Kconfig 16.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9
#
# USB Gadget support on a system involves
#    (a) a peripheral controller, and
#    (b) the gadget driver using it.
#
# NOTE:  Gadget support ** DOES NOT ** depend on host-side CONFIG_USB !!
#
#  - Host systems (like PCs) need CONFIG_USB (with "A" jacks).
#  - Peripherals (like PDAs) need CONFIG_USB_GADGET (with "B" jacks).
M
Matt LaPlante 已提交
10
#  - Some systems have both kinds of controllers.
L
Linus Torvalds 已提交
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#
# With help from a special transceiver and a "Mini-AB" jack, systems with
# both kinds of controller can also support "USB On-the-Go" (CONFIG_USB_OTG).
#
menu "USB Gadget Support"

config USB_GADGET
	tristate "Support for USB Gadgets"
	help
	   USB is a master/slave protocol, organized with one master
	   host (such as a PC) controlling up to 127 peripheral devices.
	   The USB hardware is asymmetric, which makes it easier to set up:
	   you can't connect a "to-the-host" connector to a peripheral.

	   Linux can run in the host, or in the peripheral.  In both cases
	   you need a low level bus controller driver, and some software
	   talking to it.  Peripheral controllers are often discrete silicon,
	   or are integrated with the CPU in a microcontroller.  The more
29
	   familiar host side controllers have names like "EHCI", "OHCI",
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
	   or "UHCI", and are usually integrated into southbridges on PC
	   motherboards.

	   Enable this configuration option if you want to run Linux inside
	   a USB peripheral device.  Configure one hardware driver for your
	   peripheral/device side bus controller, and a "gadget driver" for
	   your peripheral protocol.  (If you use modular gadget drivers,
	   you may configure more than one.)

	   If in doubt, say "N" and don't enable these drivers; most people
	   don't have this kind of hardware (except maybe inside Linux PDAs).

	   For more information, see <http://www.linux-usb.org/gadget> and
	   the kernel DocBook documentation for this API.

config USB_GADGET_DEBUG_FILES
	boolean "Debugging information files"
	depends on USB_GADGET && PROC_FS
	help
	   Some of the drivers in the "gadget" framework can expose
	   debugging information in files such as /proc/driver/udc
	   (for a peripheral controller).  The information in these
	   files may help when you're troubleshooting or bringing up a
	   driver on a new board.   Enable these files by choosing "Y"
	   here.  If in doubt, or to conserve kernel memory, say "N".

56 57 58
config	USB_GADGET_SELECTED
	boolean

L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
#
# USB Peripheral Controller Support
#
choice
	prompt "USB Peripheral Controller"
	depends on USB_GADGET
	help
	   A USB device uses a controller to talk to its host.
	   Systems should have only one such upstream link.
	   Many controller drivers are platform-specific; these
	   often need board-specific hooks.

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
config USB_GADGET_FSL_USB2
	boolean "Freescale Highspeed USB DR Peripheral Controller"
	depends on MPC834x || PPC_MPC831x
	select USB_GADGET_DUALSPEED
	help
	   Some of Freescale PowerPC processors have a High Speed
	   Dual-Role(DR) USB controller, which supports device mode.

	   The number of programmable endpoints is different through
	   SOC revisions.

	   Say "y" to link the driver statically, or "m" to build a
	   dynamically linked module called "fsl_usb2_udc" and force
	   all gadget drivers to also be dynamically linked.

config USB_FSL_USB2
	tristate
	depends on USB_GADGET_FSL_USB2
	default USB_GADGET
	select USB_GADGET_SELECTED

L
Linus Torvalds 已提交
92
config USB_GADGET_NET2280
93
	boolean "NetChip 228x"
L
Linus Torvalds 已提交
94 95 96
	depends on PCI
	select USB_GADGET_DUALSPEED
	help
97
	   NetChip 2280 / 2282 is a PCI based USB peripheral controller which
L
Linus Torvalds 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111
	   supports both full and high speed USB 2.0 data transfers.  
	   
	   It has six configurable endpoints, as well as endpoint zero
	   (for control transfers) and several endpoints with dedicated
	   functions.

	   Say "y" to link the driver statically, or "m" to build a
	   dynamically linked module called "net2280" and force all
	   gadget drivers to also be dynamically linked.

config USB_NET2280
	tristate
	depends on USB_GADGET_NET2280
	default USB_GADGET
112
	select USB_GADGET_SELECTED
L
Linus Torvalds 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

config USB_GADGET_PXA2XX
	boolean "PXA 25x or IXP 4xx"
	depends on (ARCH_PXA && PXA25x) || ARCH_IXP4XX
	help
	   Intel's PXA 25x series XScale ARM-5TE processors include
	   an integrated full speed USB 1.1 device controller.  The
	   controller in the IXP 4xx series is register-compatible.

