journal.c 73.2 KB
Newer Older
1
/*
2
 * linux/fs/jbd2/journal.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
 *
 * Copyright 1998 Red Hat corp --- All Rights Reserved
 *
 * This file is part of the Linux kernel and is made available under
 * the terms of the GNU General Public License, version 2, or at your
 * option, any later version, incorporated herein by reference.
 *
 * Generic filesystem journal-writing code; part of the ext2fs
 * journaling system.
 *
 * This file manages journals: areas of disk reserved for logging
 * transactional updates.  This includes the kernel journaling thread
 * which is responsible for scheduling updates to the log.
 *
 * We do not actually manage the physical storage of the journal in this
 * file: that is left to a per-journal policy function, which allows us
 * to store the journal within a filesystem-specified area for ext2
 * journaling (ext2 can use a reserved inode for storing the log).
 */

#include <linux/module.h>
#include <linux/time.h>
#include <linux/fs.h>
28
#include <linux/jbd2.h>
29 30 31 32
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/mm.h>
33
#include <linux/freezer.h>
34 35 36 37
#include <linux/pagemap.h>
#include <linux/kthread.h>
#include <linux/poison.h>
#include <linux/proc_fs.h>
38
#include <linux/seq_file.h>
39
#include <linux/math64.h>
40
#include <linux/hash.h>
41 42
#include <linux/log2.h>
#include <linux/vmalloc.h>
43
#include <linux/backing-dev.h>
44
#include <linux/bitops.h>
45
#include <linux/ratelimit.h>
46 47 48

#define CREATE_TRACE_POINTS
#include <trace/events/jbd2.h>
49 50 51 52

#include <asm/uaccess.h>
#include <asm/page.h>

53 54 55 56 57 58 59 60
#ifdef CONFIG_JBD2_DEBUG
ushort jbd2_journal_enable_debug __read_mostly;
EXPORT_SYMBOL(jbd2_journal_enable_debug);

module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
#endif

61 62 63 64 65 66 67
EXPORT_SYMBOL(jbd2_journal_extend);
EXPORT_SYMBOL(jbd2_journal_stop);
EXPORT_SYMBOL(jbd2_journal_lock_updates);
EXPORT_SYMBOL(jbd2_journal_unlock_updates);
EXPORT_SYMBOL(jbd2_journal_get_write_access);
EXPORT_SYMBOL(jbd2_journal_get_create_access);
EXPORT_SYMBOL(jbd2_journal_get_undo_access);
J
Joel Becker 已提交
68
EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 70
EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
EXPORT_SYMBOL(jbd2_journal_forget);
71 72 73
#if 0
EXPORT_SYMBOL(journal_sync_buffer);
#endif
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
EXPORT_SYMBOL(jbd2_journal_flush);
EXPORT_SYMBOL(jbd2_journal_revoke);

EXPORT_SYMBOL(jbd2_journal_init_dev);
EXPORT_SYMBOL(jbd2_journal_init_inode);
EXPORT_SYMBOL(jbd2_journal_check_used_features);
EXPORT_SYMBOL(jbd2_journal_check_available_features);
EXPORT_SYMBOL(jbd2_journal_set_features);
EXPORT_SYMBOL(jbd2_journal_load);
EXPORT_SYMBOL(jbd2_journal_destroy);
EXPORT_SYMBOL(jbd2_journal_abort);
EXPORT_SYMBOL(jbd2_journal_errno);
EXPORT_SYMBOL(jbd2_journal_ack_err);
EXPORT_SYMBOL(jbd2_journal_clear_err);
EXPORT_SYMBOL(jbd2_log_wait_commit);
89
EXPORT_SYMBOL(jbd2_log_start_commit);
90 91 92 93 94 95 96
EXPORT_SYMBOL(jbd2_journal_start_commit);
EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
EXPORT_SYMBOL(jbd2_journal_wipe);
EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
EXPORT_SYMBOL(jbd2_journal_invalidatepage);
EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
EXPORT_SYMBOL(jbd2_journal_force_commit);
97 98 99 100
EXPORT_SYMBOL(jbd2_journal_file_inode);
EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
101
EXPORT_SYMBOL(jbd2_inode_cache);
102 103

static void __journal_abort_soft (journal_t *journal, int errno);
104
static int jbd2_journal_create_slab(size_t slab_size);
105

106 107 108 109 110 111 112 113 114
/* Checksumming functions */
int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
{
	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
		return 1;

	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
}

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
{
	__u32 csum, old_csum;

	old_csum = sb->s_checksum;
	sb->s_checksum = 0;
	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
	sb->s_checksum = old_csum;

	return cpu_to_be32(csum);
}

int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
{
	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
		return 1;

	return sb->s_checksum == jbd2_superblock_csum(j, sb);
}

void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
{
	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
		return;

	sb->s_checksum = jbd2_superblock_csum(j, sb);
}

143 144 145 146 147 148 149 150 151 152 153 154
/*
 * Helper function used to manage commit timeouts
 */

static void commit_timeout(unsigned long __data)
{
	struct task_struct * p = (struct task_struct *) __data;

	wake_up_process(p);
}

/*
155
 * kjournald2: The main thread function used to manage a logging device
156 157 158 159 160 161 162 163 164 165 166 167 168 169
 * journal.
 *
 * This kernel thread is responsible for two things:
 *
 * 1) COMMIT:  Every so often we need to commit the current state of the
 *    filesystem to disk.  The journal thread is responsible for writing
 *    all of the metadata buffers to disk.
 *
 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
 *    of the data in that part of the log has been rewritten elsewhere on
 *    the disk.  Flushing these old buffers to reclaim space in the log is
 *    known as checkpointing, and this thread is responsible for that job.
 */

170
static int kjournald2(void *arg)
171 172 173 174 175 176 177 178 179 180 181
{
	journal_t *journal = arg;
	transaction_t *transaction;

	/*
	 * Set up an interval timer which can be used to trigger a commit wakeup
	 * after the commit interval expires
	 */
	setup_timer(&journal->j_commit_timer, commit_timeout,
			(unsigned long)current);

182 183
	set_freezable();

184 185 186 187 188 189 190
	/* Record that the journal thread is running */
	journal->j_task = current;
	wake_up(&journal->j_wait_done_commit);

	/*
	 * And now, wait forever for commit wakeup events.
	 */
191
	write_lock(&journal->j_state_lock);
192 193

loop:
194
	if (journal->j_flags & JBD2_UNMOUNT)
195 196 197 198 199 200 201
		goto end_loop;

	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
		journal->j_commit_sequence, journal->j_commit_request);

	if (journal->j_commit_sequence != journal->j_commit_request) {
		jbd_debug(1, "OK, requests differ\n");
202
		write_unlock(&journal->j_state_lock);
203
		del_timer_sync(&journal->j_commit_timer);
204
		jbd2_journal_commit_transaction(journal);
205
		write_lock(&journal->j_state_lock);
206 207 208 209 210 211 212 213 214 215
		goto loop;
	}

	wake_up(&journal->j_wait_done_commit);
	if (freezing(current)) {
		/*
		 * The simpler the better. Flushing journal isn't a
		 * good idea, because that depends on threads that may
		 * be already stopped.
		 */
216
		jbd_debug(1, "Now suspending kjournald2\n");
217
		write_unlock(&journal->j_state_lock);
218
		try_to_freeze();
219
		write_lock(&journal->j_state_lock);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
	} else {
		/*
		 * We assume on resume that commits are already there,
		 * so we don't sleep
		 */
		DEFINE_WAIT(wait);
		int should_sleep = 1;

		prepare_to_wait(&journal->j_wait_commit, &wait,
				TASK_INTERRUPTIBLE);
		if (journal->j_commit_sequence != journal->j_commit_request)
			should_sleep = 0;
		transaction = journal->j_running_transaction;
		if (transaction && time_after_eq(jiffies,
						transaction->t_expires))
			should_sleep = 0;
236
		if (journal->j_flags & JBD2_UNMOUNT)
237 238
			should_sleep = 0;
		if (should_sleep) {
239
			write_unlock(&journal->j_state_lock);
240
			schedule();
241
			write_lock(&journal->j_state_lock);
242 243 244 245
		}
		finish_wait(&journal->j_wait_commit, &wait);
	}

246
	jbd_debug(1, "kjournald2 wakes\n");
247 248 249 250 251 252 253 254 255 256 257 258

	/*
	 * Were we woken up by a commit wakeup event?
	 */
	transaction = journal->j_running_transaction;
	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
		journal->j_commit_request = transaction->t_tid;
		jbd_debug(1, "woke because of timeout\n");
	}
	goto loop;

end_loop:
259
	write_unlock(&journal->j_state_lock);
260 261 262 263 264 265 266
	del_timer_sync(&journal->j_commit_timer);
	journal->j_task = NULL;
	wake_up(&journal->j_wait_done_commit);
	jbd_debug(1, "Journal thread exiting.\n");
	return 0;
}

267
static int jbd2_journal_start_thread(journal_t *journal)
268
{
269 270
	struct task_struct *t;

271 272
	t = kthread_run(kjournald2, journal, "jbd2/%s",
			journal->j_devname);
273 274 275
	if (IS_ERR(t))
		return PTR_ERR(t);

A
Al Viro 已提交
276
	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
277
	return 0;
278 279 280 281
}

static void journal_kill_thread(journal_t *journal)
{
282
	write_lock(&journal->j_state_lock);
283
	journal->j_flags |= JBD2_UNMOUNT;
284 285 286

	while (journal->j_task) {
		wake_up(&journal->j_wait_commit);
287
		write_unlock(&journal->j_state_lock);
A
Al Viro 已提交
288
		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
289
		write_lock(&journal->j_state_lock);
290
	}
291
	write_unlock(&journal->j_state_lock);
292 293 294
}

/*
295
 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
296 297 298 299 300 301 302
 *
 * Writes a metadata buffer to a given disk block.  The actual IO is not
 * performed but a new buffer_head is constructed which labels the data
 * to be written with the correct destination disk block.
 *
 * Any magic-number escaping which needs to be done will cause a
 * copy-out here.  If the buffer happens to start with the
303
 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
304 305 306 307 308 309 310 311 312
 * magic number is only written to the log for descripter blocks.  In
 * this case, we copy the data and replace the first word with 0, and we
 * return a result code which indicates that this buffer needs to be
 * marked as an escaped buffer in the corresponding log descriptor
 * block.  The missing word can then be restored when the block is read
 * during recovery.
 *
 * If the source buffer has already been modified by a new transaction
 * since we took the last commit snapshot, we use the frozen copy of
313 314 315
 * that data for IO. If we end up using the existing buffer_head's data
 * for the write, then we have to make sure nobody modifies it while the
 * IO is in progress. do_get_write_access() handles this.
316
 *
317 318
 * The function returns a pointer to the buffer_head to be used for IO.
 * 
319 320 321 322 323 324 325 326 327 328
 *
 * Return value:
 *  <0: Error
 * >=0: Finished OK
 *
 * On success:
 * Bit 0 set == escape performed on the data
 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
 */

