cafe_nand.c 19.2 KB
Newer Older
1 2 3 4 5 6 7
/* 
 * cafe_nand.c
 *
 * Copyright © 2006 Red Hat, Inc.
 * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
 */

8
#define DEBUG
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

#include <linux/device.h>
#undef DEBUG
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <asm/io.h>

#define CAFE_NAND_CTRL1		0x00
#define CAFE_NAND_CTRL2		0x04
#define CAFE_NAND_CTRL3		0x08
#define CAFE_NAND_STATUS	0x0c
#define CAFE_NAND_IRQ		0x10
#define CAFE_NAND_IRQ_MASK	0x14
#define CAFE_NAND_DATA_LEN	0x18
#define CAFE_NAND_ADDR1		0x1c
#define CAFE_NAND_ADDR2		0x20
#define CAFE_NAND_TIMING1	0x24
#define CAFE_NAND_TIMING2	0x28
#define CAFE_NAND_TIMING3	0x2c
#define CAFE_NAND_NONMEM	0x30
#define CAFE_NAND_DMA_CTRL	0x40
#define CAFE_NAND_DMA_ADDR0	0x44
#define CAFE_NAND_DMA_ADDR1	0x48
#define CAFE_NAND_READ_DATA	0x1000
#define CAFE_NAND_WRITE_DATA	0x2000

struct cafe_priv {
	struct nand_chip nand;
	struct pci_dev *pdev;
	void __iomem *mmio;
	uint32_t ctl1;
	uint32_t ctl2;
	int datalen;
	int nr_data;
	int data_pos;
	int page_addr;
	dma_addr_t dmaaddr;
	unsigned char *dmabuf;
	
};

static int usedma = 1;
module_param(usedma, int, 0644);

56 57 58 59 60 61 62 63 64
static int skipbbt = 0;
module_param(skipbbt, int, 0644);

static int debug = 0;
module_param(debug, int, 0644);

#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)


65 66 67 68 69
static int cafe_device_ready(struct mtd_info *mtd)
{
	struct cafe_priv *cafe = mtd->priv;
	int result = !!(readl(cafe->mmio + CAFE_NAND_STATUS) | 0x40000000);

70 71 72 73
	uint32_t irqs = readl(cafe->mmio + CAFE_NAND_IRQ);
	writel(irqs, cafe->mmio+CAFE_NAND_IRQ);
	cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
		result?"":" not", irqs, readl(cafe->mmio + CAFE_NAND_IRQ),
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
		readl(cafe->mmio + 0x3008), readl(cafe->mmio + 0x300c));
	return result;
}


static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
	struct cafe_priv *cafe = mtd->priv;

	if (usedma)
		memcpy(cafe->dmabuf + cafe->datalen, buf, len);
	else
		memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
	cafe->datalen += len;

89
	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
90 91 92 93 94 95 96 97 98 99 100 101
		len, cafe->datalen);
}

static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	struct cafe_priv *cafe = mtd->priv;

	if (usedma)
		memcpy(buf, cafe->dmabuf + cafe->datalen, len);
	else
		memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);

102
	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
103 104 105 106 107 108 109 110 111 112
		  len, cafe->datalen);
	cafe->datalen += len;
}

static uint8_t cafe_read_byte(struct mtd_info *mtd)
{
	struct cafe_priv *cafe = mtd->priv;
	uint8_t d;

	cafe_read_buf(mtd, &d, 1);
113
	cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
114 115 116 117 118 119 120 121 122 123 124 125 126

	return d;
}

static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
			      int column, int page_addr)
{
	struct cafe_priv *cafe = mtd->priv;
	int adrbytes = 0;
	uint32_t ctl1;
	uint32_t doneint = 0x80000000;
	int i;

127
	cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
128 129 130 131 132 133
		command, column, page_addr);

	if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
		/* Second half of a command we already calculated */
		writel(cafe->ctl2 | 0x100 | command, cafe->mmio + 0x04);
		ctl1 = cafe->ctl1;
134
		cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
			  cafe->ctl1, cafe->nr_data);
		goto do_command;
	}
	/* Reset ECC engine */
	writel(0, cafe->mmio + CAFE_NAND_CTRL2);

	/* Emulate NAND_CMD_READOOB on large-page chips */
	if (mtd->writesize > 512 &&
	    command == NAND_CMD_READOOB) {
		column += mtd->writesize;
		command = NAND_CMD_READ0;
	}

