rx.c 22.3 KB
Newer Older
1 2 3
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
B
Ben Hutchings 已提交
4
 * Copyright 2005-2011 Solarflare Communications Inc.
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/socket.h>
#include <linux/in.h>
13
#include <linux/slab.h>
14 15 16
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/udp.h>
17
#include <linux/prefetch.h>
18
#include <linux/moduleparam.h>
19 20 21 22
#include <net/ip.h>
#include <net/checksum.h>
#include "net_driver.h"
#include "efx.h"
B
Ben Hutchings 已提交
23
#include "nic.h"
24
#include "selftest.h"
25 26 27 28 29
#include "workarounds.h"

/* Number of RX descriptors pushed at once. */
#define EFX_RX_BATCH  8

30 31 32
/* Maximum size of a buffer sharing a page */
#define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))

33 34 35 36 37 38 39 40 41
/* Size of buffer allocated for skb header area. */
#define EFX_SKB_HEADERS  64u

/*
 * rx_alloc_method - RX buffer allocation method
 *
 * This driver supports two methods for allocating and using RX buffers:
 * each RX buffer may be backed by an skb or by an order-n page.
 *
42
 * When GRO is in use then the second method has a lower overhead,
43 44 45 46 47 48 49 50 51 52 53 54
 * since we don't have to allocate then free skbs on reassembled frames.
 *
 * Values:
 *   - RX_ALLOC_METHOD_AUTO = 0
 *   - RX_ALLOC_METHOD_SKB  = 1
 *   - RX_ALLOC_METHOD_PAGE = 2
 *
 * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
 * controlled by the parameters below.
 *
 *   - Since pushing and popping descriptors are separated by the rx_queue
 *     size, so the watermarks should be ~rxd_size.
55 56
 *   - The performance win by using page-based allocation for GRO is less
 *     than the performance hit of using page-based allocation of non-GRO,
57 58 59 60
 *     so the watermarks should reflect this.
 *
 * Per channel we maintain a single variable, updated by each channel:
 *
61
 *   rx_alloc_level += (gro_performed ? RX_ALLOC_FACTOR_GRO :
62 63 64 65
 *                      RX_ALLOC_FACTOR_SKB)
 * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
 * limits the hysteresis), and update the allocation strategy:
 *
66
 *   rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_GRO ?
67 68
 *                      RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
 */
69
static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
70

71
#define RX_ALLOC_LEVEL_GRO 0x2000
72
#define RX_ALLOC_LEVEL_MAX 0x3000
73
#define RX_ALLOC_FACTOR_GRO 1
74 75 76 77 78
#define RX_ALLOC_FACTOR_SKB (-2)

/* This is the percentage fill level below which new RX descriptors
 * will be added to the RX descriptor ring.
 */
79
static unsigned int rx_refill_threshold;
80 81 82 83 84

/*
 * RX maximum head room required.
 *
 * This must be at least 1 to prevent overflow and at least 2 to allow
85
 * pipelined receives.
86
 */
87
#define EFX_RXD_HEAD_ROOM 2
88

89 90 91
/* Offset of ethernet header within page */
static inline unsigned int efx_rx_buf_offset(struct efx_nic *efx,
					     struct efx_rx_buffer *buf)
92
{
93
	return buf->page_offset + efx->type->rx_buffer_hash_size;
94 95 96 97 98
}
static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
{
	return PAGE_SIZE << efx->rx_buffer_order;
}
99

100
static u8 *efx_rx_buf_eh(struct efx_nic *efx, struct efx_rx_buffer *buf)
101
{
102
	if (buf->flags & EFX_RX_BUF_PAGE)
103 104
		return page_address(buf->u.page) + efx_rx_buf_offset(efx, buf);
	else
105
		return (u8 *)buf->u.skb->data + efx->type->rx_buffer_hash_size;
106 107 108 109 110
}

static inline u32 efx_rx_buf_hash(const u8 *eh)
{
	/* The ethernet header is always directly after any hash. */
111
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
112
	return __le32_to_cpup((const __le32 *)(eh - 4));
113
#else
114
	const u8 *data = eh - 4;
115 116 117 118
	return (u32)data[0]	  |
	       (u32)data[1] << 8  |
	       (u32)data[2] << 16 |
	       (u32)data[3] << 24;
119 120 121
#endif
}