329
int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
330
				  struct journal_head  *jh_in,
331 332
				  struct buffer_head **bh_out,
				  sector_t blocknr)
333 334 335 336 337 338 339 340 341
{
	int need_copy_out = 0;
	int done_copy_out = 0;
	int do_escape = 0;
	char *mapped_data;
	struct buffer_head *new_bh;
	struct page *new_page;
	unsigned int new_offset;
	struct buffer_head *bh_in = jh2bh(jh_in);
342
	journal_t *journal = transaction->t_journal;
343 344 345 346 347 348 349 350 351 352 353 354

	/*
	 * The buffer really shouldn't be locked: only the current committing
	 * transaction is allowed to write it, so nobody else is allowed
	 * to do any IO.
	 *
	 * akpm: except if we're journalling data, and write() output is
	 * also part of a shared mapping, and another thread has
	 * decided to launch a writepage() against this buffer.
	 */
	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));

355 356 357 358 359 360 361 362 363 364 365
retry_alloc:
	new_bh = alloc_buffer_head(GFP_NOFS);
	if (!new_bh) {
		/*
		 * Failure is not an option, but __GFP_NOFAIL is going
		 * away; so we retry ourselves here.
		 */
		congestion_wait(BLK_RW_ASYNC, HZ/50);
		goto retry_alloc;
	}

366 367
	/* keep subsequent assertions sane */
	atomic_set(&new_bh->b_count, 1);
368

369 370
	jbd_lock_bh_state(bh_in);
repeat:
371 372 373 374 375 376 377 378 379 380 381 382 383
	/*
	 * If a new transaction has already done a buffer copy-out, then
	 * we use that version of the data for the commit.
	 */
	if (jh_in->b_frozen_data) {
		done_copy_out = 1;
		new_page = virt_to_page(jh_in->b_frozen_data);
		new_offset = offset_in_page(jh_in->b_frozen_data);
	} else {
		new_page = jh2bh(jh_in)->b_page;
		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
	}

384
	mapped_data = kmap_atomic(new_page);
J
Joel Becker 已提交
385
	/*
386 387 388 389
	 * Fire data frozen trigger if data already wasn't frozen.  Do this
	 * before checking for escaping, as the trigger may modify the magic
	 * offset.  If a copy-out happens afterwards, it will have the correct
	 * data in the buffer.
J
Joel Becker 已提交
390
	 */
391 392 393
	if (!done_copy_out)
		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
					   jh_in->b_triggers);
J
Joel Becker 已提交
394

395 396 397 398
	/*
	 * Check for escaping
	 */
	if (*((__be32 *)(mapped_data + new_offset)) ==
399
				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400 401 402
		need_copy_out = 1;
		do_escape = 1;
	}
403
	kunmap_atomic(mapped_data);
404 405 406 407 408 409 410 411

	/*
	 * Do we need to do a data copy?
	 */
	if (need_copy_out && !done_copy_out) {
		char *tmp;

		jbd_unlock_bh_state(bh_in);
M
Mingming Cao 已提交
412
		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413
		if (!tmp) {
414
			brelse(new_bh);
415 416
			return -ENOMEM;
		}
417 418
		jbd_lock_bh_state(bh_in);
		if (jh_in->b_frozen_data) {
M
Mingming Cao 已提交
419
			jbd2_free(tmp, bh_in->b_size);
420 421 422 423
			goto repeat;
		}

		jh_in->b_frozen_data = tmp;
424
		mapped_data = kmap_atomic(new_page);
425
		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426
		kunmap_atomic(mapped_data);
427 428 429 430

		new_page = virt_to_page(tmp);
		new_offset = offset_in_page(tmp);
		done_copy_out = 1;
J
Joel Becker 已提交
431 432 433 434 435 436 437

		/*
		 * This isn't strictly necessary, as we're using frozen
		 * data for the escaping, but it keeps consistency with
		 * b_frozen_data usage.
		 */
		jh_in->b_frozen_triggers = jh_in->b_triggers;
438 439 440 441 442 443 444
	}

	/*
	 * Did we need to do an escaping?  Now we've done all the
	 * copying, we can finally do so.
	 */
	if (do_escape) {
445
		mapped_data = kmap_atomic(new_page);
446
		*((unsigned int *)(mapped_data + new_offset)) = 0;
447
		kunmap_atomic(mapped_data);
448 449 450
	}

	set_bh_page(new_bh, new_page, new_offset);
451 452
	new_bh->b_size = bh_in->b_size;
	new_bh->b_bdev = journal->j_dev;
453
	new_bh->b_blocknr = blocknr;
454
	new_bh->b_private = bh_in;
455 456 457
	set_buffer_mapped(new_bh);
	set_buffer_dirty(new_bh);

458
	*bh_out = new_bh;
459 460 461 462 463 464 465

	/*
	 * The to-be-written buffer needs to get moved to the io queue,
	 * and the original buffer whose contents we are shadowing or
	 * copying is moved to the transaction's shadow queue.
	 */
	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466 467 468
	spin_lock(&journal->j_list_lock);
	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
	spin_unlock(&journal->j_list_lock);
469
	set_buffer_shadow(bh_in);
470 471
	jbd_unlock_bh_state(bh_in);

472 473 474 475 476 477 478 479 480
	return do_escape | (done_copy_out << 1);
}

/*
 * Allocation code for the journal file.  Manage the space left in the
 * journal, so that we can begin checkpointing when appropriate.
 */

/*
481 482
 * Called with j_state_lock locked for writing.
 * Returns true if a transaction commit was started.
483
 */
484
int __jbd2_log_start_commit(journal_t *journal, tid_t target)
485
{
486 487 488 489
	/* Return if the txn has already requested to be committed */
	if (journal->j_commit_request == target)
		return 0;

490
	/*
491 492 493
	 * The only transaction we can possibly wait upon is the
	 * currently running transaction (if it exists).  Otherwise,
	 * the target tid must be an old one.
494
	 */
495 496
	if (journal->j_running_transaction &&
	    journal->j_running_transaction->t_tid == target) {
497
		/*
A
Andrea Gelmini 已提交
498
		 * We want a new commit: OK, mark the request and wakeup the
499 500 501 502
		 * commit thread.  We do _not_ do the commit ourselves.
		 */

		journal->j_commit_request = target;
E
Eryu Guan 已提交
503
		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
504 505
			  journal->j_commit_request,
			  journal->j_commit_sequence);
506
		journal->j_running_transaction->t_requested = jiffies;
507 508
		wake_up(&journal->j_wait_commit);
		return 1;
509 510 511 512
	} else if (!tid_geq(journal->j_commit_request, target))
		/* This should never happen, but if it does, preserve
		   the evidence before kjournald goes into a loop and
		   increments j_commit_sequence beyond all recognition. */
E
Eryu Guan 已提交
513
		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
514 515 516 517
			  journal->j_commit_request,
			  journal->j_commit_sequence,
			  target, journal->j_running_transaction ? 
			  journal->j_running_transaction->t_tid : 0);
518 519 520
	return 0;
}

521
int jbd2_log_start_commit(journal_t *journal, tid_t tid)
522 523 524
{
	int ret;

525
	write_lock(&journal->j_state_lock);
526
	ret = __jbd2_log_start_commit(journal, tid);
527
	write_unlock(&journal->j_state_lock);
528 529 530 531
	return ret;
}

/*
532 533 534 535 536
 * Force and wait any uncommitted transactions.  We can only force the running
 * transaction if we don't have an active handle, otherwise, we will deadlock.
 * Returns: <0 in case of error,
 *           0 if nothing to commit,
 *           1 if transaction was successfully committed.
537
 */
538
static int __jbd2_journal_force_commit(journal_t *journal)
539 540 541
{
	transaction_t *transaction = NULL;
	tid_t tid;
542
	int need_to_start = 0, ret = 0;
543

544
	read_lock(&journal->j_state_lock);
545 546
	if (journal->j_running_transaction && !current->journal_info) {
		transaction = journal->j_running_transaction;
547 548
		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
			need_to_start = 1;
549 550 551 552
	} else if (journal->j_committing_transaction)
		transaction = journal->j_committing_transaction;

	if (!transaction) {
553
		/* Nothing to commit */
554
		read_unlock(&journal->j_state_lock);
555
		return 0;
556 557
	}
	tid = transaction->t_tid;
558
	read_unlock(&journal->j_state_lock);
559 560
	if (need_to_start)
		jbd2_log_start_commit(journal, tid);
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
	ret = jbd2_log_wait_commit(journal, tid);
	if (!ret)
		ret = 1;

	return ret;
}

/**
 * Force and wait upon a commit if the calling process is not within
 * transaction.  This is used for forcing out undo-protected data which contains
 * bitmaps, when the fs is running out of space.
 *
 * @journal: journal to force
 * Returns true if progress was made.
 */
int jbd2_journal_force_commit_nested(journal_t *journal)
{
	int ret;

	ret = __jbd2_journal_force_commit(journal);
	return ret > 0;
}

/**
 * int journal_force_commit() - force any uncommitted transactions
 * @journal: journal to force
 *
 * Caller want unconditional commit. We can only force the running transaction
 * if we don't have an active handle, otherwise, we will deadlock.
 */
int jbd2_journal_force_commit(journal_t *journal)
{
	int ret;

	J_ASSERT(!current->journal_info);
	ret = __jbd2_journal_force_commit(journal);
	if (ret > 0)
		ret = 0;
	return ret;
600 601 602 603
}

/*
 * Start a commit of the current running transaction (if any).  Returns true
604 605
 * if a transaction is going to be committed (or is currently already
 * committing), and fills its tid in at *ptid
606
 */
607
int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
608 609 610
{
	int ret = 0;

611
	write_lock(&journal->j_state_lock);
612 613 614
	if (journal->j_running_transaction) {
		tid_t tid = journal->j_running_transaction->t_tid;

615 616 617 618
		__jbd2_log_start_commit(journal, tid);
		/* There's a running transaction and we've just made sure
		 * it's commit has been scheduled. */
		if (ptid)
619
			*ptid = tid;
620 621
		ret = 1;
	} else if (journal->j_committing_transaction) {
622
		/*
623 624
		 * If commit has been started, then we have to wait for
		 * completion of that transaction.
625
		 */
626 627
		if (ptid)
			*ptid = journal->j_committing_transaction->t_tid;
628 629
		ret = 1;
	}
630
	write_unlock(&journal->j_state_lock);
631 632 633
	return ret;
}

