intel-iommu.c 56.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (c) 2006, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
17 18 19 20
 * Copyright (C) 2006-2008 Intel Corporation
 * Author: Ashok Raj <ashok.raj@intel.com>
 * Author: Shaohua Li <shaohua.li@intel.com>
 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 22 23 24
 */

#include <linux/init.h>
#include <linux/bitmap.h>
M
mark gross 已提交
25
#include <linux/debugfs.h>
26 27 28 29 30 31 32 33 34
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/sysdev.h>
#include <linux/spinlock.h>
#include <linux/pci.h>
#include <linux/dmar.h>
#include <linux/dma-mapping.h>
#include <linux/mempool.h>
M
mark gross 已提交
35
#include <linux/timer.h>
36 37 38 39
#include "iova.h"
#include "intel-iommu.h"
#include <asm/proto.h> /* force_iommu in this header in x86-64*/
#include <asm/cacheflush.h>
J
Joerg Roedel 已提交
40
#include <asm/gart.h>
41 42 43 44 45 46 47 48 49 50 51
#include "pci.h"

#define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
#define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)

#define IOAPIC_RANGE_START	(0xfee00000)
#define IOAPIC_RANGE_END	(0xfeefffff)
#define IOVA_START_ADDR		(0x1000)

#define DEFAULT_DOMAIN_ADDRESS_WIDTH 48

52
#define DMAR_OPERATION_TIMEOUT ((cycles_t) tsc_khz*10*1000) /* 10sec */
53 54 55

#define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)

M
mark gross 已提交
56 57 58 59 60

static void flush_unmaps_timeout(unsigned long data);

DEFINE_TIMER(unmap_timer,  flush_unmaps_timeout, 0, 0);

61 62 63 64 65 66 67 68 69
#define HIGH_WATER_MARK 250
struct deferred_flush_tables {
	int next;
	struct iova *iova[HIGH_WATER_MARK];
	struct dmar_domain *domain[HIGH_WATER_MARK];
};

static struct deferred_flush_tables *deferred_flush;

M
mark gross 已提交
70 71 72 73 74 75 76 77 78
/* bitmap for indexing intel_iommus */
static int g_num_of_iommus;

static DEFINE_SPINLOCK(async_umap_flush_lock);
static LIST_HEAD(unmaps_to_do);

static int timer_on;
static long list_size;

79 80 81 82
static void domain_remove_dev_info(struct dmar_domain *domain);

static int dmar_disabled;
static int __initdata dmar_map_gfx = 1;
83
static int dmar_forcedac;
M
mark gross 已提交
84
static int intel_iommu_strict;
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

#define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
static DEFINE_SPINLOCK(device_domain_lock);
static LIST_HEAD(device_domain_list);

static int __init intel_iommu_setup(char *str)
{
	if (!str)
		return -EINVAL;
	while (*str) {
		if (!strncmp(str, "off", 3)) {
			dmar_disabled = 1;
			printk(KERN_INFO"Intel-IOMMU: disabled\n");
		} else if (!strncmp(str, "igfx_off", 8)) {
			dmar_map_gfx = 0;
			printk(KERN_INFO
				"Intel-IOMMU: disable GFX device mapping\n");
102
		} else if (!strncmp(str, "forcedac", 8)) {
M
mark gross 已提交
103
			printk(KERN_INFO
104 105
				"Intel-IOMMU: Forcing DAC for PCI devices\n");
			dmar_forcedac = 1;
M
mark gross 已提交
106 107 108 109
		} else if (!strncmp(str, "strict", 6)) {
			printk(KERN_INFO
				"Intel-IOMMU: disable batched IOTLB flush\n");
			intel_iommu_strict = 1;
110 111 112 113 114 115 116 117 118 119 120 121 122 123
		}

		str += strcspn(str, ",");
		while (*str == ',')
			str++;
	}
	return 0;
}
__setup("intel_iommu=", intel_iommu_setup);

static struct kmem_cache *iommu_domain_cache;
static struct kmem_cache *iommu_devinfo_cache;
static struct kmem_cache *iommu_iova_cache;

124 125 126 127 128 129 130 131 132 133 134 135 136 137
static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
{
	unsigned int flags;
	void *vaddr;

	/* trying to avoid low memory issues */
	flags = current->flags & PF_MEMALLOC;
	current->flags |= PF_MEMALLOC;
	vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
	current->flags &= (~PF_MEMALLOC | flags);
	return vaddr;
}


138 139
static inline void *alloc_pgtable_page(void)
{
140 141 142 143 144 145 146 147 148
	unsigned int flags;
	void *vaddr;

	/* trying to avoid low memory issues */
	flags = current->flags & PF_MEMALLOC;
	current->flags |= PF_MEMALLOC;
	vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
	current->flags &= (~PF_MEMALLOC | flags);
	return vaddr;
149 150 151 152 153 154 155 156 157
}

static inline void free_pgtable_page(void *vaddr)
{
	free_page((unsigned long)vaddr);
}

static inline void *alloc_domain_mem(void)
{
158
	return iommu_kmem_cache_alloc(iommu_domain_cache);
159 160 161 162 163 164 165 166 167
}

static inline void free_domain_mem(void *vaddr)
{
	kmem_cache_free(iommu_domain_cache, vaddr);
}

static inline void * alloc_devinfo_mem(void)
{
168
	return iommu_kmem_cache_alloc(iommu_devinfo_cache);
169 170 171 172 173 174 175 176 177
}

static inline void free_devinfo_mem(void *vaddr)
{
	kmem_cache_free(iommu_devinfo_cache, vaddr);
}

struct iova *alloc_iova_mem(void)
{
178
	return iommu_kmem_cache_alloc(iommu_iova_cache);
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
}

void free_iova_mem(struct iova *iova)
{
	kmem_cache_free(iommu_iova_cache, iova);
}

static inline void __iommu_flush_cache(
	struct intel_iommu *iommu, void *addr, int size)
{
	if (!ecap_coherent(iommu->ecap))
		clflush_cache_range(addr, size);
}

