ptrace.c 82.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  Derived from "arch/m68k/kernel/ptrace.c"
 *  Copyright (C) 1994 by Hamish Macdonald
 *  Taken from linux/kernel/ptrace.c and modified for M680x0.
 *  linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
 *
 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
11
 * and Paul Mackerras (paulus@samba.org).
L
Linus Torvalds 已提交
12 13 14 15 16 17 18 19 20 21 22 23
 *
 * This file is subject to the terms and conditions of the GNU General
 * Public License.  See the file README.legal in the main directory of
 * this archive for more details.
 */

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/errno.h>
#include <linux/ptrace.h>
24
#include <linux/regset.h>
25
#include <linux/tracehook.h>
26
#include <linux/elf.h>
L
Linus Torvalds 已提交
27 28
#include <linux/user.h>
#include <linux/security.h>
29
#include <linux/signal.h>
30 31
#include <linux/seccomp.h>
#include <linux/audit.h>
32
#include <trace/syscall.h>
33 34
#include <linux/hw_breakpoint.h>
#include <linux/perf_event.h>
35
#include <linux/context_tracking.h>
L
Linus Torvalds 已提交
36 37 38 39

#include <asm/uaccess.h>
#include <asm/page.h>
#include <asm/pgtable.h>
40
#include <asm/switch_to.h>
41

42 43 44
#define CREATE_TRACE_POINTS
#include <trace/events/syscalls.h>

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/*
 * The parameter save area on the stack is used to store arguments being passed
 * to callee function and is located at fixed offset from stack pointer.
 */
#ifdef CONFIG_PPC32
#define PARAMETER_SAVE_AREA_OFFSET	24  /* bytes */
#else /* CONFIG_PPC32 */
#define PARAMETER_SAVE_AREA_OFFSET	48  /* bytes */
#endif

struct pt_regs_offset {
	const char *name;
	int offset;
};

#define STR(s)	#s			/* convert to string */
#define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
#define GPR_OFFSET_NAME(num)	\
63
	{.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
64 65 66
	{.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
#define REG_OFFSET_END {.name = NULL, .offset = 0}

67
#define TVSO(f)	(offsetof(struct thread_vr_state, f))
68
#define TFSO(f)	(offsetof(struct thread_fp_state, f))
69
#define TSO(f)	(offsetof(struct thread_struct, f))
70

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
static const struct pt_regs_offset regoffset_table[] = {
	GPR_OFFSET_NAME(0),
	GPR_OFFSET_NAME(1),
	GPR_OFFSET_NAME(2),
	GPR_OFFSET_NAME(3),
	GPR_OFFSET_NAME(4),
	GPR_OFFSET_NAME(5),
	GPR_OFFSET_NAME(6),
	GPR_OFFSET_NAME(7),
	GPR_OFFSET_NAME(8),
	GPR_OFFSET_NAME(9),
	GPR_OFFSET_NAME(10),
	GPR_OFFSET_NAME(11),
	GPR_OFFSET_NAME(12),
	GPR_OFFSET_NAME(13),
	GPR_OFFSET_NAME(14),
	GPR_OFFSET_NAME(15),
	GPR_OFFSET_NAME(16),
	GPR_OFFSET_NAME(17),
	GPR_OFFSET_NAME(18),
	GPR_OFFSET_NAME(19),
	GPR_OFFSET_NAME(20),
	GPR_OFFSET_NAME(21),
	GPR_OFFSET_NAME(22),
	GPR_OFFSET_NAME(23),
	GPR_OFFSET_NAME(24),
	GPR_OFFSET_NAME(25),
	GPR_OFFSET_NAME(26),
	GPR_OFFSET_NAME(27),
	GPR_OFFSET_NAME(28),
	GPR_OFFSET_NAME(29),
	GPR_OFFSET_NAME(30),
	GPR_OFFSET_NAME(31),
	REG_OFFSET_NAME(nip),
	REG_OFFSET_NAME(msr),
	REG_OFFSET_NAME(ctr),
	REG_OFFSET_NAME(link),
	REG_OFFSET_NAME(xer),
	REG_OFFSET_NAME(ccr),
#ifdef CONFIG_PPC64
	REG_OFFSET_NAME(softe),
#else
	REG_OFFSET_NAME(mq),
#endif
	REG_OFFSET_NAME(trap),
	REG_OFFSET_NAME(dar),
	REG_OFFSET_NAME(dsisr),
	REG_OFFSET_END,
};

/**
 * regs_query_register_offset() - query register offset from its name
 * @name:	the name of a register
 *
 * regs_query_register_offset() returns the offset of a register in struct
 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
 */
int regs_query_register_offset(const char *name)
{
	const struct pt_regs_offset *roff;
	for (roff = regoffset_table; roff->name != NULL; roff++)
		if (!strcmp(roff->name, name))
			return roff->offset;
	return -EINVAL;
}

/**
 * regs_query_register_name() - query register name from its offset
 * @offset:	the offset of a register in struct pt_regs.
 *
 * regs_query_register_name() returns the name of a register from its
 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
 */
const char *regs_query_register_name(unsigned int offset)
{
	const struct pt_regs_offset *roff;
	for (roff = regoffset_table; roff->name != NULL; roff++)
		if (roff->offset == offset)
			return roff->name;
	return NULL;
}

153 154 155 156 157 158 159 160
/*
 * does not yet catch signals sent when the child dies.
 * in exit.c or in signal.c.
 */

/*
 * Set of msr bits that gdb can change on behalf of a process.
 */
161
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
162
#define MSR_DEBUGCHANGE	0
L
Linus Torvalds 已提交
163
#else
164
#define MSR_DEBUGCHANGE	(MSR_SE | MSR_BE)
L
Linus Torvalds 已提交
165
#endif
166

L
Linus Torvalds 已提交
167
/*
168
 * Max register writeable via put_reg
L
Linus Torvalds 已提交
169
 */
170 171 172 173 174
#ifdef CONFIG_PPC32
#define PT_MAX_PUT_REG	PT_MQ
#else
#define PT_MAX_PUT_REG	PT_CCR
#endif
L
Linus Torvalds 已提交
175

176 177 178 179 180 181 182 183 184 185 186 187
static unsigned long get_user_msr(struct task_struct *task)
{
	return task->thread.regs->msr | task->thread.fpexc_mode;
}

static int set_user_msr(struct task_struct *task, unsigned long msr)
{
	task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
	task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
	return 0;
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static unsigned long get_user_ckpt_msr(struct task_struct *task)
{
	return task->thread.ckpt_regs.msr | task->thread.fpexc_mode;
}

static int set_user_ckpt_msr(struct task_struct *task, unsigned long msr)
{
	task->thread.ckpt_regs.msr &= ~MSR_DEBUGCHANGE;
	task->thread.ckpt_regs.msr |= msr & MSR_DEBUGCHANGE;
	return 0;
}

static int set_user_ckpt_trap(struct task_struct *task, unsigned long trap)
{
	task->thread.ckpt_regs.trap = trap & 0xfff0;
	return 0;
}
#endif

208
#ifdef CONFIG_PPC64
209
static int get_user_dscr(struct task_struct *task, unsigned long *data)
210
{
211 212
	*data = task->thread.dscr;
	return 0;
213 214 215 216 217 218 219 220 221
}

static int set_user_dscr(struct task_struct *task, unsigned long dscr)
{
	task->thread.dscr = dscr;
	task->thread.dscr_inherit = 1;
	return 0;
}
#else
222
static int get_user_dscr(struct task_struct *task, unsigned long *data)
223 224 225 226 227 228 229 230 231 232
{
	return -EIO;
}

static int set_user_dscr(struct task_struct *task, unsigned long dscr)
{
	return -EIO;
}
#endif

233 234 235 236 237 238 239 240 241 242
/*
 * We prevent mucking around with the reserved area of trap
 * which are used internally by the kernel.
 */
static int set_user_trap(struct task_struct *task, unsigned long trap)
{
	task->thread.regs->trap = trap & 0xfff0;
	return 0;
}

243 244 245
/*
 * Get contents of register REGNO in task TASK.
 */
246
int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
247
{
248
	if ((task->thread.regs == NULL) || !data)
249 250
		return -EIO;

251 252 253 254
	if (regno == PT_MSR) {
		*data = get_user_msr(task);
		return 0;
	}
255

256
	if (regno == PT_DSCR)
257
		return get_user_dscr(task, data);
258

259 260 261 262
	if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) {
		*data = ((unsigned long *)task->thread.regs)[regno];
		return 0;
	}
263 264 265 266 267 268 269 270 271 272 273 274

	return -EIO;
}

/*
 * Write contents of register REGNO in task TASK.
 */
int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
{
	if (task->thread.regs == NULL)
		return -EIO;

275 276 277 278
	if (regno == PT_MSR)
		return set_user_msr(task, data);
	if (regno == PT_TRAP)
		return set_user_trap(task, data);
279 280
	if (regno == PT_DSCR)
		return set_user_dscr(task, data);
281 282

	if (regno <= PT_MAX_PUT_REG) {
283 284 285 286 287 288
		((unsigned long *)task->thread.regs)[regno] = data;
		return 0;
	}
	return -EIO;
}

289 290 291 292
static int gpr_get(struct task_struct *target, const struct user_regset *regset,
		   unsigned int pos, unsigned int count,
		   void *kbuf, void __user *ubuf)
{
293
	int i, ret;
294 295 296 297

	if (target->thread.regs == NULL)
		return -EIO;

298 299 300 301 302
	if (!FULL_REGS(target->thread.regs)) {
		/* We have a partial register set.  Fill 14-31 with bogus values */
		for (i = 14; i < 32; i++)
			target->thread.regs->gpr[i] = NV_REG_POISON;
	}
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383

	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				  target->thread.regs,
				  0, offsetof(struct pt_regs, msr));
	if (!ret) {
		unsigned long msr = get_user_msr(target);
		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
					  offsetof(struct pt_regs, msr),
					  offsetof(struct pt_regs, msr) +
					  sizeof(msr));
	}

	BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
		     offsetof(struct pt_regs, msr) + sizeof(long));

	if (!ret)
		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
					  &target->thread.regs->orig_gpr3,
					  offsetof(struct pt_regs, orig_gpr3),
					  sizeof(struct pt_regs));
	if (!ret)
		ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
					       sizeof(struct pt_regs), -1);

	return ret;
}

static int gpr_set(struct task_struct *target, const struct user_regset *regset,
		   unsigned int pos, unsigned int count,
		   const void *kbuf, const void __user *ubuf)
{
	unsigned long reg;
	int ret;

	if (target->thread.regs == NULL)
		return -EIO;

	CHECK_FULL_REGS(target->thread.regs);

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				 target->thread.regs,
				 0, PT_MSR * sizeof(reg));

	if (!ret && count > 0) {
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
					 PT_MSR * sizeof(reg),
					 (PT_MSR + 1) * sizeof(reg));
		if (!ret)
			ret = set_user_msr(target, reg);
	}

	BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
		     offsetof(struct pt_regs, msr) + sizeof(long));

	if (!ret)
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
					 &target->thread.regs->orig_gpr3,
					 PT_ORIG_R3 * sizeof(reg),
					 (PT_MAX_PUT_REG + 1) * sizeof(reg));

	if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
		ret = user_regset_copyin_ignore(
			&pos, &count, &kbuf, &ubuf,
			(PT_MAX_PUT_REG + 1) * sizeof(reg),
			PT_TRAP * sizeof(reg));

	if (!ret && count > 0) {
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
					 PT_TRAP * sizeof(reg),
					 (PT_TRAP + 1) * sizeof(reg));
		if (!ret)
			ret = set_user_trap(target, reg);
	}

	if (!ret)
		ret = user_regset_copyin_ignore(
			&pos, &count, &kbuf, &ubuf,
			(PT_TRAP + 1) * sizeof(reg), -1);

	return ret;
}
384

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
/*
 * When the transaction is active, 'transact_fp' holds the current running
 * value of all FPR registers and 'fp_state' holds the last checkpointed
 * value of all FPR registers for the current transaction. When transaction
 * is not active 'fp_state' holds the current running state of all the FPR
 * registers. So this function which returns the current running values of
 * all the FPR registers, needs to know whether any transaction is active
 * or not.
 *
 * Userspace interface buffer layout:
 *
 * struct data {
 *	u64	fpr[32];
 *	u64	fpscr;
 * };
 *
 * There are two config options CONFIG_VSX and CONFIG_PPC_TRANSACTIONAL_MEM
 * which determines the final code in this function. All the combinations of
 * these two config options are possible except the one below as transactional
 * memory config pulls in CONFIG_VSX automatically.
 *
 *	!defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
 */
408 409 410 411
static int fpr_get(struct task_struct *target, const struct user_regset *regset,
		   unsigned int pos, unsigned int count,
		   void *kbuf, void __user *ubuf)
{
412
#ifdef CONFIG_VSX
413
	u64 buf[33];
414 415
	int i;
#endif
416 417
	flush_fp_to_thread(target);

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
#if defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
	/* copy to local buffer then write that out */
	if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
		flush_altivec_to_thread(target);
		flush_tmregs_to_thread(target);
		for (i = 0; i < 32 ; i++)
			buf[i] = target->thread.TS_TRANS_FPR(i);
		buf[32] = target->thread.transact_fp.fpscr;
	} else {
		for (i = 0; i < 32 ; i++)
			buf[i] = target->thread.TS_FPR(i);
		buf[32] = target->thread.fp_state.fpscr;
	}
	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
#endif

#if defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
435 436 437
	/* copy to local buffer then write that out */
	for (i = 0; i < 32 ; i++)
		buf[i] = target->thread.TS_FPR(i);
438
	buf[32] = target->thread.fp_state.fpscr;
439
	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
440
#endif
441

442
#if !defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
443
	BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
444
		     offsetof(struct thread_fp_state, fpr[32]));
445 446

	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
447
				   &target->thread.fp_state, 0, -1);
448
#endif
449 450
}

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
/*
 * When the transaction is active, 'transact_fp' holds the current running
 * value of all FPR registers and 'fp_state' holds the last checkpointed
 * value of all FPR registers for the current transaction. When transaction
 * is not active 'fp_state' holds the current running state of all the FPR
 * registers. So this function which setss the current running values of
 * all the FPR registers, needs to know whether any transaction is active
 * or not.
 *
 * Userspace interface buffer layout:
 *
 * struct data {
 *	u64	fpr[32];
 *	u64	fpscr;
 * };
 *
 * There are two config options CONFIG_VSX and CONFIG_PPC_TRANSACTIONAL_MEM
 * which determines the final code in this function. All the combinations of
 * these two config options are possible except the one below as transactional
 * memory config pulls in CONFIG_VSX automatically.
 *
 *	!defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
 */
474 475 476 477
static int fpr_set(struct task_struct *target, const struct user_regset *regset,
		   unsigned int pos, unsigned int count,
		   const void *kbuf, const void __user *ubuf)
{
478
#ifdef CONFIG_VSX
479
	u64 buf[33];
480 481
	int i;
#endif
482 483
	flush_fp_to_thread(target);

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
#if defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
	/* copy to local buffer then write that out */
	i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
	if (i)
		return i;

	if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
		flush_altivec_to_thread(target);
		flush_tmregs_to_thread(target);
		for (i = 0; i < 32 ; i++)
			target->thread.TS_TRANS_FPR(i) = buf[i];
		target->thread.transact_fp.fpscr = buf[32];
	} else {
		for (i = 0; i < 32 ; i++)
			target->thread.TS_FPR(i) = buf[i];
		target->thread.fp_state.fpscr = buf[32];
	}
	return 0;
#endif

#if defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
505 506 507 508 509 510
	/* copy to local buffer then write that out */
	i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
	if (i)
		return i;
	for (i = 0; i < 32 ; i++)
		target->thread.TS_FPR(i) = buf[i];
511
	target->thread.fp_state.fpscr = buf[32];
512
	return 0;
513 514 515
#endif

#if !defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
516
	BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
517
		     offsetof(struct thread_fp_state, fpr[32]));
518 519

	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
520
				  &target->thread.fp_state, 0, -1);
521
#endif
522 523
}

524 525 526 527 528 529 530 531 532 533 534 535 536 537
#ifdef CONFIG_ALTIVEC
/*
 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
 * The transfer totals 34 quadword.  Quadwords 0-31 contain the
 * corresponding vector registers.  Quadword 32 contains the vscr as the
 * last word (offset 12) within that quadword.  Quadword 33 contains the
 * vrsave as the first word (offset 0) within the quadword.
 *
 * This definition of the VMX state is compatible with the current PPC32
 * ptrace interface.  This allows signal handling and ptrace to use the
 * same structures.  This also simplifies the implementation of a bi-arch
 * (combined (32- and 64-bit) gdb.
 */

538 539 540 541 542 543 544
static int vr_active(struct task_struct *target,
		     const struct user_regset *regset)
{
	flush_altivec_to_thread(target);
	return target->thread.used_vr ? regset->n : 0;
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
/*
 * When the transaction is active, 'transact_vr' holds the current running
 * value of all the VMX registers and 'vr_state' holds the last checkpointed
 * value of all the VMX registers for the current transaction to fall back
 * on in case it aborts. When transaction is not active 'vr_state' holds
 * the current running state of all the VMX registers. So this function which
 * gets the current running values of all the VMX registers, needs to know
 * whether any transaction is active or not.
 *
 * Userspace interface buffer layout:
 *
 * struct data {
 *	vector128	vr[32];
 *	vector128	vscr;
 *	vector128	vrsave;
 * };
 */
562 563 564 565
static int vr_get(struct task_struct *target, const struct user_regset *regset,
		  unsigned int pos, unsigned int count,
		  void *kbuf, void __user *ubuf)
{
566
	struct thread_vr_state *addr;
567 568 569 570
	int ret;

	flush_altivec_to_thread(target);

571 572
	BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
		     offsetof(struct thread_vr_state, vr[32]));
573

574 575 576 577 578 579 580 581 582 583 584
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
		flush_fp_to_thread(target);
		flush_tmregs_to_thread(target);
		addr = &target->thread.transact_vr;
	} else {
		addr = &target->thread.vr_state;
	}
#else
	addr = &target->thread.vr_state;
#endif
585
	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
586
				  addr, 0,
587 588 589 590 591 592 593 594 595 596
				  33 * sizeof(vector128));
	if (!ret) {
		/*
		 * Copy out only the low-order word of vrsave.
		 */
		union {
			elf_vrreg_t reg;
			u32 word;
		} vrsave;
		memset(&vrsave, 0, sizeof(vrsave));
597 598 599 600 601 602 603

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
		if (MSR_TM_ACTIVE(target->thread.regs->msr))
			vrsave.word = target->thread.transact_vrsave;
		else
			vrsave.word = target->thread.vrsave;
#else
604
		vrsave.word = target->thread.vrsave;
605 606
#endif

607 608 609 610 611 612 613
		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
					  33 * sizeof(vector128), -1);
	}

	return ret;
}

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
/*
 * When the transaction is active, 'transact_vr' holds the current running
 * value of all the VMX registers and 'vr_state' holds the last checkpointed
 * value of all the VMX registers for the current transaction to fall back
 * on in case it aborts. When transaction is not active 'vr_state' holds
 * the current running state of all the VMX registers. So this function which
 * sets the current running values of all the VMX registers, needs to know
 * whether any transaction is active or not.
 *
 * Userspace interface buffer layout:
 *
 * struct data {
 *	vector128	vr[32];
 *	vector128	vscr;
 *	vector128	vrsave;
 * };
 */
631 632 633 634
static int vr_set(struct task_struct *target, const struct user_regset *regset,
		  unsigned int pos, unsigned int count,
		  const void *kbuf, const void __user *ubuf)
{
635
	struct thread_vr_state *addr;
636 637 638 639
	int ret;

	flush_altivec_to_thread(target);

640 641
	BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
		     offsetof(struct thread_vr_state, vr[32]));
642

643 644 645 646 647 648 649 650 651 652 653
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
		flush_fp_to_thread(target);
		flush_tmregs_to_thread(target);
		addr = &target->thread.transact_vr;
	} else {
		addr = &target->thread.vr_state;
	}
#else
	addr = &target->thread.vr_state;
#endif
654
	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
655
				 addr, 0,
656
				 33 * sizeof(vector128));
657 658 659 660 661 662 663 664 665
	if (!ret && count > 0) {
		/*
		 * We use only the first word of vrsave.
		 */
		union {
			elf_vrreg_t reg;
			u32 word;
		} vrsave;
		memset(&vrsave, 0, sizeof(vrsave));
666 667 668 669 670 671 672

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
		if (MSR_TM_ACTIVE(target->thread.regs->msr))
			vrsave.word = target->thread.transact_vrsave;
		else
			vrsave.word = target->thread.vrsave;
#else
673
		vrsave.word = target->thread.vrsave;
674
#endif
675 676
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
					 33 * sizeof(vector128), -1);
677 678 679 680 681 682 683 684
		if (!ret) {

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
			if (MSR_TM_ACTIVE(target->thread.regs->msr))
				target->thread.transact_vrsave = vrsave.word;
			else
				target->thread.vrsave = vrsave.word;
#else
685
			target->thread.vrsave = vrsave.word;
686 687
#endif
		}
688 689 690 691
	}

	return ret;
}
692 693
#endif /* CONFIG_ALTIVEC */

694 695 696
#ifdef CONFIG_VSX
/*
 * Currently to set and and get all the vsx state, you need to call
L
Lucas De Marchi 已提交
697
 * the fp and VMX calls as well.  This only get/sets the lower 32
698 699 700 701 702 703 704 705 706 707
 * 128bit VSX registers.
 */

static int vsr_active(struct task_struct *target,
		      const struct user_regset *regset)
{
	flush_vsx_to_thread(target);
	return target->thread.used_vsr ? regset->n : 0;
}

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
/*
 * When the transaction is active, 'transact_fp' holds the current running
 * value of all FPR registers and 'fp_state' holds the last checkpointed
 * value of all FPR registers for the current transaction. When transaction
 * is not active 'fp_state' holds the current running state of all the FPR
 * registers. So this function which returns the current running values of
 * all the FPR registers, needs to know whether any transaction is active
 * or not.
 *
 * Userspace interface buffer layout:
 *
 * struct data {
 *	u64	vsx[32];
 * };
 */
723 724 725 726
static int vsr_get(struct task_struct *target, const struct user_regset *regset,
		   unsigned int pos, unsigned int count,
		   void *kbuf, void __user *ubuf)
{
727
	u64 buf[32];
728
	int ret, i;
729

730 731 732 733 734
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);
	flush_tmregs_to_thread(target);
#endif
735 736
	flush_vsx_to_thread(target);