	/* FIXME: Do we need to send read command before sending data
	   for small-page chips, to position the buffer correctly? */

	if (column != -1) {
		writel(column, cafe->mmio + 0x1c);
		adrbytes = 2;
		if (page_addr != -1)
			goto write_adr2;
	} else if (page_addr != -1) {
		writel(page_addr & 0xffff, cafe->mmio + 0x1c);
		page_addr >>= 16;
	write_adr2:
		writel(page_addr, cafe->mmio+0x20);
		adrbytes += 2;
		if (mtd->size > mtd->writesize << 16)
			adrbytes++;
	}

	cafe->data_pos = cafe->datalen = 0;

	/* Set command valid bit */
	ctl1 = 0x80000000 | command;

	/* Set RD or WR bits as appropriate */
	if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
		ctl1 |= (1<<26); /* rd */
		/* Always 5 bytes, for now */
175
		cafe->datalen = 4;
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
		/* And one address cycle -- even for STATUS, since the controller doesn't work without */
		adrbytes = 1;
	} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
		   command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
		ctl1 |= 1<<26; /* rd */
		/* For now, assume just read to end of page */
		cafe->datalen = mtd->writesize + mtd->oobsize - column;
	} else if (command == NAND_CMD_SEQIN)
		ctl1 |= 1<<25; /* wr */

	/* Set number of address bytes */
	if (adrbytes)
		ctl1 |= ((adrbytes-1)|8) << 27;

	if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
		/* Ignore the first command of a pair; the hardware 
		   deals with them both at once, later */
		cafe->ctl1 = ctl1;
		cafe->ctl2 = 0;
195
		cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
196 197 198 199 200 201 202 203 204 205
			  cafe->ctl1, cafe->datalen);
		return;
	}
	/* RNDOUT and READ0 commands need a following byte */
	if (command == NAND_CMD_RNDOUT)
		writel(cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, cafe->mmio + CAFE_NAND_CTRL2);
	else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
		writel(cafe->ctl2 | 0x100 | NAND_CMD_READSTART, cafe->mmio + CAFE_NAND_CTRL2);

 do_command:
206 207 208 209
	// ECC on read only works if we ...
	//	if (cafe->datalen == 2112)
	//		cafe->datalen = 2062;
	cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n", 
210 211 212
		cafe->datalen, ctl1, readl(cafe->mmio+CAFE_NAND_CTRL2));
	/* NB: The datasheet lies -- we really should be subtracting 1 here */
	writel(cafe->datalen, cafe->mmio + CAFE_NAND_DATA_LEN);
213
	writel(0x90000000, cafe->mmio + CAFE_NAND_IRQ);
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
	if (usedma && (ctl1 & (3<<25))) {
		uint32_t dmactl = 0xc0000000 + cafe->datalen;
		/* If WR or RD bits set, set up DMA */
		if (ctl1 & (1<<26)) {
			/* It's a read */
			dmactl |= (1<<29);
			/* ... so it's done when the DMA is done, not just
			   the command. */
			doneint = 0x10000000;
		}
		writel(dmactl, cafe->mmio + 0x40);
	}
#if 0
	printk("DMA setup is %x, status %x, ctl1 %x\n", readl(cafe->mmio + 0x40), readl(cafe->mmio + 0x0c), readl(cafe->mmio));
	printk("DMA setup is %x, status %x, ctl1 %x\n", readl(cafe->mmio + 0x40), readl(cafe->mmio + 0x0c), readl(cafe->mmio));
#endif
	cafe->datalen = 0;

#if 0
	printk("About to write command %08x\n", ctl1);
	for (i=0; i< 0x5c; i+=4)
		printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
#endif
	writel(ctl1, cafe->mmio + CAFE_NAND_CTRL1);
	/* Apply this short delay always to ensure that we do wait tWB in
	 * any case on any machine. */
	ndelay(100);

	if (1) {
243
		int c = 500000;
244 245 246
		uint32_t irqs;

		while (c--) {
247
			irqs = readl(cafe->mmio + CAFE_NAND_IRQ);
248 249 250
			if (irqs & doneint)
				break;
			udelay(1);
251 252
			if (!(c % 100000))
				cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
253 254
			cpu_relax();
		}
255 256
		writel(doneint, cafe->mmio + CAFE_NAND_IRQ);
		cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n", command, 50000-c, irqs, readl(cafe->mmio + CAFE_NAND_IRQ));
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
	}


	cafe->ctl2 &= ~(1<<8);
	cafe->ctl2 &= ~(1<<30);

