEM;
	if (!count || count > WAKEUP_MAX_SIZE) {
		ret = -EINVAL;
		goto out;
	}
235

236 237 238 239 240 241 242 243 244 245 246 247 248 249
	for (i = 0; i < count; i++) {
		ret = kstrtouint(argv[i], 10, &val);
		if (ret)
			goto out;
		val = DIV_ROUND_CLOSEST(val, SAMPLE_PERIOD);
		if (!val || val > 0x7f) {
			ret = -EINVAL;
			goto out;
		}
		wake_buf[i] = val;
		/* sequence must start with a pulse */
		if (i % 2 == 0)
			wake_buf[i] |= BUF_PULSE_BIT;
	}
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

	/* hardcode the tolerance to 10% */
	tolerance = DIV_ROUND_UP(count, 10);

	spin_lock_irqsave(&nvt->nvt_lock, flags);

	nvt_clear_cir_wake_fifo(nvt);
	nvt_cir_wake_reg_write(nvt, count, CIR_WAKE_FIFO_CMP_DEEP);
	nvt_cir_wake_reg_write(nvt, tolerance, CIR_WAKE_FIFO_CMP_TOL);

	config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);

	/* enable writes to wake fifo */
	nvt_cir_wake_reg_write(nvt, config | CIR_WAKE_IRCON_MODE1,
			       CIR_WAKE_IRCON);

	for (i = 0; i < count; i++)
267
		nvt_cir_wake_reg_write(nvt, wake_buf[i], CIR_WAKE_WR_FIFO_DATA);
268 269 270 271 272

	nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);

	spin_unlock_irqrestore(&nvt->nvt_lock, flags);

273 274 275 276
	ret = len;
out:
	argv_free(argv);
	return ret;
277
}
278
static DEVICE_ATTR_RW(wakeup_data);
279

280 281 282 283 284 285
/* dump current cir register contents */
static void cir_dump_regs(struct nvt_dev *nvt)
{
	nvt_efm_enable(nvt);
	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);

286 287 288 289 290
	pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
	pr_info(" * CR CIR ACTIVE :   0x%x\n",
		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
	pr_info(" * CR CIR BASE ADDR: 0x%x\n",
		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
291
		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
292 293
	pr_info(" * CR CIR IRQ NUM:   0x%x\n",
		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
294 295 296

	nvt_efm_disable(nvt);

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
	pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
	pr_info(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
	pr_info(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
	pr_info(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
	pr_info(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
	pr_info(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
	pr_info(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
	pr_info(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
	pr_info(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
	pr_info(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
	pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
	pr_info(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
	pr_info(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
	pr_info(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
	pr_info(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
	pr_info(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
	pr_info(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
314 315 316 317 318 319 320 321 322 323
}

/* dump current cir wake register contents */
static void cir_wake_dump_regs(struct nvt_dev *nvt)
{
	u8 i, fifo_len;

	nvt_efm_enable(nvt);
	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);

324 325 326 327 328 329
	pr_info("%s: Dump CIR WAKE logical device registers:\n",
		NVT_DRIVER_NAME);
	pr_info(" * CR CIR WAKE ACTIVE :   0x%x\n",
		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
	pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
330
		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
331 332
	pr_info(" * CR CIR WAKE IRQ NUM:   0x%x\n",
		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
333 334 335

	nvt_efm_disable(nvt);

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
	pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
	pr_info(" * IRCON:          0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
	pr_info(" * IRSTS:          0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
	pr_info(" * IREN:           0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
	pr_info(" * FIFO CMP DEEP:  0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
	pr_info(" * FIFO CMP TOL:   0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
	pr_info(" * FIFO COUNT:     0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
	pr_info(" * SLCH:           0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
	pr_info(" * SLCL:           0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
	pr_info(" * FIFOCON:        0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
	pr_info(" * SRXFSTS:        0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
	pr_info(" * SAMPLE RX FIFO: 0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
	pr_info(" * WR FIFO DATA:   0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
	pr_info(" * RD FIFO ONLY:   0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
	pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
	pr_info(" * FIFO IGNORE:    0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
	pr_info(" * IRFSM:          0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
369 370

