nuvoton-cir.c 33.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
 *
 * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
 * Copyright (C) 2009 Nuvoton PS Team
 *
 * Special thanks to Nuvoton for providing hardware, spec sheets and
 * sample code upon which portions of this driver are based. Indirect
 * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
 * modeled after.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
 * USA
 */

28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

30 31 32 33 34 35 36
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pnp.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/slab.h>
37
#include <media/rc-core.h>
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
#include <linux/pci_ids.h>

#include "nuvoton-cir.h"

/* write val to config reg */
static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
{
	outb(reg, nvt->cr_efir);
	outb(val, nvt->cr_efdr);
}

/* read val from config reg */
static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
{
	outb(reg, nvt->cr_efir);
	return inb(nvt->cr_efdr);
}

/* update config register bit without changing other bits */
static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
{
	u8 tmp = nvt_cr_read(nvt, reg) | val;
	nvt_cr_write(nvt, tmp, reg);
}

/* clear config register bit without changing other bits */
static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
{
	u8 tmp = nvt_cr_read(nvt, reg) & ~val;
	nvt_cr_write(nvt, tmp, reg);
}

/* enter extended function mode */
static inline void nvt_efm_enable(struct nvt_dev *nvt)
{
	/* Enabling Extended Function Mode explicitly requires writing 2x */
	outb(EFER_EFM_ENABLE, nvt->cr_efir);
	outb(EFER_EFM_ENABLE, nvt->cr_efir);
}

/* exit extended function mode */
static inline void nvt_efm_disable(struct nvt_dev *nvt)
{
	outb(EFER_EFM_DISABLE, nvt->cr_efir);
}

/*
 * When you want to address a specific logical device, write its logical
 * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
 * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
 */
static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
{
	outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir);
	outb(ldev, nvt->cr_efdr);
}

/* write val to cir config register */
static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
{
	outb(val, nvt->cir_addr + offset);
}

/* read val from cir config register */
static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
{
	u8 val;

	val = inb(nvt->cir_addr + offset);

	return val;
}

/* write val to cir wake register */
static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
					  u8 val, u8 offset)
{
	outb(val, nvt->cir_wake_addr + offset);
}

/* read val from cir wake config register */
static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
{
	u8 val;

	val = inb(nvt->cir_wake_addr + offset);

	return val;
}

/* dump current cir register contents */
static void cir_dump_regs(struct nvt_dev *nvt)
{
	nvt_efm_enable(nvt);
	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);

134 135 136 137 138
	pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
	pr_info(" * CR CIR ACTIVE :   0x%x\n",
		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
	pr_info(" * CR CIR BASE ADDR: 0x%x\n",
		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
139
		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
140 141
	pr_info(" * CR CIR IRQ NUM:   0x%x\n",
		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
142 143 144

	nvt_efm_disable(nvt);

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
	pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
	pr_info(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
	pr_info(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
	pr_info(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
	pr_info(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
	pr_info(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
	pr_info(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
	pr_info(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
	pr_info(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
	pr_info(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
	pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
	pr_info(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
	pr_info(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
	pr_info(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
	pr_info(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
	pr_info(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
	pr_info(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
162 163 164 165 166 167 168 169 170 171
}

/* dump current cir wake register contents */
static void cir_wake_dump_regs(struct nvt_dev *nvt)
{
	u8 i, fifo_len;

	nvt_efm_enable(nvt);
	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);

172 173 174 175 176 177
	pr_info("%s: Dump CIR WAKE logical device registers:\n",
		NVT_DRIVER_NAME);
	pr_info(" * CR CIR WAKE ACTIVE :   0x%x\n",
		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
	pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
178
		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
179 180
	pr_info(" * CR CIR WAKE IRQ NUM:   0x%x\n",
		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
181 182 183

	nvt_efm_disable(nvt);

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
	pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
	pr_info(" * IRCON:          0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
	pr_info(" * IRSTS:          0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
	pr_info(" * IREN:           0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
	pr_info(" * FIFO CMP DEEP:  0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
	pr_info(" * FIFO CMP TOL:   0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
	pr_info(" * FIFO COUNT:     0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
	pr_info(" * SLCH:           0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
	pr_info(" * SLCL:           0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
	pr_info(" * FIFOCON:        0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
	pr_info(" * SRXFSTS:        0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
	pr_info(" * SAMPLE RX FIFO: 0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
	pr_info(" * WR FIFO DATA:   0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
	pr_info(" * RD FIFO ONLY:   0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
	pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
	pr_info(" * FIFO IGNORE:    0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
	pr_info(" * IRFSM:          0x%x\n",
		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
217 218