737 738 739 740 741 742 743 744 745 746 747
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
		for (i = 0; i < 32 ; i++)
			buf[i] = target->thread.
				transact_fp.fpr[i][TS_VSRLOWOFFSET];
	} else {
		for (i = 0; i < 32 ; i++)
			buf[i] = target->thread.
				fp_state.fpr[i][TS_VSRLOWOFFSET];
	}
#else
748
	for (i = 0; i < 32 ; i++)
749
		buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
750
#endif
751
	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
752
				  buf, 0, 32 * sizeof(double));
753 754 755 756

	return ret;
}

757 758 759 760 761 762 763 764 765 766 767 768 769 770
/*
 * When the transaction is active, 'transact_fp' holds the current running
 * value of all FPR registers and 'fp_state' holds the last checkpointed
 * value of all FPR registers for the current transaction. When transaction
 * is not active 'fp_state' holds the current running state of all the FPR
 * registers. So this function which sets the current running values of all
 * the FPR registers, needs to know whether any transaction is active or not.
 *
 * Userspace interface buffer layout:
 *
 * struct data {
 *	u64	vsx[32];
 * };
 */
771 772 773 774
static int vsr_set(struct task_struct *target, const struct user_regset *regset,
		   unsigned int pos, unsigned int count,
		   const void *kbuf, const void __user *ubuf)
{
775
	u64 buf[32];
776
	int ret,i;
777

778 779 780 781 782
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);
	flush_tmregs_to_thread(target);
#endif
783 784 785
	flush_vsx_to_thread(target);

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
786
				 buf, 0, 32 * sizeof(double));
787 788 789 790 791 792 793 794 795 796 797 798

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
		for (i = 0; i < 32 ; i++)
			target->thread.transact_fp.
				fpr[i][TS_VSRLOWOFFSET] = buf[i];
	} else {
		for (i = 0; i < 32 ; i++)
			target->thread.fp_state.
				fpr[i][TS_VSRLOWOFFSET] = buf[i];
	}
#else
799
	for (i = 0; i < 32 ; i++)
800
		target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
801
#endif
802

803 804 805 806 807

	return ret;
}
#endif /* CONFIG_VSX */

808 809 810 811 812 813 814 815 816 817 818 819
#ifdef CONFIG_SPE

/*
 * For get_evrregs/set_evrregs functions 'data' has the following layout:
 *
 * struct {
 *   u32 evr[32];
 *   u64 acc;
 *   u32 spefscr;
 * }
 */

820 821
static int evr_active(struct task_struct *target,
		      const struct user_regset *regset)
822
{
823 824 825
	flush_spe_to_thread(target);
	return target->thread.used_spe ? regset->n : 0;
}
826

827 828 829 830 831
static int evr_get(struct task_struct *target, const struct user_regset *regset,
		   unsigned int pos, unsigned int count,
		   void *kbuf, void __user *ubuf)
{
	int ret;
832

833
	flush_spe_to_thread(target);
834

835 836 837
	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				  &target->thread.evr,
				  0, sizeof(target->thread.evr));
838

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
	BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
		     offsetof(struct thread_struct, spefscr));

	if (!ret)
		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
					  &target->thread.acc,
					  sizeof(target->thread.evr), -1);

	return ret;
}

static int evr_set(struct task_struct *target, const struct user_regset *regset,
		   unsigned int pos, unsigned int count,
		   const void *kbuf, const void __user *ubuf)
{
	int ret;

	flush_spe_to_thread(target);

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				 &target->thread.evr,
				 0, sizeof(target->thread.evr));
861

862 863 864 865 866 867 868 869 870
	BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
		     offsetof(struct thread_struct, spefscr));

	if (!ret)
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
					 &target->thread.acc,
					 sizeof(target->thread.evr), -1);

	return ret;
871 872 873
}
#endif /* CONFIG_SPE */

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
/**
 * tm_cgpr_active - get active number of registers in CGPR
 * @target:	The target task.
 * @regset:	The user regset structure.
 *
 * This function checks for the active number of available
 * regisers in transaction checkpointed GPR category.
 */
static int tm_cgpr_active(struct task_struct *target,
			  const struct user_regset *regset)
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return 0;

	return regset->n;
}

/**
 * tm_cgpr_get - get CGPR registers
 * @target:	The target task.
 * @regset:	The user regset structure.
 * @pos:	The buffer position.
 * @count:	Number of bytes to copy.
 * @kbuf:	Kernel buffer to copy from.
 * @ubuf:	User buffer to copy into.
 *
 * This function gets transaction checkpointed GPR registers.
 *
 * When the transaction is active, 'ckpt_regs' holds all the checkpointed
 * GPR register values for the current transaction to fall back on if it
 * aborts in between. This function gets those checkpointed GPR registers.
 * The userspace interface buffer layout is as follows.
 *
 * struct data {
 *	struct pt_regs ckpt_regs;
 * };
 */
static int tm_cgpr_get(struct task_struct *target,
			const struct user_regset *regset,
			unsigned int pos, unsigned int count,
			void *kbuf, void __user *ubuf)
{
	int ret;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);
	flush_tmregs_to_thread(target);

	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				  &target->thread.ckpt_regs,
				  0, offsetof(struct pt_regs, msr));
	if (!ret) {
		unsigned long msr = get_user_ckpt_msr(target);

		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
					  offsetof(struct pt_regs, msr),
					  offsetof(struct pt_regs, msr) +
					  sizeof(msr));
	}

	BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
		     offsetof(struct pt_regs, msr) + sizeof(long));

	if (!ret)
		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
					  &target->thread.ckpt_regs.orig_gpr3,
					  offsetof(struct pt_regs, orig_gpr3),
					  sizeof(struct pt_regs));
	if (!ret)
		ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
					       sizeof(struct pt_regs), -1);

	return ret;
}

/*
 * tm_cgpr_set - set the CGPR registers
 * @target:	The target task.
 * @regset:	The user regset structure.
 * @pos:	The buffer position.
 * @count:	Number of bytes to copy.
 * @kbuf:	Kernel buffer to copy into.
 * @ubuf:	User buffer to copy from.
 *
 * This function sets in transaction checkpointed GPR registers.
 *
 * When the transaction is active, 'ckpt_regs' holds the checkpointed
 * GPR register values for the current transaction to fall back on if it
 * aborts in between. This function sets those checkpointed GPR registers.
 * The userspace interface buffer layout is as follows.
 *
 * struct data {
 *	struct pt_regs ckpt_regs;
 * };
 */
static int tm_cgpr_set(struct task_struct *target,
			const struct user_regset *regset,
			unsigned int pos, unsigned int count,
			const void *kbuf, const void __user *ubuf)
{
	unsigned long reg;
	int ret;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);
	flush_tmregs_to_thread(target);

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				 &target->thread.ckpt_regs,
				 0, PT_MSR * sizeof(reg));

	if (!ret && count > 0) {
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
					 PT_MSR * sizeof(reg),
					 (PT_MSR + 1) * sizeof(reg));
		if (!ret)
			ret = set_user_ckpt_msr(target, reg);
	}

	BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
		     offsetof(struct pt_regs, msr) + sizeof(long));

	if (!ret)
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
					 &target->thread.ckpt_regs.orig_gpr3,
					 PT_ORIG_R3 * sizeof(reg),
					 (PT_MAX_PUT_REG + 1) * sizeof(reg));

	if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
		ret = user_regset_copyin_ignore(
			&pos, &count, &kbuf, &ubuf,
			(PT_MAX_PUT_REG + 1) * sizeof(reg),
			PT_TRAP * sizeof(reg));

	if (!ret && count > 0) {
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
					 PT_TRAP * sizeof(reg),
					 (PT_TRAP + 1) * sizeof(reg));
		if (!ret)
			ret = set_user_ckpt_trap(target, reg);
	}

	if (!ret)
		ret = user_regset_copyin_ignore(
			&pos, &count, &kbuf, &ubuf,
			(PT_TRAP + 1) * sizeof(reg), -1);

	return ret;
}
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

/**
 * tm_cfpr_active - get active number of registers in CFPR
 * @target:	The target task.
 * @regset:	The user regset structure.
 *
 * This function checks for the active number of available
 * regisers in transaction checkpointed FPR category.
 */
static int tm_cfpr_active(struct task_struct *target,
				const struct user_regset *regset)
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return 0;

	return regset->n;
}

/**
 * tm_cfpr_get - get CFPR registers
 * @target:	The target task.
 * @regset:	The user regset structure.
 * @pos:	The buffer position.
 * @count:	Number of bytes to copy.
 * @kbuf:	Kernel buffer to copy from.
 * @ubuf:	User buffer to copy into.
 *
 * This function gets in transaction checkpointed FPR registers.
 *
 * When the transaction is active 'fp_state' holds the checkpointed
 * values for the current transaction to fall back on if it aborts
 * in between. This function gets those checkpointed FPR registers.
 * The userspace interface buffer layout is as follows.
 *
 * struct data {
 *	u64	fpr[32];
 *	u64	fpscr;
 *};
 */
static int tm_cfpr_get(struct task_struct *target,
			const struct user_regset *regset,
			unsigned int pos, unsigned int count,
			void *kbuf, void __user *ubuf)
{
	u64 buf[33];
	int i;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);
	flush_tmregs_to_thread(target);

	/* copy to local buffer then write that out */
	for (i = 0; i < 32 ; i++)
		buf[i] = target->thread.TS_FPR(i);
	buf[32] = target->thread.fp_state.fpscr;
	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
}

/**
 * tm_cfpr_set - set CFPR registers
 * @target:	The target task.
 * @regset:	The user regset structure.
 * @pos:	The buffer position.
 * @count:	Number of bytes to copy.
 * @kbuf:	Kernel buffer to copy into.
 * @ubuf:	User buffer to copy from.
 *
 * This function sets in transaction checkpointed FPR registers.
 *
 * When the transaction is active 'fp_state' holds the checkpointed
 * FPR register values for the current transaction to fall back on
 * if it aborts in between. This function sets these checkpointed
 * FPR registers. The userspace interface buffer layout is as follows.
 *
 * struct data {
 *	u64	fpr[32];
 *	u64	fpscr;
 *};
 */
static int tm_cfpr_set(struct task_struct *target,
			const struct user_regset *regset,
			unsigned int pos, unsigned int count,
			const void *kbuf, const void __user *ubuf)
{
	u64 buf[33];
	int i;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);
	flush_tmregs_to_thread(target);

	/* copy to local buffer then write that out */
	i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
	if (i)
		return i;
	for (i = 0; i < 32 ; i++)
		target->thread.TS_FPR(i) = buf[i];
	target->thread.fp_state.fpscr = buf[32];
	return 0;
}
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298

/**
 * tm_cvmx_active - get active number of registers in CVMX
 * @target:	The target task.
 * @regset:	The user regset structure.
 *
 * This function checks for the active number of available
 * regisers in checkpointed VMX category.
 */
static int tm_cvmx_active(struct task_struct *target,
				const struct user_regset *regset)
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return 0;

	return regset->n;
}

/**
 * tm_cvmx_get - get CMVX registers
 * @target:	The target task.
 * @regset:	The user regset structure.
 * @pos:	The buffer position.
 * @count:	Number of bytes to copy.
 * @kbuf:	Kernel buffer to copy from.
 * @ubuf:	User buffer to copy into.
 *
 * This function gets in transaction checkpointed VMX registers.
 *
 * When the transaction is active 'vr_state' and 'vr_save' hold
 * the checkpointed values for the current transaction to fall
 * back on if it aborts in between. The userspace interface buffer
 * layout is as follows.
 *
 * struct data {
 *	vector128	vr[32];
 *	vector128	vscr;
 *	vector128	vrsave;
 *};
 */
static int tm_cvmx_get(struct task_struct *target,
			const struct user_regset *regset,
			unsigned int pos, unsigned int count,
			void *kbuf, void __user *ubuf)
{
	int ret;

	BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	/* Flush the state */
	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);
	flush_tmregs_to_thread(target);

	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
					&target->thread.vr_state, 0,
					33 * sizeof(vector128));
	if (!ret) {
		/*
		 * Copy out only the low-order word of vrsave.
		 */
		union {
			elf_vrreg_t reg;
			u32 word;
		} vrsave;
		memset(&vrsave, 0, sizeof(vrsave));
		vrsave.word = target->thread.vrsave;
		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
						33 * sizeof(vector128), -1);
	}

	return ret;
}

/**
 * tm_cvmx_set - set CMVX registers
 * @target:	The target task.
 * @regset:	The user regset structure.
 * @pos:	The buffer position.
 * @count:	Number of bytes to copy.
 * @kbuf:	Kernel buffer to copy into.
 * @ubuf:	User buffer to copy from.
 *
 * This function sets in transaction checkpointed VMX registers.
 *
 * When the transaction is active 'vr_state' and 'vr_save' hold
 * the checkpointed values for the current transaction to fall
 * back on if it aborts in between. The userspace interface buffer
 * layout is as follows.
 *
 * struct data {
 *	vector128	vr[32];
 *	vector128	vscr;
 *	vector128	vrsave;
 *};
 */
static int tm_cvmx_set(struct task_struct *target,
			const struct user_regset *regset,
			unsigned int pos, unsigned int count,
			const void *kbuf, const void __user *ubuf)
{
	int ret;

	BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);
	flush_tmregs_to_thread(target);

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
					&target->thread.vr_state, 0,
					33 * sizeof(vector128));
	if (!ret && count > 0) {
		/*
		 * We use only the low-order word of vrsave.
		 */
		union {
			elf_vrreg_t reg;
			u32 word;
		} vrsave;
		memset(&vrsave, 0, sizeof(vrsave));
		vrsave.word = target->thread.vrsave;
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
						33 * sizeof(vector128), -1);
		if (!ret)
			target->thread.vrsave = vrsave.word;
	}

	return ret;
}
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

/**
 * tm_cvsx_active - get active number of registers in CVSX
 * @target:	The target task.
 * @regset:	The user regset structure.
 *
 * This function checks for the active number of available
 * regisers in transaction checkpointed VSX category.
 */
static int tm_cvsx_active(struct task_struct *target,
				const struct user_regset *regset)
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return 0;

	flush_vsx_to_thread(target);
	return target->thread.used_vsr ? regset->n : 0;
}

/**
 * tm_cvsx_get - get CVSX registers
 * @target:	The target task.
 * @regset:	The user regset structure.
 * @pos:	The buffer position.
 * @count:	Number of bytes to copy.
 * @kbuf:	Kernel buffer to copy from.
 * @ubuf:	User buffer to copy into.
 *
 * This function gets in transaction checkpointed VSX registers.
 *
 * When the transaction is active 'fp_state' holds the checkpointed
 * values for the current transaction to fall back on if it aborts
 * in between. This function gets those checkpointed VSX registers.
 * The userspace interface buffer layout is as follows.
 *
 * struct data {
 *	u64	vsx[32];
 *};
 */
static int tm_cvsx_get(struct task_struct *target,
			const struct user_regset *regset,
			unsigned int pos, unsigned int count,
			void *kbuf, void __user *ubuf)
{
	u64 buf[32];
	int ret, i;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	/* Flush the state */
	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);
	flush_tmregs_to_thread(target);
	flush_vsx_to_thread(target);

	for (i = 0; i < 32 ; i++)
		buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				  buf, 0, 32 * sizeof(double));

	return ret;
}

/**
 * tm_cvsx_set - set CFPR registers
 * @target:	The target task.
 * @regset:	The user regset structure.
 * @pos:	The buffer position.
 * @count:	Number of bytes to copy.
 * @kbuf:	Kernel buffer to copy into.
 * @ubuf:	User buffer to copy from.
 *
 * This function sets in transaction checkpointed VSX registers.
 *
 * When the transaction is active 'fp_state' holds the checkpointed
 * VSX register values for the current transaction to fall back on
 * if it aborts in between. This function sets these checkpointed
 * FPR registers. The userspace interface buffer layout is as follows.
 *
 * struct data {
 *	u64	vsx[32];
 *};
 */
static int tm_cvsx_set(struct task_struct *target,
			const struct user_regset *regset,
			unsigned int pos, unsigned int count,
			const void *kbuf, const void __user *ubuf)
{
	u64 buf[32];
	int ret, i;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	/* Flush the state */
	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);
	flush_tmregs_to_thread(target);
	flush_vsx_to_thread(target);

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				 buf, 0, 32 * sizeof(double));
	for (i = 0; i < 32 ; i++)
		target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];

	return ret;
}
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544

/**
 * tm_spr_active - get active number of registers in TM SPR
 * @target:	The target task.
 * @regset:	The user regset structure.
 *
 * This function checks the active number of available
 * regisers in the transactional memory SPR category.
 */
static int tm_spr_active(struct task_struct *target,
			 const struct user_regset *regset)
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	return regset->n;
}

/**
 * tm_spr_get - get the TM related SPR registers
 * @target:	The target task.
 * @regset:	The user regset structure.
 * @pos:	The buffer position.
 * @count:	Number of bytes to copy.
 * @kbuf:	Kernel buffer to copy from.
 * @ubuf:	User buffer to copy into.
 *
 * This function gets transactional memory related SPR registers.
 * The userspace interface buffer layout is as follows.
 *
 * struct {
 *	u64		tm_tfhar;
 *	u64		tm_texasr;
 *	u64		tm_tfiar;
 * };
 */
static int tm_spr_get(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      void *kbuf, void __user *ubuf)
{
	int ret;

	/* Build tests */
	BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
	BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
	BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	/* Flush the states */
	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);
	flush_tmregs_to_thread(target);

	/* TFHAR register */
	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_tfhar, 0, sizeof(u64));

	/* TEXASR register */
	if (!ret)
		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_texasr, sizeof(u64),
				2 * sizeof(u64));

	/* TFIAR register */
	if (!ret)
		ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_tfiar,
				2 * sizeof(u64), 3 * sizeof(u64));
	return ret;
}

/**
 * tm_spr_set - set the TM related SPR registers
 * @target:	The target task.
 * @regset:	The user regset structure.
 * @pos:	The buffer position.
 * @count:	Number of bytes to copy.
 * @kbuf:	Kernel buffer to copy into.
 * @ubuf:	User buffer to copy from.
 *
 * This function sets transactional memory related SPR registers.
 * The userspace interface buffer layout is as follows.
 *
 * struct {
 *	u64		tm_tfhar;
 *	u64		tm_texasr;
 *	u64		tm_tfiar;
 * };
 */
static int tm_spr_set(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      const void *kbuf, const void __user *ubuf)
{
	int ret;

	/* Build tests */
	BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
	BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
	BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	/* Flush the states */
	flush_fp_to_thread(target);
	flush_altivec_to_thread(target);
	flush_tmregs_to_thread(target);

	/* TFHAR register */
	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_tfhar, 0, sizeof(u64));

	/* TEXASR register */
	if (!ret)
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_texasr, sizeof(u64),
				2 * sizeof(u64));

	/* TFIAR register */
	if (!ret)
		ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_tfiar,
				 2 * sizeof(u64), 3 * sizeof(u64));
	return ret;
}
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689

static int tm_tar_active(struct task_struct *target,
			 const struct user_regset *regset)
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (MSR_TM_ACTIVE(target->thread.regs->msr))
		return regset->n;

	return 0;
}

static int tm_tar_get(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      void *kbuf, void __user *ubuf)
{
	int ret;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_tar, 0, sizeof(u64));
	return ret;
}

static int tm_tar_set(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      const void *kbuf, const void __user *ubuf)
{
	int ret;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_tar, 0, sizeof(u64));
	return ret;
}

static int tm_ppr_active(struct task_struct *target,
			 const struct user_regset *regset)
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (MSR_TM_ACTIVE(target->thread.regs->msr))
		return regset->n;

	return 0;
}


static int tm_ppr_get(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      void *kbuf, void __user *ubuf)
{
	int ret;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_ppr, 0, sizeof(u64));
	return ret;
}

static int tm_ppr_set(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      const void *kbuf, const void __user *ubuf)
{
	int ret;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_ppr, 0, sizeof(u64));
	return ret;
}

static int tm_dscr_active(struct task_struct *target,
			 const struct user_regset *regset)
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (MSR_TM_ACTIVE(target->thread.regs->msr))
		return regset->n;

	return 0;
}

static int tm_dscr_get(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      void *kbuf, void __user *ubuf)
{
	int ret;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_dscr, 0, sizeof(u64));
	return ret;
}

static int tm_dscr_set(struct task_struct *target,
		      const struct user_regset *regset,
		      unsigned int pos, unsigned int count,
		      const void *kbuf, const void __user *ubuf)
{
	int ret;

	if (!cpu_has_feature(CPU_FTR_TM))
		return -ENODEV;

	if (!MSR_TM_ACTIVE(target->thread.regs->msr))
		return -ENODATA;

	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
				&target->thread.tm_dscr, 0, sizeof(u64));
	return ret;
}
1690
#endif	/* CONFIG_PPC_TRANSACTIONAL_MEM */
1691

1692 1693 1694 1695 1696 1697 1698 1699 1700
/*
 * These are our native regset flavors.
 */
enum powerpc_regset {
	REGSET_GPR,
	REGSET_FPR,
#ifdef CONFIG_ALTIVEC
	REGSET_VMX,
#endif
1701 1702 1703
#ifdef CONFIG_VSX
	REGSET_VSX,
#endif
1704 1705 1706
#ifdef CONFIG_SPE
	REGSET_SPE,
#endif
1707 1708
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	REGSET_TM_CGPR,		/* TM checkpointed GPR registers */
1709
	REGSET_TM_CFPR,		/* TM checkpointed FPR registers */
1710
	REGSET_TM_CVMX,		/* TM checkpointed VMX registers */
1711
	REGSET_TM_CVSX,		/* TM checkpointed VSX registers */
1712
	REGSET_TM_SPR,		/* TM specific SPR registers */
1713 1714 1715
	REGSET_TM_CTAR,		/* TM checkpointed TAR register */
	REGSET_TM_CPPR,		/* TM checkpointed PPR register */
	REGSET_TM_CDSCR,	/* TM checkpointed DSCR register */
1716
#endif
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
};