	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
371 372
	pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
	pr_info("* Contents =");
373
	for (i = 0; i < fifo_len; i++)
374 375 376
		pr_cont(" %02x",
			nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
	pr_cont("\n");
377 378
}

379 380 381 382 383 384 385 386 387 388 389 390 391 392
static inline const char *nvt_find_chip(struct nvt_dev *nvt, int id)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(nvt_chips); i++)
		if ((id & SIO_ID_MASK) == nvt_chips[i].chip_ver) {
			nvt->chip_ver = nvt_chips[i].chip_ver;
			return nvt_chips[i].name;
		}

	return NULL;
}


393
/* detect hardware features */
394
static int nvt_hw_detect(struct nvt_dev *nvt)
395
{
396 397
	const char *chip_name;
	int chip_id;
398 399 400 401

	nvt_efm_enable(nvt);

	/* Check if we're wired for the alternate EFER setup */
402 403
	nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
	if (nvt->chip_major == 0xff) {
404 405 406
		nvt->cr_efir = CR_EFIR2;
		nvt->cr_efdr = CR_EFDR2;
		nvt_efm_enable(nvt);
407
		nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
408
	}
409 410
	nvt->chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);

411 412
	nvt_efm_disable(nvt);

413
	chip_id = nvt->chip_major << 8 | nvt->chip_minor;
414 415 416 417 418 419
	if (chip_id == NVT_INVALID) {
		dev_err(&nvt->pdev->dev,
			"No device found on either EFM port\n");
		return -ENODEV;
	}

420
	chip_name = nvt_find_chip(nvt, chip_id);
421

422
	/* warn, but still let the driver load, if we don't know this chip */
423
	if (!chip_name)
424 425 426
		dev_warn(&nvt->pdev->dev,
			 "unknown chip, id: 0x%02x 0x%02x, it may not work...",
			 nvt->chip_major, nvt->chip_minor);
427
	else
428 429 430
		dev_info(&nvt->pdev->dev,
			 "found %s or compatible: chip id: 0x%02x 0x%02x",
			 chip_name, nvt->chip_major, nvt->chip_minor);
431

432
	return 0;
433 434 435 436
}

static void nvt_cir_ldev_init(struct nvt_dev *nvt)
{
437 438
	u8 val, psreg, psmask, psval;

439
	if (is_w83667hg(nvt)) {
440 441 442 443 444 445 446 447
		psreg = CR_MULTIFUNC_PIN_SEL;
		psmask = MULTIFUNC_PIN_SEL_MASK;
		psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
	} else {
		psreg = CR_OUTPUT_PIN_SEL;
		psmask = OUTPUT_PIN_SEL_MASK;
		psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
	}
448

449 450 451 452 453
	/* output pin selection: enable CIR, with WB sensor enabled */
	val = nvt_cr_read(nvt, psreg);
	val &= psmask;
	val |= psval;
	nvt_cr_write(nvt, val, psreg);
454

455
	/* Select CIR logical device */
456 457
	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);

458
	nvt_set_ioaddr(nvt, &nvt->cir_addr);
459 460 461 462 463 464 465 466 467

	nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);

	nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
		nvt->cir_addr, nvt->cir_irq);
}

static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
{
468
	/* Select ACPI logical device and anable it */
469 470 471 472 473 474 475 476 477
	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);

	/* Enable CIR Wake via PSOUT# (Pin60) */
	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);

	/* enable pme interrupt of cir wakeup event */
	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);

478
	/* Select CIR Wake logical device */
479 480
	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);

481
	nvt_set_ioaddr(nvt, &nvt->cir_wake_addr);
482

483 484
	nvt_dbg("CIR Wake initialized, base io port address: 0x%lx",
		nvt->cir_wake_addr);
485 486 487 488 489 490 491 492 493 494 495 496 497 498
}

/* clear out the hardware's cir rx fifo */
static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
{
	u8 val;