122
/**
123
 * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
124 125 126
 *
 * @rx_queue:		Efx RX queue
 *
127 128 129 130
 * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
 * struct efx_rx_buffer for each one. Return a negative error code or 0
 * on success. May fail having only inserted fewer than EFX_RX_BATCH
 * buffers.
131
 */
132
static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
133 134 135
{
	struct efx_nic *efx = rx_queue->efx;
	struct net_device *net_dev = efx->net_dev;
136
	struct efx_rx_buffer *rx_buf;
137
	struct sk_buff *skb;
138
	int skb_len = efx->rx_buffer_len;
139
	unsigned index, count;
140

141
	for (count = 0; count < EFX_RX_BATCH; ++count) {
142
		index = rx_queue->added_count & rx_queue->ptr_mask;
143
		rx_buf = efx_rx_buffer(rx_queue, index);
144

145 146
		rx_buf->u.skb = skb = netdev_alloc_skb(net_dev, skb_len);
		if (unlikely(!skb))
147
			return -ENOMEM;
148

149
		/* Adjust the SKB for padding */
150
		skb_reserve(skb, NET_IP_ALIGN);
151
		rx_buf->len = skb_len - NET_IP_ALIGN;
152
		rx_buf->flags = 0;
153

154
		rx_buf->dma_addr = dma_map_single(&efx->pci_dev->dev,
155
						  skb->data, rx_buf->len,
156 157 158
						  DMA_FROM_DEVICE);
		if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
					       rx_buf->dma_addr))) {
159 160
			dev_kfree_skb_any(skb);
			rx_buf->u.skb = NULL;
161 162
			return -EIO;
		}
163

164 165
		++rx_queue->added_count;
		++rx_queue->alloc_skb_count;
166 167 168 169 170 171
	}

	return 0;
}

/**
172
 * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
173 174 175
 *
 * @rx_queue:		Efx RX queue
 *
176 177 178 179
 * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
 * and populates struct efx_rx_buffers for each one. Return a negative error
 * code or 0 on success. If a single page can be split between two buffers,
 * then the page will either be inserted fully, or not at at all.
180
 */
181
static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
182 183
{
	struct efx_nic *efx = rx_queue->efx;
184 185
	struct efx_rx_buffer *rx_buf;
	struct page *page;
186
	unsigned int page_offset;
187
	struct efx_rx_page_state *state;
188 189 190 191 192 193 194 195 196 197
	dma_addr_t dma_addr;
	unsigned index, count;

	/* We can split a page between two buffers */
	BUILD_BUG_ON(EFX_RX_BATCH & 1);

	for (count = 0; count < EFX_RX_BATCH; ++count) {
		page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
				   efx->rx_buffer_order);
		if (unlikely(page == NULL))
198
			return -ENOMEM;
199
		dma_addr = dma_map_page(&efx->pci_dev->dev, page, 0,
200
					efx_rx_buf_size(efx),
201 202
					DMA_FROM_DEVICE);
		if (unlikely(dma_mapping_error(&efx->pci_dev->dev, dma_addr))) {
203
			__free_pages(page, efx->rx_buffer_order);
204 205
			return -EIO;
		}
206
		state = page_address(page);
207 208 209 210
		state->refcnt = 0;
		state->dma_addr = dma_addr;

		dma_addr += sizeof(struct efx_rx_page_state);
211
		page_offset = sizeof(struct efx_rx_page_state);
212 213

	split:
214
		index = rx_queue->added_count & rx_queue->ptr_mask;
215
		rx_buf = efx_rx_buffer(rx_queue, index);
216
		rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
217
		rx_buf->u.page = page;
218
		rx_buf->page_offset = page_offset + EFX_PAGE_IP_ALIGN;
219
		rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
220
		rx_buf->flags = EFX_RX_BUF_PAGE;
221 222
		++rx_queue->added_count;
		++rx_queue->alloc_page_count;
223
		++state->refcnt;
224