static const struct user_regset native_regsets[] = {
	[REGSET_GPR] = {
		.core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
		.size = sizeof(long), .align = sizeof(long),
		.get = gpr_get, .set = gpr_set
	},
	[REGSET_FPR] = {
		.core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
		.size = sizeof(double), .align = sizeof(double),
		.get = fpr_get, .set = fpr_set
	},
#ifdef CONFIG_ALTIVEC
	[REGSET_VMX] = {
		.core_note_type = NT_PPC_VMX, .n = 34,
		.size = sizeof(vector128), .align = sizeof(vector128),
		.active = vr_active, .get = vr_get, .set = vr_set
	},
#endif
1737 1738
#ifdef CONFIG_VSX
	[REGSET_VSX] = {
1739 1740
		.core_note_type = NT_PPC_VSX, .n = 32,
		.size = sizeof(double), .align = sizeof(double),
1741 1742 1743
		.active = vsr_active, .get = vsr_get, .set = vsr_set
	},
#endif
1744 1745
#ifdef CONFIG_SPE
	[REGSET_SPE] = {
1746
		.core_note_type = NT_PPC_SPE, .n = 35,
1747 1748 1749 1750
		.size = sizeof(u32), .align = sizeof(u32),
		.active = evr_active, .get = evr_get, .set = evr_set
	},
#endif
1751 1752 1753 1754 1755 1756
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	[REGSET_TM_CGPR] = {
		.core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
		.size = sizeof(long), .align = sizeof(long),
		.active = tm_cgpr_active, .get = tm_cgpr_get, .set = tm_cgpr_set
	},
1757 1758 1759 1760 1761
	[REGSET_TM_CFPR] = {
		.core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
		.size = sizeof(double), .align = sizeof(double),
		.active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
	},
1762 1763 1764 1765 1766
	[REGSET_TM_CVMX] = {
		.core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
		.size = sizeof(vector128), .align = sizeof(vector128),
		.active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
	},
1767 1768 1769 1770 1771
	[REGSET_TM_CVSX] = {
		.core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
		.size = sizeof(double), .align = sizeof(double),
		.active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
	},
1772 1773 1774 1775 1776
	[REGSET_TM_SPR] = {
		.core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
		.size = sizeof(u64), .align = sizeof(u64),
		.active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
	},
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
	[REGSET_TM_CTAR] = {
		.core_note_type = NT_PPC_TM_CTAR, .n = 1,
		.size = sizeof(u64), .align = sizeof(u64),
		.active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
	},
	[REGSET_TM_CPPR] = {
		.core_note_type = NT_PPC_TM_CPPR, .n = 1,
		.size = sizeof(u64), .align = sizeof(u64),
		.active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
	},
	[REGSET_TM_CDSCR] = {
		.core_note_type = NT_PPC_TM_CDSCR, .n = 1,
		.size = sizeof(u64), .align = sizeof(u64),
		.active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
	},
1792
#endif
1793 1794 1795 1796 1797 1798 1799
};

static const struct user_regset_view user_ppc_native_view = {
	.name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
	.regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
};

1800 1801 1802
#ifdef CONFIG_PPC64
#include <linux/compat.h>

1803
static int gpr32_get_common(struct task_struct *target,
1804 1805
		     const struct user_regset *regset,
		     unsigned int pos, unsigned int count,
1806
			    void *kbuf, void __user *ubuf, bool tm_active)
1807 1808
{
	const unsigned long *regs = &target->thread.regs->gpr[0];
1809
	const unsigned long *ckpt_regs;
1810 1811 1812
	compat_ulong_t *k = kbuf;
	compat_ulong_t __user *u = ubuf;
	compat_ulong_t reg;
1813
	int i;
1814

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	ckpt_regs = &target->thread.ckpt_regs.gpr[0];
#endif
	if (tm_active) {
		regs = ckpt_regs;
	} else {
		if (target->thread.regs == NULL)
			return -EIO;

		if (!FULL_REGS(target->thread.regs)) {
			/*
			 * We have a partial register set.
			 * Fill 14-31 with bogus values.
			 */
			for (i = 14; i < 32; i++)
				target->thread.regs->gpr[i] = NV_REG_POISON;
		}
1832
	}
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870

	pos /= sizeof(reg);
	count /= sizeof(reg);

	if (kbuf)
		for (; count > 0 && pos < PT_MSR; --count)
			*k++ = regs[pos++];
	else
		for (; count > 0 && pos < PT_MSR; --count)
			if (__put_user((compat_ulong_t) regs[pos++], u++))
				return -EFAULT;

	if (count > 0 && pos == PT_MSR) {
		reg = get_user_msr(target);
		if (kbuf)
			*k++ = reg;
		else if (__put_user(reg, u++))
			return -EFAULT;
		++pos;
		--count;
	}

	if (kbuf)
		for (; count > 0 && pos < PT_REGS_COUNT; --count)
			*k++ = regs[pos++];
	else
		for (; count > 0 && pos < PT_REGS_COUNT; --count)
			if (__put_user((compat_ulong_t) regs[pos++], u++))
				return -EFAULT;

	kbuf = k;
	ubuf = u;
	pos *= sizeof(reg);
	count *= sizeof(reg);
	return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
					PT_REGS_COUNT * sizeof(reg), -1);
}

1871
static int gpr32_set_common(struct task_struct *target,
1872 1873
		     const struct user_regset *regset,
		     unsigned int pos, unsigned int count,
1874
		     const void *kbuf, const void __user *ubuf, bool tm_active)
1875 1876
{
	unsigned long *regs = &target->thread.regs->gpr[0];
1877
	unsigned long *ckpt_regs;
1878 1879 1880 1881
	const compat_ulong_t *k = kbuf;
	const compat_ulong_t __user *u = ubuf;
	compat_ulong_t reg;

1882 1883 1884
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	ckpt_regs = &target->thread.ckpt_regs.gpr[0];
#endif
1885

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	if (tm_active) {
		regs = ckpt_regs;
	} else {
		regs = &target->thread.regs->gpr[0];

		if (target->thread.regs == NULL)
			return -EIO;

		CHECK_FULL_REGS(target->thread.regs);
	}
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920

	pos /= sizeof(reg);
	count /= sizeof(reg);

	if (kbuf)
		for (; count > 0 && pos < PT_MSR; --count)
			regs[pos++] = *k++;
	else
		for (; count > 0 && pos < PT_MSR; --count) {
			if (__get_user(reg, u++))
				return -EFAULT;
			regs[pos++] = reg;
		}


	if (count > 0 && pos == PT_MSR) {
		if (kbuf)
			reg = *k++;
		else if (__get_user(reg, u++))
			return -EFAULT;
		set_user_msr(target, reg);
		++pos;
		--count;
	}

1921
	if (kbuf) {
1922 1923
		for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
			regs[pos++] = *k++;
1924 1925 1926
		for (; count > 0 && pos < PT_TRAP; --count, ++pos)
			++k;
	} else {
1927 1928 1929 1930 1931
		for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
			if (__get_user(reg, u++))
				return -EFAULT;
			regs[pos++] = reg;
		}
1932 1933 1934 1935
		for (; count > 0 && pos < PT_TRAP; --count, ++pos)
			if (__get_user(reg, u++))
				return -EFAULT;
	}
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954

	if (count > 0 && pos == PT_TRAP) {
		if (kbuf)
			reg = *k++;
		else if (__get_user(reg, u++))
			return -EFAULT;
		set_user_trap(target, reg);
		++pos;
		--count;
	}

	kbuf = k;
	ubuf = u;
	pos *= sizeof(reg);
	count *= sizeof(reg);
	return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
					 (PT_TRAP + 1) * sizeof(reg), -1);
}

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static int tm_cgpr32_get(struct task_struct *target,
		     const struct user_regset *regset,
		     unsigned int pos, unsigned int count,
		     void *kbuf, void __user *ubuf)
{
	return gpr32_get_common(target, regset, pos, count, kbuf, ubuf, 1);
}

static int tm_cgpr32_set(struct task_struct *target,
		     const struct user_regset *regset,
		     unsigned int pos, unsigned int count,
		     const void *kbuf, const void __user *ubuf)
{
	return gpr32_set_common(target, regset, pos, count, kbuf, ubuf, 1);
}
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
static int gpr32_get(struct task_struct *target,
		     const struct user_regset *regset,
		     unsigned int pos, unsigned int count,
		     void *kbuf, void __user *ubuf)
{
	return gpr32_get_common(target, regset, pos, count, kbuf, ubuf, 0);
}

static int gpr32_set(struct task_struct *target,
		     const struct user_regset *regset,
		     unsigned int pos, unsigned int count,
		     const void *kbuf, const void __user *ubuf)
{
	return gpr32_set_common(target, regset, pos, count, kbuf, ubuf, 0);
}

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
/*
 * These are the regset flavors matching the CONFIG_PPC32 native set.
 */
static const struct user_regset compat_regsets[] = {
	[REGSET_GPR] = {
		.core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
		.size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
		.get = gpr32_get, .set = gpr32_set
	},
	[REGSET_FPR] = {
		.core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
		.size = sizeof(double), .align = sizeof(double),
		.get = fpr_get, .set = fpr_set
	},
#ifdef CONFIG_ALTIVEC
	[REGSET_VMX] = {
		.core_note_type = NT_PPC_VMX, .n = 34,
		.size = sizeof(vector128), .align = sizeof(vector128),
		.active = vr_active, .get = vr_get, .set = vr_set
	},
#endif
#ifdef CONFIG_SPE
	[REGSET_SPE] = {
2012
		.core_note_type = NT_PPC_SPE, .n = 35,
2013 2014 2015 2016
		.size = sizeof(u32), .align = sizeof(u32),
		.active = evr_active, .get = evr_get, .set = evr_set
	},
#endif
2017 2018 2019 2020 2021 2022 2023
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	[REGSET_TM_CGPR] = {
		.core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
		.size = sizeof(long), .align = sizeof(long),
		.active = tm_cgpr_active,
		.get = tm_cgpr32_get, .set = tm_cgpr32_set
	},
2024 2025 2026 2027 2028
	[REGSET_TM_CFPR] = {
		.core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
		.size = sizeof(double), .align = sizeof(double),
		.active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
	},
2029 2030 2031 2032 2033
	[REGSET_TM_CVMX] = {
		.core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
		.size = sizeof(vector128), .align = sizeof(vector128),
		.active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
	},
2034 2035 2036 2037 2038
	[REGSET_TM_CVSX] = {
		.core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
		.size = sizeof(double), .align = sizeof(double),
		.active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
	},
2039 2040 2041 2042 2043
	[REGSET_TM_SPR] = {
		.core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
		.size = sizeof(u64), .align = sizeof(u64),
		.active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
	},
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	[REGSET_TM_CTAR] = {
		.core_note_type = NT_PPC_TM_CTAR, .n = 1,
		.size = sizeof(u64), .align = sizeof(u64),
		.active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
	},
	[REGSET_TM_CPPR] = {
		.core_note_type = NT_PPC_TM_CPPR, .n = 1,
		.size = sizeof(u64), .align = sizeof(u64),
		.active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
	},
	[REGSET_TM_CDSCR] = {
		.core_note_type = NT_PPC_TM_CDSCR, .n = 1,
		.size = sizeof(u64), .align = sizeof(u64),
		.active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
	},
2059
#endif
2060 2061 2062 2063 2064 2065 2066 2067
};

static const struct user_regset_view user_ppc_compat_view = {
	.name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
	.regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
};
#endif	/* CONFIG_PPC64 */

2068 2069
const struct user_regset_view *task_user_regset_view(struct task_struct *task)
{
2070 2071 2072 2073
#ifdef CONFIG_PPC64
	if (test_tsk_thread_flag(task, TIF_32BIT))
		return &user_ppc_compat_view;
#endif
2074 2075 2076 2077
	return &user_ppc_native_view;
}


R
Roland McGrath 已提交
2078
void user_enable_single_step(struct task_struct *task)
2079 2080 2081 2082
{
	struct pt_regs *regs = task->thread.regs;

	if (regs != NULL) {
2083
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2084 2085
		task->thread.debug.dbcr0 &= ~DBCR0_BT;
		task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2086 2087
		regs->msr |= MSR_DE;
#else
2088
		regs->msr &= ~MSR_BE;
2089 2090 2091 2092 2093 2094
		regs->msr |= MSR_SE;
#endif
	}
	set_tsk_thread_flag(task, TIF_SINGLESTEP);
}

2095 2096 2097 2098 2099
void user_enable_block_step(struct task_struct *task)
{
	struct pt_regs *regs = task->thread.regs;

	if (regs != NULL) {
2100
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2101 2102
		task->thread.debug.dbcr0 &= ~DBCR0_IC;
		task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
2103 2104 2105 2106 2107 2108 2109 2110 2111
		regs->msr |= MSR_DE;
#else
		regs->msr &= ~MSR_SE;
		regs->msr |= MSR_BE;
#endif
	}
	set_tsk_thread_flag(task, TIF_SINGLESTEP);
}