	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
219 220
	pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
	pr_info("* Contents =");
221
	for (i = 0; i < fifo_len; i++)
222 223 224
		pr_cont(" %02x",
			nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
	pr_cont("\n");
225 226 227 228 229 230 231 232
}

/* detect hardware features */
static int nvt_hw_detect(struct nvt_dev *nvt)
{
	unsigned long flags;
	u8 chip_major, chip_minor;
	int ret = 0;
233 234
	char chip_id[12];
	bool chip_unknown = false;
235 236 237 238 239 240 241 242 243 244 245 246 247 248

	nvt_efm_enable(nvt);

	/* Check if we're wired for the alternate EFER setup */
	chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
	if (chip_major == 0xff) {
		nvt->cr_efir = CR_EFIR2;
		nvt->cr_efdr = CR_EFDR2;
		nvt_efm_enable(nvt);
		chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
	}

	chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
	/* these are the known working chip revisions... */
	switch (chip_major) {
	case CHIP_ID_HIGH_667:
		strcpy(chip_id, "w83667hg\0");
		if (chip_minor != CHIP_ID_LOW_667)
			chip_unknown = true;
		break;
	case CHIP_ID_HIGH_677B:
		strcpy(chip_id, "w83677hg\0");
		if (chip_minor != CHIP_ID_LOW_677B2 &&
		    chip_minor != CHIP_ID_LOW_677B3)
			chip_unknown = true;
		break;
	case CHIP_ID_HIGH_677C:
		strcpy(chip_id, "w83677hg-c\0");
		if (chip_minor != CHIP_ID_LOW_677C)
			chip_unknown = true;
		break;
	default:
		strcpy(chip_id, "w836x7hg\0");
		chip_unknown = true;
		break;
271
	}
272

273 274 275 276 277 278 279 280
	/* warn, but still let the driver load, if we don't know this chip */
	if (chip_unknown)
		nvt_pr(KERN_WARNING, "%s: unknown chip, id: 0x%02x 0x%02x, "
		       "it may not work...", chip_id, chip_major, chip_minor);
	else
		nvt_dbg("%s: chip id: 0x%02x 0x%02x",
			chip_id, chip_major, chip_minor);

281 282 283 284 285 286 287 288 289 290 291 292
	nvt_efm_disable(nvt);

	spin_lock_irqsave(&nvt->nvt_lock, flags);
	nvt->chip_major = chip_major;
	nvt->chip_minor = chip_minor;
	spin_unlock_irqrestore(&nvt->nvt_lock, flags);

	return ret;
}

static void nvt_cir_ldev_init(struct nvt_dev *nvt)
{
293 294 295 296 297 298 299 300 301 302 303
	u8 val, psreg, psmask, psval;

	if (nvt->chip_major == CHIP_ID_HIGH_667) {
		psreg = CR_MULTIFUNC_PIN_SEL;
		psmask = MULTIFUNC_PIN_SEL_MASK;
		psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
	} else {
		psreg = CR_OUTPUT_PIN_SEL;
		psmask = OUTPUT_PIN_SEL_MASK;
		psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
	}
304

305 306 307 308 309
	/* output pin selection: enable CIR, with WB sensor enabled */
	val = nvt_cr_read(nvt, psreg);
	val &= psmask;
	val |= psval;
	nvt_cr_write(nvt, val, psreg);
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376

	/* Select CIR logical device and enable */
	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);

	nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI);
	nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO);

	nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);

	nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
		nvt->cir_addr, nvt->cir_irq);
}

static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
{
	/* Select ACPI logical device, enable it and CIR Wake */
	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);

	/* Enable CIR Wake via PSOUT# (Pin60) */
	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);

	/* enable pme interrupt of cir wakeup event */
	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);

	/* Select CIR Wake logical device and enable */
	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);

	nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI);
	nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO);

	nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);

	nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
		nvt->cir_wake_addr, nvt->cir_wake_irq);
}

/* clear out the hardware's cir rx fifo */
static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
{
	u8 val;

	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
}

/* clear out the hardware's cir wake rx fifo */
static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
{
	u8 val;

	val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
	nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
			       CIR_WAKE_FIFOCON);
}