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
/*
 * Return 1 if a given transaction has not yet sent barrier request
 * connected with a transaction commit. If 0 is returned, transaction
 * may or may not have sent the barrier. Used to avoid sending barrier
 * twice in common cases.
 */
int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
{
	int ret = 0;
	transaction_t *commit_trans;

	if (!(journal->j_flags & JBD2_BARRIER))
		return 0;
	read_lock(&journal->j_state_lock);
	/* Transaction already committed? */
	if (tid_geq(journal->j_commit_sequence, tid))
		goto out;
	commit_trans = journal->j_committing_transaction;
	if (!commit_trans || commit_trans->t_tid != tid) {
		ret = 1;
		goto out;
	}
	/*
	 * Transaction is being committed and we already proceeded to
	 * submitting a flush to fs partition?
	 */
	if (journal->j_fs_dev != journal->j_dev) {
		if (!commit_trans->t_need_data_flush ||
		    commit_trans->t_state >= T_COMMIT_DFLUSH)
			goto out;
	} else {
		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
			goto out;
	}
	ret = 1;
out:
	read_unlock(&journal->j_state_lock);
	return ret;
}
EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);

675 676 677 678
/*
 * Wait for a specified commit to complete.
 * The caller may not hold the journal lock.
 */
679
int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
680 681 682
{
	int err = 0;

683
	read_lock(&journal->j_state_lock);
684
#ifdef CONFIG_JBD2_DEBUG
685 686 687
	if (!tid_geq(journal->j_commit_request, tid)) {
		printk(KERN_EMERG
		       "%s: error: j_commit_request=%d, tid=%d\n",
688
		       __func__, journal->j_commit_request, tid);
689 690 691
	}
#endif
	while (tid_gt(tid, journal->j_commit_sequence)) {
E
Eryu Guan 已提交
692
		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
693 694
				  tid, journal->j_commit_sequence);
		wake_up(&journal->j_wait_commit);
695
		read_unlock(&journal->j_state_lock);
696 697
		wait_event(journal->j_wait_done_commit,
				!tid_gt(tid, journal->j_commit_sequence));
698
		read_lock(&journal->j_state_lock);
699
	}
700
	read_unlock(&journal->j_state_lock);
701 702 703 704 705 706 707 708

	if (unlikely(is_journal_aborted(journal))) {
		printk(KERN_EMERG "journal commit I/O error\n");
		err = -EIO;
	}
	return err;
}

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
/*
 * When this function returns the transaction corresponding to tid
 * will be completed.  If the transaction has currently running, start
 * committing that transaction before waiting for it to complete.  If
 * the transaction id is stale, it is by definition already completed,
 * so just return SUCCESS.
 */
int jbd2_complete_transaction(journal_t *journal, tid_t tid)
{
	int	need_to_wait = 1;

	read_lock(&journal->j_state_lock);
	if (journal->j_running_transaction &&
	    journal->j_running_transaction->t_tid == tid) {
		if (journal->j_commit_request != tid) {
			/* transaction not yet started, so request it */
			read_unlock(&journal->j_state_lock);
			jbd2_log_start_commit(journal, tid);
			goto wait_commit;
		}
	} else if (!(journal->j_committing_transaction &&
		     journal->j_committing_transaction->t_tid == tid))
		need_to_wait = 0;
	read_unlock(&journal->j_state_lock);
	if (!need_to_wait)
		return 0;
wait_commit:
	return jbd2_log_wait_commit(journal, tid);
}
EXPORT_SYMBOL(jbd2_complete_transaction);

740 741 742 743
/*
 * Log buffer allocation routines:
 */

744
int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
745 746 747
{
	unsigned long blocknr;

748
	write_lock(&journal->j_state_lock);
749 750 751 752 753 754 755
	J_ASSERT(journal->j_free > 1);

	blocknr = journal->j_head;
	journal->j_head++;
	journal->j_free--;
	if (journal->j_head == journal->j_last)
		journal->j_head = journal->j_first;
756
	write_unlock(&journal->j_state_lock);
757
	return jbd2_journal_bmap(journal, blocknr, retp);
758 759 760 761 762 763 764 765 766
}

/*
 * Conversion of logical to physical block numbers for the journal
 *
 * On external journals the journal blocks are identity-mapped, so
 * this is a no-op.  If needed, we can use j_blk_offset - everything is
 * ready.
 */
767
int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
768
		 unsigned long long *retp)
769 770
{
	int err = 0;
771
	unsigned long long ret;
772 773 774 775 776 777 778 779

	if (journal->j_inode) {
		ret = bmap(journal->j_inode, blocknr);
		if (ret)
			*retp = ret;
		else {
			printk(KERN_ALERT "%s: journal block not found "
					"at offset %lu on %s\n",
780
			       __func__, blocknr, journal->j_devname);
781 782 783 784 785 786 787 788 789 790 791 792 793 794
			err = -EIO;
			__journal_abort_soft(journal, err);
		}
	} else {
		*retp = blocknr; /* +journal->j_blk_offset */
	}
	return err;
}

/*
 * We play buffer_head aliasing tricks to write data/metadata blocks to
 * the journal without copying their contents, but for journal
 * descriptor blocks we do need to generate bona fide buffers.
 *
795
 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
796 797 798 799
 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
 * But we don't bother doing that, so there will be coherency problems with
 * mmaps of blockdevs which hold live JBD-controlled filesystems.
 */
800
struct buffer_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
801 802
{
	struct buffer_head *bh;
803
	unsigned long long blocknr;
804 805
	int err;

806
	err = jbd2_journal_next_log_block(journal, &blocknr);
807 808 809 810 811

	if (err)
		return NULL;

	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
812 813
	if (!bh)
		return NULL;
814 815 816 817 818
	lock_buffer(bh);
	memset(bh->b_data, 0, journal->j_blocksize);
	set_buffer_uptodate(bh);
	unlock_buffer(bh);
	BUFFER_TRACE(bh, "return this buffer");
819
	return bh;
820 821
}

822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
/*
 * Return tid of the oldest transaction in the journal and block in the journal
 * where the transaction starts.
 *
 * If the journal is now empty, return which will be the next transaction ID
 * we will write and where will that transaction start.
 *
 * The return value is 0 if journal tail cannot be pushed any further, 1 if
 * it can.
 */
int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
			      unsigned long *block)
{
	transaction_t *transaction;
	int ret;

	read_lock(&journal->j_state_lock);
	spin_lock(&journal->j_list_lock);
	transaction = journal->j_checkpoint_transactions;
	if (transaction) {
		*tid = transaction->t_tid;
		*block = transaction->t_log_start;
	} else if ((transaction = journal->j_committing_transaction) != NULL) {
		*tid = transaction->t_tid;
		*block = transaction->t_log_start;
	} else if ((transaction = journal->j_running_transaction) != NULL) {
		*tid = transaction->t_tid;
		*block = journal->j_head;
	} else {
		*tid = journal->j_transaction_sequence;
		*block = journal->j_head;
	}
	ret = tid_gt(*tid, journal->j_tail_sequence);
	spin_unlock(&journal->j_list_lock);
	read_unlock(&journal->j_state_lock);

	return ret;
}

/*
 * Update information in journal structure and in on disk journal superblock
 * about log tail. This function does not check whether information passed in
 * really pushes log tail further. It's responsibility of the caller to make
 * sure provided log tail information is valid (e.g. by holding
 * j_checkpoint_mutex all the time between computing log tail and calling this
 * function as is the case with jbd2_cleanup_journal_tail()).
 *
 * Requires j_checkpoint_mutex
 */
void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
{
	unsigned long freed;

	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));

	/*
	 * We cannot afford for write to remain in drive's caches since as
	 * soon as we update j_tail, next transaction can start reusing journal
	 * space and if we lose sb update during power failure we'd replay
	 * old transaction with possibly newly overwritten data.
	 */
	jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
	write_lock(&journal->j_state_lock);
	freed = block - journal->j_tail;
	if (block < journal->j_tail)
		freed += journal->j_last - journal->j_first;

	trace_jbd2_update_log_tail(journal, tid, block, freed);
	jbd_debug(1,
		  "Cleaning journal tail from %d to %d (offset %lu), "
		  "freeing %lu\n",
		  journal->j_tail_sequence, tid, block, freed);

	journal->j_free += freed;
	journal->j_tail_sequence = tid;
	journal->j_tail = block;
	write_unlock(&journal->j_state_lock);
}

901 902 903 904 905 906 907 908 909 910 911 912 913
/*
 * This is a variaon of __jbd2_update_log_tail which checks for validity of
 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
 * with other threads updating log tail.
 */
void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
{
	mutex_lock(&journal->j_checkpoint_mutex);
	if (tid_gt(tid, journal->j_tail_sequence))
		__jbd2_update_log_tail(journal, tid, block);
	mutex_unlock(&journal->j_checkpoint_mutex);
}

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
struct jbd2_stats_proc_session {
	journal_t *journal;
	struct transaction_stats_s *stats;
	int start;
	int max;
};

static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
{
	return *pos ? NULL : SEQ_START_TOKEN;
}

static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
{
	return NULL;
}

static int jbd2_seq_info_show(struct seq_file *seq, void *v)
{
	struct jbd2_stats_proc_session *s = seq->private;

	if (v != SEQ_START_TOKEN)
		return 0;
937 938 939 940
	seq_printf(seq, "%lu transactions (%lu requested), "
		   "each up to %u blocks\n",
		   s->stats->ts_tid, s->stats->ts_requested,
		   s->journal->j_max_transaction_buffers);
941 942 943
	if (s->stats->ts_tid == 0)
		return 0;
	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
944
	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
945 946 947 948
	seq_printf(seq, "  %ums request delay\n",
	    (s->stats->ts_requested == 0) ? 0 :
	    jiffies_to_msecs(s->stats->run.rs_request_delay /
			     s->stats->ts_requested));
949
	seq_printf(seq, "  %ums running transaction\n",
950
	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
951
	seq_printf(seq, "  %ums transaction was being locked\n",
952
	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
953
	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
954
	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
955
	seq_printf(seq, "  %ums logging transaction\n",
956
	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
957 958
	seq_printf(seq, "  %lluus average transaction commit time\n",
		   div_u64(s->journal->j_average_commit_time, 1000));
959
	seq_printf(seq, "  %lu handles per transaction\n",
960
	    s->stats->run.rs_handle_count / s->stats->ts_tid);
961
	seq_printf(seq, "  %lu blocks per transaction\n",
962
	    s->stats->run.rs_blocks / s->stats->ts_tid);
963
	seq_printf(seq, "  %lu logged blocks per transaction\n",
964
	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
965 966 967 968 969 970 971
	return 0;
}

static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
{
}

J
James Morris 已提交
972
static const struct seq_operations jbd2_seq_info_ops = {
973 974 975 976 977 978 979 980
	.start  = jbd2_seq_info_start,
	.next   = jbd2_seq_info_next,
	.stop   = jbd2_seq_info_stop,
	.show   = jbd2_seq_info_show,
};

static int jbd2_seq_info_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
981
	journal_t *journal = PDE_DATA(inode);
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	struct jbd2_stats_proc_session *s;
	int rc, size;

	s = kmalloc(sizeof(*s), GFP_KERNEL);
	if (s == NULL)
		return -ENOMEM;
	size = sizeof(struct transaction_stats_s);
	s->stats = kmalloc(size, GFP_KERNEL);
	if (s->stats == NULL) {
		kfree(s);
		return -ENOMEM;
	}
	spin_lock(&journal->j_history_lock);
	memcpy(s->stats, &journal->j_stats, size);
	s->journal = journal;
	spin_unlock(&journal->j_history_lock);

	rc = seq_open(file, &jbd2_seq_info_ops);
	if (rc == 0) {
		struct seq_file *m = file->private_data;
		m->private = s;
	} else {
		kfree(s->stats);
		kfree(s);
	}
	return rc;