	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
}

/* clear out the hardware's cir wake rx fifo */
static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
{
499 500 501 502 503 504 505
	u8 val, config;

	config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON);

	/* clearing wake fifo works in learning mode only */
	nvt_cir_wake_reg_write(nvt, config & ~CIR_WAKE_IRCON_MODE0,
			       CIR_WAKE_IRCON);
506 507 508 509

	val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
	nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
			       CIR_WAKE_FIFOCON);
510 511

	nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON);
512 513 514 515 516 517 518 519 520 521 522
}

/* clear out the hardware's cir tx fifo */
static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
{
	u8 val;

	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
}

523 524 525 526 527
/* enable RX Trigger Level Reach and Packet End interrupts */
static void nvt_set_cir_iren(struct nvt_dev *nvt)
{
	u8 iren;

528
	iren = CIR_IREN_RTR | CIR_IREN_PE | CIR_IREN_RFO;
529 530 531
	nvt_cir_reg_write(nvt, iren, CIR_IREN);
}

532 533 534 535 536 537 538 539 540 541 542 543 544 545
static void nvt_cir_regs_init(struct nvt_dev *nvt)
{
	/* set sample limit count (PE interrupt raised when reached) */
	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);

	/* set fifo irq trigger levels */
	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
			  CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);

	/*
	 * Enable TX and RX, specify carrier on = low, off = high, and set
	 * sample period (currently 50us)
	 */
546 547 548 549
	nvt_cir_reg_write(nvt,
			  CIR_IRCON_TXEN | CIR_IRCON_RXEN |
			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
			  CIR_IRCON);
550 551 552 553 554 555 556 557

	/* clear hardware rx and tx fifos */
	nvt_clear_cir_fifo(nvt);
	nvt_clear_tx_fifo(nvt);

	/* clear any and all stray interrupts */
	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);

558 559
	/* and finally, enable interrupts */
	nvt_set_cir_iren(nvt);
560 561 562

	/* enable the CIR logical device */
	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);
563 564 565 566 567
}

static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
{
	/*
568 569
	 * Disable RX, set specific carrier on = low, off = high,
	 * and sample period (currently 50us)
570
	 */
571
	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 |
572 573 574 575 576 577
			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
			       CIR_WAKE_IRCON);

	/* clear any and all stray interrupts */
	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
578 579 580

	/* enable the CIR WAKE logical device */
	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
581 582 583 584
}

static void nvt_enable_wake(struct nvt_dev *nvt)
{
585 586
	unsigned long flags;

587 588 589 590 591 592 593 594 595 596 597
	nvt_efm_enable(nvt);

	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);

	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);

	nvt_efm_disable(nvt);

598 599
	spin_lock_irqsave(&nvt->nvt_lock, flags);

600 601
	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
602 603
			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
			       CIR_WAKE_IRCON);
604 605
	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
606 607

	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
608 609
}

610
#if 0 /* Currently unused */
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
/* rx carrier detect only works in learning mode, must be called w/nvt_lock */
static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
{
	u32 count, carrier, duration = 0;
	int i;

	count = nvt_cir_reg_read(nvt, CIR_FCCL) |
		nvt_cir_reg_read(nvt, CIR_FCCH) << 8;

	for (i = 0; i < nvt->pkts; i++) {
		if (nvt->buf[i] & BUF_PULSE_BIT)
			duration += nvt->buf[i] & BUF_LEN_MASK;
	}

	duration *= SAMPLE_PERIOD;

	if (!count || !duration) {
628 629 630
		dev_notice(&nvt->pdev->dev,
			   "Unable to determine carrier! (c:%u, d:%u)",
			   count, duration);
631 632 633
		return 0;
	}

634
	carrier = MS_TO_NS(count) / duration;
635 636 637 638 639 640 641 642 643

	if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
		nvt_dbg("WTF? Carrier frequency out of range!");

	nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
		carrier, count, duration);

	return carrier;
}
644
#endif
645 646 647 648 649 650 651
/*
 * set carrier frequency
 *
 * set carrier on 2 registers: CP & CC
 * always set CP as 0x81
 * set CC by SPEC, CC = 3MHz/carrier - 1
 */
652
static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
653
{
654
	struct nvt_dev *nvt = dev->priv;
655 656
	u16 val;