/* clear out the hardware's cir tx fifo */
static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
{
	u8 val;

	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
}

377 378 379 380 381 382 383 384 385
/* enable RX Trigger Level Reach and Packet End interrupts */
static void nvt_set_cir_iren(struct nvt_dev *nvt)
{
	u8 iren;

	iren = CIR_IREN_RTR | CIR_IREN_PE;
	nvt_cir_reg_write(nvt, iren, CIR_IREN);
}

386 387 388 389 390 391 392 393 394 395 396 397 398 399
static void nvt_cir_regs_init(struct nvt_dev *nvt)
{
	/* set sample limit count (PE interrupt raised when reached) */
	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);

	/* set fifo irq trigger levels */
	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
			  CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);

	/*
	 * Enable TX and RX, specify carrier on = low, off = high, and set
	 * sample period (currently 50us)
	 */
400 401 402 403
	nvt_cir_reg_write(nvt,
			  CIR_IRCON_TXEN | CIR_IRCON_RXEN |
			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
			  CIR_IRCON);
404 405 406 407 408 409 410 411

	/* clear hardware rx and tx fifos */
	nvt_clear_cir_fifo(nvt);
	nvt_clear_tx_fifo(nvt);

	/* clear any and all stray interrupts */
	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);

412 413
	/* and finally, enable interrupts */
	nvt_set_cir_iren(nvt);
414 415 416 417
}

static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
{
418 419 420
	/* set number of bytes needed for wake from s3 (default 65) */
	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES,
			       CIR_WAKE_FIFO_CMP_DEEP);
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464

	/* set tolerance/variance allowed per byte during wake compare */
	nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
			       CIR_WAKE_FIFO_CMP_TOL);

	/* set sample limit count (PE interrupt raised when reached) */
	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);

	/* set cir wake fifo rx trigger level (currently 67) */
	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
			       CIR_WAKE_FIFOCON);

	/*
	 * Enable TX and RX, specific carrier on = low, off = high, and set
	 * sample period (currently 50us)
	 */
	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
			       CIR_WAKE_IRCON);

	/* clear cir wake rx fifo */
	nvt_clear_cir_wake_fifo(nvt);

	/* clear any and all stray interrupts */
	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
}

static void nvt_enable_wake(struct nvt_dev *nvt)
{
	nvt_efm_enable(nvt);

	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);

	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);

	nvt_efm_disable(nvt);

	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
465 466
			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
			       CIR_WAKE_IRCON);
467 468 469 470
	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
}

471
#if 0 /* Currently unused */
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
/* rx carrier detect only works in learning mode, must be called w/nvt_lock */
static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
{
	u32 count, carrier, duration = 0;
	int i;

	count = nvt_cir_reg_read(nvt, CIR_FCCL) |
		nvt_cir_reg_read(nvt, CIR_FCCH) << 8;

	for (i = 0; i < nvt->pkts; i++) {
		if (nvt->buf[i] & BUF_PULSE_BIT)
			duration += nvt->buf[i] & BUF_LEN_MASK;
	}

	duration *= SAMPLE_PERIOD;

	if (!count || !duration) {
		nvt_pr(KERN_NOTICE, "Unable to determine carrier! (c:%u, d:%u)",
		       count, duration);
		return 0;
	}

494
	carrier = MS_TO_NS(count) / duration;
495 496 497 498 499 500 501 502 503

	if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
		nvt_dbg("WTF? Carrier frequency out of range!");

	nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
		carrier, count, duration);

	return carrier;
}
504
#endif
505 506 507 508 509 510 511
/*
 * set carrier frequency
 *
 * set carrier on 2 registers: CP & CC
 * always set CP as 0x81
 * set CC by SPEC, CC = 3MHz/carrier - 1
 */
512
static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
513
{
514
	struct nvt_dev *nvt = dev->priv;
515 516
	u16 val;

517 518 519
	if (carrier == 0)
		return -EINVAL;