	   It has fifteen fixed-function endpoints, as well as endpoint
	   zero (for control transfers).

	   Say "y" to link the driver statically, or "m" to build a
	   dynamically linked module called "pxa2xx_udc" and force all
	   gadget drivers to also be dynamically linked.

config USB_PXA2XX
	tristate
	depends on USB_GADGET_PXA2XX
	default USB_GADGET
133
	select USB_GADGET_SELECTED
L
Linus Torvalds 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

# if there's only one gadget driver, using only two bulk endpoints,
# don't waste memory for the other endpoints
config USB_PXA2XX_SMALL
	depends on USB_GADGET_PXA2XX
	bool
	default n if USB_ETH_RNDIS
	default y if USB_ZERO
	default y if USB_ETH
	default y if USB_G_SERIAL

config USB_GADGET_GOKU
	boolean "Toshiba TC86C001 'Goku-S'"
	depends on PCI
	help
	   The Toshiba TC86C001 is a PCI device which includes controllers
	   for full speed USB devices, IDE, I2C, SIO, plus a USB host (OHCI).
	   
	   The device controller has three configurable (bulk or interrupt)
	   endpoints, plus endpoint zero (for control transfers).

	   Say "y" to link the driver statically, or "m" to build a
	   dynamically linked module called "goku_udc" and to force all
	   gadget drivers to also be dynamically linked.

config USB_GOKU
	tristate
	depends on USB_GADGET_GOKU
	default USB_GADGET
163
	select USB_GADGET_SELECTED
L
Linus Torvalds 已提交
164 165 166 167 168 169 170 171 172 173 174 175


config USB_GADGET_LH7A40X
	boolean "LH7A40X"
	depends on ARCH_LH7A40X
	help
    This driver provides USB Device Controller driver for LH7A40x

config USB_LH7A40X
	tristate
	depends on USB_GADGET_LH7A40X
	default USB_GADGET
176
	select USB_GADGET_SELECTED
L
Linus Torvalds 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197


config USB_GADGET_OMAP
	boolean "OMAP USB Device Controller"
	depends on ARCH_OMAP
	select ISP1301_OMAP if MACH_OMAP_H2 || MACH_OMAP_H3
	help
	   Many Texas Instruments OMAP processors have flexible full
	   speed USB device controllers, with support for up to 30
	   endpoints (plus endpoint zero).  This driver supports the
	   controller in the OMAP 1611, and should work with controllers
	   in other OMAP processors too, given minor tweaks.

	   Say "y" to link the driver statically, or "m" to build a
	   dynamically linked module called "omap_udc" and force all
	   gadget drivers to also be dynamically linked.

config USB_OMAP
	tristate
	depends on USB_GADGET_OMAP
	default USB_GADGET
198
	select USB_GADGET_SELECTED
L
Linus Torvalds 已提交
199 200 201 202 203 204 205 206 207 208 209 210

config USB_OTG
	boolean "OTG Support"
	depends on USB_GADGET_OMAP && ARCH_OMAP_OTG && USB_OHCI_HCD
	help
	   The most notable feature of USB OTG is support for a
	   "Dual-Role" device, which can act as either a device
	   or a host.  The initial role choice can be changed
	   later, when two dual-role devices talk to each other.

	   Select this only if your OMAP board has a Mini-AB connector.

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
config USB_GADGET_S3C2410
	boolean "S3C2410 USB Device Controller"
	depends on ARCH_S3C2410
	help
	  Samsung's S3C2410 is an ARM-4 processor with an integrated
	  full speed USB 1.1 device controller.  It has 4 configurable
	  endpoints, as well as endpoint zero (for control transfers).

	  This driver has been tested on the S3C2410, S3C2412, and
	  S3C2440 processors.

config USB_S3C2410
	tristate
	depends on USB_GADGET_S3C2410
	default USB_GADGET
	select USB_GADGET_SELECTED

config USB_S3C2410_DEBUG
	boolean "S3C2410 udc debug messages"
	depends on USB_GADGET_S3C2410

232 233
config USB_GADGET_AT91
	boolean "AT91 USB Device Port"
234
	depends on ARCH_AT91 && !ARCH_AT91SAM9RL
235 236 237 238 239 240 241 242 243 244 245 246 247 248
	select USB_GADGET_SELECTED
	help
	   Many Atmel AT91 processors (such as the AT91RM2000) have a
	   full speed USB Device Port with support for five configurable
	   endpoints (plus endpoint zero).