}

static int jbd2_seq_info_release(struct inode *inode, struct file *file)
{
	struct seq_file *seq = file->private_data;
	struct jbd2_stats_proc_session *s = seq->private;
	kfree(s->stats);
	kfree(s);
	return seq_release(inode, file);
}

1020
static const struct file_operations jbd2_seq_info_fops = {
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	.owner		= THIS_MODULE,
	.open           = jbd2_seq_info_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = jbd2_seq_info_release,
};

static struct proc_dir_entry *proc_jbd2_stats;

static void jbd2_stats_proc_init(journal_t *journal)
{
1032
	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1033
	if (journal->j_proc_entry) {
1034 1035
		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
				 &jbd2_seq_info_fops, journal);
1036 1037 1038 1039 1040 1041
	}
}

static void jbd2_stats_proc_exit(journal_t *journal)
{
	remove_proc_entry("info", journal->j_proc_entry);
1042
	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1043 1044
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
/*
 * Management for journal control blocks: functions to create and
 * destroy journal_t structures, and to initialise and read existing
 * journal blocks from disk.  */

/* First: create and setup a journal_t object in memory.  We initialise
 * very few fields yet: that has to wait until we have created the
 * journal structures from from scratch, or loaded them from disk. */

static journal_t * journal_init_common (void)
{
	journal_t *journal;
	int err;

1059
	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1060
	if (!journal)
1061
		return NULL;
1062 1063 1064 1065 1066

	init_waitqueue_head(&journal->j_wait_transaction_locked);
	init_waitqueue_head(&journal->j_wait_done_commit);
	init_waitqueue_head(&journal->j_wait_commit);
	init_waitqueue_head(&journal->j_wait_updates);
J
Jan Kara 已提交
1067
	init_waitqueue_head(&journal->j_wait_reserved);
1068 1069 1070 1071
	mutex_init(&journal->j_barrier);
	mutex_init(&journal->j_checkpoint_mutex);
	spin_lock_init(&journal->j_revoke_lock);
	spin_lock_init(&journal->j_list_lock);
1072
	rwlock_init(&journal->j_state_lock);
1073

1074
	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1075 1076
	journal->j_min_batch_time = 0;
	journal->j_max_batch_time = 15000; /* 15ms */
J
Jan Kara 已提交
1077
	atomic_set(&journal->j_reserved_credits, 0);
1078 1079

	/* The journal is marked for error until we succeed with recovery! */
1080
	journal->j_flags = JBD2_ABORT;
1081 1082

	/* Set up a default-sized revoke table for the new mount. */
1083
	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1084 1085
	if (err) {
		kfree(journal);
1086
		return NULL;
1087
	}
1088

1089
	spin_lock_init(&journal->j_history_lock);
1090

1091 1092 1093
	return journal;
}

1094
/* jbd2_journal_init_dev and jbd2_journal_init_inode:
1095 1096 1097 1098 1099 1100 1101 1102 1103
 *
 * Create a journal structure assigned some fixed set of disk blocks to
 * the journal.  We don't actually touch those disk blocks yet, but we
 * need to set up all of the mapping information to tell the journaling
 * system where the journal blocks are.
 *
 */

/**
R
Randy Dunlap 已提交
1104
 *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1105 1106 1107 1108 1109
 *  @bdev: Block device on which to create the journal
 *  @fs_dev: Device which hold journalled filesystem for this journal.
 *  @start: Block nr Start of journal.
 *  @len:  Length of the journal in blocks.
 *  @blocksize: blocksize of journalling device
R
Randy Dunlap 已提交
1110 1111
 *
 *  Returns: a newly created journal_t *
1112
 *
1113
 *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1114 1115 1116
 *  range of blocks on an arbitrary block device.
 *
 */
1117
journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1118
			struct block_device *fs_dev,
1119
			unsigned long long start, int len, int blocksize)
1120 1121 1122
{
	journal_t *journal = journal_init_common();
	struct buffer_head *bh;
1123
	char *p;
1124 1125 1126 1127 1128 1129 1130
	int n;

	if (!journal)
		return NULL;

	/* journal descriptor can store up to n blocks -bzzz */
	journal->j_blocksize = blocksize;
1131 1132 1133 1134 1135 1136 1137 1138
	journal->j_dev = bdev;
	journal->j_fs_dev = fs_dev;
	journal->j_blk_offset = start;
	journal->j_maxlen = len;
	bdevname(journal->j_dev, journal->j_devname);
	p = journal->j_devname;
	while ((p = strchr(p, '/')))
		*p = '!';
1139
	jbd2_stats_proc_init(journal);
1140 1141 1142 1143
	n = journal->j_blocksize / sizeof(journal_block_tag_t);
	journal->j_wbufsize = n;
	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
	if (!journal->j_wbuf) {
L
Lucas De Marchi 已提交
1144
		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1145
			__func__);
1146
		goto out_err;
1147 1148 1149
	}

	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1150 1151 1152 1153 1154 1155
	if (!bh) {
		printk(KERN_ERR
		       "%s: Cannot get buffer for journal superblock\n",
		       __func__);
		goto out_err;
	}
1156 1157
	journal->j_sb_buffer = bh;
	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1158

1159
	return journal;
1160
out_err:
1161
	kfree(journal->j_wbuf);
1162 1163 1164
	jbd2_stats_proc_exit(journal);
	kfree(journal);
	return NULL;
1165 1166 1167
}

/**
1168
 *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1169 1170
 *  @inode: An inode to create the journal in
 *
1171
 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1172 1173 1174
 * the journal.  The inode must exist already, must support bmap() and
 * must have all data blocks preallocated.
 */
1175
journal_t * jbd2_journal_init_inode (struct inode *inode)
1176 1177 1178
{
	struct buffer_head *bh;
	journal_t *journal = journal_init_common();
1179
	char *p;
1180 1181
	int err;
	int n;
1182
	unsigned long long blocknr;
1183 1184 1185 1186 1187 1188

	if (!journal)
		return NULL;

	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
	journal->j_inode = inode;
1189 1190 1191 1192 1193
	bdevname(journal->j_dev, journal->j_devname);
	p = journal->j_devname;
	while ((p = strchr(p, '/')))
		*p = '!';
	p = journal->j_devname + strlen(journal->j_devname);
1194
	sprintf(p, "-%lu", journal->j_inode->i_ino);
1195 1196 1197 1198 1199 1200 1201 1202
	jbd_debug(1,
		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
		  journal, inode->i_sb->s_id, inode->i_ino,
		  (long long) inode->i_size,
		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);

	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
	journal->j_blocksize = inode->i_sb->s_blocksize;
1203
	jbd2_stats_proc_init(journal);
1204 1205 1206 1207 1208 1209

	/* journal descriptor can store up to n blocks -bzzz */
	n = journal->j_blocksize / sizeof(journal_block_tag_t);
	journal->j_wbufsize = n;
	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
	if (!journal->j_wbuf) {
L
Lucas De Marchi 已提交
1210
		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1211
			__func__);
1212
		goto out_err;
1213 1214
	}

1215
	err = jbd2_journal_bmap(journal, 0, &blocknr);
1216 1217
	/* If that failed, give up */
	if (err) {
1218
		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1219
		       __func__);
1220
		goto out_err;
1221 1222 1223
	}

	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1224 1225 1226 1227 1228 1229
	if (!bh) {
		printk(KERN_ERR
		       "%s: Cannot get buffer for journal superblock\n",
		       __func__);
		goto out_err;
	}
1230 1231 1232 1233
	journal->j_sb_buffer = bh;
	journal->j_superblock = (journal_superblock_t *)bh->b_data;

	return journal;
1234
out_err:
1235
	kfree(journal->j_wbuf);
1236 1237 1238
	jbd2_stats_proc_exit(journal);
	kfree(journal);
	return NULL;
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
}

/*
 * If the journal init or create aborts, we need to mark the journal
 * superblock as being NULL to prevent the journal destroy from writing
 * back a bogus superblock.
 */
static void journal_fail_superblock (journal_t *journal)
{
	struct buffer_head *bh = journal->j_sb_buffer;
	brelse(bh);
	journal->j_sb_buffer = NULL;
}

/*
 * Given a journal_t structure, initialise the various fields for
 * startup of a new journaling session.  We use this both when creating
 * a journal, and after recovering an old journal to reset it for
 * subsequent use.
 */

static int journal_reset(journal_t *journal)
{
	journal_superblock_t *sb = journal->j_superblock;
1263
	unsigned long long first, last;
1264 1265 1266

	first = be32_to_cpu(sb->s_first);
	last = be32_to_cpu(sb->s_maxlen);
1267
	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
E
Eryu Guan 已提交
1268
		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1269 1270 1271 1272
		       first, last);
		journal_fail_superblock(journal);
		return -EINVAL;
	}
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288

	journal->j_first = first;
	journal->j_last = last;

	journal->j_head = first;
	journal->j_tail = first;
	journal->j_free = last - first;

	journal->j_tail_sequence = journal->j_transaction_sequence;
	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
	journal->j_commit_request = journal->j_commit_sequence;

	journal->j_max_transaction_buffers = journal->j_maxlen / 4;