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
	nvt_cir_reg_write(nvt, 1, CIR_CP);
	val = 3000000 / (carrier) - 1;
	nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);

	nvt_dbg("cp: 0x%x cc: 0x%x\n",
		nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));

	return 0;
}

/*
 * nvt_tx_ir
 *
 * 1) clean TX fifo first (handled by AP)
 * 2) copy data from user space
 * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
 * 4) send 9 packets to TX FIFO to open TTR
 * in interrupt_handler:
 * 5) send all data out
 * go back to write():
 * 6) disable TX interrupts, re-enable RX interupts
 *
 * The key problem of this function is user space data may larger than
 * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
 * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
 * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
 * set TXFCONT as 0xff, until buf_count less than 0xff.
 */
548
static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
549
{
550
	struct nvt_dev *nvt = dev->priv;
551 552 553 554 555 556 557
	unsigned long flags;
	unsigned int i;
	u8 iren;
	int ret;

	spin_lock_irqsave(&nvt->tx.lock, flags);

558 559
	ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
	nvt->tx.buf_count = (ret * sizeof(unsigned));
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598

	memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);

	nvt->tx.cur_buf_num = 0;

	/* save currently enabled interrupts */
	iren = nvt_cir_reg_read(nvt, CIR_IREN);

	/* now disable all interrupts, save TFU & TTR */
	nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);

	nvt->tx.tx_state = ST_TX_REPLY;

	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
			  CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);

	/* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
	for (i = 0; i < 9; i++)
		nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);

	spin_unlock_irqrestore(&nvt->tx.lock, flags);

	wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);

	spin_lock_irqsave(&nvt->tx.lock, flags);
	nvt->tx.tx_state = ST_TX_NONE;
	spin_unlock_irqrestore(&nvt->tx.lock, flags);

	/* restore enabled interrupts to prior state */
	nvt_cir_reg_write(nvt, iren, CIR_IREN);

	return ret;
}

/* dump contents of the last rx buffer we got from the hw rx fifo */
static void nvt_dump_rx_buf(struct nvt_dev *nvt)
{
	int i;

599
	printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
600
	for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
601 602
		printk(KERN_CONT "0x%02x ", nvt->buf[i]);
	printk(KERN_CONT "\n");
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
}

/*
 * Process raw data in rx driver buffer, store it in raw IR event kfifo,
 * trigger decode when appropriate.
 *
 * We get IR data samples one byte at a time. If the msb is set, its a pulse,
 * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
 * (default 50us) intervals for that pulse/space. A discrete signal is
 * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
 * to signal more IR coming (repeats) or end of IR, respectively. We store
 * sample data in the raw event kfifo until we see 0x7<something> (except f)
 * or 0x80, at which time, we trigger a decode operation.
 */
static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
{
619
	DEFINE_IR_RAW_EVENT(rawir);
620 621 622 623 624 625 626 627
	u8 sample;
	int i;

	nvt_dbg_verbose("%s firing", __func__);

	if (debug)
		nvt_dump_rx_buf(nvt);

628
	nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
629

630 631
	init_ir_raw_event(&rawir);

632
	for (i = 0; i < nvt->pkts; i++) {
633 634 635
		sample = nvt->buf[i];

		rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
636 637
		rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
					  * SAMPLE_PERIOD);
638

639 640
		nvt_dbg("Storing %s with duration %d",
			rawir.pulse ? "pulse" : "space", rawir.duration);
641

642
		ir_raw_event_store_with_filter(nvt->rdev, &rawir);
643 644 645 646 647 648

		/*
		 * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
		 * indicates end of IR signal, but new data incoming. In both
		 * cases, it means we're ready to call ir_raw_event_handle
		 */
649
		if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) {
650
			nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
651
			ir_raw_event_handle(nvt->rdev);
652
		}
653 654
	}

655 656
	nvt->pkts = 0;

657 658 659
	nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
	ir_raw_event_handle(nvt->rdev);

660 661 662
	nvt_dbg_verbose("%s done", __func__);
}

663 664 665 666 667 668 669 670 671
static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
{
	nvt_pr(KERN_WARNING, "RX FIFO overrun detected, flushing data!");

	nvt->pkts = 0;
	nvt_clear_cir_fifo(nvt);
	ir_raw_event_reset(nvt->rdev);
}

672 673 674 675 676 677
/* copy data from hardware rx fifo into driver buffer */
static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
{
	unsigned long flags;
	u8 fifocount, val;
	unsigned int b_idx;
678
	bool overrun = false;
679 680 681 682 683 684 685
	int i;