	switch (command) {

	case NAND_CMD_CACHEDPROG:
	case NAND_CMD_PAGEPROG:
	case NAND_CMD_ERASE1:
	case NAND_CMD_ERASE2:
	case NAND_CMD_SEQIN:
	case NAND_CMD_RNDIN:
	case NAND_CMD_STATUS:
	case NAND_CMD_DEPLETE1:
	case NAND_CMD_RNDOUT:
	case NAND_CMD_STATUS_ERROR:
	case NAND_CMD_STATUS_ERROR0:
	case NAND_CMD_STATUS_ERROR1:
	case NAND_CMD_STATUS_ERROR2:
	case NAND_CMD_STATUS_ERROR3:
		writel(cafe->ctl2, cafe->mmio + CAFE_NAND_CTRL2);
		return;
	}
	nand_wait_ready(mtd);
	writel(cafe->ctl2, cafe->mmio + CAFE_NAND_CTRL2);
}

static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
{
	//struct cafe_priv *cafe = mtd->priv;
289
	//	cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
290 291 292 293 294
}
static int cafe_nand_interrupt(int irq, void *id, struct pt_regs *regs)
{
	struct mtd_info *mtd = id;
	struct cafe_priv *cafe = mtd->priv;
295 296
	uint32_t irqs = readl(cafe->mmio + CAFE_NAND_IRQ);
	writel(irqs & ~0x90000000, cafe->mmio + CAFE_NAND_IRQ);
297 298 299
	if (!irqs)
		return IRQ_NONE;

300
	cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, readl(cafe->mmio + CAFE_NAND_IRQ));
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
	return IRQ_HANDLED;
}

static void cafe_nand_bug(struct mtd_info *mtd)
{
	BUG();
}

static int cafe_nand_write_oob(struct mtd_info *mtd,
			       struct nand_chip *chip, int page)
{
	int status = 0;

	WARN_ON(chip->oob_poi != chip->buffers->oobwbuf);

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
	status = chip->waitfunc(mtd, chip);

	return status & NAND_STATUS_FAIL ? -EIO : 0;
}

/* Don't use -- use nand_read_oob_std for now */
static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
			      int page, int sndcmd)
{
	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
	return 1;
}
/**
 * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
 * @mtd:	mtd info structure
 * @chip:	nand chip info structure
 * @buf:	buffer to store read data
 *
 * The hw generator calculates the error syndrome automatically. Therefor
 * we need a special oob layout and handling.
 */
static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
			       uint8_t *buf)
{
	struct cafe_priv *cafe = mtd->priv;

	WARN_ON(chip->oob_poi != chip->buffers->oobrbuf);

348
	cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n", readl(cafe->mmio + 0x3c), readl(cafe->mmio + 0x50));
349 350 351 352 353 354 355

	chip->read_buf(mtd, buf, mtd->writesize);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);

	return 0;
}

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
static struct nand_ecclayout cafe_oobinfo_2048 = {
	.eccbytes = 14,
	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
	.oobfree = {{14, 50}}
};

/* Ick. The BBT code really ought to be able to work this bit out 
   for itself from the above */
static uint8_t cafe_bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t cafe_mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	14,
	.len = 4,
	.veroffs = 18,
	.maxblocks = 4,
	.pattern = cafe_bbt_pattern
};

static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
	.offs =	14,
	.len = 4,
	.veroffs = 18,
	.maxblocks = 4,
	.pattern = cafe_mirror_pattern
};

static struct nand_ecclayout cafe_oobinfo_512 = {
	.eccbytes = 14,
	.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
	.oobfree = {{14, 2}}
};


394 395 396 397 398 399 400 401
static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
					  struct nand_chip *chip, const uint8_t *buf)
{
	struct cafe_priv *cafe = mtd->priv;

	WARN_ON(chip->oob_poi != chip->buffers->oobwbuf);

	chip->write_buf(mtd, buf, mtd->writesize);
402
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458

	/* Set up ECC autogeneration */
	cafe->ctl2 |= (1<<27) | (1<<30);
	if (mtd->writesize == 2048)
		cafe->ctl2 |= (1<<29);
}

static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
				const uint8_t *buf, int page, int cached, int raw)
{
	int status;

	WARN_ON(chip->oob_poi != chip->buffers->oobwbuf);

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);

	if (unlikely(raw))
		chip->ecc.write_page_raw(mtd, chip, buf);
	else
		chip->ecc.write_page(mtd, chip, buf);

	/*
	 * Cached progamming disabled for now, Not sure if its worth the
	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
	 */
	cached = 0;

	if (!cached || !(chip->options & NAND_CACHEPRG)) {

		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
		status = chip->waitfunc(mtd, chip);
		/*
		 * See if operation failed and additional status checks are
		 * available
		 */
		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
			status = chip->errstat(mtd, chip, FL_WRITING, status,
					       page);

		if (status & NAND_STATUS_FAIL)
			return -EIO;
	} else {
		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
		status = chip->waitfunc(mtd, chip);
	}

