cpufreq_ondemand.c 16.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*
 *  drivers/cpufreq/cpufreq_ondemand.c
 *
 *  Copyright (C)  2001 Russell King
 *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
 *                      Jun Nakajima <jun.nakajima@intel.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15
#include <linux/cpu.h>
16
#include <linux/percpu-defs.h>
17
#include <linux/slab.h>
18
#include <linux/tick.h>
19
#include "cpufreq_governor.h"
L
Linus Torvalds 已提交
20

21
/* On-demand governor macros */
L
Linus Torvalds 已提交
22
#define DEF_FREQUENCY_UP_THRESHOLD		(80)
23 24
#define DEF_SAMPLING_DOWN_FACTOR		(1)
#define MAX_SAMPLING_DOWN_FACTOR		(100000)
25
#define MICRO_FREQUENCY_UP_THRESHOLD		(95)
26
#define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
27
#define MIN_FREQUENCY_UP_THRESHOLD		(11)
L
Linus Torvalds 已提交
28 29
#define MAX_FREQUENCY_UP_THRESHOLD		(100)

30
static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
L
Linus Torvalds 已提交
31

32 33
static struct od_ops od_ops;

34 35
static unsigned int default_powersave_bias;

36
static void ondemand_powersave_bias_init_cpu(int cpu)
37
{
38
	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
39

40 41 42
	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
	dbs_info->freq_lo = 0;
}
43

44 45 46 47 48
/*
 * Not all CPUs want IO time to be accounted as busy; this depends on how
 * efficient idling at a higher frequency/voltage is.
 * Pavel Machek says this is not so for various generations of AMD and old
 * Intel systems.
49
 * Mike Chan (android.com) claims this is also not true for ARM.
50 51 52 53 54 55 56
 * Because of this, whitelist specific known (series) of CPUs by default, and
 * leave all others up to the user.
 */
static int should_io_be_busy(void)
{
#if defined(CONFIG_X86)
	/*
57
	 * For Intel, Core 2 (model 15) and later have an efficient idle.
58 59 60 61 62 63 64
	 */
	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
			boot_cpu_data.x86 == 6 &&
			boot_cpu_data.x86_model >= 15)
		return 1;
#endif
	return 0;
65 66
}

67 68 69 70 71
/*
 * Find right freq to be set now with powersave_bias on.
 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
 */
72
static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
73
		unsigned int freq_next, unsigned int relation)
74 75 76 77 78
{
	unsigned int freq_req, freq_reduc, freq_avg;
	unsigned int freq_hi, freq_lo;
	unsigned int index = 0;
	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
79
	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
80
						   policy->cpu);
81 82
	struct policy_dbs_info *policy_dbs = policy->governor_data;
	struct dbs_data *dbs_data = policy_dbs->dbs_data;
83
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
84 85 86 87 88 89 90 91 92 93

	if (!dbs_info->freq_table) {
		dbs_info->freq_lo = 0;
		dbs_info->freq_lo_jiffies = 0;
		return freq_next;
	}

	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
			relation, &index);
	freq_req = dbs_info->freq_table[index].frequency;
94
	freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
	freq_avg = freq_req - freq_reduc;

	/* Find freq bounds for freq_avg in freq_table */
	index = 0;
	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
			CPUFREQ_RELATION_H, &index);
	freq_lo = dbs_info->freq_table[index].frequency;
	index = 0;
	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
			CPUFREQ_RELATION_L, &index);
	freq_hi = dbs_info->freq_table[index].frequency;

	/* Find out how long we have to be in hi and lo freqs */
	if (freq_hi == freq_lo) {
		dbs_info->freq_lo = 0;
		dbs_info->freq_lo_jiffies = 0;
		return freq_lo;
	}
113
	jiffies_total = usecs_to_jiffies(dbs_data->sampling_rate);
114 115 116 117 118 119 120 121 122 123 124 125 126 127
	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
	jiffies_hi += ((freq_hi - freq_lo) / 2);
	jiffies_hi /= (freq_hi - freq_lo);
	jiffies_lo = jiffies_total - jiffies_hi;
	dbs_info->freq_lo = freq_lo;
	dbs_info->freq_lo_jiffies = jiffies_lo;
	dbs_info->freq_hi_jiffies = jiffies_hi;
	return freq_hi;
}

static void ondemand_powersave_bias_init(void)
{
	int i;
	for_each_online_cpu(i) {
128
		ondemand_powersave_bias_init_cpu(i);
129 130 131
	}
}