	/* Get count of how many bytes to read from RX FIFO */
	fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
	/* if we get 0xff, probably means the logical dev is disabled */
	if (fifocount == 0xff)
		return;
686
	/* watch out for a fifo overrun condition */
687
	else if (fifocount > RX_BUF_LEN) {
688 689
		overrun = true;
		fifocount = RX_BUF_LEN;
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
	}

	nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);

	spin_lock_irqsave(&nvt->nvt_lock, flags);

	b_idx = nvt->pkts;

	/* This should never happen, but lets check anyway... */
	if (b_idx + fifocount > RX_BUF_LEN) {
		nvt_process_rx_ir_data(nvt);
		b_idx = 0;
	}

	/* Read fifocount bytes from CIR Sample RX FIFO register */
	for (i = 0; i < fifocount; i++) {
		val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
		nvt->buf[b_idx + i] = val;
	}

	nvt->pkts += fifocount;
	nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);

	nvt_process_rx_ir_data(nvt);

715 716 717
	if (overrun)
		nvt_handle_rx_fifo_overrun(nvt);

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
}

static void nvt_cir_log_irqs(u8 status, u8 iren)
{
	nvt_pr(KERN_INFO, "IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
		status, iren,
		status & CIR_IRSTS_RDR	? " RDR"	: "",
		status & CIR_IRSTS_RTR	? " RTR"	: "",
		status & CIR_IRSTS_PE	? " PE"		: "",
		status & CIR_IRSTS_RFO	? " RFO"	: "",
		status & CIR_IRSTS_TE	? " TE"		: "",
		status & CIR_IRSTS_TTR	? " TTR"	: "",
		status & CIR_IRSTS_TFU	? " TFU"	: "",
		status & CIR_IRSTS_GH	? " GH"		: "",
		status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
			   CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
			   CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
}

static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
{
	unsigned long flags;
	bool tx_inactive;
	u8 tx_state;

	spin_lock_irqsave(&nvt->tx.lock, flags);
	tx_state = nvt->tx.tx_state;
	spin_unlock_irqrestore(&nvt->tx.lock, flags);

	tx_inactive = (tx_state == ST_TX_NONE);

	return tx_inactive;
}

/* interrupt service routine for incoming and outgoing CIR data */
static irqreturn_t nvt_cir_isr(int irq, void *data)
{
	struct nvt_dev *nvt = data;
	u8 status, iren, cur_state;
	unsigned long flags;

	nvt_dbg_verbose("%s firing", __func__);

	nvt_efm_enable(nvt);
	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
	nvt_efm_disable(nvt);

	/*
	 * Get IR Status register contents. Write 1 to ack/clear
	 *
	 * bit: reg name      - description
	 *   7: CIR_IRSTS_RDR - RX Data Ready
	 *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
	 *   5: CIR_IRSTS_PE  - Packet End
	 *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
	 *   3: CIR_IRSTS_TE  - TX FIFO Empty
	 *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
	 *   1: CIR_IRSTS_TFU - TX FIFO Underrun
	 *   0: CIR_IRSTS_GH  - Min Length Detected
	 */
	status = nvt_cir_reg_read(nvt, CIR_IRSTS);
	if (!status) {
		nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
		nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
		return IRQ_RETVAL(IRQ_NONE);
	}

	/* ack/clear all irq flags we've got */
	nvt_cir_reg_write(nvt, status, CIR_IRSTS);
	nvt_cir_reg_write(nvt, 0, CIR_IRSTS);

	/* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
	iren = nvt_cir_reg_read(nvt, CIR_IREN);
	if (!iren) {
		nvt_dbg_verbose("%s exiting, CIR not enabled", __func__);
		return IRQ_RETVAL(IRQ_NONE);
	}

	if (debug)
		nvt_cir_log_irqs(status, iren);

	if (status & CIR_IRSTS_RTR) {
		/* FIXME: add code for study/learn mode */
		/* We only do rx if not tx'ing */
		if (nvt_cir_tx_inactive(nvt))
			nvt_get_rx_ir_data(nvt);
	}

	if (status & CIR_IRSTS_PE) {
		if (nvt_cir_tx_inactive(nvt))
			nvt_get_rx_ir_data(nvt);

		spin_lock_irqsave(&nvt->nvt_lock, flags);

		cur_state = nvt->study_state;

		spin_unlock_irqrestore(&nvt->nvt_lock, flags);

		if (cur_state == ST_STUDY_NONE)
			nvt_clear_cir_fifo(nvt);
	}

	if (status & CIR_IRSTS_TE)
		nvt_clear_tx_fifo(nvt);

	if (status & CIR_IRSTS_TTR) {
		unsigned int pos, count;
		u8 tmp;

		spin_lock_irqsave(&nvt->tx.lock, flags);

		pos = nvt->tx.cur_buf_num;
		count = nvt->tx.buf_count;