/* Gets context entry for a given bus and devfn */
static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
		u8 bus, u8 devfn)
{
	struct root_entry *root;
	struct context_entry *context;
	unsigned long phy_addr;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);
	root = &iommu->root_entry[bus];
	context = get_context_addr_from_root(root);
	if (!context) {
		context = (struct context_entry *)alloc_pgtable_page();
		if (!context) {
			spin_unlock_irqrestore(&iommu->lock, flags);
			return NULL;
		}
		__iommu_flush_cache(iommu, (void *)context, PAGE_SIZE_4K);
		phy_addr = virt_to_phys((void *)context);
		set_root_value(root, phy_addr);
		set_root_present(root);
		__iommu_flush_cache(iommu, root, sizeof(*root));
	}
	spin_unlock_irqrestore(&iommu->lock, flags);
	return &context[devfn];
}

static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
	struct root_entry *root;
	struct context_entry *context;
	int ret;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);
	root = &iommu->root_entry[bus];
	context = get_context_addr_from_root(root);
	if (!context) {
		ret = 0;
		goto out;
	}
	ret = context_present(context[devfn]);
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
	return ret;
}

static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
	struct root_entry *root;
	struct context_entry *context;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);
	root = &iommu->root_entry[bus];
	context = get_context_addr_from_root(root);
	if (context) {
		context_clear_entry(context[devfn]);
		__iommu_flush_cache(iommu, &context[devfn], \
			sizeof(*context));
	}
	spin_unlock_irqrestore(&iommu->lock, flags);
}

static void free_context_table(struct intel_iommu *iommu)
{
	struct root_entry *root;
	int i;
	unsigned long flags;
	struct context_entry *context;

	spin_lock_irqsave(&iommu->lock, flags);
	if (!iommu->root_entry) {
		goto out;
	}
	for (i = 0; i < ROOT_ENTRY_NR; i++) {
		root = &iommu->root_entry[i];
		context = get_context_addr_from_root(root);
		if (context)
			free_pgtable_page(context);
	}
	free_pgtable_page(iommu->root_entry);
	iommu->root_entry = NULL;
out:
	spin_unlock_irqrestore(&iommu->lock, flags);
}

/* page table handling */
#define LEVEL_STRIDE		(9)
#define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)

static inline int agaw_to_level(int agaw)
{
	return agaw + 2;
}

static inline int agaw_to_width(int agaw)
{
	return 30 + agaw * LEVEL_STRIDE;

}

static inline int width_to_agaw(int width)
{
	return (width - 30) / LEVEL_STRIDE;
}

static inline unsigned int level_to_offset_bits(int level)
{
	return (12 + (level - 1) * LEVEL_STRIDE);
}

static inline int address_level_offset(u64 addr, int level)
{
	return ((addr >> level_to_offset_bits(level)) & LEVEL_MASK);
}

static inline u64 level_mask(int level)
{
	return ((u64)-1 << level_to_offset_bits(level));
}

static inline u64 level_size(int level)
{
	return ((u64)1 << level_to_offset_bits(level));
}

static inline u64 align_to_level(u64 addr, int level)
{
	return ((addr + level_size(level) - 1) & level_mask(level));
}

static struct dma_pte * addr_to_dma_pte(struct dmar_domain *domain, u64 addr)
{
	int addr_width = agaw_to_width(domain->agaw);
	struct dma_pte *parent, *pte = NULL;
	int level = agaw_to_level(domain->agaw);
	int offset;
	unsigned long flags;

	BUG_ON(!domain->pgd);

	addr &= (((u64)1) << addr_width) - 1;
	parent = domain->pgd;

	spin_lock_irqsave(&domain->mapping_lock, flags);
	while (level > 0) {
		void *tmp_page;

		offset = address_level_offset(addr, level);
		pte = &parent[offset];
		if (level == 1)
			break;

		if (!dma_pte_present(*pte)) {
			tmp_page = alloc_pgtable_page();

			if (!tmp_page) {
				spin_unlock_irqrestore(&domain->mapping_lock,
					flags);
				return NULL;
			}
			__iommu_flush_cache(domain->iommu, tmp_page,
					PAGE_SIZE_4K);
			dma_set_pte_addr(*pte, virt_to_phys(tmp_page));
			/*
			 * high level table always sets r/w, last level page
			 * table control read/write
			 */
			dma_set_pte_readable(*pte);
			dma_set_pte_writable(*pte);
			__iommu_flush_cache(domain->iommu, pte, sizeof(*pte));
		}
		parent = phys_to_virt(dma_pte_addr(*pte));
		level--;
	}

	spin_unlock_irqrestore(&domain->mapping_lock, flags);
	return pte;
}

/* return address's pte at specific level */
static struct dma_pte *dma_addr_level_pte(struct dmar_domain *domain, u64 addr,
		int level)
{
	struct dma_pte *parent, *pte = NULL;
	int total = agaw_to_level(domain->agaw);
	int offset;

	parent = domain->pgd;
	while (level <= total) {
		offset = address_level_offset(addr, total);
		pte = &parent[offset];
		if (level == total)
			return pte;

		if (!dma_pte_present(*pte))
			break;
		parent = phys_to_virt(dma_pte_addr(*pte));
		total--;
	}
	return NULL;
}