657 658 659
	if (carrier == 0)
		return -EINVAL;

660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
	nvt_cir_reg_write(nvt, 1, CIR_CP);
	val = 3000000 / (carrier) - 1;
	nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);

	nvt_dbg("cp: 0x%x cc: 0x%x\n",
		nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));

	return 0;
}

/*
 * nvt_tx_ir
 *
 * 1) clean TX fifo first (handled by AP)
 * 2) copy data from user space
 * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
 * 4) send 9 packets to TX FIFO to open TTR
 * in interrupt_handler:
 * 5) send all data out
 * go back to write():
 * 6) disable TX interrupts, re-enable RX interupts
 *
 * The key problem of this function is user space data may larger than
 * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
 * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
 * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
 * set TXFCONT as 0xff, until buf_count less than 0xff.
 */
688
static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
689
{
690
	struct nvt_dev *nvt = dev->priv;
691 692 693 694 695 696 697
	unsigned long flags;
	unsigned int i;
	u8 iren;
	int ret;

	spin_lock_irqsave(&nvt->tx.lock, flags);

698 699
	ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
	nvt->tx.buf_count = (ret * sizeof(unsigned));
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738

	memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);

	nvt->tx.cur_buf_num = 0;

	/* save currently enabled interrupts */
	iren = nvt_cir_reg_read(nvt, CIR_IREN);

	/* now disable all interrupts, save TFU & TTR */
	nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);

	nvt->tx.tx_state = ST_TX_REPLY;

	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
			  CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);

	/* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
	for (i = 0; i < 9; i++)
		nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);

	spin_unlock_irqrestore(&nvt->tx.lock, flags);

	wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);

	spin_lock_irqsave(&nvt->tx.lock, flags);
	nvt->tx.tx_state = ST_TX_NONE;
	spin_unlock_irqrestore(&nvt->tx.lock, flags);

	/* restore enabled interrupts to prior state */
	nvt_cir_reg_write(nvt, iren, CIR_IREN);

	return ret;
}

/* dump contents of the last rx buffer we got from the hw rx fifo */
static void nvt_dump_rx_buf(struct nvt_dev *nvt)
{
	int i;

739
	printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
740
	for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
741 742
		printk(KERN_CONT "0x%02x ", nvt->buf[i]);
	printk(KERN_CONT "\n");
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
}

/*
 * Process raw data in rx driver buffer, store it in raw IR event kfifo,
 * trigger decode when appropriate.
 *
 * We get IR data samples one byte at a time. If the msb is set, its a pulse,
 * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
 * (default 50us) intervals for that pulse/space. A discrete signal is
 * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
 * to signal more IR coming (repeats) or end of IR, respectively. We store
 * sample data in the raw event kfifo until we see 0x7<something> (except f)
 * or 0x80, at which time, we trigger a decode operation.
 */
static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
{
759
	DEFINE_IR_RAW_EVENT(rawir);
760 761 762 763 764 765 766 767
	u8 sample;
	int i;

	nvt_dbg_verbose("%s firing", __func__);

	if (debug)
		nvt_dump_rx_buf(nvt);

768
	nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
769

770 771
	init_ir_raw_event(&rawir);

772
	for (i = 0; i < nvt->pkts; i++) {
773 774 775
		sample = nvt->buf[i];

		rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
776 777
		rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
					  * SAMPLE_PERIOD);
778

779 780
		nvt_dbg("Storing %s with duration %d",
			rawir.pulse ? "pulse" : "space", rawir.duration);
781

782
		ir_raw_event_store_with_filter(nvt->rdev, &rawir);
783 784 785 786 787 788

		/*
		 * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
		 * indicates end of IR signal, but new data incoming. In both
		 * cases, it means we're ready to call ir_raw_event_handle
		 */
789
		if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) {
790
			nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
791
			ir_raw_event_handle(nvt->rdev);
792
		}
793 794
	}