R
Roland McGrath 已提交
2112
void user_disable_single_step(struct task_struct *task)
2113 2114 2115 2116
{
	struct pt_regs *regs = task->thread.regs;

	if (regs != NULL) {
2117
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2118 2119 2120 2121 2122 2123
		/*
		 * The logic to disable single stepping should be as
		 * simple as turning off the Instruction Complete flag.
		 * And, after doing so, if all debug flags are off, turn
		 * off DBCR0(IDM) and MSR(DE) .... Torez
		 */
2124
		task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
2125 2126 2127
		/*
		 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
		 */
2128 2129
		if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
					task->thread.debug.dbcr1)) {
2130 2131 2132
			/*
			 * All debug events were off.....
			 */
2133
			task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2134 2135
			regs->msr &= ~MSR_DE;
		}
2136
#else
2137
		regs->msr &= ~(MSR_SE | MSR_BE);
2138 2139 2140 2141 2142
#endif
	}
	clear_tsk_thread_flag(task, TIF_SINGLESTEP);
}

2143
#ifdef CONFIG_HAVE_HW_BREAKPOINT
2144
void ptrace_triggered(struct perf_event *bp,
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
		      struct perf_sample_data *data, struct pt_regs *regs)
{
	struct perf_event_attr attr;

	/*
	 * Disable the breakpoint request here since ptrace has defined a
	 * one-shot behaviour for breakpoint exceptions in PPC64.
	 * The SIGTRAP signal is generated automatically for us in do_dabr().
	 * We don't have to do anything about that here
	 */
	attr = bp->attr;
	attr.disabled = true;
	modify_user_hw_breakpoint(bp, &attr);
}
#endif /* CONFIG_HAVE_HW_BREAKPOINT */

2161
static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
2162 2163
			       unsigned long data)
{
2164 2165 2166 2167 2168 2169
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	int ret;
	struct thread_struct *thread = &(task->thread);
	struct perf_event *bp;
	struct perf_event_attr attr;
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2170 2171 2172
#ifndef CONFIG_PPC_ADV_DEBUG_REGS
	struct arch_hw_breakpoint hw_brk;
#endif
2173

2174 2175 2176 2177
	/* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
	 *  For embedded processors we support one DAC and no IAC's at the
	 *  moment.
	 */
2178 2179 2180
	if (addr > 0)
		return -EINVAL;

2181
	/* The bottom 3 bits in dabr are flags */
2182 2183 2184
	if ((data & ~0x7UL) >= TASK_SIZE)
		return -EIO;

2185
#ifndef CONFIG_PPC_ADV_DEBUG_REGS
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
	/* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
	 *  It was assumed, on previous implementations, that 3 bits were
	 *  passed together with the data address, fitting the design of the
	 *  DABR register, as follows:
	 *
	 *  bit 0: Read flag
	 *  bit 1: Write flag
	 *  bit 2: Breakpoint translation
	 *
	 *  Thus, we use them here as so.
	 */

	/* Ensure breakpoint translation bit is set */
2199
	if (data && !(data & HW_BRK_TYPE_TRANSLATE))
2200
		return -EIO;
2201 2202 2203
	hw_brk.address = data & (~HW_BRK_TYPE_DABR);
	hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
	hw_brk.len = 8;
2204 2205
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	bp = thread->ptrace_bps[0];
2206
	if ((!data) || !(hw_brk.type & HW_BRK_TYPE_RDWR)) {
2207 2208 2209 2210 2211 2212 2213 2214
		if (bp) {
			unregister_hw_breakpoint(bp);
			thread->ptrace_bps[0] = NULL;
		}
		return 0;
	}
	if (bp) {
		attr = bp->attr;
2215 2216
		attr.bp_addr = hw_brk.address;
		arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
2217 2218 2219 2220

		/* Enable breakpoint */
		attr.disabled = false;

2221
		ret =  modify_user_hw_breakpoint(bp, &attr);
2222
		if (ret) {
2223
			return ret;
2224
		}
2225
		thread->ptrace_bps[0] = bp;
2226
		thread->hw_brk = hw_brk;
2227 2228 2229 2230 2231
		return 0;
	}

	/* Create a new breakpoint request if one doesn't exist already */
	hw_breakpoint_init(&attr);
2232 2233 2234
	attr.bp_addr = hw_brk.address;
	arch_bp_generic_fields(hw_brk.type,
			       &attr.bp_type);
2235 2236

	thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2237
					       ptrace_triggered, NULL, task);
2238 2239 2240 2241 2242 2243
	if (IS_ERR(bp)) {
		thread->ptrace_bps[0] = NULL;
		return PTR_ERR(bp);
	}

#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2244
	task->thread.hw_brk = hw_brk;
2245
#else /* CONFIG_PPC_ADV_DEBUG_REGS */
2246 2247 2248 2249 2250 2251
	/* As described above, it was assumed 3 bits were passed with the data
	 *  address, but we will assume only the mode bits will be passed
	 *  as to not cause alignment restrictions for DAC-based processors.
	 */

	/* DAC's hold the whole address without any mode flags */
2252
	task->thread.debug.dac1 = data & ~0x3UL;
2253

2254
	if (task->thread.debug.dac1 == 0) {
2255
		dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2256 2257
		if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
					task->thread.debug.dbcr1)) {
2258
			task->thread.regs->msr &= ~MSR_DE;
2259
			task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2260
		}
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
		return 0;
	}

	/* Read or Write bits must be set */

	if (!(data & 0x3UL))
		return -EINVAL;

	/* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
	   register */
2271
	task->thread.debug.dbcr0 |= DBCR0_IDM;
2272 2273 2274

	/* Check for write and read flags and set DBCR0
	   accordingly */
2275
	dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
2276
	if (data & 0x1UL)
2277
		dbcr_dac(task) |= DBCR_DAC1R;
2278
	if (data & 0x2UL)
2279
		dbcr_dac(task) |= DBCR_DAC1W;
2280
	task->thread.regs->msr |= MSR_DE;
2281
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2282 2283 2284
	return 0;
}

L
Linus Torvalds 已提交
2285 2286 2287 2288 2289 2290 2291 2292
/*
 * Called by kernel/ptrace.c when detaching..
 *
 * Make sure single step bits etc are not set.
 */
void ptrace_disable(struct task_struct *child)
{
	/* make sure the single step bit is not set. */
R
Roland McGrath 已提交
2293
	user_disable_single_step(child);
L
Linus Torvalds 已提交
2294 2295
}

2296
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2297
static long set_instruction_bp(struct task_struct *child,
2298 2299 2300
			      struct ppc_hw_breakpoint *bp_info)
{
	int slot;
2301 2302 2303 2304
	int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
	int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
	int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
	int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322

	if (dbcr_iac_range(child) & DBCR_IAC12MODE)
		slot2_in_use = 1;
	if (dbcr_iac_range(child) & DBCR_IAC34MODE)
		slot4_in_use = 1;

	if (bp_info->addr >= TASK_SIZE)
		return -EIO;

	if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {

		/* Make sure range is valid. */
		if (bp_info->addr2 >= TASK_SIZE)
			return -EIO;

		/* We need a pair of IAC regsisters */
		if ((!slot1_in_use) && (!slot2_in_use)) {
			slot = 1;
2323 2324 2325
			child->thread.debug.iac1 = bp_info->addr;
			child->thread.debug.iac2 = bp_info->addr2;
			child->thread.debug.dbcr0 |= DBCR0_IAC1;
2326 2327 2328 2329 2330 2331 2332 2333
			if (bp_info->addr_mode ==
					PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
				dbcr_iac_range(child) |= DBCR_IAC12X;
			else
				dbcr_iac_range(child) |= DBCR_IAC12I;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
		} else if ((!slot3_in_use) && (!slot4_in_use)) {
			slot = 3;
2334 2335 2336
			child->thread.debug.iac3 = bp_info->addr;
			child->thread.debug.iac4 = bp_info->addr2;
			child->thread.debug.dbcr0 |= DBCR0_IAC3;
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
			if (bp_info->addr_mode ==
					PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
				dbcr_iac_range(child) |= DBCR_IAC34X;
			else
				dbcr_iac_range(child) |= DBCR_IAC34I;
#endif
		} else
			return -ENOSPC;
	} else {
		/* We only need one.  If possible leave a pair free in
		 * case a range is needed later
		 */
		if (!slot1_in_use) {
			/*
			 * Don't use iac1 if iac1-iac2 are free and either
			 * iac3 or iac4 (but not both) are free
			 */
			if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
				slot = 1;
2356 2357
				child->thread.debug.iac1 = bp_info->addr;
				child->thread.debug.dbcr0 |= DBCR0_IAC1;
2358 2359 2360 2361 2362
				goto out;
			}
		}
		if (!slot2_in_use) {
			slot = 2;
2363 2364
			child->thread.debug.iac2 = bp_info->addr;
			child->thread.debug.dbcr0 |= DBCR0_IAC2;
2365 2366 2367
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
		} else if (!slot3_in_use) {
			slot = 3;
2368 2369
			child->thread.debug.iac3 = bp_info->addr;
			child->thread.debug.dbcr0 |= DBCR0_IAC3;
2370 2371
		} else if (!slot4_in_use) {
			slot = 4;
2372 2373
			child->thread.debug.iac4 = bp_info->addr;
			child->thread.debug.dbcr0 |= DBCR0_IAC4;
2374 2375 2376 2377 2378
#endif
		} else
			return -ENOSPC;
	}
out:
2379
	child->thread.debug.dbcr0 |= DBCR0_IDM;
2380 2381 2382 2383 2384 2385 2386 2387 2388
	child->thread.regs->msr |= MSR_DE;

	return slot;
}

static int del_instruction_bp(struct task_struct *child, int slot)
{
	switch (slot) {
	case 1:
2389
		if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
2390 2391 2392 2393
			return -ENOENT;

		if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
			/* address range - clear slots 1 & 2 */
2394
			child->thread.debug.iac2 = 0;
2395 2396
			dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
		}
2397 2398
		child->thread.debug.iac1 = 0;
		child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
2399 2400
		break;
	case 2:
2401
		if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
2402 2403 2404 2405 2406
			return -ENOENT;

		if (dbcr_iac_range(child) & DBCR_IAC12MODE)
			/* used in a range */
			return -EINVAL;
2407 2408
		child->thread.debug.iac2 = 0;
		child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
2409 2410 2411
		break;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
	case 3:
2412
		if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
2413 2414 2415 2416
			return -ENOENT;

		if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
			/* address range - clear slots 3 & 4 */
2417
			child->thread.debug.iac4 = 0;
2418 2419
			dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
		}
2420 2421
		child->thread.debug.iac3 = 0;
		child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
2422 2423
		break;
	case 4:
2424
		if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
2425 2426 2427 2428 2429
			return -ENOENT;

		if (dbcr_iac_range(child) & DBCR_IAC34MODE)
			/* Used in a range */
			return -EINVAL;
2430 2431
		child->thread.debug.iac4 = 0;
		child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
		break;
#endif
	default:
		return -EINVAL;
	}
	return 0;
}

static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
{
	int byte_enable =
		(bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
		& 0xf;
	int condition_mode =
		bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
	int slot;

	if (byte_enable && (condition_mode == 0))
		return -EINVAL;

	if (bp_info->addr >= TASK_SIZE)
		return -EIO;