	   Say "y" to link the driver statically, or "m" to build a
	   dynamically linked module called "at91_udc" and force all
	   gadget drivers to also be dynamically linked.

config USB_AT91
	tristate
	depends on USB_GADGET_AT91
	default USB_GADGET
L
Linus Torvalds 已提交
249

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
config USB_GADGET_M66592
	boolean "M66592 driver"
	select USB_GADGET_DUALSPEED
	help
	   M66592 is a USB 2.0 peripheral controller.

	   It has seven configurable endpoints, and endpoint zero.

	   Say "y" to link the driver statically, or "m" to build a
	   dynamically linked module called "m66592_udc" and force all
	   gadget drivers to also be dynamically linked.

config USB_M66592
	tristate
	depends on USB_GADGET_M66592
	default USB_GADGET
	select USB_GADGET_SELECTED

L
Linus Torvalds 已提交
268 269
config USB_GADGET_DUMMY_HCD
	boolean "Dummy HCD (DEVELOPMENT)"
270
	depends on (USB=y || (USB=m && USB_GADGET=m)) && EXPERIMENTAL
L
Linus Torvalds 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	select USB_GADGET_DUALSPEED
	help
	  This host controller driver emulates USB, looping all data transfer
	  requests back to a USB "gadget driver" in the same host.  The host
	  side is the master; the gadget side is the slave.  Gadget drivers
	  can be high, full, or low speed; and they have access to endpoints
	  like those from NET2280, PXA2xx, or SA1100 hardware.
	  
	  This may help in some stages of creating a driver to embed in a
	  Linux device, since it lets you debug several parts of the gadget
	  driver without its hardware or drivers being involved.
	  
	  Since such a gadget side driver needs to interoperate with a host
	  side Linux-USB device driver, this may help to debug both sides
	  of a USB protocol stack.

	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module called "dummy_hcd" and force all
	  gadget drivers to also be dynamically linked.

config USB_DUMMY_HCD
	tristate
	depends on USB_GADGET_DUMMY_HCD
	default USB_GADGET
295
	select USB_GADGET_SELECTED
L
Linus Torvalds 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

# NOTE:  Please keep dummy_hcd LAST so that "real hardware" appears
# first and will be selected by default.

endchoice

config USB_GADGET_DUALSPEED
	bool
	depends on USB_GADGET
	default n
	help
	  Means that gadget drivers should include extra descriptors
	  and code to handle dual-speed controllers.

#
# USB Gadget Drivers
#
choice
	tristate "USB Gadget Drivers"
315
	depends on USB_GADGET && USB_GADGET_SELECTED
L
Linus Torvalds 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
	default USB_ETH
	help
	  A Linux "Gadget Driver" talks to the USB Peripheral Controller
	  driver through the abstract "gadget" API.  Some other operating
	  systems call these "client" drivers, of which "class drivers"
	  are a subset (implementing a USB device class specification).
	  A gadget driver implements one or more USB functions using
	  the peripheral hardware.

	  Gadget drivers are hardware-neutral, or "platform independent",
	  except that they sometimes must understand quirks or limitations
	  of the particular controllers they work with.  For example, when
	  a controller doesn't support alternate configurations or provide
	  enough of the right types of endpoints, the gadget driver might
	  not be able work with that controller, or might need to implement
	  a less common variant of a device class protocol.

# this first set of drivers all depend on bulk-capable hardware.

config USB_ZERO
	tristate "Gadget Zero (DEVELOPMENT)"
	depends on EXPERIMENTAL
	help
	  Gadget Zero is a two-configuration device.  It either sinks and
	  sources bulk data; or it loops back a configurable number of
	  transfers.  It also implements control requests, for "chapter 9"
	  conformance.  The driver needs only two bulk-capable endpoints, so
	  it can work on top of most device-side usb controllers.  It's
	  useful for testing, and is also a working example showing how
	  USB "gadget drivers" can be written.

	  Make this be the first driver you try using on top of any new
	  USB peripheral controller driver.  Then you can use host-side
	  test software, like the "usbtest" driver, to put your hardware
	  and its driver through a basic set of functional tests.

	  Gadget Zero also works with the host-side "usb-skeleton" driver,
	  and with many kinds of host-side test software.  You may need
	  to tweak product and vendor IDs before host software knows about
	  this device, and arrange to select an appropriate configuration.