225
		if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) {
226 227 228
			/* Use the second half of the page */
			get_page(page);
			dma_addr += (PAGE_SIZE >> 1);
229
			page_offset += (PAGE_SIZE >> 1);
230 231
			++count;
			goto split;
232 233 234 235 236 237
		}
	}

	return 0;
}

238
static void efx_unmap_rx_buffer(struct efx_nic *efx,
239 240
				struct efx_rx_buffer *rx_buf,
				unsigned int used_len)
241
{
242
	if ((rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.page) {
243 244
		struct efx_rx_page_state *state;

245
		state = page_address(rx_buf->u.page);
246
		if (--state->refcnt == 0) {
247
			dma_unmap_page(&efx->pci_dev->dev,
248
				       state->dma_addr,
249
				       efx_rx_buf_size(efx),
250
				       DMA_FROM_DEVICE);
251 252 253 254
		} else if (used_len) {
			dma_sync_single_for_cpu(&efx->pci_dev->dev,
						rx_buf->dma_addr, used_len,
						DMA_FROM_DEVICE);
255
		}
256
	} else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) {
257 258
		dma_unmap_single(&efx->pci_dev->dev, rx_buf->dma_addr,
				 rx_buf->len, DMA_FROM_DEVICE);
259 260 261
	}
}

262 263
static void efx_free_rx_buffer(struct efx_nic *efx,
			       struct efx_rx_buffer *rx_buf)
264
{
265
	if ((rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.page) {
266 267
		__free_pages(rx_buf->u.page, efx->rx_buffer_order);
		rx_buf->u.page = NULL;
268
	} else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) {
269 270
		dev_kfree_skb_any(rx_buf->u.skb);
		rx_buf->u.skb = NULL;
271 272 273
	}
}

274 275
static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
			       struct efx_rx_buffer *rx_buf)
276
{
277
	efx_unmap_rx_buffer(rx_queue->efx, rx_buf, 0);
278 279 280
	efx_free_rx_buffer(rx_queue->efx, rx_buf);
}

281 282 283 284 285
/* Attempt to resurrect the other receive buffer that used to share this page,
 * which had previously been passed up to the kernel and freed. */
static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
				    struct efx_rx_buffer *rx_buf)
{
286
	struct efx_rx_page_state *state = page_address(rx_buf->u.page);
287
	struct efx_rx_buffer *new_buf;
288 289 290 291 292 293
	unsigned fill_level, index;

	/* +1 because efx_rx_packet() incremented removed_count. +1 because
	 * we'd like to insert an additional descriptor whilst leaving
	 * EFX_RXD_HEAD_ROOM for the non-recycle path */
	fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
294
	if (unlikely(fill_level > rx_queue->max_fill)) {
295 296 297 298
		/* We could place "state" on a list, and drain the list in
		 * efx_fast_push_rx_descriptors(). For now, this will do. */
		return;
	}
299

300
	++state->refcnt;
301
	get_page(rx_buf->u.page);
302

303
	index = rx_queue->added_count & rx_queue->ptr_mask;
304
	new_buf = efx_rx_buffer(rx_queue, index);
305
	new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
306
	new_buf->u.page = rx_buf->u.page;
307
	new_buf->len = rx_buf->len;
308
	new_buf->flags = EFX_RX_BUF_PAGE;
309 310 311 312 313 314 315 316 317
	++rx_queue->added_count;
}

/* Recycle the given rx buffer directly back into the rx_queue. There is
 * always room to add this buffer, because we've just popped a buffer. */
static void efx_recycle_rx_buffer(struct efx_channel *channel,
				  struct efx_rx_buffer *rx_buf)
{
	struct efx_nic *efx = channel->efx;
318
	struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
319 320 321
	struct efx_rx_buffer *new_buf;
	unsigned index;