#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
	/* Send command to read back the data */
	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);

	if (chip->verify_buf(mtd, buf, mtd->writesize))
		return -EIO;
#endif
	return 0;
}

459 460 461 462
static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
{
	return 0;
}
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513

static int __devinit cafe_nand_probe(struct pci_dev *pdev,
				     const struct pci_device_id *ent)
{
	struct mtd_info *mtd;
	struct cafe_priv *cafe;
	uint32_t ctrl;
	int err = 0;

	err = pci_enable_device(pdev);
	if (err)
		return err;

	pci_set_master(pdev);

	mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
	if (!mtd) {
		dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
		return  -ENOMEM;
	}
	cafe = (void *)(&mtd[1]);

	mtd->priv = cafe;
	mtd->owner = THIS_MODULE;

	cafe->pdev = pdev;
	cafe->mmio = pci_iomap(pdev, 0, 0);
	if (!cafe->mmio) {
		dev_warn(&pdev->dev, "failed to iomap\n");
		err = -ENOMEM;
		goto out_free_mtd;
	}
	cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
					  &cafe->dmaaddr, GFP_KERNEL);
	if (!cafe->dmabuf) {
		err = -ENOMEM;
		goto out_ior;
	}
	cafe->nand.buffers = (void *)cafe->dmabuf + 2112;

	cafe->nand.cmdfunc = cafe_nand_cmdfunc;
	cafe->nand.dev_ready = cafe_device_ready;
	cafe->nand.read_byte = cafe_read_byte;
	cafe->nand.read_buf = cafe_read_buf;
	cafe->nand.write_buf = cafe_write_buf;
	cafe->nand.select_chip = cafe_select_chip;

	cafe->nand.chip_delay = 0;

	/* Enable the following for a flash based bad block table */
	cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
514 515 516 517 518

	if (skipbbt) {
		cafe->nand.options |= NAND_SKIP_BBTSCAN;
		cafe->nand.block_bad = cafe_nand_block_bad;
	}
519 520 521 522 523 524 525 526 527 528 529 530
	
	/* Timings from Marvell's test code (not verified or calculated by us) */
	writel(0xffffffff, cafe->mmio + CAFE_NAND_IRQ_MASK);
#if 1
	writel(0x01010a0a, cafe->mmio + CAFE_NAND_TIMING1);
	writel(0x24121212, cafe->mmio + CAFE_NAND_TIMING2);
	writel(0x11000000, cafe->mmio + CAFE_NAND_TIMING3);
#else
	writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING1);
	writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING2);
	writel(0xffffffff, cafe->mmio + CAFE_NAND_TIMING3);
#endif
531
	writel(0xffffffff, cafe->mmio + CAFE_NAND_IRQ_MASK);
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
	err = request_irq(pdev->irq, &cafe_nand_interrupt, SA_SHIRQ, "CAFE NAND", mtd);
	if (err) {
		dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
		
		goto out_free_dma;
	}
#if 1
	/* Disable master reset, enable NAND clock */
	ctrl = readl(cafe->mmio + 0x3004);
	ctrl &= 0xffffeff0;
	ctrl |= 0x00007000;
	writel(ctrl | 0x05, cafe->mmio + 0x3004);
	writel(ctrl | 0x0a, cafe->mmio + 0x3004);
	writel(0, cafe->mmio + 0x40);

	writel(0x7006, cafe->mmio + 0x3004);
	writel(0x700a, cafe->mmio + 0x3004);

	/* Set up DMA address */
	writel(cafe->dmaaddr & 0xffffffff, cafe->mmio + 0x44);
	if (sizeof(cafe->dmaaddr) > 4)
		writel((cafe->dmaaddr >> 16) >> 16, cafe->mmio + 0x48);
	else
		writel(0, cafe->mmio + 0x48);
556
	cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
557 558 559 560
		readl(cafe->mmio+0x44), cafe->dmabuf);