132
static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
133
{
134 135
	struct policy_dbs_info *policy_dbs = policy->governor_data;
	struct dbs_data *dbs_data = policy_dbs->dbs_data;
136 137 138
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;

	if (od_tuners->powersave_bias)
139
		freq = od_ops.powersave_bias_target(policy, freq,
140
				CPUFREQ_RELATION_H);
141
	else if (policy->cur == policy->max)
142
		return;
143

144
	__cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
145 146 147 148 149
			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
}

/*
 * Every sampling_rate, we check, if current idle time is less than 20%
150 151
 * (default), then we try to increase frequency. Else, we adjust the frequency
 * proportional to load.
152
 */
153
static void od_check_cpu(int cpu, unsigned int load)
L
Linus Torvalds 已提交
154
{
155
	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
156 157 158
	struct policy_dbs_info *policy_dbs = dbs_info->cdbs.policy_dbs;
	struct cpufreq_policy *policy = policy_dbs->policy;
	struct dbs_data *dbs_data = policy_dbs->dbs_data;
159
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
160 161 162 163

	dbs_info->freq_lo = 0;

	/* Check for frequency increase */
164
	if (load > dbs_data->up_threshold) {
165 166
		/* If switching to max speed, apply sampling_down_factor */
		if (policy->cur < policy->max)
167
			dbs_info->rate_mult = dbs_data->sampling_down_factor;
168
		dbs_freq_increase(policy, policy->max);
169 170
	} else {
		/* Calculate the next frequency proportional to load */
171 172 173 174 175
		unsigned int freq_next, min_f, max_f;

		min_f = policy->cpuinfo.min_freq;
		max_f = policy->cpuinfo.max_freq;
		freq_next = min_f + load * (max_f - min_f) / 100;
176 177 178 179

		/* No longer fully busy, reset rate_mult */
		dbs_info->rate_mult = 1;

180
		if (!od_tuners->powersave_bias) {
181
			__cpufreq_driver_target(policy, freq_next,
182
					CPUFREQ_RELATION_C);
183
			return;
184
		}
185 186 187

		freq_next = od_ops.powersave_bias_target(policy, freq_next,
					CPUFREQ_RELATION_L);
188
		__cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
189
	}
L
Linus Torvalds 已提交
190 191
}

192
static unsigned int od_dbs_timer(struct cpufreq_policy *policy)
193
{
194 195
	struct policy_dbs_info *policy_dbs = policy->governor_data;
	struct dbs_data *dbs_data = policy_dbs->dbs_data;
196
	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, policy->cpu);
197
	int delay = 0, sample_type = dbs_info->sample_type;
198

199
	/* Common NORMAL_SAMPLE setup */
200
	dbs_info->sample_type = OD_NORMAL_SAMPLE;
201
	if (sample_type == OD_SUB_SAMPLE) {
202 203
		delay = dbs_info->freq_lo_jiffies;
		__cpufreq_driver_target(policy, dbs_info->freq_lo,
204
					CPUFREQ_RELATION_H);
205
	} else {
206
		dbs_check_cpu(policy);
207
		if (dbs_info->freq_lo) {
208
			/* Setup timer for SUB_SAMPLE */
209 210
			dbs_info->sample_type = OD_SUB_SAMPLE;
			delay = dbs_info->freq_hi_jiffies;
211 212 213
		}
	}

214
	if (!delay)
215
		delay = delay_for_sampling_rate(dbs_data->sampling_rate
216
				* dbs_info->rate_mult);
217