795 796
	nvt->pkts = 0;

797 798 799
	nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
	ir_raw_event_handle(nvt->rdev);

800 801 802
	nvt_dbg_verbose("%s done", __func__);
}

803 804
static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
{
805
	dev_warn(&nvt->pdev->dev, "RX FIFO overrun detected, flushing data!");
806 807 808 809 810 811

	nvt->pkts = 0;
	nvt_clear_cir_fifo(nvt);
	ir_raw_event_reset(nvt->rdev);
}

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
/* copy data from hardware rx fifo into driver buffer */
static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
{
	u8 fifocount, val;
	unsigned int b_idx;
	int i;

	/* Get count of how many bytes to read from RX FIFO */
	fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
	/* if we get 0xff, probably means the logical dev is disabled */
	if (fifocount == 0xff)
		return;

	nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);

	b_idx = nvt->pkts;

	/* This should never happen, but lets check anyway... */
	if (b_idx + fifocount > RX_BUF_LEN) {
		nvt_process_rx_ir_data(nvt);
		b_idx = 0;
	}

	/* Read fifocount bytes from CIR Sample RX FIFO register */
	for (i = 0; i < fifocount; i++) {
		val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
		nvt->buf[b_idx + i] = val;
	}

	nvt->pkts += fifocount;
	nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);

	nvt_process_rx_ir_data(nvt);
}

static void nvt_cir_log_irqs(u8 status, u8 iren)
{
849
	nvt_dbg("IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
		status, iren,
		status & CIR_IRSTS_RDR	? " RDR"	: "",
		status & CIR_IRSTS_RTR	? " RTR"	: "",
		status & CIR_IRSTS_PE	? " PE"		: "",
		status & CIR_IRSTS_RFO	? " RFO"	: "",
		status & CIR_IRSTS_TE	? " TE"		: "",
		status & CIR_IRSTS_TTR	? " TTR"	: "",
		status & CIR_IRSTS_TFU	? " TFU"	: "",
		status & CIR_IRSTS_GH	? " GH"		: "",
		status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
			   CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
			   CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
}

static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
{
	unsigned long flags;
	u8 tx_state;

	spin_lock_irqsave(&nvt->tx.lock, flags);
	tx_state = nvt->tx.tx_state;
	spin_unlock_irqrestore(&nvt->tx.lock, flags);

873
	return tx_state == ST_TX_NONE;
874 875 876 877 878 879 880 881 882 883 884
}

/* interrupt service routine for incoming and outgoing CIR data */
static irqreturn_t nvt_cir_isr(int irq, void *data)
{
	struct nvt_dev *nvt = data;
	u8 status, iren, cur_state;
	unsigned long flags;

	nvt_dbg_verbose("%s firing", __func__);

885 886
	spin_lock_irqsave(&nvt->nvt_lock, flags);

887 888 889 890 891 892 893 894 895 896 897 898 899 900
	/*
	 * Get IR Status register contents. Write 1 to ack/clear
	 *
	 * bit: reg name      - description
	 *   7: CIR_IRSTS_RDR - RX Data Ready
	 *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
	 *   5: CIR_IRSTS_PE  - Packet End
	 *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
	 *   3: CIR_IRSTS_TE  - TX FIFO Empty
	 *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
	 *   1: CIR_IRSTS_TFU - TX FIFO Underrun
	 *   0: CIR_IRSTS_GH  - Min Length Detected
	 */
	status = nvt_cir_reg_read(nvt, CIR_IRSTS);
901 902 903 904 905 906
	iren = nvt_cir_reg_read(nvt, CIR_IREN);

	/* IRQ may be shared with CIR WAKE, therefore check for each
	 * status bit whether the related interrupt source is enabled
	 */
	if (!(status & iren)) {
907
		spin_unlock_irqrestore(&nvt->nvt_lock, flags);
908
		nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
909
		return IRQ_NONE;
910 911 912 913 914 915
	}