	/*
	 * As a special case, if the on-disk copy is already marked as needing
1289 1290
	 * no recovery (s_start == 0), then we can safely defer the superblock
	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1291 1292
	 * attempting a write to a potential-readonly device.
	 */
1293
	if (sb->s_start == 0) {
E
Eryu Guan 已提交
1294
		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1295 1296 1297
			"(start %ld, seq %d, errno %d)\n",
			journal->j_tail, journal->j_tail_sequence,
			journal->j_errno);
1298 1299
		journal->j_flags |= JBD2_FLUSHED;
	} else {
1300 1301
		/* Lock here to make assertions happy... */
		mutex_lock(&journal->j_checkpoint_mutex);
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
		/*
		 * Update log tail information. We use WRITE_FUA since new
		 * transaction will start reusing journal space and so we
		 * must make sure information about current log tail is on
		 * disk before that.
		 */
		jbd2_journal_update_sb_log_tail(journal,
						journal->j_tail_sequence,
						journal->j_tail,
						WRITE_FUA);
1312
		mutex_unlock(&journal->j_checkpoint_mutex);
1313
	}
1314 1315
	return jbd2_journal_start_thread(journal);
}
1316

1317
static void jbd2_write_superblock(journal_t *journal, int write_op)
1318 1319
{
	struct buffer_head *bh = journal->j_sb_buffer;
1320
	int ret;
1321

1322 1323 1324 1325
	trace_jbd2_write_superblock(journal, write_op);
	if (!(journal->j_flags & JBD2_BARRIER))
		write_op &= ~(REQ_FUA | REQ_FLUSH);
	lock_buffer(bh);
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	if (buffer_write_io_error(bh)) {
		/*
		 * Oh, dear.  A previous attempt to write the journal
		 * superblock failed.  This could happen because the
		 * USB device was yanked out.  Or it could happen to
		 * be a transient write error and maybe the block will
		 * be remapped.  Nothing we can do but to retry the
		 * write and hope for the best.
		 */
		printk(KERN_ERR "JBD2: previous I/O error detected "
		       "for journal superblock update for %s.\n",
		       journal->j_devname);
		clear_buffer_write_io_error(bh);
		set_buffer_uptodate(bh);
	}
1341 1342 1343 1344
	get_bh(bh);
	bh->b_end_io = end_buffer_write_sync;
	ret = submit_bh(write_op, bh);
	wait_on_buffer(bh);
1345 1346 1347
	if (buffer_write_io_error(bh)) {
		clear_buffer_write_io_error(bh);
		set_buffer_uptodate(bh);
1348 1349 1350 1351 1352 1353
		ret = -EIO;
	}
	if (ret) {
		printk(KERN_ERR "JBD2: Error %d detected when updating "
		       "journal superblock for %s.\n", ret,
		       journal->j_devname);
1354 1355 1356 1357 1358 1359
	}
}

/**
 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
 * @journal: The journal to update.
1360 1361 1362
 * @tail_tid: TID of the new transaction at the tail of the log
 * @tail_block: The first block of the transaction at the tail of the log
 * @write_op: With which operation should we write the journal sb
1363 1364 1365 1366
 *
 * Update a journal's superblock information about log tail and write it to
 * disk, waiting for the IO to complete.
 */
1367 1368
void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
				     unsigned long tail_block, int write_op)
1369 1370 1371
{
	journal_superblock_t *sb = journal->j_superblock;

1372
	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1373 1374
	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
		  tail_block, tail_tid);
1375

1376 1377
	sb->s_sequence = cpu_to_be32(tail_tid);
	sb->s_start    = cpu_to_be32(tail_block);
1378

1379
	jbd2_write_superblock(journal, write_op);
1380

1381 1382 1383 1384 1385 1386
	/* Log is no longer empty */
	write_lock(&journal->j_state_lock);
	WARN_ON(!sb->s_sequence);
	journal->j_flags &= ~JBD2_FLUSHED;
	write_unlock(&journal->j_state_lock);
}
1387

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
/**
 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
 * @journal: The journal to update.
 *
 * Update a journal's dynamic superblock fields to show that journal is empty.
 * Write updated superblock to disk waiting for IO to complete.
 */
static void jbd2_mark_journal_empty(journal_t *journal)
{
	journal_superblock_t *sb = journal->j_superblock;
1398

1399
	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1400
	read_lock(&journal->j_state_lock);
1401 1402 1403 1404 1405
	/* Is it already empty? */
	if (sb->s_start == 0) {
		read_unlock(&journal->j_state_lock);
		return;
	}
1406 1407
	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
		  journal->j_tail_sequence);
1408 1409

	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1410
	sb->s_start    = cpu_to_be32(0);
1411
	read_unlock(&journal->j_state_lock);
1412

1413
	jbd2_write_superblock(journal, WRITE_FUA);
1414

1415
	/* Log is no longer empty */
1416
	write_lock(&journal->j_state_lock);
1417
	journal->j_flags |= JBD2_FLUSHED;
1418
	write_unlock(&journal->j_state_lock);
1419 1420
}

1421 1422 1423 1424 1425 1426 1427 1428

/**
 * jbd2_journal_update_sb_errno() - Update error in the journal.
 * @journal: The journal to update.
 *
 * Update a journal's errno.  Write updated superblock to disk waiting for IO
 * to complete.
 */
1429
void jbd2_journal_update_sb_errno(journal_t *journal)
1430 1431 1432 1433 1434 1435 1436
{
	journal_superblock_t *sb = journal->j_superblock;

	read_lock(&journal->j_state_lock);
	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
		  journal->j_errno);
	sb->s_errno    = cpu_to_be32(journal->j_errno);
1437
	jbd2_superblock_csum_set(journal, sb);
1438 1439
	read_unlock(&journal->j_state_lock);

1440
	jbd2_write_superblock(journal, WRITE_SYNC);
1441
}
1442
EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1443

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
/*
 * Read the superblock for a given journal, performing initial
 * validation of the format.
 */
static int journal_get_superblock(journal_t *journal)
{
	struct buffer_head *bh;
	journal_superblock_t *sb;
	int err = -EIO;

	bh = journal->j_sb_buffer;

	J_ASSERT(bh != NULL);
	if (!buffer_uptodate(bh)) {
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
E
Eryu Guan 已提交
1461 1462
			printk(KERN_ERR
				"JBD2: IO error reading journal superblock\n");
1463 1464 1465 1466
			goto out;
		}
	}

1467 1468 1469
	if (buffer_verified(bh))
		return 0;

1470 1471 1472 1473
	sb = journal->j_superblock;

	err = -EINVAL;

1474
	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1475
	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
E
Eryu Guan 已提交
1476
		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1477 1478 1479 1480
		goto out;
	}

	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1481
	case JBD2_SUPERBLOCK_V1:
1482 1483
		journal->j_format_version = 1;
		break;
1484
	case JBD2_SUPERBLOCK_V2:
1485 1486 1487
		journal->j_format_version = 2;
		break;
	default:
E
Eryu Guan 已提交
1488
		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1489 1490 1491 1492 1493 1494
		goto out;
	}

	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
E
Eryu Guan 已提交
1495
		printk(KERN_WARNING "JBD2: journal file too short\n");
1496 1497 1498
		goto out;
	}

1499 1500 1501 1502 1503 1504 1505 1506
	if (be32_to_cpu(sb->s_first) == 0 ||
	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
		printk(KERN_WARNING
			"JBD2: Invalid start block of journal: %u\n",
			be32_to_cpu(sb->s_first));
		goto out;
	}

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
	    JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
		/* Can't have checksum v1 and v2 on at the same time! */
		printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
		       "at the same time!\n");
		goto out;
	}

	if (!jbd2_verify_csum_type(journal, sb)) {
		printk(KERN_ERR "JBD: Unknown checksum type\n");
		goto out;
	}

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
	/* Load the checksum driver */
	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
		if (IS_ERR(journal->j_chksum_driver)) {
			printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
			err = PTR_ERR(journal->j_chksum_driver);
			journal->j_chksum_driver = NULL;
			goto out;
		}
	}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
	/* Check superblock checksum */
	if (!jbd2_superblock_csum_verify(journal, sb)) {
		printk(KERN_ERR "JBD: journal checksum error\n");
		goto out;
	}

	/* Precompute checksum seed for all metadata */
	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
						   sizeof(sb->s_uuid));

1542 1543
	set_buffer_verified(bh);

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	return 0;

out:
	journal_fail_superblock(journal);
	return err;
}

/*
 * Load the on-disk journal superblock and read the key fields into the
 * journal_t.
 */

static int load_superblock(journal_t *journal)
{
	int err;
	journal_superblock_t *sb;

	err = journal_get_superblock(journal);
	if (err)
		return err;

	sb = journal->j_superblock;

	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
	journal->j_tail = be32_to_cpu(sb->s_start);
	journal->j_first = be32_to_cpu(sb->s_first);
	journal->j_last = be32_to_cpu(sb->s_maxlen);
	journal->j_errno = be32_to_cpu(sb->s_errno);

	return 0;
}


/**
1578
 * int jbd2_journal_load() - Read journal from disk.
1579 1580 1581 1582 1583 1584
 * @journal: Journal to act on.
 *
 * Given a journal_t structure which tells us which disk blocks contain
 * a journal, read the journal from disk to initialise the in-memory
 * structures.
 */
1585
int jbd2_journal_load(journal_t *journal)
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
{
	int err;
	journal_superblock_t *sb;

	err = load_superblock(journal);
	if (err)
		return err;

	sb = journal->j_superblock;
	/* If this is a V2 superblock, then we have to check the
	 * features flags on it. */

	if (journal->j_format_version >= 2) {
		if ((sb->s_feature_ro_compat &
1600
		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1601
		    (sb->s_feature_incompat &
1602
		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
E
Eryu Guan 已提交
1603 1604
			printk(KERN_WARNING
				"JBD2: Unrecognised features on journal\n");
1605 1606 1607 1608
			return -EINVAL;
		}
	}

1609 1610 1611 1612 1613 1614 1615
	/*
	 * Create a slab for this blocksize
	 */
	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
	if (err)
		return err;

1616 1617
	/* Let the recovery code check whether it needs to recover any
	 * data from the journal. */
1618
	if (jbd2_journal_recover(journal))
1619 1620
		goto recovery_error;

1621 1622 1623 1624 1625 1626 1627
	if (journal->j_failed_commit) {
		printk(KERN_ERR "JBD2: journal transaction %u on %s "
		       "is corrupt.\n", journal->j_failed_commit,
		       journal->j_devname);
		return -EIO;
	}