218
	return delay;
219 220
}

221
/************************** sysfs interface ************************/
222
static struct dbs_governor od_dbs_gov;
L
Linus Torvalds 已提交
223

224 225 226 227
/**
 * update_sampling_rate - update sampling rate effective immediately if needed.
 * @new_rate: new sampling rate
 *
228
 * If new rate is smaller than the old, simply updating
229
 * dbs.sampling_rate might not be appropriate. For example, if the
230 231 232 233 234 235
 * original sampling_rate was 1 second and the requested new sampling rate is 10
 * ms because the user needs immediate reaction from ondemand governor, but not
 * sure if higher frequency will be required or not, then, the governor may
 * change the sampling rate too late; up to 1 second later. Thus, if we are
 * reducing the sampling rate, we need to make the new value effective
 * immediately.
236 237 238 239 240 241 242
 *
 * On the other hand, if new rate is larger than the old, then we may evaluate
 * the load too soon, and it might we worth updating sample_delay_ns then as
 * well.
 *
 * This must be called with dbs_data->mutex held, otherwise traversing
 * policy_dbs_list isn't safe.
243
 */
244 245
static void update_sampling_rate(struct dbs_data *dbs_data,
		unsigned int new_rate)
246
{
247
	struct policy_dbs_info *policy_dbs;
248

249
	dbs_data->sampling_rate = new_rate = max(new_rate,
250
			dbs_data->min_sampling_rate);
251

252
	/*
253 254
	 * We are operating under dbs_data->mutex and so the list and its
	 * entries can't be freed concurrently.
255
	 */
256 257
	list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) {
		mutex_lock(&policy_dbs->timer_mutex);
258
		/*
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
		 * On 32-bit architectures this may race with the
		 * sample_delay_ns read in dbs_update_util_handler(), but that
		 * really doesn't matter.  If the read returns a value that's
		 * too big, the sample will be skipped, but the next invocation
		 * of dbs_update_util_handler() (when the update has been
		 * completed) will take a sample.  If the returned value is too
		 * small, the sample will be taken immediately, but that isn't a
		 * problem, as we want the new rate to take effect immediately
		 * anyway.
		 *
		 * If this runs in parallel with dbs_work_handler(), we may end
		 * up overwriting the sample_delay_ns value that it has just
		 * written, but the difference should not be too big and it will
		 * be corrected next time a sample is taken, so it shouldn't be
		 * significant.
274
		 */
275 276
		gov_update_sample_delay(policy_dbs, new_rate);
		mutex_unlock(&policy_dbs->timer_mutex);
277 278 279
	}
}

280 281
static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
		size_t count)
L
Linus Torvalds 已提交
282 283 284
{
	unsigned int input;
	int ret;
285
	ret = sscanf(buf, "%u", &input);
286 287
	if (ret != 1)
		return -EINVAL;
288 289

	update_sampling_rate(dbs_data, input);
L
Linus Torvalds 已提交
290 291 292
	return count;
}

293 294
static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
		size_t count)
295
{
296
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
297 298
	unsigned int input;
	int ret;
299
	unsigned int j;
300 301 302 303

	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
304
	od_tuners->io_is_busy = !!input;
305 306 307 308 309 310 311 312

	/* we need to re-evaluate prev_cpu_idle */
	for_each_online_cpu(j) {
		struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
									j);
		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
			&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
	}
313 314 315
	return count;
}

316 317
static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
		size_t count)
L
Linus Torvalds 已提交
318 319 320
{
	unsigned int input;
	int ret;
321
	ret = sscanf(buf, "%u", &input);
L
Linus Torvalds 已提交
322

323
	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
324
			input < MIN_FREQUENCY_UP_THRESHOLD) {
L
Linus Torvalds 已提交
325 326
		return -EINVAL;
	}
327

328
	dbs_data->up_threshold = input;
L
Linus Torvalds 已提交
329 330 331
	return count;
}

332 333
static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
		const char *buf, size_t count)
334 335 336 337 338 339 340
{
	unsigned int input, j;
	int ret;
	ret = sscanf(buf, "%u", &input);