	/* ack/clear all irq flags we've got */
	nvt_cir_reg_write(nvt, status, CIR_IRSTS);
	nvt_cir_reg_write(nvt, 0, CIR_IRSTS);

916
	nvt_cir_log_irqs(status, iren);
917

918 919 920
	if (status & CIR_IRSTS_RFO)
		nvt_handle_rx_fifo_overrun(nvt);

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
	if (status & CIR_IRSTS_RTR) {
		/* FIXME: add code for study/learn mode */
		/* We only do rx if not tx'ing */
		if (nvt_cir_tx_inactive(nvt))
			nvt_get_rx_ir_data(nvt);
	}

	if (status & CIR_IRSTS_PE) {
		if (nvt_cir_tx_inactive(nvt))
			nvt_get_rx_ir_data(nvt);

		cur_state = nvt->study_state;

		if (cur_state == ST_STUDY_NONE)
			nvt_clear_cir_fifo(nvt);
	}

938 939
	spin_unlock_irqrestore(&nvt->nvt_lock, flags);

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
	if (status & CIR_IRSTS_TE)
		nvt_clear_tx_fifo(nvt);

	if (status & CIR_IRSTS_TTR) {
		unsigned int pos, count;
		u8 tmp;

		spin_lock_irqsave(&nvt->tx.lock, flags);

		pos = nvt->tx.cur_buf_num;
		count = nvt->tx.buf_count;

		/* Write data into the hardware tx fifo while pos < count */
		if (pos < count) {
			nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
			nvt->tx.cur_buf_num++;
		/* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
		} else {
			tmp = nvt_cir_reg_read(nvt, CIR_IREN);
			nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
		}

		spin_unlock_irqrestore(&nvt->tx.lock, flags);

	}

	if (status & CIR_IRSTS_TFU) {
		spin_lock_irqsave(&nvt->tx.lock, flags);
		if (nvt->tx.tx_state == ST_TX_REPLY) {
			nvt->tx.tx_state = ST_TX_REQUEST;
			wake_up(&nvt->tx.queue);
		}
		spin_unlock_irqrestore(&nvt->tx.lock, flags);
	}

	nvt_dbg_verbose("%s done", __func__);
976
	return IRQ_HANDLED;
977 978 979 980
}

static void nvt_disable_cir(struct nvt_dev *nvt)
{
981 982 983 984
	unsigned long flags;

	spin_lock_irqsave(&nvt->nvt_lock, flags);

985 986 987 988 989 990 991 992 993 994 995 996 997
	/* disable CIR interrupts */
	nvt_cir_reg_write(nvt, 0, CIR_IREN);

	/* clear any and all pending interrupts */
	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);

	/* clear all function enable flags */
	nvt_cir_reg_write(nvt, 0, CIR_IRCON);

	/* clear hardware rx and tx fifos */
	nvt_clear_cir_fifo(nvt);
	nvt_clear_tx_fifo(nvt);

998 999
	spin_unlock_irqrestore(&nvt->nvt_lock, flags);

1000
	/* disable the CIR logical device */
1001
	nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
1002 1003
}

1004
static int nvt_open(struct rc_dev *dev)
1005
{
1006
	struct nvt_dev *nvt = dev->priv;
1007 1008 1009
	unsigned long flags;

	spin_lock_irqsave(&nvt->nvt_lock, flags);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

	/* set function enable flags */
	nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
			  CIR_IRCON);

	/* clear all pending interrupts */
	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);

	/* enable interrupts */
	nvt_set_cir_iren(nvt);

1022 1023
	spin_unlock_irqrestore(&nvt->nvt_lock, flags);

1024 1025 1026
	/* enable the CIR logical device */
	nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR);

1027 1028 1029
	return 0;
}

1030
static void nvt_close(struct rc_dev *dev)
1031
{
1032
	struct nvt_dev *nvt = dev->priv;
1033 1034 1035 1036 1037 1038 1039

	nvt_disable_cir(nvt);
}

/* Allocate memory, probe hardware, and initialize everything */
static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
{
1040 1041
	struct nvt_dev *nvt;
	struct rc_dev *rdev;
1042 1043
	int ret = -ENOMEM;