1628 1629 1630 1631 1632 1633
	/* OK, we've finished with the dynamic journal bits:
	 * reinitialise the dynamic contents of the superblock in memory
	 * and reset them on disk. */
	if (journal_reset(journal))
		goto recovery_error;

1634 1635
	journal->j_flags &= ~JBD2_ABORT;
	journal->j_flags |= JBD2_LOADED;
1636 1637 1638
	return 0;

recovery_error:
E
Eryu Guan 已提交
1639
	printk(KERN_WARNING "JBD2: recovery failed\n");
1640 1641 1642 1643
	return -EIO;
}

/**
1644
 * void jbd2_journal_destroy() - Release a journal_t structure.
1645 1646 1647 1648
 * @journal: Journal to act on.
 *
 * Release a journal_t structure once it is no longer in use by the
 * journaled object.
1649
 * Return <0 if we couldn't clean up the journal.
1650
 */
1651
int jbd2_journal_destroy(journal_t *journal)
1652
{
1653 1654
	int err = 0;

1655 1656 1657 1658 1659
	/* Wait for the commit thread to wake up and die. */
	journal_kill_thread(journal);

	/* Force a final log commit */
	if (journal->j_running_transaction)
1660
		jbd2_journal_commit_transaction(journal);
1661 1662 1663 1664 1665 1666 1667

	/* Force any old transactions to disk */

	/* Totally anal locking here... */
	spin_lock(&journal->j_list_lock);
	while (journal->j_checkpoint_transactions != NULL) {
		spin_unlock(&journal->j_list_lock);
1668
		mutex_lock(&journal->j_checkpoint_mutex);
1669
		jbd2_log_do_checkpoint(journal);
1670
		mutex_unlock(&journal->j_checkpoint_mutex);
1671 1672 1673 1674 1675 1676 1677 1678 1679
		spin_lock(&journal->j_list_lock);
	}

	J_ASSERT(journal->j_running_transaction == NULL);
	J_ASSERT(journal->j_committing_transaction == NULL);
	J_ASSERT(journal->j_checkpoint_transactions == NULL);
	spin_unlock(&journal->j_list_lock);

	if (journal->j_sb_buffer) {
1680
		if (!is_journal_aborted(journal)) {
1681
			mutex_lock(&journal->j_checkpoint_mutex);
1682
			jbd2_mark_journal_empty(journal);
1683 1684
			mutex_unlock(&journal->j_checkpoint_mutex);
		} else
1685
			err = -EIO;
1686 1687 1688
		brelse(journal->j_sb_buffer);
	}

1689 1690
	if (journal->j_proc_entry)
		jbd2_stats_proc_exit(journal);
1691 1692 1693
	if (journal->j_inode)
		iput(journal->j_inode);
	if (journal->j_revoke)
1694
		jbd2_journal_destroy_revoke(journal);
1695 1696
	if (journal->j_chksum_driver)
		crypto_free_shash(journal->j_chksum_driver);
1697 1698
	kfree(journal->j_wbuf);
	kfree(journal);
1699 1700

	return err;
1701 1702 1703 1704
}


/**
1705
 *int jbd2_journal_check_used_features () - Check if features specified are used.
1706 1707 1708 1709 1710 1711 1712 1713 1714
 * @journal: Journal to check.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Check whether the journal uses all of a given set of
 * features.  Return true (non-zero) if it does.
 **/

1715
int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1716 1717 1718 1719 1720 1721
				 unsigned long ro, unsigned long incompat)
{
	journal_superblock_t *sb;

	if (!compat && !ro && !incompat)
		return 1;
1722 1723 1724 1725
	/* Load journal superblock if it is not loaded yet. */
	if (journal->j_format_version == 0 &&
	    journal_get_superblock(journal) != 0)
		return 0;
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
	if (journal->j_format_version == 1)
		return 0;

	sb = journal->j_superblock;

	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
		return 1;

	return 0;
}

/**
1740
 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1741 1742 1743 1744 1745 1746 1747 1748 1749
 * @journal: Journal to check.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Check whether the journaling code supports the use of
 * all of a given set of features on this journal.  Return true
 * (non-zero) if it can. */

1750
int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
				      unsigned long ro, unsigned long incompat)
{
	if (!compat && !ro && !incompat)
		return 1;

	/* We can support any known requested features iff the
	 * superblock is in version 2.  Otherwise we fail to support any
	 * extended sb features. */

	if (journal->j_format_version != 2)
		return 0;

1763 1764 1765
	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1766 1767 1768 1769 1770 1771
		return 1;

	return 0;
}

/**
1772
 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
 * @journal: Journal to act on.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Mark a given journal feature as present on the
 * superblock.  Returns true if the requested features could be set.
 *
 */

1783
int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1784 1785
			  unsigned long ro, unsigned long incompat)
{
1786 1787 1788 1789
#define INCOMPAT_FEATURE_ON(f) \
		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
#define COMPAT_FEATURE_ON(f) \
		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1790 1791
	journal_superblock_t *sb;

1792
	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1793 1794
		return 1;

1795
	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1796 1797
		return 0;

1798 1799 1800 1801 1802
	/* Asking for checksumming v2 and v1?  Only give them v2. */
	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;

1803 1804 1805 1806 1807
	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
		  compat, ro, incompat);

	sb = journal->j_superblock;

1808 1809 1810 1811 1812
	/* If enabling v2 checksums, update superblock */
	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
		sb->s_feature_compat &=
			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824

		/* Load the checksum driver */
		if (journal->j_chksum_driver == NULL) {
			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
								      0, 0);
			if (IS_ERR(journal->j_chksum_driver)) {
				printk(KERN_ERR "JBD: Cannot load crc32c "
				       "driver.\n");
				journal->j_chksum_driver = NULL;
				return 0;
			}
		}
1825 1826 1827 1828 1829 1830 1831

		/* Precompute checksum seed for all metadata */
		if (JBD2_HAS_INCOMPAT_FEATURE(journal,
					      JBD2_FEATURE_INCOMPAT_CSUM_V2))
			journal->j_csum_seed = jbd2_chksum(journal, ~0,
							   sb->s_uuid,
							   sizeof(sb->s_uuid));
1832 1833 1834 1835 1836 1837 1838
	}

	/* If enabling v1 checksums, downgrade superblock */
	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
		sb->s_feature_incompat &=
			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);

1839 1840 1841 1842 1843
	sb->s_feature_compat    |= cpu_to_be32(compat);
	sb->s_feature_ro_compat |= cpu_to_be32(ro);
	sb->s_feature_incompat  |= cpu_to_be32(incompat);

	return 1;
1844 1845
#undef COMPAT_FEATURE_ON
#undef INCOMPAT_FEATURE_ON
1846 1847
}

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
/*
 * jbd2_journal_clear_features () - Clear a given journal feature in the
 * 				    superblock
 * @journal: Journal to act on.
 * @compat: bitmask of compatible features
 * @ro: bitmask of features that force read-only mount
 * @incompat: bitmask of incompatible features
 *
 * Clear a given journal feature as present on the
 * superblock.
 */
void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
				unsigned long ro, unsigned long incompat)
{
	journal_superblock_t *sb;

	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
		  compat, ro, incompat);

	sb = journal->j_superblock;

	sb->s_feature_compat    &= ~cpu_to_be32(compat);
	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
}
EXPORT_SYMBOL(jbd2_journal_clear_features);
1874 1875

/**
1876
 * int jbd2_journal_flush () - Flush journal
1877 1878 1879 1880 1881 1882 1883
 * @journal: Journal to act on.
 *
 * Flush all data for a given journal to disk and empty the journal.
 * Filesystems can use this when remounting readonly to ensure that
 * recovery does not need to happen on remount.
 */

1884
int jbd2_journal_flush(journal_t *journal)
1885 1886 1887 1888
{
	int err = 0;
	transaction_t *transaction = NULL;

1889
	write_lock(&journal->j_state_lock);
1890 1891 1892 1893

	/* Force everything buffered to the log... */
	if (journal->j_running_transaction) {
		transaction = journal->j_running_transaction;
1894
		__jbd2_log_start_commit(journal, transaction->t_tid);
1895 1896 1897 1898 1899 1900 1901
	} else if (journal->j_committing_transaction)
		transaction = journal->j_committing_transaction;

	/* Wait for the log commit to complete... */
	if (transaction) {
		tid_t tid = transaction->t_tid;

1902
		write_unlock(&journal->j_state_lock);
1903
		jbd2_log_wait_commit(journal, tid);
1904
	} else {
1905
		write_unlock(&journal->j_state_lock);
1906 1907 1908 1909 1910 1911
	}

	/* ...and flush everything in the log out to disk. */
	spin_lock(&journal->j_list_lock);
	while (!err && journal->j_checkpoint_transactions != NULL) {
		spin_unlock(&journal->j_list_lock);
1912
		mutex_lock(&journal->j_checkpoint_mutex);
1913
		err = jbd2_log_do_checkpoint(journal);
1914
		mutex_unlock(&journal->j_checkpoint_mutex);
1915 1916 1917
		spin_lock(&journal->j_list_lock);
	}
	spin_unlock(&journal->j_list_lock);
1918 1919 1920 1921

	if (is_journal_aborted(journal))
		return -EIO;

1922
	mutex_lock(&journal->j_checkpoint_mutex);
1923
	jbd2_cleanup_journal_tail(journal);
1924 1925 1926 1927 1928 1929

	/* Finally, mark the journal as really needing no recovery.
	 * This sets s_start==0 in the underlying superblock, which is
	 * the magic code for a fully-recovered superblock.  Any future
	 * commits of data to the journal will restore the current
	 * s_start value. */
1930
	jbd2_mark_journal_empty(journal);
1931
	mutex_unlock(&journal->j_checkpoint_mutex);
1932
	write_lock(&journal->j_state_lock);
1933 1934 1935 1936 1937
	J_ASSERT(!journal->j_running_transaction);
	J_ASSERT(!journal->j_committing_transaction);
	J_ASSERT(!journal->j_checkpoint_transactions);
	J_ASSERT(journal->j_head == journal->j_tail);
	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1938
	write_unlock(&journal->j_state_lock);
1939
	return 0;
1940 1941 1942
}

/**
1943
 * int jbd2_journal_wipe() - Wipe journal contents
1944 1945 1946 1947 1948
 * @journal: Journal to act on.
 * @write: flag (see below)
 *
 * Wipe out all of the contents of a journal, safely.  This will produce
 * a warning if the journal contains any valid recovery information.
1949
 * Must be called between journal_init_*() and jbd2_journal_load().
1950 1951 1952 1953 1954
 *
 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
 * we merely suppress recovery.
 */