/* clear one page's page table */
static void dma_pte_clear_one(struct dmar_domain *domain, u64 addr)
{
	struct dma_pte *pte = NULL;

	/* get last level pte */
	pte = dma_addr_level_pte(domain, addr, 1);

	if (pte) {
		dma_clear_pte(*pte);
		__iommu_flush_cache(domain->iommu, pte, sizeof(*pte));
	}
}

/* clear last level pte, a tlb flush should be followed */
static void dma_pte_clear_range(struct dmar_domain *domain, u64 start, u64 end)
{
	int addr_width = agaw_to_width(domain->agaw);

	start &= (((u64)1) << addr_width) - 1;
	end &= (((u64)1) << addr_width) - 1;
	/* in case it's partial page */
	start = PAGE_ALIGN_4K(start);
	end &= PAGE_MASK_4K;

	/* we don't need lock here, nobody else touches the iova range */
	while (start < end) {
		dma_pte_clear_one(domain, start);
		start += PAGE_SIZE_4K;
	}
}

/* free page table pages. last level pte should already be cleared */
static void dma_pte_free_pagetable(struct dmar_domain *domain,
	u64 start, u64 end)
{
	int addr_width = agaw_to_width(domain->agaw);
	struct dma_pte *pte;
	int total = agaw_to_level(domain->agaw);
	int level;
	u64 tmp;

	start &= (((u64)1) << addr_width) - 1;
	end &= (((u64)1) << addr_width) - 1;

	/* we don't need lock here, nobody else touches the iova range */
	level = 2;
	while (level <= total) {
		tmp = align_to_level(start, level);
		if (tmp >= end || (tmp + level_size(level) > end))
			return;

		while (tmp < end) {
			pte = dma_addr_level_pte(domain, tmp, level);
			if (pte) {
				free_pgtable_page(
					phys_to_virt(dma_pte_addr(*pte)));
				dma_clear_pte(*pte);
				__iommu_flush_cache(domain->iommu,
						pte, sizeof(*pte));
			}
			tmp += level_size(level);
		}
		level++;
	}
	/* free pgd */
	if (start == 0 && end >= ((((u64)1) << addr_width) - 1)) {
		free_pgtable_page(domain->pgd);
		domain->pgd = NULL;
	}
}

/* iommu handling */
static int iommu_alloc_root_entry(struct intel_iommu *iommu)
{
	struct root_entry *root;
	unsigned long flags;

	root = (struct root_entry *)alloc_pgtable_page();
	if (!root)
		return -ENOMEM;

	__iommu_flush_cache(iommu, root, PAGE_SIZE_4K);

	spin_lock_irqsave(&iommu->lock, flags);
	iommu->root_entry = root;
	spin_unlock_irqrestore(&iommu->lock, flags);

	return 0;
}

#define IOMMU_WAIT_OP(iommu, offset, op, cond, sts) \
{\
491
	cycles_t start_time = get_cycles();\
492 493 494 495
	while (1) {\
		sts = op (iommu->reg + offset);\
		if (cond)\
			break;\
496
		if (DMAR_OPERATION_TIMEOUT < (get_cycles() - start_time))\
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
			panic("DMAR hardware is malfunctioning\n");\
		cpu_relax();\
	}\
}

static void iommu_set_root_entry(struct intel_iommu *iommu)
{
	void *addr;
	u32 cmd, sts;
	unsigned long flag;

	addr = iommu->root_entry;

	spin_lock_irqsave(&iommu->register_lock, flag);
	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));

	cmd = iommu->gcmd | DMA_GCMD_SRTP;
	writel(cmd, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		readl, (sts & DMA_GSTS_RTPS), sts);

	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

static void iommu_flush_write_buffer(struct intel_iommu *iommu)
{
	u32 val;
	unsigned long flag;

	if (!cap_rwbf(iommu->cap))
		return;
	val = iommu->gcmd | DMA_GCMD_WBF;

	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(val, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
			readl, (!(val & DMA_GSTS_WBFS)), val);

	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

/* return value determine if we need a write buffer flush */
static int __iommu_flush_context(struct intel_iommu *iommu,
	u16 did, u16 source_id, u8 function_mask, u64 type,
	int non_present_entry_flush)
{
	u64 val = 0;
	unsigned long flag;

	/*
	 * In the non-present entry flush case, if hardware doesn't cache
	 * non-present entry we do nothing and if hardware cache non-present
	 * entry, we flush entries of domain 0 (the domain id is used to cache
	 * any non-present entries)
	 */
	if (non_present_entry_flush) {
		if (!cap_caching_mode(iommu->cap))
			return 1;
		else
			did = 0;
	}

	switch (type) {
	case DMA_CCMD_GLOBAL_INVL:
		val = DMA_CCMD_GLOBAL_INVL;
		break;
	case DMA_CCMD_DOMAIN_INVL:
		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
		break;
	case DMA_CCMD_DEVICE_INVL:
		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
		break;
	default:
		BUG();
	}
	val |= DMA_CCMD_ICC;

	spin_lock_irqsave(&iommu->register_lock, flag);
	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
		dmar_readq, (!(val & DMA_CCMD_ICC)), val);

	spin_unlock_irqrestore(&iommu->register_lock, flag);