	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
		return -EINVAL;
341
	dbs_data->sampling_down_factor = input;
342 343 344

	/* Reset down sampling multiplier in case it was active */
	for_each_online_cpu(j) {
345 346
		struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
				j);
347 348 349 350 351
		dbs_info->rate_mult = 1;
	}
	return count;
}

352 353
static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
		const char *buf, size_t count)
354
{
355
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
356 357 358 359
	unsigned int input;
	int ret;

	unsigned int j;
360

361
	ret = sscanf(buf, "%u", &input);
362
	if (ret != 1)
363 364
		return -EINVAL;

365
	if (input > 1)
366
		input = 1;
367

368
	if (input == dbs_data->ignore_nice_load) { /* nothing to do */
369 370
		return count;
	}
371
	dbs_data->ignore_nice_load = input;
372

373
	/* we need to re-evaluate prev_cpu_idle */
374
	for_each_online_cpu(j) {
375
		struct od_cpu_dbs_info_s *dbs_info;
376
		dbs_info = &per_cpu(od_cpu_dbs_info, j);
377
		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
378
			&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
379
		if (dbs_data->ignore_nice_load)
380 381
			dbs_info->cdbs.prev_cpu_nice =
				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
382

383 384 385 386
	}
	return count;
}

387 388
static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
		size_t count)
389
{
390
	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
391 392 393 394 395 396 397 398 399 400
	unsigned int input;
	int ret;
	ret = sscanf(buf, "%u", &input);

	if (ret != 1)
		return -EINVAL;

	if (input > 1000)
		input = 1000;

401
	od_tuners->powersave_bias = input;
402 403 404 405
	ondemand_powersave_bias_init();
	return count;
}

406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
gov_show_one_common(sampling_rate);
gov_show_one_common(up_threshold);
gov_show_one_common(sampling_down_factor);
gov_show_one_common(ignore_nice_load);
gov_show_one_common(min_sampling_rate);
gov_show_one(od, io_is_busy);
gov_show_one(od, powersave_bias);

gov_attr_rw(sampling_rate);
gov_attr_rw(io_is_busy);
gov_attr_rw(up_threshold);
gov_attr_rw(sampling_down_factor);
gov_attr_rw(ignore_nice_load);
gov_attr_rw(powersave_bias);
gov_attr_ro(min_sampling_rate);

static struct attribute *od_attributes[] = {
	&min_sampling_rate.attr,
	&sampling_rate.attr,
	&up_threshold.attr,
	&sampling_down_factor.attr,
	&ignore_nice_load.attr,
	&powersave_bias.attr,
	&io_is_busy.attr,
L
Linus Torvalds 已提交
430 431 432 433 434
	NULL
};

/************************** sysfs end ************************/

435
static int od_init(struct dbs_data *dbs_data, bool notify)
436 437 438 439 440
{
	struct od_dbs_tuners *tuners;
	u64 idle_time;
	int cpu;

441
	tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
442 443 444 445 446 447 448 449 450 451
	if (!tuners) {
		pr_err("%s: kzalloc failed\n", __func__);
		return -ENOMEM;
	}

	cpu = get_cpu();
	idle_time = get_cpu_idle_time_us(cpu, NULL);
	put_cpu();
	if (idle_time != -1ULL) {
		/* Idle micro accounting is supported. Use finer thresholds */
452
		dbs_data->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
453 454 455 456 457 458 459
		/*
		 * In nohz/micro accounting case we set the minimum frequency
		 * not depending on HZ, but fixed (very low). The deferred
		 * timer might skip some samples if idle/sleeping as needed.
		*/
		dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
	} else {
460
		dbs_data->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
461 462 463 464 465 466

		/* For correct statistics, we need 10 ticks for each measure */
		dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
			jiffies_to_usecs(10);
	}

467 468
	dbs_data->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
	dbs_data->ignore_nice_load = 0;
469
	tuners->powersave_bias = default_powersave_bias;
470 471 472 473 474 475
	tuners->io_is_busy = should_io_be_busy();

	dbs_data->tuners = tuners;
	return 0;
}

476
static void od_exit(struct dbs_data *dbs_data, bool notify)
477 478 479 480
{
	kfree(dbs_data->tuners);
}