		/* Write data into the hardware tx fifo while pos < count */
		if (pos < count) {
			nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
			nvt->tx.cur_buf_num++;
		/* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
		} else {
			tmp = nvt_cir_reg_read(nvt, CIR_IREN);
			nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
		}

		spin_unlock_irqrestore(&nvt->tx.lock, flags);

	}

	if (status & CIR_IRSTS_TFU) {
		spin_lock_irqsave(&nvt->tx.lock, flags);
		if (nvt->tx.tx_state == ST_TX_REPLY) {
			nvt->tx.tx_state = ST_TX_REQUEST;
			wake_up(&nvt->tx.queue);
		}
		spin_unlock_irqrestore(&nvt->tx.lock, flags);
	}

	nvt_dbg_verbose("%s done", __func__);
	return IRQ_RETVAL(IRQ_HANDLED);
}

/* Interrupt service routine for CIR Wake */
static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
{
	u8 status, iren, val;
	struct nvt_dev *nvt = data;
	unsigned long flags;

	nvt_dbg_wake("%s firing", __func__);

	status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
	if (!status)
		return IRQ_RETVAL(IRQ_NONE);

	if (status & CIR_WAKE_IRSTS_IR_PENDING)
		nvt_clear_cir_wake_fifo(nvt);

	nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);

	/* Interrupt may be shared with CIR, bail if Wake not enabled */
	iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
	if (!iren) {
		nvt_dbg_wake("%s exiting, wake not enabled", __func__);
		return IRQ_RETVAL(IRQ_HANDLED);
	}

	if ((status & CIR_WAKE_IRSTS_PE) &&
	    (nvt->wake_state == ST_WAKE_START)) {
		while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
			val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
			nvt_dbg("setting wake up key: 0x%x", val);
		}

		nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
		spin_lock_irqsave(&nvt->nvt_lock, flags);
		nvt->wake_state = ST_WAKE_FINISH;
		spin_unlock_irqrestore(&nvt->nvt_lock, flags);
	}

	nvt_dbg_wake("%s done", __func__);
	return IRQ_RETVAL(IRQ_HANDLED);
}

static void nvt_enable_cir(struct nvt_dev *nvt)
{
	/* set function enable flags */
	nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
			  CIR_IRCON);

	nvt_efm_enable(nvt);

	/* enable the CIR logical device */
	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);

	nvt_efm_disable(nvt);

	/* clear all pending interrupts */
	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);

	/* enable interrupts */
922
	nvt_set_cir_iren(nvt);
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
}

static void nvt_disable_cir(struct nvt_dev *nvt)
{
	/* disable CIR interrupts */
	nvt_cir_reg_write(nvt, 0, CIR_IREN);

	/* clear any and all pending interrupts */
	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);

	/* clear all function enable flags */
	nvt_cir_reg_write(nvt, 0, CIR_IRCON);

	/* clear hardware rx and tx fifos */
	nvt_clear_cir_fifo(nvt);
	nvt_clear_tx_fifo(nvt);

	nvt_efm_enable(nvt);

	/* disable the CIR logical device */
	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);

	nvt_efm_disable(nvt);
}

949
static int nvt_open(struct rc_dev *dev)
950
{
951
	struct nvt_dev *nvt = dev->priv;
952 953 954 955 956 957 958 959 960
	unsigned long flags;

	spin_lock_irqsave(&nvt->nvt_lock, flags);
	nvt_enable_cir(nvt);
	spin_unlock_irqrestore(&nvt->nvt_lock, flags);

	return 0;
}

961
static void nvt_close(struct rc_dev *dev)
962
{
963
	struct nvt_dev *nvt = dev->priv;
964 965 966 967 968 969 970 971 972 973
	unsigned long flags;

	spin_lock_irqsave(&nvt->nvt_lock, flags);
	nvt_disable_cir(nvt);
	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
}

/* Allocate memory, probe hardware, and initialize everything */
static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
{
974 975
	struct nvt_dev *nvt;
	struct rc_dev *rdev;
976 977 978 979 980 981 982
	int ret = -ENOMEM;

	nvt = kzalloc(sizeof(struct nvt_dev), GFP_KERNEL);
	if (!nvt)
		return ret;

