pid.c 6.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
/*
 * Generic pidhash and scalable, time-bounded PID allocator
 *
 * (C) 2002-2003 William Irwin, IBM
 * (C) 2004 William Irwin, Oracle
 * (C) 2002-2004 Ingo Molnar, Red Hat
 *
 * pid-structures are backing objects for tasks sharing a given ID to chain
 * against. There is very little to them aside from hashing them and
 * parking tasks using given ID's on a list.
 *
 * The hash is always changed with the tasklist_lock write-acquired,
 * and the hash is only accessed with the tasklist_lock at least
 * read-acquired, so there's no additional SMP locking needed here.
 *
 * We have a list of bitmap pages, which bitmaps represent the PID space.
 * Allocating and freeing PIDs is completely lockless. The worst-case
 * allocation scenario when all but one out of 1 million PIDs possible are
 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/hash.h>

#define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift)
static struct hlist_head *pid_hash[PIDTYPE_MAX];
static int pidhash_shift;

int pid_max = PID_MAX_DEFAULT;
int last_pid;

#define RESERVED_PIDS		300

int pid_max_min = RESERVED_PIDS + 1;
int pid_max_max = PID_MAX_LIMIT;

#define PIDMAP_ENTRIES		((PID_MAX_LIMIT + 8*PAGE_SIZE - 1)/PAGE_SIZE/8)
#define BITS_PER_PAGE		(PAGE_SIZE*8)
#define BITS_PER_PAGE_MASK	(BITS_PER_PAGE-1)
#define mk_pid(map, off)	(((map) - pidmap_array)*BITS_PER_PAGE + (off))
#define find_next_offset(map, off)					\
		find_next_zero_bit((map)->page, BITS_PER_PAGE, off)

/*
 * PID-map pages start out as NULL, they get allocated upon
 * first use and are never deallocated. This way a low pid_max
 * value does not cause lots of bitmaps to be allocated, but
 * the scheme scales to up to 4 million PIDs, runtime.
 */
typedef struct pidmap {
	atomic_t nr_free;
	void *page;
} pidmap_t;

static pidmap_t pidmap_array[PIDMAP_ENTRIES] =
	 { [ 0 ... PIDMAP_ENTRIES-1 ] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } };

static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);

fastcall void free_pidmap(int pid)
{
	pidmap_t *map = pidmap_array + pid / BITS_PER_PAGE;
	int offset = pid & BITS_PER_PAGE_MASK;

	clear_bit(offset, map->page);
	atomic_inc(&map->nr_free);
}

int alloc_pidmap(void)
{
	int i, offset, max_scan, pid, last = last_pid;
	pidmap_t *map;

	pid = last + 1;
	if (pid >= pid_max)
		pid = RESERVED_PIDS;
	offset = pid & BITS_PER_PAGE_MASK;
	map = &pidmap_array[pid/BITS_PER_PAGE];
	max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
	for (i = 0; i <= max_scan; ++i) {
		if (unlikely(!map->page)) {
			unsigned long page = get_zeroed_page(GFP_KERNEL);
			/*
			 * Free the page if someone raced with us
			 * installing it:
			 */
			spin_lock(&pidmap_lock);
			if (map->page)
				free_page(page);
			else
				map->page = (void *)page;
			spin_unlock(&pidmap_lock);
			if (unlikely(!map->page))
				break;
		}
		if (likely(atomic_read(&map->nr_free))) {
			do {
				if (!test_and_set_bit(offset, map->page)) {
					atomic_dec(&map->nr_free);
					last_pid = pid;
					return pid;
				}
				offset = find_next_offset(map, offset);
				pid = mk_pid(map, offset);
			/*
			 * find_next_offset() found a bit, the pid from it
			 * is in-bounds, and if we fell back to the last
			 * bitmap block and the final block was the same
			 * as the starting point, pid is before last_pid.
			 */
			} while (offset < BITS_PER_PAGE && pid < pid_max &&
					(i != max_scan || pid < last ||
					    !((last+1) & BITS_PER_PAGE_MASK)));
		}
		if (map < &pidmap_array[(pid_max-1)/BITS_PER_PAGE]) {
			++map;
			offset = 0;
		} else {
			map = &pidmap_array[0];
			offset = RESERVED_PIDS;
			if (unlikely(last == offset))
				break;
		}
		pid = mk_pid(map, offset);
	}
	return -1;
}

struct pid * fastcall find_pid(enum pid_type type, int nr)
{
	struct hlist_node *elem;
	struct pid *pid;