1044
	nvt = devm_kzalloc(&pdev->dev, sizeof(struct nvt_dev), GFP_KERNEL);
1045 1046 1047 1048
	if (!nvt)
		return ret;

	/* input device for IR remote (and tx) */
1049
	rdev = rc_allocate_device();
1050
	if (!rdev)
1051
		goto exit_free_dev_rdev;
1052 1053

	ret = -ENODEV;
1054 1055 1056 1057 1058 1059
	/* activate pnp device */
	if (pnp_activate_dev(pdev) < 0) {
		dev_err(&pdev->dev, "Could not activate PNP device!\n");
		goto exit_free_dev_rdev;
	}

1060 1061 1062 1063
	/* validate pnp resources */
	if (!pnp_port_valid(pdev, 0) ||
	    pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
		dev_err(&pdev->dev, "IR PNP Port not valid!\n");
1064
		goto exit_free_dev_rdev;
1065 1066 1067 1068
	}

	if (!pnp_irq_valid(pdev, 0)) {
		dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1069
		goto exit_free_dev_rdev;
1070 1071 1072 1073 1074
	}

	if (!pnp_port_valid(pdev, 1) ||
	    pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
		dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1075
		goto exit_free_dev_rdev;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
	}

	nvt->cir_addr = pnp_port_start(pdev, 0);
	nvt->cir_irq  = pnp_irq(pdev, 0);

	nvt->cir_wake_addr = pnp_port_start(pdev, 1);

	nvt->cr_efir = CR_EFIR;
	nvt->cr_efdr = CR_EFDR;

	spin_lock_init(&nvt->nvt_lock);
	spin_lock_init(&nvt->tx.lock);

	pnp_set_drvdata(pdev, nvt);
	nvt->pdev = pdev;

	init_waitqueue_head(&nvt->tx.queue);

1094 1095 1096
	ret = nvt_hw_detect(nvt);
	if (ret)
		goto exit_free_dev_rdev;
1097 1098 1099 1100 1101 1102 1103

	/* Initialize CIR & CIR Wake Logical Devices */
	nvt_efm_enable(nvt);
	nvt_cir_ldev_init(nvt);
	nvt_cir_wake_ldev_init(nvt);
	nvt_efm_disable(nvt);

1104 1105 1106 1107
	/*
	 * Initialize CIR & CIR Wake Config Registers
	 * and enable logical devices
	 */
1108 1109 1110
	nvt_cir_regs_init(nvt);
	nvt_cir_wake_regs_init(nvt);

1111 1112 1113
	/* Set up the rc device */
	rdev->priv = nvt;
	rdev->driver_type = RC_DRIVER_IR_RAW;
1114
	rdev->allowed_protocols = RC_BIT_ALL;
1115 1116 1117 1118 1119
	rdev->open = nvt_open;
	rdev->close = nvt_close;
	rdev->tx_ir = nvt_tx_ir;
	rdev->s_tx_carrier = nvt_set_tx_carrier;
	rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1120
	rdev->input_phys = "nuvoton/cir0";
1121 1122 1123 1124
	rdev->input_id.bustype = BUS_HOST;
	rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
	rdev->input_id.product = nvt->chip_major;
	rdev->input_id.version = nvt->chip_minor;
1125
	rdev->dev.parent = &pdev->dev;
1126 1127
	rdev->driver_name = NVT_DRIVER_NAME;
	rdev->map_name = RC_MAP_RC6_MCE;
1128
	rdev->timeout = MS_TO_NS(100);
1129 1130
	/* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
	rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1131
#if 0
1132 1133
	rdev->min_timeout = XYZ;
	rdev->max_timeout = XYZ;
1134
	/* tx bits */
1135
	rdev->tx_resolution = XYZ;
1136
#endif
1137
	nvt->rdev = rdev;
1138

1139 1140 1141 1142
	ret = rc_register_device(rdev);
	if (ret)
		goto exit_free_dev_rdev;