	if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
		slot = 1;
		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
			dbcr_dac(child) |= DBCR_DAC1R;
		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
			dbcr_dac(child) |= DBCR_DAC1W;
2461
		child->thread.debug.dac1 = (unsigned long)bp_info->addr;
2462 2463
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
		if (byte_enable) {
2464
			child->thread.debug.dvc1 =
2465
				(unsigned long)bp_info->condition_value;
2466
			child->thread.debug.dbcr2 |=
2467 2468 2469 2470 2471
				((byte_enable << DBCR2_DVC1BE_SHIFT) |
				 (condition_mode << DBCR2_DVC1M_SHIFT));
		}
#endif
#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2472
	} else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2473 2474 2475 2476 2477 2478 2479 2480 2481
		/* Both dac1 and dac2 are part of a range */
		return -ENOSPC;
#endif
	} else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
		slot = 2;
		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
			dbcr_dac(child) |= DBCR_DAC2R;
		if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
			dbcr_dac(child) |= DBCR_DAC2W;
2482
		child->thread.debug.dac2 = (unsigned long)bp_info->addr;
2483 2484
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
		if (byte_enable) {
2485
			child->thread.debug.dvc2 =
2486
				(unsigned long)bp_info->condition_value;
2487
			child->thread.debug.dbcr2 |=
2488 2489 2490 2491 2492 2493
				((byte_enable << DBCR2_DVC2BE_SHIFT) |
				 (condition_mode << DBCR2_DVC2M_SHIFT));
		}
#endif
	} else
		return -ENOSPC;
2494
	child->thread.debug.dbcr0 |= DBCR0_IDM;
2495 2496 2497 2498 2499 2500 2501 2502
	child->thread.regs->msr |= MSR_DE;

	return slot + 4;
}

static int del_dac(struct task_struct *child, int slot)
{
	if (slot == 1) {
2503
		if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
2504 2505
			return -ENOENT;

2506
		child->thread.debug.dac1 = 0;
2507 2508
		dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2509 2510 2511
		if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
			child->thread.debug.dac2 = 0;
			child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
2512
		}
2513
		child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
2514 2515
#endif
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2516
		child->thread.debug.dvc1 = 0;
2517 2518
#endif
	} else if (slot == 2) {
2519
		if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
2520 2521 2522
			return -ENOENT;

#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2523
		if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
2524 2525
			/* Part of a range */
			return -EINVAL;
2526
		child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
2527 2528
#endif
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2529
		child->thread.debug.dvc2 = 0;
2530
#endif
2531
		child->thread.debug.dac2 = 0;
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
		dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
	} else
		return -EINVAL;

	return 0;
}
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */

#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
static int set_dac_range(struct task_struct *child,
			 struct ppc_hw_breakpoint *bp_info)
{
	int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;

	/* We don't allow range watchpoints to be used with DVC */
	if (bp_info->condition_mode)
		return -EINVAL;

	/*
	 * Best effort to verify the address range.  The user/supervisor bits
	 * prevent trapping in kernel space, but let's fail on an obvious bad
	 * range.  The simple test on the mask is not fool-proof, and any
	 * exclusive range will spill over into kernel space.
	 */
	if (bp_info->addr >= TASK_SIZE)
		return -EIO;
	if (mode == PPC_BREAKPOINT_MODE_MASK) {
		/*
		 * dac2 is a bitmask.  Don't allow a mask that makes a
		 * kernel space address from a valid dac1 value
		 */
		if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
			return -EIO;
	} else {
		/*
		 * For range breakpoints, addr2 must also be a valid address
		 */
		if (bp_info->addr2 >= TASK_SIZE)
			return -EIO;
	}

2573
	if (child->thread.debug.dbcr0 &
2574 2575 2576 2577
	    (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
		return -ENOSPC;

	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2578
		child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
2579
	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2580 2581 2582
		child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
	child->thread.debug.dac1 = bp_info->addr;
	child->thread.debug.dac2 = bp_info->addr2;
2583
	if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2584
		child->thread.debug.dbcr2  |= DBCR2_DAC12M;
2585
	else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2586
		child->thread.debug.dbcr2  |= DBCR2_DAC12MX;
2587
	else	/* PPC_BREAKPOINT_MODE_MASK */
2588
		child->thread.debug.dbcr2  |= DBCR2_DAC12MM;
2589 2590 2591 2592 2593 2594
	child->thread.regs->msr |= MSR_DE;

	return 5;
}
#endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */

2595 2596 2597
static long ppc_set_hwdebug(struct task_struct *child,
		     struct ppc_hw_breakpoint *bp_info)
{
2598 2599 2600 2601 2602 2603
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	int len = 0;
	struct thread_struct *thread = &(child->thread);
	struct perf_event *bp;
	struct perf_event_attr attr;
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2604
#ifndef CONFIG_PPC_ADV_DEBUG_REGS
2605
	struct arch_hw_breakpoint brk;
2606 2607
#endif

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
	if (bp_info->version != 1)
		return -ENOTSUPP;
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	/*
	 * Check for invalid flags and combinations
	 */
	if ((bp_info->trigger_type == 0) ||
	    (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
				       PPC_BREAKPOINT_TRIGGER_RW)) ||
	    (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
	    (bp_info->condition_mode &
	     ~(PPC_BREAKPOINT_CONDITION_MODE |
	       PPC_BREAKPOINT_CONDITION_BE_ALL)))
		return -EINVAL;
#if CONFIG_PPC_ADV_DEBUG_DVCS == 0
	if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
		return -EINVAL;
#endif

	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
		if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
		    (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
			return -EINVAL;
2631
		return set_instruction_bp(child, bp_info);
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
	}
	if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
		return set_dac(child, bp_info);

#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
	return set_dac_range(child, bp_info);
#else
	return -EINVAL;
#endif
#else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2642
	/*
2643
	 * We only support one data breakpoint
2644
	 */
2645 2646 2647
	if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
	    (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
	    bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2648 2649 2650 2651 2652
		return -EINVAL;

	if ((unsigned long)bp_info->addr >= TASK_SIZE)
		return -EIO;

2653 2654
	brk.address = bp_info->addr & ~7UL;
	brk.type = HW_BRK_TYPE_TRANSLATE;
2655
	brk.len = 8;
2656
	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2657
		brk.type |= HW_BRK_TYPE_READ;
2658
	if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2659
		brk.type |= HW_BRK_TYPE_WRITE;
2660 2661 2662 2663 2664
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	/*
	 * Check if the request is for 'range' breakpoints. We can
	 * support it if range < 8 bytes.
	 */
2665
	if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2666
		len = bp_info->addr2 - bp_info->addr;
2667
	else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2668
		len = 1;
2669
	else
2670 2671
		return -EINVAL;
	bp = thread->ptrace_bps[0];
2672
	if (bp)
2673 2674 2675 2676 2677 2678
		return -ENOSPC;

	/* Create a new breakpoint request if one doesn't exist already */
	hw_breakpoint_init(&attr);
	attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
	attr.bp_len = len;
2679
	arch_bp_generic_fields(brk.type, &attr.bp_type);
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693

	thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
					       ptrace_triggered, NULL, child);
	if (IS_ERR(bp)) {
		thread->ptrace_bps[0] = NULL;
		return PTR_ERR(bp);
	}

	return 1;
#endif /* CONFIG_HAVE_HW_BREAKPOINT */

	if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
		return -EINVAL;

2694
	if (child->thread.hw_brk.address)
2695
		return -ENOSPC;
2696

2697
	child->thread.hw_brk = brk;
2698

2699
	return 1;
2700
#endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2701 2702
}

2703
static long ppc_del_hwdebug(struct task_struct *child, long data)
2704
{
2705 2706 2707 2708 2709
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	int ret = 0;
	struct thread_struct *thread = &(child->thread);
	struct perf_event *bp;
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2710 2711 2712 2713 2714 2715 2716 2717 2718
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	int rc;

	if (data <= 4)
		rc = del_instruction_bp(child, (int)data);
	else
		rc = del_dac(child, (int)data - 4);

	if (!rc) {
2719 2720 2721
		if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
					child->thread.debug.dbcr1)) {
			child->thread.debug.dbcr0 &= ~DBCR0_IDM;
2722 2723 2724 2725 2726
			child->thread.regs->msr &= ~MSR_DE;
		}
	}
	return rc;
#else
2727 2728
	if (data != 1)
		return -EINVAL;
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738

#ifdef CONFIG_HAVE_HW_BREAKPOINT
	bp = thread->ptrace_bps[0];
	if (bp) {
		unregister_hw_breakpoint(bp);
		thread->ptrace_bps[0] = NULL;
	} else
		ret = -ENOENT;
	return ret;
#else /* CONFIG_HAVE_HW_BREAKPOINT */
2739
	if (child->thread.hw_brk.address == 0)
2740 2741
		return -ENOENT;

2742 2743
	child->thread.hw_brk.address = 0;
	child->thread.hw_brk.type = 0;
2744
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2745

2746
	return 0;
2747
#endif
2748 2749
}

2750 2751
long arch_ptrace(struct task_struct *child, long request,
		 unsigned long addr, unsigned long data)
L
Linus Torvalds 已提交
2752 2753
{
	int ret = -EPERM;
2754 2755
	void __user *datavp = (void __user *) data;
	unsigned long __user *datalp = datavp;
L
Linus Torvalds 已提交
2756 2757 2758 2759 2760 2761 2762 2763

	switch (request) {
	/* read the word at location addr in the USER area. */
	case PTRACE_PEEKUSR: {
		unsigned long index, tmp;

		ret = -EIO;
		/* convert to index and check */
S
Stephen Rothwell 已提交
2764
#ifdef CONFIG_PPC32
2765
		index = addr >> 2;
S
Stephen Rothwell 已提交
2766 2767 2768
		if ((addr & 3) || (index > PT_FPSCR)
		    || (child->thread.regs == NULL))
#else
2769
		index = addr >> 3;
S
Stephen Rothwell 已提交
2770 2771
		if ((addr & 7) || (index > PT_FPSCR))
#endif
L
Linus Torvalds 已提交
2772 2773 2774 2775
			break;

		CHECK_FULL_REGS(child->thread.regs);
		if (index < PT_FPR0) {
2776 2777 2778
			ret = ptrace_get_reg(child, (int) index, &tmp);
			if (ret)
				break;
L
Linus Torvalds 已提交
2779
		} else {
2780 2781
			unsigned int fpidx = index - PT_FPR0;

S
Stephen Rothwell 已提交
2782
			flush_fp_to_thread(child);
2783
			if (fpidx < (PT_FPSCR - PT_FPR0))
2784
				memcpy(&tmp, &child->thread.TS_FPR(fpidx),
2785
				       sizeof(long));
2786
			else
2787
				tmp = child->thread.fp_state.fpscr;
L
Linus Torvalds 已提交
2788
		}
2789
		ret = put_user(tmp, datalp);
L
Linus Torvalds 已提交
2790 2791 2792 2793 2794 2795 2796 2797 2798
		break;
	}

	/* write the word at location addr in the USER area */
	case PTRACE_POKEUSR: {
		unsigned long index;

		ret = -EIO;
		/* convert to index and check */
S
Stephen Rothwell 已提交
2799
#ifdef CONFIG_PPC32
2800
		index = addr >> 2;
S
Stephen Rothwell 已提交
2801 2802 2803
		if ((addr & 3) || (index > PT_FPSCR)
		    || (child->thread.regs == NULL))
#else
2804
		index = addr >> 3;
S
Stephen Rothwell 已提交
2805 2806
		if ((addr & 7) || (index > PT_FPSCR))
#endif
L
Linus Torvalds 已提交
2807 2808 2809 2810
			break;