I
Ingo Molnar 已提交
139
	hlist_for_each_entry_rcu(pid, elem,
L
Linus Torvalds 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152
			&pid_hash[type][pid_hashfn(nr)], pid_chain) {
		if (pid->nr == nr)
			return pid;
	}
	return NULL;
}

int fastcall attach_pid(task_t *task, enum pid_type type, int nr)
{
	struct pid *pid, *task_pid;

	task_pid = &task->pids[type];
	pid = find_pid(type, nr);
I
Ingo Molnar 已提交
153
	task_pid->nr = nr;
L
Linus Torvalds 已提交
154 155
	if (pid == NULL) {
		INIT_LIST_HEAD(&task_pid->pid_list);
I
Ingo Molnar 已提交
156 157
		hlist_add_head_rcu(&task_pid->pid_chain,
				   &pid_hash[type][pid_hashfn(nr)]);
L
Linus Torvalds 已提交
158 159
	} else {
		INIT_HLIST_NODE(&task_pid->pid_chain);
I
Ingo Molnar 已提交
160
		list_add_tail_rcu(&task_pid->pid_list, &pid->pid_list);
L
Linus Torvalds 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173
	}

	return 0;
}

static fastcall int __detach_pid(task_t *task, enum pid_type type)
{
	struct pid *pid, *pid_next;
	int nr = 0;

	pid = &task->pids[type];
	if (!hlist_unhashed(&pid->pid_chain)) {

I
Ingo Molnar 已提交
174
		if (list_empty(&pid->pid_list)) {
L
Linus Torvalds 已提交
175
			nr = pid->nr;
I
Ingo Molnar 已提交
176 177
			hlist_del_rcu(&pid->pid_chain);
		} else {
L
Linus Torvalds 已提交
178 179 180
			pid_next = list_entry(pid->pid_list.next,
						struct pid, pid_list);
			/* insert next pid from pid_list to hash */
I
Ingo Molnar 已提交
181 182
			hlist_replace_rcu(&pid->pid_chain,
					  &pid_next->pid_chain);
L
Linus Torvalds 已提交
183 184 185
		}
	}

I
Ingo Molnar 已提交
186
	list_del_rcu(&pid->pid_list);
L
Linus Torvalds 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
	pid->nr = 0;

	return nr;
}

void fastcall detach_pid(task_t *task, enum pid_type type)
{
	int tmp, nr;

	nr = __detach_pid(task, type);
	if (!nr)
		return;

	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
		if (tmp != type && find_pid(tmp, nr))
			return;

	free_pidmap(nr);
}

task_t *find_task_by_pid_type(int type, int nr)
{
	struct pid *pid;

	pid = find_pid(type, nr);
	if (!pid)
		return NULL;

	return pid_task(&pid->pid_list, type);
}

EXPORT_SYMBOL(find_task_by_pid_type);

/*
 * The pid hash table is scaled according to the amount of memory in the
 * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
 * more.
 */
void __init pidhash_init(void)
{
	int i, j, pidhash_size;
	unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);

	pidhash_shift = max(4, fls(megabytes * 4));
	pidhash_shift = min(12, pidhash_shift);
	pidhash_size = 1 << pidhash_shift;

	printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
		pidhash_size, pidhash_shift,
		PIDTYPE_MAX * pidhash_size * sizeof(struct hlist_head));

	for (i = 0; i < PIDTYPE_MAX; i++) {
		pid_hash[i] = alloc_bootmem(pidhash_size *
					sizeof(*(pid_hash[i])));
		if (!pid_hash[i])
			panic("Could not alloc pidhash!\n");
		for (j = 0; j < pidhash_size; j++)
			INIT_HLIST_HEAD(&pid_hash[i][j]);
	}
}

void __init pidmap_init(void)
{
	int i;

	pidmap_array->page = (void *)get_zeroed_page(GFP_KERNEL);
	set_bit(0, pidmap_array->page);
	atomic_dec(&pidmap_array->nr_free);

	/*
	 * Allocate PID 0, and hash it via all PID types:
	 */

	for (i = 0; i < PIDTYPE_MAX; i++)
		attach_pid(current, i, 0);
}