	/* flush context entry will implictly flush write buffer */
	return 0;
}

static int inline iommu_flush_context_global(struct intel_iommu *iommu,
	int non_present_entry_flush)
{
	return __iommu_flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL,
		non_present_entry_flush);
}

static int inline iommu_flush_context_domain(struct intel_iommu *iommu, u16 did,
	int non_present_entry_flush)
{
	return __iommu_flush_context(iommu, did, 0, 0, DMA_CCMD_DOMAIN_INVL,
		non_present_entry_flush);
}

static int inline iommu_flush_context_device(struct intel_iommu *iommu,
	u16 did, u16 source_id, u8 function_mask, int non_present_entry_flush)
{
	return __iommu_flush_context(iommu, did, source_id, function_mask,
		DMA_CCMD_DEVICE_INVL, non_present_entry_flush);
}

/* return value determine if we need a write buffer flush */
static int __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
	u64 addr, unsigned int size_order, u64 type,
	int non_present_entry_flush)
{
	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
	u64 val = 0, val_iva = 0;
	unsigned long flag;

	/*
	 * In the non-present entry flush case, if hardware doesn't cache
	 * non-present entry we do nothing and if hardware cache non-present
	 * entry, we flush entries of domain 0 (the domain id is used to cache
	 * any non-present entries)
	 */
	if (non_present_entry_flush) {
		if (!cap_caching_mode(iommu->cap))
			return 1;
		else
			did = 0;
	}

	switch (type) {
	case DMA_TLB_GLOBAL_FLUSH:
		/* global flush doesn't need set IVA_REG */
		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
		break;
	case DMA_TLB_DSI_FLUSH:
		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
		break;
	case DMA_TLB_PSI_FLUSH:
		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
		/* Note: always flush non-leaf currently */
		val_iva = size_order | addr;
		break;
	default:
		BUG();
	}
	/* Note: set drain read/write */
#if 0
	/*
	 * This is probably to be super secure.. Looks like we can
	 * ignore it without any impact.
	 */
	if (cap_read_drain(iommu->cap))
		val |= DMA_TLB_READ_DRAIN;
#endif
	if (cap_write_drain(iommu->cap))
		val |= DMA_TLB_WRITE_DRAIN;

	spin_lock_irqsave(&iommu->register_lock, flag);
	/* Note: Only uses first TLB reg currently */
	if (val_iva)
		dmar_writeq(iommu->reg + tlb_offset, val_iva);
	dmar_writeq(iommu->reg + tlb_offset + 8, val);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
		dmar_readq, (!(val & DMA_TLB_IVT)), val);

	spin_unlock_irqrestore(&iommu->register_lock, flag);

	/* check IOTLB invalidation granularity */
	if (DMA_TLB_IAIG(val) == 0)
		printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
		pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
			DMA_TLB_IIRG(type), DMA_TLB_IAIG(val));
	/* flush context entry will implictly flush write buffer */
	return 0;
}

static int inline iommu_flush_iotlb_global(struct intel_iommu *iommu,
	int non_present_entry_flush)
{
	return __iommu_flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH,
		non_present_entry_flush);
}

static int inline iommu_flush_iotlb_dsi(struct intel_iommu *iommu, u16 did,
	int non_present_entry_flush)
{
	return __iommu_flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH,
		non_present_entry_flush);
}

static int iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
	u64 addr, unsigned int pages, int non_present_entry_flush)
{
702
	unsigned int mask;
703 704 705 706 707 708 709 710 711 712 713 714 715

	BUG_ON(addr & (~PAGE_MASK_4K));
	BUG_ON(pages == 0);

	/* Fallback to domain selective flush if no PSI support */
	if (!cap_pgsel_inv(iommu->cap))
		return iommu_flush_iotlb_dsi(iommu, did,
			non_present_entry_flush);

	/*
	 * PSI requires page size to be 2 ^ x, and the base address is naturally
	 * aligned to the size
	 */
716
	mask = ilog2(__roundup_pow_of_two(pages));
717
	/* Fallback to domain selective flush if size is too big */
718
	if (mask > cap_max_amask_val(iommu->cap))
719 720 721
		return iommu_flush_iotlb_dsi(iommu, did,
			non_present_entry_flush);

722
	return __iommu_flush_iotlb(iommu, did, addr, mask,
723 724 725
		DMA_TLB_PSI_FLUSH, non_present_entry_flush);
}

M
mark gross 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
{
	u32 pmen;
	unsigned long flags;

	spin_lock_irqsave(&iommu->register_lock, flags);
	pmen = readl(iommu->reg + DMAR_PMEN_REG);
	pmen &= ~DMA_PMEN_EPM;
	writel(pmen, iommu->reg + DMAR_PMEN_REG);