1955
int jbd2_journal_wipe(journal_t *journal, int write)
1956 1957 1958
{
	int err = 0;

1959
	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1960 1961 1962 1963 1964 1965 1966 1967

	err = load_superblock(journal);
	if (err)
		return err;

	if (!journal->j_tail)
		goto no_recovery;

E
Eryu Guan 已提交
1968
	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1969 1970
		write ? "Clearing" : "Ignoring");

1971
	err = jbd2_journal_skip_recovery(journal);
1972 1973 1974
	if (write) {
		/* Lock to make assertions happy... */
		mutex_lock(&journal->j_checkpoint_mutex);
1975
		jbd2_mark_journal_empty(journal);
1976 1977
		mutex_unlock(&journal->j_checkpoint_mutex);
	}
1978 1979 1980 1981 1982 1983 1984 1985 1986

 no_recovery:
	return err;
}

/*
 * Journal abort has very specific semantics, which we describe
 * for journal abort.
 *
1987
 * Two internal functions, which provide abort to the jbd layer
1988 1989 1990 1991 1992 1993 1994 1995
 * itself are here.
 */

/*
 * Quick version for internal journal use (doesn't lock the journal).
 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
 * and don't attempt to make any other journal updates.
 */
1996
void __jbd2_journal_abort_hard(journal_t *journal)
1997 1998 1999
{
	transaction_t *transaction;

2000
	if (journal->j_flags & JBD2_ABORT)
2001 2002 2003
		return;

	printk(KERN_ERR "Aborting journal on device %s.\n",
2004
	       journal->j_devname);
2005

2006
	write_lock(&journal->j_state_lock);
2007
	journal->j_flags |= JBD2_ABORT;
2008 2009
	transaction = journal->j_running_transaction;
	if (transaction)
2010
		__jbd2_log_start_commit(journal, transaction->t_tid);
2011
	write_unlock(&journal->j_state_lock);
2012 2013 2014 2015 2016 2017
}

/* Soft abort: record the abort error status in the journal superblock,
 * but don't do any other IO. */
static void __journal_abort_soft (journal_t *journal, int errno)
{
2018
	if (journal->j_flags & JBD2_ABORT)
2019 2020 2021 2022 2023
		return;

	if (!journal->j_errno)
		journal->j_errno = errno;

2024
	__jbd2_journal_abort_hard(journal);
2025 2026

	if (errno)
2027
		jbd2_journal_update_sb_errno(journal);
2028 2029 2030
}

/**
2031
 * void jbd2_journal_abort () - Shutdown the journal immediately.
2032 2033 2034 2035 2036 2037 2038 2039
 * @journal: the journal to shutdown.
 * @errno:   an error number to record in the journal indicating
 *           the reason for the shutdown.
 *
 * Perform a complete, immediate shutdown of the ENTIRE
 * journal (not of a single transaction).  This operation cannot be
 * undone without closing and reopening the journal.
 *
2040
 * The jbd2_journal_abort function is intended to support higher level error
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
 * recovery mechanisms such as the ext2/ext3 remount-readonly error
 * mode.
 *
 * Journal abort has very specific semantics.  Any existing dirty,
 * unjournaled buffers in the main filesystem will still be written to
 * disk by bdflush, but the journaling mechanism will be suspended
 * immediately and no further transaction commits will be honoured.
 *
 * Any dirty, journaled buffers will be written back to disk without
 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
 * filesystem, but we _do_ attempt to leave as much data as possible
 * behind for fsck to use for cleanup.
 *
 * Any attempt to get a new transaction handle on a journal which is in
 * ABORT state will just result in an -EROFS error return.  A
2056
 * jbd2_journal_stop on an existing handle will return -EIO if we have
2057 2058 2059
 * entered abort state during the update.
 *
 * Recursive transactions are not disturbed by journal abort until the
2060
 * final jbd2_journal_stop, which will receive the -EIO error.
2061
 *
2062
 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
 * which will be recorded (if possible) in the journal superblock.  This
 * allows a client to record failure conditions in the middle of a
 * transaction without having to complete the transaction to record the
 * failure to disk.  ext3_error, for example, now uses this
 * functionality.
 *
 * Errors which originate from within the journaling layer will NOT
 * supply an errno; a null errno implies that absolutely no further
 * writes are done to the journal (unless there are any already in
 * progress).
 *
 */

2076
void jbd2_journal_abort(journal_t *journal, int errno)
2077 2078 2079 2080 2081
{
	__journal_abort_soft(journal, errno);
}

/**
2082
 * int jbd2_journal_errno () - returns the journal's error state.
2083 2084
 * @journal: journal to examine.
 *
2085
 * This is the errno number set with jbd2_journal_abort(), the last
2086 2087 2088 2089 2090 2091
 * time the journal was mounted - if the journal was stopped
 * without calling abort this will be 0.
 *
 * If the journal has been aborted on this mount time -EROFS will
 * be returned.
 */
2092
int jbd2_journal_errno(journal_t *journal)
2093 2094 2095
{
	int err;

2096
	read_lock(&journal->j_state_lock);
2097
	if (journal->j_flags & JBD2_ABORT)
2098 2099 2100
		err = -EROFS;
	else
		err = journal->j_errno;
2101
	read_unlock(&journal->j_state_lock);
2102 2103 2104 2105
	return err;
}

/**
2106
 * int jbd2_journal_clear_err () - clears the journal's error state
2107 2108
 * @journal: journal to act on.
 *
2109
 * An error must be cleared or acked to take a FS out of readonly
2110 2111
 * mode.
 */
2112
int jbd2_journal_clear_err(journal_t *journal)
2113 2114 2115
{
	int err = 0;

2116
	write_lock(&journal->j_state_lock);
2117
	if (journal->j_flags & JBD2_ABORT)
2118 2119 2120
		err = -EROFS;
	else
		journal->j_errno = 0;
2121
	write_unlock(&journal->j_state_lock);
2122 2123 2124 2125
	return err;
}

/**
2126
 * void jbd2_journal_ack_err() - Ack journal err.
2127 2128
 * @journal: journal to act on.
 *
2129
 * An error must be cleared or acked to take a FS out of readonly
2130 2131
 * mode.
 */
2132
void jbd2_journal_ack_err(journal_t *journal)
2133
{
2134
	write_lock(&journal->j_state_lock);
2135
	if (journal->j_errno)
2136
		journal->j_flags |= JBD2_ACK_ERR;
2137
	write_unlock(&journal->j_state_lock);
2138 2139
}

2140
int jbd2_journal_blocks_per_page(struct inode *inode)
2141 2142 2143 2144
{
	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
}

Z
Zach Brown 已提交
2145 2146 2147 2148 2149
/*
 * helper functions to deal with 32 or 64bit block numbers.
 */
size_t journal_tag_bytes(journal_t *journal)
{
2150 2151 2152 2153 2154 2155
	journal_block_tag_t tag;
	size_t x = 0;

	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
		x += sizeof(tag.t_checksum);

Z
Zach Brown 已提交
2156
	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2157
		return x + JBD2_TAG_SIZE64;
Z
Zach Brown 已提交
2158
	else
2159
		return x + JBD2_TAG_SIZE32;
Z
Zach Brown 已提交
2160 2161
}

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
/*
 * JBD memory management
 *
 * These functions are used to allocate block-sized chunks of memory
 * used for making copies of buffer_head data.  Very often it will be
 * page-sized chunks of data, but sometimes it will be in
 * sub-page-size chunks.  (For example, 16k pages on Power systems
 * with a 4k block file system.)  For blocks smaller than a page, we
 * use a SLAB allocator.  There are slab caches for each block size,
 * which are allocated at mount time, if necessary, and we only free
 * (all of) the slab caches when/if the jbd2 module is unloaded.  For
 * this reason we don't need to a mutex to protect access to
 * jbd2_slab[] allocating or releasing memory; only in
 * jbd2_journal_create_slab().
 */
#define JBD2_MAX_SLABS 8
static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];

static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
};


static void jbd2_journal_destroy_slabs(void)
{
	int i;

	for (i = 0; i < JBD2_MAX_SLABS; i++) {
		if (jbd2_slab[i])
			kmem_cache_destroy(jbd2_slab[i]);
		jbd2_slab[i] = NULL;
	}
}

static int jbd2_journal_create_slab(size_t size)
{
2199
	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	int i = order_base_2(size) - 10;
	size_t slab_size;

	if (size == PAGE_SIZE)
		return 0;

	if (i >= JBD2_MAX_SLABS)
		return -EINVAL;

	if (unlikely(i < 0))
		i = 0;
2211
	mutex_lock(&jbd2_slab_create_mutex);
2212
	if (jbd2_slab[i]) {
2213
		mutex_unlock(&jbd2_slab_create_mutex);
2214 2215 2216 2217 2218 2219
		return 0;	/* Already created */
	}

	slab_size = 1 << (i+10);
	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
					 slab_size, 0, NULL);
2220
	mutex_unlock(&jbd2_slab_create_mutex);
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
	if (!jbd2_slab[i]) {
		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
		return -ENOMEM;
	}
	return 0;
}

static struct kmem_cache *get_slab(size_t size)
{
	int i = order_base_2(size) - 10;

	BUG_ON(i >= JBD2_MAX_SLABS);
	if (unlikely(i < 0))
		i = 0;
2235
	BUG_ON(jbd2_slab[i] == NULL);
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
	return jbd2_slab[i];
}

void *jbd2_alloc(size_t size, gfp_t flags)
{
	void *ptr;

	BUG_ON(size & (size-1)); /* Must be a power of 2 */

	flags |= __GFP_REPEAT;
	if (size == PAGE_SIZE)
		ptr = (void *)__get_free_pages(flags, 0);
	else if (size > PAGE_SIZE) {
		int order = get_order(size);

		if (order < 3)
			ptr = (void *)__get_free_pages(flags, order);
		else
			ptr = vmalloc(size);
	} else
		ptr = kmem_cache_alloc(get_slab(size), flags);

	/* Check alignment; SLUB has gotten this wrong in the past,
	 * and this can lead to user data corruption! */
	BUG_ON(((unsigned long) ptr) & (size-1));

	return ptr;
}

void jbd2_free(void *ptr, size_t size)
{
	if (size == PAGE_SIZE) {
		free_pages((unsigned long)ptr, 0);
		return;
	}
	if (size > PAGE_SIZE) {
		int order = get_order(size);

		if (order < 3)
			free_pages((unsigned long)ptr, order);
		else
			vfree(ptr);
		return;
	}
	kmem_cache_free(get_slab(size), ptr);
};