322 323 324 325
	rx_buf->flags &= EFX_RX_BUF_PAGE;

	if ((rx_buf->flags & EFX_RX_BUF_PAGE) &&
	    efx->rx_buffer_len <= EFX_RX_HALF_PAGE &&
326
	    page_count(rx_buf->u.page) == 1)
327
		efx_resurrect_rx_buffer(rx_queue, rx_buf);
328

329
	index = rx_queue->added_count & rx_queue->ptr_mask;
330 331 332
	new_buf = efx_rx_buffer(rx_queue, index);

	memcpy(new_buf, rx_buf, sizeof(*new_buf));
333
	rx_buf->u.page = NULL;
334 335 336
	++rx_queue->added_count;
}

337 338 339
/**
 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
 * @rx_queue:		RX descriptor queue
340
 *
341
 * This will aim to fill the RX descriptor queue up to
342
 * @rx_queue->@max_fill. If there is insufficient atomic
343 344 345 346 347
 * memory to do so, a slow fill will be scheduled.
 *
 * The caller must provide serialisation (none is used here). In practise,
 * this means this function must run from the NAPI handler, or be called
 * when NAPI is disabled.
348
 */
349
void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
350
{
351
	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
352 353
	unsigned fill_level;
	int space, rc = 0;
354

355
	/* Calculate current fill level, and exit if we don't need to fill */
356
	fill_level = (rx_queue->added_count - rx_queue->removed_count);
357
	EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
358
	if (fill_level >= rx_queue->fast_fill_trigger)
359
		goto out;
360 361

	/* Record minimum fill level */
362
	if (unlikely(fill_level < rx_queue->min_fill)) {
363 364
		if (fill_level)
			rx_queue->min_fill = fill_level;
365
	}
366

367
	space = rx_queue->max_fill - fill_level;
368
	EFX_BUG_ON_PARANOID(space < EFX_RX_BATCH);
369

370 371 372
	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
		   "RX queue %d fast-filling descriptor ring from"
		   " level %d to level %d using %s allocation\n",
373
		   efx_rx_queue_index(rx_queue), fill_level,
374
		   rx_queue->max_fill,
375
		   channel->rx_alloc_push_pages ? "page" : "skb");
376 377

	do {
378 379 380 381 382 383 384 385 386
		if (channel->rx_alloc_push_pages)
			rc = efx_init_rx_buffers_page(rx_queue);
		else
			rc = efx_init_rx_buffers_skb(rx_queue);
		if (unlikely(rc)) {
			/* Ensure that we don't leave the rx queue empty */
			if (rx_queue->added_count == rx_queue->removed_count)
				efx_schedule_slow_fill(rx_queue);
			goto out;
387 388 389
		}
	} while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);

390 391
	netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
		   "RX queue %d fast-filled descriptor ring "
392
		   "to level %d\n", efx_rx_queue_index(rx_queue),
393
		   rx_queue->added_count - rx_queue->removed_count);
394 395

 out:
396 397
	if (rx_queue->notified_count != rx_queue->added_count)
		efx_nic_notify_rx_desc(rx_queue);
398 399
}

400
void efx_rx_slow_fill(unsigned long context)
401
{
402
	struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
403

404
	/* Post an event to cause NAPI to run and refill the queue */
405
	efx_nic_generate_fill_event(rx_queue);
406 407 408
	++rx_queue->slow_fill_count;
}

409 410
static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
				     struct efx_rx_buffer *rx_buf,
411
				     int len, bool *leak_packet)
412 413 414 415 416 417 418 419 420 421
{
	struct efx_nic *efx = rx_queue->efx;
	unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;

	if (likely(len <= max_len))
		return;