	/* wait for the protected region status bit to clear */
	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
		readl, !(pmen & DMA_PMEN_PRS), pmen);

	spin_unlock_irqrestore(&iommu->register_lock, flags);
}

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
static int iommu_enable_translation(struct intel_iommu *iommu)
{
	u32 sts;
	unsigned long flags;

	spin_lock_irqsave(&iommu->register_lock, flags);
	writel(iommu->gcmd|DMA_GCMD_TE, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		readl, (sts & DMA_GSTS_TES), sts);

	iommu->gcmd |= DMA_GCMD_TE;
	spin_unlock_irqrestore(&iommu->register_lock, flags);
	return 0;
}

static int iommu_disable_translation(struct intel_iommu *iommu)
{
	u32 sts;
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	iommu->gcmd &= ~DMA_GCMD_TE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
		readl, (!(sts & DMA_GSTS_TES)), sts);

	spin_unlock_irqrestore(&iommu->register_lock, flag);
	return 0;
}

777 778
/* iommu interrupt handling. Most stuff are MSI-like. */

779
static const char *fault_reason_strings[] =
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
{
	"Software",
	"Present bit in root entry is clear",
	"Present bit in context entry is clear",
	"Invalid context entry",
	"Access beyond MGAW",
	"PTE Write access is not set",
	"PTE Read access is not set",
	"Next page table ptr is invalid",
	"Root table address invalid",
	"Context table ptr is invalid",
	"non-zero reserved fields in RTP",
	"non-zero reserved fields in CTP",
	"non-zero reserved fields in PTE",
};
M
mark gross 已提交
795
#define MAX_FAULT_REASON_IDX 	(ARRAY_SIZE(fault_reason_strings) - 1)
796

797
const char *dmar_get_fault_reason(u8 fault_reason)
798
{
799 800
	if (fault_reason > MAX_FAULT_REASON_IDX)
		return "Unknown";
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
	else
		return fault_reason_strings[fault_reason];
}

void dmar_msi_unmask(unsigned int irq)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	/* unmask it */
	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(0, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_mask(unsigned int irq)
{
	unsigned long flag;
	struct intel_iommu *iommu = get_irq_data(irq);

	/* mask it */
	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_write(int irq, struct msi_msg *msg)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
	writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
	writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

void dmar_msi_read(int irq, struct msi_msg *msg)
{
	struct intel_iommu *iommu = get_irq_data(irq);
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
	msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
	msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
	spin_unlock_irqrestore(&iommu->register_lock, flag);
}

static int iommu_page_fault_do_one(struct intel_iommu *iommu, int type,
		u8 fault_reason, u16 source_id, u64 addr)
{
858
	const char *reason;
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965

	reason = dmar_get_fault_reason(fault_reason);

	printk(KERN_ERR
		"DMAR:[%s] Request device [%02x:%02x.%d] "
		"fault addr %llx \n"
		"DMAR:[fault reason %02d] %s\n",
		(type ? "DMA Read" : "DMA Write"),
		(source_id >> 8), PCI_SLOT(source_id & 0xFF),
		PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
	return 0;
}

#define PRIMARY_FAULT_REG_LEN (16)
static irqreturn_t iommu_page_fault(int irq, void *dev_id)
{
	struct intel_iommu *iommu = dev_id;
	int reg, fault_index;
	u32 fault_status;
	unsigned long flag;

	spin_lock_irqsave(&iommu->register_lock, flag);
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);

	/* TBD: ignore advanced fault log currently */
	if (!(fault_status & DMA_FSTS_PPF))
		goto clear_overflow;

	fault_index = dma_fsts_fault_record_index(fault_status);
	reg = cap_fault_reg_offset(iommu->cap);
	while (1) {
		u8 fault_reason;
		u16 source_id;
		u64 guest_addr;
		int type;
		u32 data;

		/* highest 32 bits */
		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 12);
		if (!(data & DMA_FRCD_F))
			break;

		fault_reason = dma_frcd_fault_reason(data);
		type = dma_frcd_type(data);

		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 8);
		source_id = dma_frcd_source_id(data);

		guest_addr = dmar_readq(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN);
		guest_addr = dma_frcd_page_addr(guest_addr);
		/* clear the fault */
		writel(DMA_FRCD_F, iommu->reg + reg +
			fault_index * PRIMARY_FAULT_REG_LEN + 12);

		spin_unlock_irqrestore(&iommu->register_lock, flag);

		iommu_page_fault_do_one(iommu, type, fault_reason,
				source_id, guest_addr);

		fault_index++;
		if (fault_index > cap_num_fault_regs(iommu->cap))
			fault_index = 0;
		spin_lock_irqsave(&iommu->register_lock, flag);
	}
clear_overflow:
	/* clear primary fault overflow */
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
	if (fault_status & DMA_FSTS_PFO)
		writel(DMA_FSTS_PFO, iommu->reg + DMAR_FSTS_REG);

	spin_unlock_irqrestore(&iommu->register_lock, flag);
	return IRQ_HANDLED;
}

int dmar_set_interrupt(struct intel_iommu *iommu)
{
	int irq, ret;

	irq = create_irq();
	if (!irq) {
		printk(KERN_ERR "IOMMU: no free vectors\n");
		return -EINVAL;
	}

	set_irq_data(irq, iommu);
	iommu->irq = irq;

	ret = arch_setup_dmar_msi(irq);
	if (ret) {
		set_irq_data(irq, NULL);
		iommu->irq = 0;
		destroy_irq(irq);
		return 0;
	}

	/* Force fault register is cleared */
	iommu_page_fault(irq, iommu);

	ret = request_irq(irq, iommu_page_fault, 0, iommu->name, iommu);
	if (ret)
		printk(KERN_ERR "IOMMU: can't request irq\n");
	return ret;
}