2283 2284 2285
/*
 * Journal_head storage management
 */
2286
static struct kmem_cache *jbd2_journal_head_cache;
2287
#ifdef CONFIG_JBD2_DEBUG
2288 2289 2290
static atomic_t nr_journal_heads = ATOMIC_INIT(0);
#endif

2291
static int jbd2_journal_init_journal_head_cache(void)
2292 2293 2294
{
	int retval;

A
Al Viro 已提交
2295
	J_ASSERT(jbd2_journal_head_cache == NULL);
J
Johann Lombardi 已提交
2296
	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2297 2298
				sizeof(struct journal_head),
				0,		/* offset */
2299
				SLAB_TEMPORARY,	/* flags */
2300
				NULL);		/* ctor */
2301
	retval = 0;
A
Al Viro 已提交
2302
	if (!jbd2_journal_head_cache) {
2303
		retval = -ENOMEM;
E
Eryu Guan 已提交
2304
		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2305 2306 2307 2308
	}
	return retval;
}

2309
static void jbd2_journal_destroy_journal_head_cache(void)
2310
{
2311 2312 2313 2314
	if (jbd2_journal_head_cache) {
		kmem_cache_destroy(jbd2_journal_head_cache);
		jbd2_journal_head_cache = NULL;
	}
2315 2316 2317 2318 2319 2320 2321 2322 2323
}

/*
 * journal_head splicing and dicing
 */
static struct journal_head *journal_alloc_journal_head(void)
{
	struct journal_head *ret;

2324
#ifdef CONFIG_JBD2_DEBUG
2325 2326
	atomic_inc(&nr_journal_heads);
#endif
2327
	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
A
Al Viro 已提交
2328
	if (!ret) {
2329
		jbd_debug(1, "out of memory for journal_head\n");
2330
		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
A
Al Viro 已提交
2331
		while (!ret) {
2332
			yield();
2333
			ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2334 2335 2336 2337 2338 2339 2340
		}
	}
	return ret;
}

static void journal_free_journal_head(struct journal_head *jh)
{
2341
#ifdef CONFIG_JBD2_DEBUG
2342
	atomic_dec(&nr_journal_heads);
2343
	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2344
#endif
2345
	kmem_cache_free(jbd2_journal_head_cache, jh);
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
}

/*
 * A journal_head is attached to a buffer_head whenever JBD has an
 * interest in the buffer.
 *
 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
 * is set.  This bit is tested in core kernel code where we need to take
 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
 * there.
 *
 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
 *
 * When a buffer has its BH_JBD bit set it is immune from being released by
 * core kernel code, mainly via ->b_count.
 *
2362 2363 2364
 * A journal_head is detached from its buffer_head when the journal_head's
 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
 * transaction (b_cp_transaction) hold their references to b_jcount.
2365 2366 2367
 *
 * Various places in the kernel want to attach a journal_head to a buffer_head
 * _before_ attaching the journal_head to a transaction.  To protect the
2368
 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2369
 * journal_head's b_jcount refcount by one.  The caller must call
2370
 * jbd2_journal_put_journal_head() to undo this.
2371 2372 2373 2374
 *
 * So the typical usage would be:
 *
 *	(Attach a journal_head if needed.  Increments b_jcount)
2375
 *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2376
 *	...
2377 2378
 *      (Get another reference for transaction)
 *	jbd2_journal_grab_journal_head(bh);
2379
 *	jh->b_transaction = xxx;
2380
 *	(Put original reference)
2381
 *	jbd2_journal_put_journal_head(jh);
2382 2383 2384 2385 2386 2387 2388
 */

/*
 * Give a buffer_head a journal_head.
 *
 * May sleep.
 */
2389
struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2390 2391 2392 2393 2394
{
	struct journal_head *jh;
	struct journal_head *new_jh = NULL;

repeat:
2395
	if (!buffer_jbd(bh))
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
		new_jh = journal_alloc_journal_head();

	jbd_lock_bh_journal_head(bh);
	if (buffer_jbd(bh)) {
		jh = bh2jh(bh);
	} else {
		J_ASSERT_BH(bh,
			(atomic_read(&bh->b_count) > 0) ||
			(bh->b_page && bh->b_page->mapping));

		if (!new_jh) {
			jbd_unlock_bh_journal_head(bh);
			goto repeat;
		}

		jh = new_jh;
		new_jh = NULL;		/* We consumed it */
		set_buffer_jbd(bh);
		bh->b_private = jh;
		jh->b_bh = bh;
		get_bh(bh);
		BUFFER_TRACE(bh, "added journal_head");
	}
	jh->b_jcount++;
	jbd_unlock_bh_journal_head(bh);
	if (new_jh)
		journal_free_journal_head(new_jh);
	return bh->b_private;
}

/*
 * Grab a ref against this buffer_head's journal_head.  If it ended up not
 * having a journal_head, return NULL
 */
2430
struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
{
	struct journal_head *jh = NULL;

	jbd_lock_bh_journal_head(bh);
	if (buffer_jbd(bh)) {
		jh = bh2jh(bh);
		jh->b_jcount++;
	}
	jbd_unlock_bh_journal_head(bh);
	return jh;
}

static void __journal_remove_journal_head(struct buffer_head *bh)
{
	struct journal_head *jh = bh2jh(bh);

	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
	J_ASSERT_JH(jh, jh->b_transaction == NULL);
	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
	J_ASSERT_BH(bh, buffer_jbd(bh));
	J_ASSERT_BH(bh, jh2bh(jh) == bh);
	BUFFER_TRACE(bh, "remove journal_head");
	if (jh->b_frozen_data) {
		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
		jbd2_free(jh->b_frozen_data, bh->b_size);
2458
	}
2459 2460 2461 2462 2463 2464 2465 2466
	if (jh->b_committed_data) {
		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
		jbd2_free(jh->b_committed_data, bh->b_size);
	}
	bh->b_private = NULL;
	jh->b_bh = NULL;	/* debug, really */
	clear_buffer_jbd(bh);
	journal_free_journal_head(jh);
2467 2468 2469
}

/*
2470
 * Drop a reference on the passed journal_head.  If it fell to zero then
2471 2472
 * release the journal_head from the buffer_head.
 */
2473
void jbd2_journal_put_journal_head(struct journal_head *jh)
2474 2475 2476 2477 2478 2479
{
	struct buffer_head *bh = jh2bh(jh);

	jbd_lock_bh_journal_head(bh);
	J_ASSERT_JH(jh, jh->b_jcount > 0);
	--jh->b_jcount;
2480
	if (!jh->b_jcount) {
2481
		__journal_remove_journal_head(bh);
2482
		jbd_unlock_bh_journal_head(bh);
2483
		__brelse(bh);
2484 2485
	} else
		jbd_unlock_bh_journal_head(bh);
2486 2487
}

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
/*
 * Initialize jbd inode head
 */
void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
{
	jinode->i_transaction = NULL;
	jinode->i_next_transaction = NULL;
	jinode->i_vfs_inode = inode;
	jinode->i_flags = 0;
	INIT_LIST_HEAD(&jinode->i_list);
}

/*
 * Function to be called before we start removing inode from memory (i.e.,
 * clear_inode() is a fine place to be called from). It removes inode from
 * transaction's lists.
 */
void jbd2_journal_release_jbd_inode(journal_t *journal,
				    struct jbd2_inode *jinode)
{
	if (!journal)
		return;
restart:
	spin_lock(&journal->j_list_lock);
	/* Is commit writing out inode - we have to wait */
2513
	if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
		wait_queue_head_t *wq;
		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
		spin_unlock(&journal->j_list_lock);
		schedule();
		finish_wait(wq, &wait.wait);
		goto restart;
	}

	if (jinode->i_transaction) {
		list_del(&jinode->i_list);
		jinode->i_transaction = NULL;
	}
	spin_unlock(&journal->j_list_lock);
}

2531

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
#ifdef CONFIG_PROC_FS

#define JBD2_STATS_PROC_NAME "fs/jbd2"

static void __init jbd2_create_jbd_stats_proc_entry(void)
{
	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
}

static void __exit jbd2_remove_jbd_stats_proc_entry(void)
{
	if (proc_jbd2_stats)
		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
}

#else

#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)

#endif

2554
struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2555

2556
static int __init jbd2_journal_init_handle_cache(void)
2557
{
2558
	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2559
	if (jbd2_handle_cache == NULL) {
2560 2561 2562 2563 2564 2565 2566
		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
		return -ENOMEM;
	}
	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
	if (jbd2_inode_cache == NULL) {
		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
		kmem_cache_destroy(jbd2_handle_cache);
2567 2568 2569 2570 2571
		return -ENOMEM;
	}
	return 0;
}

2572
static void jbd2_journal_destroy_handle_cache(void)
2573
{
2574 2575
	if (jbd2_handle_cache)
		kmem_cache_destroy(jbd2_handle_cache);
2576 2577 2578
	if (jbd2_inode_cache)
		kmem_cache_destroy(jbd2_inode_cache);

2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
}

/*
 * Module startup and shutdown
 */

static int __init journal_init_caches(void)
{
	int ret;

2589
	ret = jbd2_journal_init_revoke_caches();
2590
	if (ret == 0)
2591
		ret = jbd2_journal_init_journal_head_cache();
2592
	if (ret == 0)
2593
		ret = jbd2_journal_init_handle_cache();
2594
	if (ret == 0)
2595
		ret = jbd2_journal_init_transaction_cache();
2596 2597 2598
	return ret;
}

2599
static void jbd2_journal_destroy_caches(void)
2600
{
2601
	jbd2_journal_destroy_revoke_caches();
2602
	jbd2_journal_destroy_journal_head_cache();
2603
	jbd2_journal_destroy_handle_cache();
2604
	jbd2_journal_destroy_transaction_cache();
2605
	jbd2_journal_destroy_slabs();
2606 2607 2608 2609 2610 2611 2612 2613 2614
}

static int __init journal_init(void)
{
	int ret;

	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);

	ret = journal_init_caches();
2615 2616 2617
	if (ret == 0) {
		jbd2_create_jbd_stats_proc_entry();
	} else {
2618
		jbd2_journal_destroy_caches();
2619
	}
2620 2621 2622 2623 2624
	return ret;
}

static void __exit journal_exit(void)
{
2625
#ifdef CONFIG_JBD2_DEBUG
2626 2627
	int n = atomic_read(&nr_journal_heads);
	if (n)
E
Eryu Guan 已提交
2628
		printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2629
#endif
2630
	jbd2_remove_jbd_stats_proc_entry();
2631
	jbd2_journal_destroy_caches();
2632 2633 2634 2635 2636 2637
}

MODULE_LICENSE("GPL");
module_init(journal_init);
module_exit(journal_exit);