	/* The packet must be discarded, but this is only a fatal error
	 * if the caller indicated it was
	 */
422
	rx_buf->flags |= EFX_RX_PKT_DISCARD;
423 424

	if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
425 426 427 428
		if (net_ratelimit())
			netif_err(efx, rx_err, efx->net_dev,
				  " RX queue %d seriously overlength "
				  "RX event (0x%x > 0x%x+0x%x). Leaking\n",
429
				  efx_rx_queue_index(rx_queue), len, max_len,
430
				  efx->type->rx_buffer_padding);
431 432 433 434
		/* If this buffer was skb-allocated, then the meta
		 * data at the end of the skb will be trashed. So
		 * we have no choice but to leak the fragment.
		 */
435
		*leak_packet = !(rx_buf->flags & EFX_RX_BUF_PAGE);
436 437
		efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
	} else {
438 439 440 441
		if (net_ratelimit())
			netif_err(efx, rx_err, efx->net_dev,
				  " RX queue %d overlength RX event "
				  "(0x%x > 0x%x)\n",
442
				  efx_rx_queue_index(rx_queue), len, max_len);
443 444
	}

445
	efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
446 447
}

448 449
/* Pass a received packet up through GRO.  GRO can handle pages
 * regardless of checksum state and skbs with a good checksum.
450
 */
451
static void efx_rx_packet_gro(struct efx_channel *channel,
452
			      struct efx_rx_buffer *rx_buf,
453
			      const u8 *eh)
454
{
H
Herbert Xu 已提交
455
	struct napi_struct *napi = &channel->napi_str;
456
	gro_result_t gro_result;
457

458
	if (rx_buf->flags & EFX_RX_BUF_PAGE) {
459
		struct efx_nic *efx = channel->efx;
460
		struct page *page = rx_buf->u.page;
461
		struct sk_buff *skb;
462

463
		rx_buf->u.page = NULL;
464 465

		skb = napi_get_frags(napi);
466
		if (!skb) {
467 468
			put_page(page);
			return;
469 470
		}

471
		if (efx->net_dev->features & NETIF_F_RXHASH)
472
			skb->rxhash = efx_rx_buf_hash(eh);
473

474 475
		skb_fill_page_desc(skb, 0, page,
				   efx_rx_buf_offset(efx, rx_buf), rx_buf->len);
476 477 478 479

		skb->len = rx_buf->len;
		skb->data_len = rx_buf->len;
		skb->truesize += rx_buf->len;
480 481
		skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
				  CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
482

483
		skb_record_rx_queue(skb, channel->rx_queue.core_index);
484

485
		gro_result = napi_gro_frags(napi);
486
	} else {
487
		struct sk_buff *skb = rx_buf->u.skb;
488

489
		EFX_BUG_ON_PARANOID(!(rx_buf->flags & EFX_RX_PKT_CSUMMED));
490
		rx_buf->u.skb = NULL;
491
		skb->ip_summed = CHECKSUM_UNNECESSARY;
492 493

		gro_result = napi_gro_receive(napi, skb);
494
	}
495 496 497 498

	if (gro_result == GRO_NORMAL) {
		channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
	} else if (gro_result != GRO_DROP) {
499
		channel->rx_alloc_level += RX_ALLOC_FACTOR_GRO;
500 501
		channel->irq_mod_score += 2;
	}
502 503 504
}

void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
505
		   unsigned int len, u16 flags)
506 507
{
	struct efx_nic *efx = rx_queue->efx;
508
	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
509
	struct efx_rx_buffer *rx_buf;
510
	bool leak_packet = false;
511 512

	rx_buf = efx_rx_buffer(rx_queue, index);
513
	rx_buf->flags |= flags;
514 515 516 517 518 519 520 521

	/* This allows the refill path to post another buffer.
	 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
	 * isn't overwritten yet.
	 */
	rx_queue->removed_count++;

	/* Validate the length encoded in the event vs the descriptor pushed */
522
	efx_rx_packet__check_len(rx_queue, rx_buf, len, &leak_packet);
523