		CHECK_FULL_REGS(child->thread.regs);
		if (index < PT_FPR0) {
2811
			ret = ptrace_put_reg(child, index, data);
L
Linus Torvalds 已提交
2812
		} else {
2813 2814
			unsigned int fpidx = index - PT_FPR0;

S
Stephen Rothwell 已提交
2815
			flush_fp_to_thread(child);
2816
			if (fpidx < (PT_FPSCR - PT_FPR0))
2817
				memcpy(&child->thread.TS_FPR(fpidx), &data,
2818
				       sizeof(long));
2819
			else
2820
				child->thread.fp_state.fpscr = data;
L
Linus Torvalds 已提交
2821 2822 2823 2824 2825
			ret = 0;
		}
		break;
	}

2826 2827 2828 2829
	case PPC_PTRACE_GETHWDBGINFO: {
		struct ppc_debug_info dbginfo;

		dbginfo.version = 1;
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
		dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
		dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
		dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
		dbginfo.data_bp_alignment = 4;
		dbginfo.sizeof_condition = 4;
		dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
				   PPC_DEBUG_FEATURE_INSN_BP_MASK;
#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
		dbginfo.features |=
				   PPC_DEBUG_FEATURE_DATA_BP_RANGE |
				   PPC_DEBUG_FEATURE_DATA_BP_MASK;
#endif
#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
2844 2845 2846 2847 2848 2849 2850 2851 2852
		dbginfo.num_instruction_bps = 0;
		dbginfo.num_data_bps = 1;
		dbginfo.num_condition_regs = 0;
#ifdef CONFIG_PPC64
		dbginfo.data_bp_alignment = 8;
#else
		dbginfo.data_bp_alignment = 4;
#endif
		dbginfo.sizeof_condition = 0;
2853 2854
#ifdef CONFIG_HAVE_HW_BREAKPOINT
		dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
2855 2856
		if (cpu_has_feature(CPU_FTR_DAWR))
			dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
2857
#else
2858
		dbginfo.features = 0;
2859
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
2860
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2861

2862
		if (!access_ok(VERIFY_WRITE, datavp,
2863 2864
			       sizeof(struct ppc_debug_info)))
			return -EFAULT;
2865 2866
		ret = __copy_to_user(datavp, &dbginfo,
				     sizeof(struct ppc_debug_info)) ?
2867 2868 2869 2870 2871 2872 2873
		      -EFAULT : 0;
		break;
	}

	case PPC_PTRACE_SETHWDEBUG: {
		struct ppc_hw_breakpoint bp_info;

2874
		if (!access_ok(VERIFY_READ, datavp,
2875 2876
			       sizeof(struct ppc_hw_breakpoint)))
			return -EFAULT;
2877
		ret = __copy_from_user(&bp_info, datavp,
2878 2879 2880 2881 2882 2883 2884 2885
				       sizeof(struct ppc_hw_breakpoint)) ?
		      -EFAULT : 0;
		if (!ret)
			ret = ppc_set_hwdebug(child, &bp_info);
		break;
	}

	case PPC_PTRACE_DELHWDEBUG: {
2886
		ret = ppc_del_hwdebug(child, data);
2887 2888 2889
		break;
	}

S
Stephen Rothwell 已提交
2890
	case PTRACE_GET_DEBUGREG: {
2891 2892 2893
#ifndef CONFIG_PPC_ADV_DEBUG_REGS
		unsigned long dabr_fake;
#endif
S
Stephen Rothwell 已提交
2894 2895 2896 2897
		ret = -EINVAL;
		/* We only support one DABR and no IABRS at the moment */
		if (addr > 0)
			break;
2898
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
2899
		ret = put_user(child->thread.debug.dac1, datalp);
2900
#else
2901 2902 2903
		dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
			     (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
		ret = put_user(dabr_fake, datalp);
2904
#endif
S
Stephen Rothwell 已提交
2905 2906 2907 2908 2909 2910 2911
		break;
	}

	case PTRACE_SET_DEBUGREG:
		ret = ptrace_set_debugreg(child, addr, data);
		break;

2912 2913 2914
#ifdef CONFIG_PPC64
	case PTRACE_GETREGS64:
#endif
2915 2916 2917 2918
	case PTRACE_GETREGS:	/* Get all pt_regs from the child. */
		return copy_regset_to_user(child, &user_ppc_native_view,
					   REGSET_GPR,
					   0, sizeof(struct pt_regs),
2919
					   datavp);
S
Stephen Rothwell 已提交
2920

2921 2922 2923
#ifdef CONFIG_PPC64
	case PTRACE_SETREGS64:
#endif
2924 2925 2926 2927
	case PTRACE_SETREGS:	/* Set all gp regs in the child. */
		return copy_regset_from_user(child, &user_ppc_native_view,
					     REGSET_GPR,
					     0, sizeof(struct pt_regs),
2928
					     datavp);
2929 2930 2931 2932 2933

	case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
		return copy_regset_to_user(child, &user_ppc_native_view,
					   REGSET_FPR,
					   0, sizeof(elf_fpregset_t),
2934
					   datavp);
2935 2936 2937 2938 2939

	case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
		return copy_regset_from_user(child, &user_ppc_native_view,
					     REGSET_FPR,
					     0, sizeof(elf_fpregset_t),
2940
					     datavp);
S
Stephen Rothwell 已提交
2941

L
Linus Torvalds 已提交
2942 2943
#ifdef CONFIG_ALTIVEC
	case PTRACE_GETVRREGS:
2944 2945 2946 2947
		return copy_regset_to_user(child, &user_ppc_native_view,
					   REGSET_VMX,
					   0, (33 * sizeof(vector128) +
					       sizeof(u32)),
2948
					   datavp);
L
Linus Torvalds 已提交
2949 2950

	case PTRACE_SETVRREGS:
2951 2952 2953 2954
		return copy_regset_from_user(child, &user_ppc_native_view,
					     REGSET_VMX,
					     0, (33 * sizeof(vector128) +
						 sizeof(u32)),
2955
					     datavp);
L
Linus Torvalds 已提交
2956
#endif
2957 2958 2959 2960
#ifdef CONFIG_VSX
	case PTRACE_GETVSRREGS:
		return copy_regset_to_user(child, &user_ppc_native_view,
					   REGSET_VSX,
2961
					   0, 32 * sizeof(double),
2962
					   datavp);
2963 2964 2965 2966

	case PTRACE_SETVSRREGS:
		return copy_regset_from_user(child, &user_ppc_native_view,
					     REGSET_VSX,
2967
					     0, 32 * sizeof(double),
2968
					     datavp);
2969
#endif
L
Linus Torvalds 已提交
2970 2971 2972
#ifdef CONFIG_SPE
	case PTRACE_GETEVRREGS:
		/* Get the child spe register state. */
2973 2974
		return copy_regset_to_user(child, &user_ppc_native_view,
					   REGSET_SPE, 0, 35 * sizeof(u32),
2975
					   datavp);
L
Linus Torvalds 已提交
2976 2977 2978

	case PTRACE_SETEVRREGS:
		/* Set the child spe register state. */
2979 2980
		return copy_regset_from_user(child, &user_ppc_native_view,
					     REGSET_SPE, 0, 35 * sizeof(u32),
2981
					     datavp);
L
Linus Torvalds 已提交
2982 2983 2984 2985 2986 2987 2988 2989 2990
#endif

	default:
		ret = ptrace_request(child, request, addr, data);
		break;
	}
	return ret;
}

2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
#ifdef CONFIG_SECCOMP
static int do_seccomp(struct pt_regs *regs)
{
	if (!test_thread_flag(TIF_SECCOMP))
		return 0;

	/*
	 * The ABI we present to seccomp tracers is that r3 contains
	 * the syscall return value and orig_gpr3 contains the first
	 * syscall parameter. This is different to the ptrace ABI where
	 * both r3 and orig_gpr3 contain the first syscall parameter.
	 */
	regs->gpr[3] = -ENOSYS;

	/*
	 * We use the __ version here because we have already checked
	 * TIF_SECCOMP. If this fails, there is nothing left to do, we
	 * have already loaded -ENOSYS into r3, or seccomp has put
	 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
	 */
3011
	if (__secure_computing(NULL))
3012 3013 3014 3015
		return -1;

	/*
	 * The syscall was allowed by seccomp, restore the register
3016
	 * state to what audit expects.
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
	 * Note that we use orig_gpr3, which means a seccomp tracer can
	 * modify the first syscall parameter (in orig_gpr3) and also
	 * allow the syscall to proceed.
	 */
	regs->gpr[3] = regs->orig_gpr3;

	return 0;
}
#else
static inline int do_seccomp(struct pt_regs *regs) { return 0; }
#endif /* CONFIG_SECCOMP */

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
/**
 * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
 * @regs: the pt_regs of the task to trace (current)
 *
 * Performs various types of tracing on syscall entry. This includes seccomp,
 * ptrace, syscall tracepoints and audit.
 *
 * The pt_regs are potentially visible to userspace via ptrace, so their
 * contents is ABI.
 *
 * One or more of the tracers may modify the contents of pt_regs, in particular
 * to modify arguments or even the syscall number itself.
 *
 * It's also possible that a tracer can choose to reject the system call. In
 * that case this function will return an illegal syscall number, and will put
 * an appropriate return value in regs->r3.
 *
 * Return: the (possibly changed) syscall number.
3047 3048
 */
long do_syscall_trace_enter(struct pt_regs *regs)
L
Linus Torvalds 已提交
3049
{
3050 3051
	user_exit();

3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
	/*
	 * The tracer may decide to abort the syscall, if so tracehook
	 * will return !0. Note that the tracer may also just change
	 * regs->gpr[0] to an invalid syscall number, that is handled
	 * below on the exit path.
	 */
	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
	    tracehook_report_syscall_entry(regs))
		goto skip;

	/* Run seccomp after ptrace; allow it to set gpr[3]. */
3063 3064
	if (do_seccomp(regs))
		return -1;
S
Stephen Rothwell 已提交
3065

3066 3067 3068
	/* Avoid trace and audit when syscall is invalid. */
	if (regs->gpr[0] >= NR_syscalls)
		goto skip;
3069

3070 3071 3072
	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
		trace_sys_enter(regs, regs->gpr[0]);

3073
#ifdef CONFIG_PPC64
3074
	if (!is_32bit_task())
3075
		audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
3076 3077
				    regs->gpr[5], regs->gpr[6]);
	else
S
Stephen Rothwell 已提交
3078
#endif
3079
		audit_syscall_entry(regs->gpr[0],
3080 3081 3082 3083
				    regs->gpr[3] & 0xffffffff,
				    regs->gpr[4] & 0xffffffff,
				    regs->gpr[5] & 0xffffffff,
				    regs->gpr[6] & 0xffffffff);
3084

3085 3086
	/* Return the possibly modified but valid syscall number */
	return regs->gpr[0];
3087 3088 3089 3090 3091 3092 3093 3094

skip:
	/*
	 * If we are aborting explicitly, or if the syscall number is
	 * now invalid, set the return value to -ENOSYS.
	 */
	regs->gpr[3] = -ENOSYS;
	return -1;
3095 3096 3097 3098
}

void do_syscall_trace_leave(struct pt_regs *regs)
{
3099 3100
	int step;

3101
	audit_syscall_exit(regs);
3102

3103 3104 3105
	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
		trace_sys_exit(regs, regs->result);

3106 3107 3108
	step = test_thread_flag(TIF_SINGLESTEP);
	if (step || test_thread_flag(TIF_SYSCALL_TRACE))
		tracehook_report_syscall_exit(regs, step);
3109 3110

	user_enter();
3111
}