	/* Enable NAND IRQ in global IRQ mask register */
	writel(0x80000007, cafe->mmio + 0x300c);
561
	cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
562 563 564 565 566
		readl(cafe->mmio + 0x3004), readl(cafe->mmio + 0x300c));
#endif
#if 1
	mtd->writesize=2048;
	mtd->oobsize = 0x40;
567
	memset(cafe->dmabuf, 0x5a, 2112);
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
	cafe->nand.cmdfunc(mtd, NAND_CMD_READID, 0, -1);
	cafe->nand.read_byte(mtd);
	cafe->nand.read_byte(mtd);
	cafe->nand.read_byte(mtd);
	cafe->nand.read_byte(mtd);
	cafe->nand.read_byte(mtd);
#endif
#if 0
	cafe->nand.cmdfunc(mtd, NAND_CMD_READ0, 0, 0);
	//	nand_wait_ready(mtd);
	cafe->nand.read_byte(mtd);
	cafe->nand.read_byte(mtd);
	cafe->nand.read_byte(mtd);
	cafe->nand.read_byte(mtd);
#endif
#if 0
	writel(0x84600070, cafe->mmio);
	udelay(10);
586
	cafe_dev_dbg(&cafe->pdev->dev, "Status %x\n", readl(cafe->mmio + 0x30));
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
#endif		
	/* Scan to find existance of the device */
	if (nand_scan_ident(mtd, 1)) {
		err = -ENXIO;
		goto out_irq;
	}

	cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
	if (mtd->writesize == 2048)
		cafe->ctl2 |= 1<<29; /* 2KiB page size */

	/* Set up ECC according to the type of chip we found */
	if (mtd->writesize == 512 || mtd->writesize == 2048) {
		cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
		cafe->nand.ecc.size = mtd->writesize;
		cafe->nand.ecc.bytes = 14;
603 604 605
		cafe->nand.ecc.layout = &cafe_oobinfo_2048;
		cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
		cafe->nand.ecc.hwctl  = (void *)cafe_nand_bug;
		cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
		cafe->nand.ecc.correct  = (void *)cafe_nand_bug;
		cafe->nand.write_page = cafe_nand_write_page;
		cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
		cafe->nand.ecc.write_oob = cafe_nand_write_oob;
		cafe->nand.ecc.read_page = cafe_nand_read_page;
		cafe->nand.ecc.read_oob = cafe_nand_read_oob;

	} else {
		printk(KERN_WARNING "Unexpected NAND flash writesize %d. Using software ECC\n",
		       mtd->writesize);
		cafe->nand.ecc.mode = NAND_ECC_NONE;
	}

	err = nand_scan_tail(mtd);
	if (err)
		goto out_irq;

	pci_set_drvdata(pdev, mtd);
	add_mtd_device(mtd);
	goto out;

 out_irq:
	/* Disable NAND IRQ in global IRQ mask register */
	writel(~1 & readl(cafe->mmio + 0x300c), cafe->mmio + 0x300c);
	free_irq(pdev->irq, mtd);
 out_free_dma:
	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
 out_ior:
	pci_iounmap(pdev, cafe->mmio);
 out_free_mtd:
	kfree(mtd);
 out:
	return err;
}

static void __devexit cafe_nand_remove(struct pci_dev *pdev)
{
	struct mtd_info *mtd = pci_get_drvdata(pdev);
	struct cafe_priv *cafe = mtd->priv;

	del_mtd_device(mtd);
	/* Disable NAND IRQ in global IRQ mask register */
	writel(~1 & readl(cafe->mmio + 0x300c), cafe->mmio + 0x300c);
	free_irq(pdev->irq, mtd);
	nand_release(mtd);
	pci_iounmap(pdev, cafe->mmio);
	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
	kfree(mtd);
}

static struct pci_device_id cafe_nand_tbl[] = {
	{ 0x11ab, 0x4100, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MEMORY_FLASH << 8, 0xFFFF0 }
};

MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);

static struct pci_driver cafe_nand_pci_driver = {
	.name = "CAFÉ NAND",
	.id_table = cafe_nand_tbl,
	.probe = cafe_nand_probe,
	.remove = __devexit_p(cafe_nand_remove),
#ifdef CONFIG_PMx
	.suspend = cafe_nand_suspend,
	.resume = cafe_nand_resume,
#endif
};

static int cafe_nand_init(void)
{
	return pci_register_driver(&cafe_nand_pci_driver);
}

static void cafe_nand_exit(void)
{
	pci_unregister_driver(&cafe_nand_pci_driver);
}
module_init(cafe_nand_init);
module_exit(cafe_nand_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
MODULE_DESCRIPTION("NAND flash driver for OLPC CAFE chip");

/* Correct ECC for 2048 bytes of 0xff:
   41 a0 71 65 54 27 f3 93 ec a9 be ed 0b a1 */
693 694 695 696 697 698

/* dwmw2's B-test board, in case of completely screwing it:
Bad eraseblock 2394 at 0x12b40000
Bad eraseblock 2627 at 0x14860000
Bad eraseblock 3349 at 0x1a2a0000
*/