524 525
	netif_vdbg(efx, rx_status, efx->net_dev,
		   "RX queue %d received id %x at %llx+%x %s%s\n",
526
		   efx_rx_queue_index(rx_queue), index,
527
		   (unsigned long long)rx_buf->dma_addr, len,
528 529
		   (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
		   (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
530 531

	/* Discard packet, if instructed to do so */
532
	if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
533
		if (unlikely(leak_packet))
534
			channel->n_skbuff_leaks++;
535
		else
536 537 538 539 540
			efx_recycle_rx_buffer(channel, rx_buf);

		/* Don't hold off the previous receive */
		rx_buf = NULL;
		goto out;
541 542
	}

543 544
	/* Release and/or sync DMA mapping - assumes all RX buffers
	 * consumed in-order per RX queue
545
	 */
546
	efx_unmap_rx_buffer(efx, rx_buf, len);
547 548 549 550

	/* Prefetch nice and early so data will (hopefully) be in cache by
	 * the time we look at it.
	 */
551
	prefetch(efx_rx_buf_eh(efx, rx_buf));
552 553 554 555

	/* Pipeline receives so that we give time for packet headers to be
	 * prefetched into cache.
	 */
556
	rx_buf->len = len - efx->type->rx_buffer_hash_size;
557
out:
558
	if (channel->rx_pkt)
559
		__efx_rx_packet(channel, channel->rx_pkt);
560
	channel->rx_pkt = rx_buf;
561 562
}

563 564 565 566 567 568 569 570 571 572 573 574
static void efx_rx_deliver(struct efx_channel *channel,
			   struct efx_rx_buffer *rx_buf)
{
	struct sk_buff *skb;

	/* We now own the SKB */
	skb = rx_buf->u.skb;
	rx_buf->u.skb = NULL;

	/* Set the SKB flags */
	skb_checksum_none_assert(skb);

575 576 577
	/* Record the rx_queue */
	skb_record_rx_queue(skb, channel->rx_queue.core_index);

578
	/* Pass the packet up */
579 580 581 582
	if (channel->type->receive_skb)
		channel->type->receive_skb(channel, skb);
	else
		netif_receive_skb(skb);
583 584 585 586 587

	/* Update allocation strategy method */
	channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
}

588
/* Handle a received packet.  Second half: Touches packet payload. */
589
void __efx_rx_packet(struct efx_channel *channel, struct efx_rx_buffer *rx_buf)
590 591
{
	struct efx_nic *efx = channel->efx;
592
	u8 *eh = efx_rx_buf_eh(efx, rx_buf);
593

594 595 596 597
	/* If we're in loopback test, then pass the packet directly to the
	 * loopback layer, and free the rx_buf here
	 */
	if (unlikely(efx->loopback_selftest)) {
598
		efx_loopback_rx_packet(efx, eh, rx_buf->len);
599
		efx_free_rx_buffer(efx, rx_buf);
600
		return;
601 602
	}

603
	if (!(rx_buf->flags & EFX_RX_BUF_PAGE)) {
604
		struct sk_buff *skb = rx_buf->u.skb;
605 606

		prefetch(skb_shinfo(skb));
607

608 609
		skb_reserve(skb, efx->type->rx_buffer_hash_size);
		skb_put(skb, rx_buf->len);
610

611
		if (efx->net_dev->features & NETIF_F_RXHASH)
612
			skb->rxhash = efx_rx_buf_hash(eh);
613

614 615
		/* Move past the ethernet header. rx_buf->data still points
		 * at the ethernet header */
616
		skb->protocol = eth_type_trans(skb, efx->net_dev);
617

618
		skb_record_rx_queue(skb, channel->rx_queue.core_index);
619 620
	}

621
	if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
622
		rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
623

624 625
	if (likely(rx_buf->flags & (EFX_RX_BUF_PAGE | EFX_RX_PKT_CSUMMED)) &&
	    !channel->type->receive_skb)
626
		efx_rx_packet_gro(channel, rx_buf, eh);
627 628
	else
		efx_rx_deliver(channel, rx_buf);
629 630 631 632 633 634
}

void efx_rx_strategy(struct efx_channel *channel)
{
	enum efx_rx_alloc_method method = rx_alloc_method;