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
static int iommu_init_domains(struct intel_iommu *iommu)
{
	unsigned long ndomains;
	unsigned long nlongs;

	ndomains = cap_ndoms(iommu->cap);
	pr_debug("Number of Domains supportd <%ld>\n", ndomains);
	nlongs = BITS_TO_LONGS(ndomains);

	/* TBD: there might be 64K domains,
	 * consider other allocation for future chip
	 */
	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
	if (!iommu->domain_ids) {
		printk(KERN_ERR "Allocating domain id array failed\n");
		return -ENOMEM;
	}
	iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
			GFP_KERNEL);
	if (!iommu->domains) {
		printk(KERN_ERR "Allocating domain array failed\n");
		kfree(iommu->domain_ids);
		return -ENOMEM;
	}

991 992
	spin_lock_init(&iommu->lock);

993 994 995 996 997 998 999 1000 1001 1002 1003
	/*
	 * if Caching mode is set, then invalid translations are tagged
	 * with domainid 0. Hence we need to pre-allocate it.
	 */
	if (cap_caching_mode(iommu->cap))
		set_bit(0, iommu->domain_ids);
	return 0;
}


static void domain_exit(struct dmar_domain *domain);
1004 1005

void free_dmar_iommu(struct intel_iommu *iommu)
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
{
	struct dmar_domain *domain;
	int i;

	i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
	for (; i < cap_ndoms(iommu->cap); ) {
		domain = iommu->domains[i];
		clear_bit(i, iommu->domain_ids);
		domain_exit(domain);
		i = find_next_bit(iommu->domain_ids,
			cap_ndoms(iommu->cap), i+1);
	}

	if (iommu->gcmd & DMA_GCMD_TE)
		iommu_disable_translation(iommu);

	if (iommu->irq) {
		set_irq_data(iommu->irq, NULL);
		/* This will mask the irq */
		free_irq(iommu->irq, iommu);
		destroy_irq(iommu->irq);
	}

	kfree(iommu->domains);
	kfree(iommu->domain_ids);

	/* free context mapping */
	free_context_table(iommu);
}

static struct dmar_domain * iommu_alloc_domain(struct intel_iommu *iommu)
{
	unsigned long num;
	unsigned long ndomains;
	struct dmar_domain *domain;
	unsigned long flags;

	domain = alloc_domain_mem();
	if (!domain)
		return NULL;

	ndomains = cap_ndoms(iommu->cap);

	spin_lock_irqsave(&iommu->lock, flags);
	num = find_first_zero_bit(iommu->domain_ids, ndomains);
	if (num >= ndomains) {
		spin_unlock_irqrestore(&iommu->lock, flags);
		free_domain_mem(domain);
		printk(KERN_ERR "IOMMU: no free domain ids\n");
		return NULL;
	}

	set_bit(num, iommu->domain_ids);
	domain->id = num;
	domain->iommu = iommu;
	iommu->domains[num] = domain;
	spin_unlock_irqrestore(&iommu->lock, flags);

	return domain;
}

static void iommu_free_domain(struct dmar_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&domain->iommu->lock, flags);
	clear_bit(domain->id, domain->iommu->domain_ids);
	spin_unlock_irqrestore(&domain->iommu->lock, flags);
}

static struct iova_domain reserved_iova_list;
M
Mark Gross 已提交
1077 1078
static struct lock_class_key reserved_alloc_key;
static struct lock_class_key reserved_rbtree_key;
1079 1080 1081 1082 1083 1084 1085 1086

static void dmar_init_reserved_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *iova;
	int i;
	u64 addr, size;

D
David Miller 已提交
1087
	init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1088

M
Mark Gross 已提交
1089 1090 1091 1092 1093
	lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
		&reserved_alloc_key);
	lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
		&reserved_rbtree_key);

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	/* IOAPIC ranges shouldn't be accessed by DMA */
	iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
		IOVA_PFN(IOAPIC_RANGE_END));
	if (!iova)
		printk(KERN_ERR "Reserve IOAPIC range failed\n");

	/* Reserve all PCI MMIO to avoid peer-to-peer access */
	for_each_pci_dev(pdev) {
		struct resource *r;

		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
			r = &pdev->resource[i];
			if (!r->flags || !(r->flags & IORESOURCE_MEM))
				continue;
			addr = r->start;
			addr &= PAGE_MASK_4K;
			size = r->end - addr;
			size = PAGE_ALIGN_4K(size);
			iova = reserve_iova(&reserved_iova_list, IOVA_PFN(addr),
				IOVA_PFN(size + addr) - 1);
			if (!iova)
				printk(KERN_ERR "Reserve iova failed\n");
		}
	}

}

static void domain_reserve_special_ranges(struct dmar_domain *domain)
{
	copy_reserved_iova(&reserved_iova_list, &domain->iovad);
}

static inline int guestwidth_to_adjustwidth(int gaw)
{
	int agaw;
	int r = (gaw - 12) % 9;

	if (r == 0)
		agaw = gaw;
	else
		agaw = gaw + 9 - r;
	if (agaw > 64)
		agaw = 64;
	return agaw;
}

static int domain_init(struct dmar_domain *domain, int guest_width)
{
	struct intel_iommu *iommu;
	int adjust_width, agaw;
	unsigned long sagaw;