1143 1144
	ret = -EBUSY;
	/* now claim resources */
1145
	if (!devm_request_region(&pdev->dev, nvt->cir_addr,
1146
			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1147
		goto exit_unregister_device;
1148

1149 1150 1151
	if (devm_request_irq(&pdev->dev, nvt->cir_irq, nvt_cir_isr,
			     IRQF_SHARED, NVT_DRIVER_NAME, (void *)nvt))
		goto exit_unregister_device;
1152

1153
	if (!devm_request_region(&pdev->dev, nvt->cir_wake_addr,
1154
			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME "-wake"))
1155
		goto exit_unregister_device;
1156

1157
	ret = device_create_file(&rdev->dev, &dev_attr_wakeup_data);
1158 1159 1160
	if (ret)
		goto exit_unregister_device;

1161
	device_init_wakeup(&pdev->dev, true);
1162

1163
	dev_notice(&pdev->dev, "driver has been successfully loaded\n");
1164 1165 1166 1167 1168 1169 1170
	if (debug) {
		cir_dump_regs(nvt);
		cir_wake_dump_regs(nvt);
	}

	return 0;

1171 1172
exit_unregister_device:
	rc_unregister_device(rdev);
1173
	rdev = NULL;
1174
exit_free_dev_rdev:
1175
	rc_free_device(rdev);
1176 1177 1178 1179

	return ret;
}

1180
static void nvt_remove(struct pnp_dev *pdev)
1181 1182 1183
{
	struct nvt_dev *nvt = pnp_get_drvdata(pdev);

1184
	device_remove_file(&nvt->rdev->dev, &dev_attr_wakeup_data);
1185

1186
	nvt_disable_cir(nvt);
1187

1188 1189 1190
	/* enable CIR Wake (for IR power-on) */
	nvt_enable_wake(nvt);

1191
	rc_unregister_device(nvt->rdev);
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
}

static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
{
	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
	unsigned long flags;

	nvt_dbg("%s called", __func__);

	spin_lock_irqsave(&nvt->tx.lock, flags);
	nvt->tx.tx_state = ST_TX_NONE;
	spin_unlock_irqrestore(&nvt->tx.lock, flags);

1205 1206 1207 1208 1209
	spin_lock_irqsave(&nvt->nvt_lock, flags);

	/* zero out misc state tracking */
	nvt->study_state = ST_STUDY_NONE;

1210 1211 1212
	/* disable all CIR interrupts */
	nvt_cir_reg_write(nvt, 0, CIR_IREN);

1213 1214
	spin_unlock_irqrestore(&nvt->nvt_lock, flags);

1215
	/* disable cir logical dev */
1216
	nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR);
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232

	/* make sure wake is enabled */
	nvt_enable_wake(nvt);

	return 0;
}

static int nvt_resume(struct pnp_dev *pdev)
{
	struct nvt_dev *nvt = pnp_get_drvdata(pdev);

	nvt_dbg("%s called", __func__);

	nvt_cir_regs_init(nvt);
	nvt_cir_wake_regs_init(nvt);

1233
	return 0;
1234 1235 1236 1237 1238
}

static void nvt_shutdown(struct pnp_dev *pdev)
{
	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1239

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	nvt_enable_wake(nvt);
}

static const struct pnp_device_id nvt_ids[] = {
	{ "WEC0530", 0 },   /* CIR */
	{ "NTN0530", 0 },   /* CIR for new chip's pnp id*/
	{ "", 0 },
};

static struct pnp_driver nvt_driver = {
	.name		= NVT_DRIVER_NAME,
	.id_table	= nvt_ids,
	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
	.probe		= nvt_probe,
1254
	.remove		= nvt_remove,
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	.suspend	= nvt_suspend,
	.resume		= nvt_resume,
	.shutdown	= nvt_shutdown,
};

module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Enable debugging output");

MODULE_DEVICE_TABLE(pnp, nvt_ids);
MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");

MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
MODULE_LICENSE("GPL");

1269
module_pnp_driver(nvt_driver);