	/* input device for IR remote (and tx) */
983
	rdev = rc_allocate_device();
984
	if (!rdev)
985
		goto exit_free_dev_rdev;
986 987

	ret = -ENODEV;
988 989 990 991 992 993
	/* activate pnp device */
	if (pnp_activate_dev(pdev) < 0) {
		dev_err(&pdev->dev, "Could not activate PNP device!\n");
		goto exit_free_dev_rdev;
	}

994 995 996 997
	/* validate pnp resources */
	if (!pnp_port_valid(pdev, 0) ||
	    pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
		dev_err(&pdev->dev, "IR PNP Port not valid!\n");
998
		goto exit_free_dev_rdev;
999 1000 1001 1002
	}

	if (!pnp_irq_valid(pdev, 0)) {
		dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1003
		goto exit_free_dev_rdev;
1004 1005 1006 1007 1008
	}

	if (!pnp_port_valid(pdev, 1) ||
	    pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
		dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1009
		goto exit_free_dev_rdev;
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	}

	nvt->cir_addr = pnp_port_start(pdev, 0);
	nvt->cir_irq  = pnp_irq(pdev, 0);

	nvt->cir_wake_addr = pnp_port_start(pdev, 1);
	/* irq is always shared between cir and cir wake */
	nvt->cir_wake_irq  = nvt->cir_irq;

	nvt->cr_efir = CR_EFIR;
	nvt->cr_efdr = CR_EFDR;

	spin_lock_init(&nvt->nvt_lock);
	spin_lock_init(&nvt->tx.lock);

	pnp_set_drvdata(pdev, nvt);
	nvt->pdev = pdev;

	init_waitqueue_head(&nvt->tx.queue);

	ret = nvt_hw_detect(nvt);
	if (ret)
1032
		goto exit_free_dev_rdev;
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043

	/* Initialize CIR & CIR Wake Logical Devices */
	nvt_efm_enable(nvt);
	nvt_cir_ldev_init(nvt);
	nvt_cir_wake_ldev_init(nvt);
	nvt_efm_disable(nvt);

	/* Initialize CIR & CIR Wake Config Registers */
	nvt_cir_regs_init(nvt);
	nvt_cir_wake_regs_init(nvt);

1044 1045 1046
	/* Set up the rc device */
	rdev->priv = nvt;
	rdev->driver_type = RC_DRIVER_IR_RAW;
1047
	rdev->allowed_protocols = RC_BIT_ALL;
1048 1049 1050 1051 1052
	rdev->open = nvt_open;
	rdev->close = nvt_close;
	rdev->tx_ir = nvt_tx_ir;
	rdev->s_tx_carrier = nvt_set_tx_carrier;
	rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1053
	rdev->input_phys = "nuvoton/cir0";
1054 1055 1056 1057
	rdev->input_id.bustype = BUS_HOST;
	rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
	rdev->input_id.product = nvt->chip_major;
	rdev->input_id.version = nvt->chip_minor;
1058
	rdev->dev.parent = &pdev->dev;
1059 1060
	rdev->driver_name = NVT_DRIVER_NAME;
	rdev->map_name = RC_MAP_RC6_MCE;
1061
	rdev->timeout = MS_TO_NS(100);
1062 1063
	/* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
	rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1064
#if 0
1065 1066
	rdev->min_timeout = XYZ;
	rdev->max_timeout = XYZ;
1067
	/* tx bits */
1068
	rdev->tx_resolution = XYZ;
1069
#endif
1070
	nvt->rdev = rdev;
1071

1072 1073 1074 1075
	ret = rc_register_device(rdev);
	if (ret)
		goto exit_free_dev_rdev;

1076 1077 1078 1079
	ret = -EBUSY;
	/* now claim resources */
	if (!request_region(nvt->cir_addr,
			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1080
		goto exit_unregister_device;
1081 1082 1083

	if (request_irq(nvt->cir_irq, nvt_cir_isr, IRQF_SHARED,
			NVT_DRIVER_NAME, (void *)nvt))
1084
		goto exit_release_cir_addr;
1085 1086 1087

	if (!request_region(nvt->cir_wake_addr,
			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1088
		goto exit_free_irq;
1089 1090 1091

	if (request_irq(nvt->cir_wake_irq, nvt_cir_wake_isr, IRQF_SHARED,
			NVT_DRIVER_NAME, (void *)nvt))
1092
		goto exit_release_cir_wake_addr;
1093