	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module called "g_zero".

config USB_ZERO_HNPTEST
	boolean "HNP Test Device"
	depends on USB_ZERO && USB_OTG
	help
	  You can configure this device to enumerate using the device
	  identifiers of the USB-OTG test device.  That means that when
	  this gadget connects to another OTG device, with this one using
	  the "B-Peripheral" role, that device will use HNP to let this
	  one serve as the USB host instead (in the "B-Host" role).

config USB_ETH
	tristate "Ethernet Gadget (with CDC Ethernet support)"
	depends on NET
	help
	  This driver implements Ethernet style communication, in either
	  of two ways:
	  
	   - The "Communication Device Class" (CDC) Ethernet Control Model.
	     That protocol is often avoided with pure Ethernet adapters, in
	     favor of simpler vendor-specific hardware, but is widely
	     supported by firmware for smart network devices.

	   - On hardware can't implement that protocol, a simple CDC subset
	     is used, placing fewer demands on USB.

	  RNDIS support is a third option, more demanding than that subset.

	  Within the USB device, this gadget driver exposes a network device
	  "usbX", where X depends on what other networking devices you have.
	  Treat it like a two-node Ethernet link:  host, and gadget.

	  The Linux-USB host-side "usbnet" driver interoperates with this
	  driver, so that deep I/O queues can be supported.  On 2.4 kernels,
	  use "CDCEther" instead, if you're using the CDC option. That CDC
	  mode should also interoperate with standard CDC Ethernet class
	  drivers on other host operating systems.

	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module called "g_ether".

config USB_ETH_RNDIS
	bool "RNDIS support (EXPERIMENTAL)"
	depends on USB_ETH && EXPERIMENTAL
	default y
	help
	   Microsoft Windows XP bundles the "Remote NDIS" (RNDIS) protocol,
	   and Microsoft provides redistributable binary RNDIS drivers for
	   older versions of Windows.

	   If you say "y" here, the Ethernet gadget driver will try to provide
	   a second device configuration, supporting RNDIS to talk to such
	   Microsoft USB hosts.
	   
	   To make MS-Windows work with this, use Documentation/usb/linux.inf
	   as the "driver info file".  For versions of MS-Windows older than
	   XP, you'll need to download drivers from Microsoft's website; a URL
	   is given in comments found in that info file.

config USB_GADGETFS
	tristate "Gadget Filesystem (EXPERIMENTAL)"
	depends on EXPERIMENTAL
	help
	  This driver provides a filesystem based API that lets user mode
	  programs implement a single-configuration USB device, including
	  endpoint I/O and control requests that don't relate to enumeration.
	  All endpoints, transfer speeds, and transfer types supported by
	  the hardware are available, through read() and write() calls.

	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module called "gadgetfs".

config USB_FILE_STORAGE
	tristate "File-backed Storage Gadget"
R
Randy Dunlap 已提交
433
	depends on BLOCK
L
Linus Torvalds 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
	help
	  The File-backed Storage Gadget acts as a USB Mass Storage
	  disk drive.  As its storage repository it can use a regular
	  file or a block device (in much the same way as the "loop"
	  device driver), specified as a module parameter.

	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module called "g_file_storage".

config USB_FILE_STORAGE_TEST
	bool "File-backed Storage Gadget testing version"
	depends on USB_FILE_STORAGE
	default n
	help
	  Say "y" to generate the larger testing version of the
	  File-backed Storage Gadget, useful for probing the
	  behavior of USB Mass Storage hosts.  Not needed for
	  normal operation.

config USB_G_SERIAL
	tristate "Serial Gadget (with CDC ACM support)"
	help
	  The Serial Gadget talks to the Linux-USB generic serial driver.
	  This driver supports a CDC-ACM module option, which can be used
	  to interoperate with MS-Windows hosts or with the Linux-USB
	  "cdc-acm" driver.

	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module called "g_serial".

	  For more information, see Documentation/usb/gadget_serial.txt
	  which includes instructions and a "driver info file" needed to
	  make MS-Windows work with this driver.

468 469 470 471 472 473 474 475 476 477 478 479 480 481
config USB_MIDI_GADGET
	tristate "MIDI Gadget (EXPERIMENTAL)"
	depends on SND && EXPERIMENTAL
	select SND_RAWMIDI
	help
	  The MIDI Gadget acts as a USB Audio device, with one MIDI
	  input and one MIDI output. These MIDI jacks appear as
	  a sound "card" in the ALSA sound system. Other MIDI
	  connections can then be made on the gadget system, using
	  ALSA's aconnect utility etc.

	  Say "y" to link the driver statically, or "m" to build a
	  dynamically linked module called "g_midi".

L
Linus Torvalds 已提交
482 483 484 485 486 487 488 489 490

# put drivers that need isochronous transfer support (for audio
# or video class gadget drivers), or specific hardware, here.

# - none yet

endchoice

endmenu