481
define_get_cpu_dbs_routines(od_cpu_dbs_info);
482

483 484
static struct od_ops od_ops = {
	.powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
485
	.powersave_bias_target = generic_powersave_bias_target,
486 487
	.freq_increase = dbs_freq_increase,
};
488

489
static struct dbs_governor od_dbs_gov = {
490 491
	.gov = {
		.name = "ondemand",
492
		.governor = cpufreq_governor_dbs,
493 494 495
		.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
		.owner = THIS_MODULE,
	},
496
	.governor = GOV_ONDEMAND,
497
	.kobj_type = { .default_attrs = od_attributes },
498 499 500 501 502
	.get_cpu_cdbs = get_cpu_cdbs,
	.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
	.gov_dbs_timer = od_dbs_timer,
	.gov_check_cpu = od_check_cpu,
	.gov_ops = &od_ops,
503 504
	.init = od_init,
	.exit = od_exit,
505
};
L
Linus Torvalds 已提交
506

507
#define CPU_FREQ_GOV_ONDEMAND	(&od_dbs_gov.gov)
508

509 510 511 512 513 514 515 516
static void od_set_powersave_bias(unsigned int powersave_bias)
{
	struct cpufreq_policy *policy;
	struct dbs_data *dbs_data;
	struct od_dbs_tuners *od_tuners;
	unsigned int cpu;
	cpumask_t done;

517
	default_powersave_bias = powersave_bias;
518 519 520 521
	cpumask_clear(&done);

	get_online_cpus();
	for_each_online_cpu(cpu) {
522
		struct policy_dbs_info *policy_dbs;
523

524 525 526
		if (cpumask_test_cpu(cpu, &done))
			continue;

527 528
		policy_dbs = per_cpu(od_cpu_dbs_info, cpu).cdbs.policy_dbs;
		if (!policy_dbs)
529
			continue;
530

531
		policy = policy_dbs->policy;
532
		cpumask_or(&done, &done, policy->cpus);
533

534
		if (policy->governor != CPU_FREQ_GOV_ONDEMAND)
535 536
			continue;

537
		dbs_data = policy_dbs->dbs_data;
538 539
		od_tuners = dbs_data->tuners;
		od_tuners->powersave_bias = default_powersave_bias;
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	}
	put_online_cpus();
}

void od_register_powersave_bias_handler(unsigned int (*f)
		(struct cpufreq_policy *, unsigned int, unsigned int),
		unsigned int powersave_bias)
{
	od_ops.powersave_bias_target = f;
	od_set_powersave_bias(powersave_bias);
}
EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);

void od_unregister_powersave_bias_handler(void)
{
	od_ops.powersave_bias_target = generic_powersave_bias_target;
	od_set_powersave_bias(0);
}
EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);

L
Linus Torvalds 已提交
560 561
static int __init cpufreq_gov_dbs_init(void)
{
562
	return cpufreq_register_governor(CPU_FREQ_GOV_ONDEMAND);
L
Linus Torvalds 已提交
563 564 565 566
}

static void __exit cpufreq_gov_dbs_exit(void)
{
567
	cpufreq_unregister_governor(CPU_FREQ_GOV_ONDEMAND);
L
Linus Torvalds 已提交
568 569
}

570 571 572
MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
573
	"Low Latency Frequency Transition capable processors");
574
MODULE_LICENSE("GPL");
L
Linus Torvalds 已提交
575

576
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
577 578
struct cpufreq_governor *cpufreq_default_governor(void)
{
579
	return CPU_FREQ_GOV_ONDEMAND;
580 581
}

582 583
fs_initcall(cpufreq_gov_dbs_init);
#else
L
Linus Torvalds 已提交
584
module_init(cpufreq_gov_dbs_init);
585
#endif
L
Linus Torvalds 已提交
586
module_exit(cpufreq_gov_dbs_exit);