1094
	device_init_wakeup(&pdev->dev, true);
1095

1096 1097 1098 1099 1100 1101 1102 1103
	nvt_pr(KERN_NOTICE, "driver has been successfully loaded\n");
	if (debug) {
		cir_dump_regs(nvt);
		cir_wake_dump_regs(nvt);
	}

	return 0;

1104
exit_release_cir_wake_addr:
1105
	release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1106
exit_free_irq:
1107
	free_irq(nvt->cir_irq, nvt);
1108
exit_release_cir_addr:
1109
	release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1110 1111
exit_unregister_device:
	rc_unregister_device(rdev);
1112
	rdev = NULL;
1113
exit_free_dev_rdev:
1114
	rc_free_device(rdev);
1115 1116 1117 1118 1119
	kfree(nvt);

	return ret;
}

1120
static void nvt_remove(struct pnp_dev *pdev)
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
{
	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
	unsigned long flags;

	spin_lock_irqsave(&nvt->nvt_lock, flags);
	/* disable CIR */
	nvt_cir_reg_write(nvt, 0, CIR_IREN);
	nvt_disable_cir(nvt);
	/* enable CIR Wake (for IR power-on) */
	nvt_enable_wake(nvt);
	spin_unlock_irqrestore(&nvt->nvt_lock, flags);

	/* free resources */
	free_irq(nvt->cir_irq, nvt);
	free_irq(nvt->cir_wake_irq, nvt);
	release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
	release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);

1139
	rc_unregister_device(nvt->rdev);
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185

	kfree(nvt);
}

static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
{
	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
	unsigned long flags;

	nvt_dbg("%s called", __func__);

	/* zero out misc state tracking */
	spin_lock_irqsave(&nvt->nvt_lock, flags);
	nvt->study_state = ST_STUDY_NONE;
	nvt->wake_state = ST_WAKE_NONE;
	spin_unlock_irqrestore(&nvt->nvt_lock, flags);

	spin_lock_irqsave(&nvt->tx.lock, flags);
	nvt->tx.tx_state = ST_TX_NONE;
	spin_unlock_irqrestore(&nvt->tx.lock, flags);

	/* disable all CIR interrupts */
	nvt_cir_reg_write(nvt, 0, CIR_IREN);

	nvt_efm_enable(nvt);

	/* disable cir logical dev */
	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);

	nvt_efm_disable(nvt);

	/* make sure wake is enabled */
	nvt_enable_wake(nvt);

	return 0;
}

static int nvt_resume(struct pnp_dev *pdev)
{
	int ret = 0;
	struct nvt_dev *nvt = pnp_get_drvdata(pdev);

	nvt_dbg("%s called", __func__);

	/* open interrupt */
1186
	nvt_set_cir_iren(nvt);
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

	/* Enable CIR logical device */
	nvt_efm_enable(nvt);
	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);

	nvt_efm_disable(nvt);

	nvt_cir_regs_init(nvt);
	nvt_cir_wake_regs_init(nvt);

	return ret;
}

static void nvt_shutdown(struct pnp_dev *pdev)
{
	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
	nvt_enable_wake(nvt);
}

static const struct pnp_device_id nvt_ids[] = {
	{ "WEC0530", 0 },   /* CIR */
	{ "NTN0530", 0 },   /* CIR for new chip's pnp id*/
	{ "", 0 },
};

static struct pnp_driver nvt_driver = {
	.name		= NVT_DRIVER_NAME,
	.id_table	= nvt_ids,
	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
	.probe		= nvt_probe,
1218
	.remove		= nvt_remove,
1219 1220 1221 1222 1223
	.suspend	= nvt_suspend,
	.resume		= nvt_resume,
	.shutdown	= nvt_shutdown,
};

1224
static int nvt_init(void)
1225 1226 1227 1228
{
	return pnp_register_driver(&nvt_driver);
}

1229
static void nvt_exit(void)
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
{
	pnp_unregister_driver(&nvt_driver);
}

module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Enable debugging output");

MODULE_DEVICE_TABLE(pnp, nvt_ids);
MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");

MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
MODULE_LICENSE("GPL");

module_init(nvt_init);
module_exit(nvt_exit);