635 636 637 638 639
	if (channel->type->receive_skb) {
		channel->rx_alloc_push_pages = false;
		return;
	}

640
	/* Only makes sense to use page based allocation if GRO is enabled */
H
Herbert Xu 已提交
641
	if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
642 643 644 645 646 647 648 649 650
		method = RX_ALLOC_METHOD_SKB;
	} else if (method == RX_ALLOC_METHOD_AUTO) {
		/* Constrain the rx_alloc_level */
		if (channel->rx_alloc_level < 0)
			channel->rx_alloc_level = 0;
		else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
			channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;

		/* Decide on the allocation method */
651
		method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_GRO) ?
652 653 654 655 656 657 658 659 660 661
			  RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
	}

	/* Push the option */
	channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
}

int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
662
	unsigned int entries;
663 664
	int rc;

665 666 667 668 669
	/* Create the smallest power-of-two aligned ring */
	entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
	EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
	rx_queue->ptr_mask = entries - 1;

670
	netif_dbg(efx, probe, efx->net_dev,
671 672 673
		  "creating RX queue %d size %#x mask %#x\n",
		  efx_rx_queue_index(rx_queue), efx->rxq_entries,
		  rx_queue->ptr_mask);
674 675

	/* Allocate RX buffers */
676
	rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
677
				   GFP_KERNEL);
678 679
	if (!rx_queue->buffer)
		return -ENOMEM;
680

681
	rc = efx_nic_probe_rx(rx_queue);
682 683 684 685
	if (rc) {
		kfree(rx_queue->buffer);
		rx_queue->buffer = NULL;
	}
686 687 688
	return rc;
}

689
void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
690
{
691
	struct efx_nic *efx = rx_queue->efx;
692
	unsigned int max_fill, trigger, max_trigger;
693

694
	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
695
		  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
696 697 698 699 700 701 702 703

	/* Initialise ptr fields */
	rx_queue->added_count = 0;
	rx_queue->notified_count = 0;
	rx_queue->removed_count = 0;
	rx_queue->min_fill = -1U;

	/* Initialise limit fields */
704
	max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
705 706 707 708 709 710 711 712
	max_trigger = max_fill - EFX_RX_BATCH;
	if (rx_refill_threshold != 0) {
		trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
		if (trigger > max_trigger)
			trigger = max_trigger;
	} else {
		trigger = max_trigger;
	}
713 714 715 716 717

	rx_queue->max_fill = max_fill;
	rx_queue->fast_fill_trigger = trigger;

	/* Set up RX descriptor ring */
718
	rx_queue->enabled = true;
719
	efx_nic_init_rx(rx_queue);
720 721 722 723 724 725 726
}

void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
{
	int i;
	struct efx_rx_buffer *rx_buf;

727
	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
728
		  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
729

730 731 732
	/* A flush failure might have left rx_queue->enabled */
	rx_queue->enabled = false;

733
	del_timer_sync(&rx_queue->slow_fill);
734
	efx_nic_fini_rx(rx_queue);
735 736 737

	/* Release RX buffers NB start at index 0 not current HW ptr */
	if (rx_queue->buffer) {
738
		for (i = 0; i <= rx_queue->ptr_mask; i++) {
739 740 741 742 743 744 745 746
			rx_buf = efx_rx_buffer(rx_queue, i);
			efx_fini_rx_buffer(rx_queue, rx_buf);
		}
	}
}

void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
{
747
	netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
748
		  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
749

750
	efx_nic_remove_rx(rx_queue);
751 752 753 754 755 756 757 758 759 760 761

	kfree(rx_queue->buffer);
	rx_queue->buffer = NULL;
}


module_param(rx_alloc_method, int, 0644);
MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");

module_param(rx_refill_threshold, uint, 0444);
MODULE_PARM_DESC(rx_refill_threshold,
762
		 "RX descriptor ring refill threshold (%)");
763