D
David Miller 已提交
1146
	init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
	spin_lock_init(&domain->mapping_lock);

	domain_reserve_special_ranges(domain);

	/* calculate AGAW */
	iommu = domain->iommu;
	if (guest_width > cap_mgaw(iommu->cap))
		guest_width = cap_mgaw(iommu->cap);
	domain->gaw = guest_width;
	adjust_width = guestwidth_to_adjustwidth(guest_width);
	agaw = width_to_agaw(adjust_width);
	sagaw = cap_sagaw(iommu->cap);
	if (!test_bit(agaw, &sagaw)) {
		/* hardware doesn't support it, choose a bigger one */
		pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
		agaw = find_next_bit(&sagaw, 5, agaw);
		if (agaw >= 5)
			return -ENODEV;
	}
	domain->agaw = agaw;
	INIT_LIST_HEAD(&domain->devices);

	/* always allocate the top pgd */
	domain->pgd = (struct dma_pte *)alloc_pgtable_page();
	if (!domain->pgd)
		return -ENOMEM;
	__iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE_4K);
	return 0;
}

static void domain_exit(struct dmar_domain *domain)
{
	u64 end;

	/* Domain 0 is reserved, so dont process it */
	if (!domain)
		return;

	domain_remove_dev_info(domain);
	/* destroy iovas */
	put_iova_domain(&domain->iovad);
	end = DOMAIN_MAX_ADDR(domain->gaw);
	end = end & (~PAGE_MASK_4K);

	/* clear ptes */
	dma_pte_clear_range(domain, 0, end);

	/* free page tables */
	dma_pte_free_pagetable(domain, 0, end);

	iommu_free_domain(domain);
	free_domain_mem(domain);
}

static int domain_context_mapping_one(struct dmar_domain *domain,
		u8 bus, u8 devfn)
{
	struct context_entry *context;
	struct intel_iommu *iommu = domain->iommu;
	unsigned long flags;

	pr_debug("Set context mapping for %02x:%02x.%d\n",
		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
	BUG_ON(!domain->pgd);
	context = device_to_context_entry(iommu, bus, devfn);
	if (!context)
		return -ENOMEM;
	spin_lock_irqsave(&iommu->lock, flags);
	if (context_present(*context)) {
		spin_unlock_irqrestore(&iommu->lock, flags);
		return 0;
	}

	context_set_domain_id(*context, domain->id);
	context_set_address_width(*context, domain->agaw);
	context_set_address_root(*context, virt_to_phys(domain->pgd));
	context_set_translation_type(*context, CONTEXT_TT_MULTI_LEVEL);
	context_set_fault_enable(*context);
	context_set_present(*context);
	__iommu_flush_cache(iommu, context, sizeof(*context));

	/* it's a non-present to present mapping */
	if (iommu_flush_context_device(iommu, domain->id,
			(((u16)bus) << 8) | devfn, DMA_CCMD_MASK_NOBIT, 1))
		iommu_flush_write_buffer(iommu);
	else
		iommu_flush_iotlb_dsi(iommu, 0, 0);
	spin_unlock_irqrestore(&iommu->lock, flags);
	return 0;
}

static int
domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev)
{
	int ret;
	struct pci_dev *tmp, *parent;

	ret = domain_context_mapping_one(domain, pdev->bus->number,
		pdev->devfn);
	if (ret)
		return ret;

	/* dependent device mapping */
	tmp = pci_find_upstream_pcie_bridge(pdev);
	if (!tmp)
		return 0;
	/* Secondary interface's bus number and devfn 0 */
	parent = pdev->bus->self;
	while (parent != tmp) {
		ret = domain_context_mapping_one(domain, parent->bus->number,
			parent->devfn);
		if (ret)
			return ret;
		parent = parent->bus->self;
	}
	if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
		return domain_context_mapping_one(domain,
			tmp->subordinate->number, 0);
	else /* this is a legacy PCI bridge */
		return domain_context_mapping_one(domain,
			tmp->bus->number, tmp->devfn);
}

static int domain_context_mapped(struct dmar_domain *domain,
	struct pci_dev *pdev)
{
	int ret;
	struct pci_dev *tmp, *parent;

	ret = device_context_mapped(domain->iommu,
		pdev->bus->number, pdev->devfn);
	if (!ret)
		return ret;
	/* dependent device mapping */
	tmp = pci_find_upstream_pcie_bridge(pdev);
	if (!tmp)
		return ret;
	/* Secondary interface's bus number and devfn 0 */
	parent = pdev->bus->self;
	while (parent != tmp) {
		ret = device_context_mapped(domain->iommu, parent->bus->number,
			parent->devfn);
		if (!ret)
			return ret;
		parent = parent->bus->self;
	}
	if (tmp->is_pcie)
		return device_context_mapped(domain->iommu,
			tmp->subordinate->number, 0);
	else
		return device_context_mapped(domain->iommu,
			tmp->bus->number, tmp->devfn);
}

static int
domain_page_mapping(struct dmar_domain *domain, dma_addr_t iova,
			u64 hpa, size_t size, int prot)
{
	u64 start_pfn, end_pfn;
	struct dma_pte *pte;
	int index;

	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
		return -EINVAL;
	iova &= PAGE_MASK_4K;
	start_pfn = ((u64)hpa) >> PAGE_SHIFT_4K;
	end_pfn = (PAGE_ALIGN_4K(((u64)hpa) + size)) >> PAGE_SHIFT_4K;
	index = 0;
	while (start_pfn < end_pfn) {
		pte = addr_to_dma_pte(domain, iova + PAGE_SIZE_4K * index);
		if (!pte)
			return -ENOMEM;
		/* We don't need lock here, nobody else
		 * touches the iova range
		 */
		BUG_ON(dma_pte_addr(*pte));
		dma_set_pte_addr(*pte, start_pfn << PAGE_SHIFT_4K);
		dma_set_pte_prot(*pte, prot);
		__iommu_flush_cache(domain->iommu, pte, sizeof(*pte));
		start_pfn++;
		index++;
	}
	return 0;
}

static void detach_domain_for_dev(struct dmar_domain *domain, u8 bus, u8 devfn)
{
	clear_context_table(domain->iommu, bus, devfn);
	iommu_flush_context_global(domain->iommu, 0);
	iommu_flush_iotlb_global(domain->iommu, 0);
}

static void domain_remove_dev_info(struct dmar_domain *domain)
{
	struct device_domain_info *info;
	unsigned long flags;

	spin_lock_irqsave(&device_domain_lock, flags);
	while (!list_empty(&domain->devices)) {
		info = list_entry(domain->devices.next,
			struct device_domain_info, link);
		list_del(&info->link);
		list_del(&info->global);
		if (info->dev)
1351
			info->dev->dev.archdata.iommu = NULL;
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
		spin_unlock_irqrestore(&device_domain_lock, flags);

		detach_domain_for_dev(info->domain, info->bus, info->devfn);
		free_devinfo_mem(info);

		spin_lock_irqsave(&device_domain_lock, flags);
	}
	spin_unlock_irqrestore(&device_domain_lock, flags);
}

/*
 * find_domain
1364
 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1365 1366 1367 1368 1369 1370 1371
 */
struct dmar_domain *
find_domain(struct pci_dev *pdev)
{
	struct device_domain_info *info;

	/* No lock here, assumes no domain exit in normal case */
1372
	info = pdev->dev.archdata.iommu;
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	if (info)
		return info->domain;
	return NULL;
}

/* domain is initialized */
static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
{
	struct dmar_domain *domain, *found = NULL;
	struct intel_iommu *iommu;
	struct dmar_drhd_unit *drhd;
	struct device_domain_info *info, *tmp;
	struct pci_dev *dev_tmp;
	unsigned long flags;
	int bus = 0, devfn = 0;

	domain = find_domain(pdev);
	if (domain)
		return domain;

	dev_tmp = pci_find_upstream_pcie_bridge(pdev);
	if (dev_tmp) {
		if (dev_tmp->is_pcie) {
			bus = dev_tmp->subordinate->number;
			devfn = 0;
		} else {
			bus = dev_tmp->bus->number;
			devfn = dev_tmp->devfn;
		}
		spin_lock_irqsave(&device_domain_lock, flags);
		list_for_each_entry(info, &device_domain_list, global) {
			if (info->bus == bus && info->devfn == devfn) {
				found = info->domain;
				break;
			}
		}
		spin_unlock_irqrestore(&device_domain_lock, flags);
		/* pcie-pci bridge already has a domain, uses it */
		if (found) {
			domain = found;
			goto found_domain;
		}
	}

	/* Allocate new domain for the device */
	drhd = dmar_find_matched_drhd_unit(pdev);
	if (!drhd) {
		printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
			pci_name(pdev));
		return NULL;
	}
	iommu = drhd->iommu;

	domain = iommu_alloc_domain(iommu);
	if (!domain)
		goto error;

	if (domain_init(domain, gaw)) {
		domain_exit(domain);
		goto error;
	}

	/* register pcie-to-pci device */
	if (dev_tmp) {
		info = alloc_devinfo_mem();
		if (!info) {
			domain_exit(domain);
			goto error;
		}
		info->bus = bus;
		info->devfn = devfn;
		info->dev = NULL;
		info->domain = domain;
		/* This domain is shared by devices under p2p bridge */
		domain->flags |= DOMAIN_FLAG_MULTIPLE_DEVICES;

		/* pcie-to-pci bridge already has a domain, uses it */
		found = NULL;
		spin_lock_irqsave(&device_domain_lock, flags);
		list_for_each_entry(tmp, &device_domain_list, global) {
			if (tmp->bus == bus && tmp->devfn == devfn) {
				found = tmp->domain;
				break;
			}
		}
		if (found) {
			free_devinfo_mem(info);
			domain_exit(domain);
			domain = found;
		} else {
			list_add(&info->link, &domain->devices);
			list_add(&info->global, &device_domain_list);
		}
		spin_unlock_irqrestore(&device_domain_lock, flags);
	}

found_domain:
	info = alloc_devinfo_mem();
	if (!info)
		goto error;
	info->bus = pdev->bus->number;
	info->devfn = pdev->devfn;
	info->dev = pdev;
	info->domain = domain;
	spin_lock_irqsave(&device_domain_lock, flags);
	/* somebody is fast */
	found = find_domain(pdev);
	if (found != NULL) {
		spin_unlock_irqrestore(&device_domain_lock, flags);
		if (found != domain) {
			domain_exit(domain);
			domain = found;
		}
		free_devinfo_mem(info);
		return domain;
	}
	list_add(&info->link, &domain->devices);
	list_add(&info->global, &device_domain_list);
1491
	pdev->dev.archdata.iommu = info;
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	spin_unlock_irqrestore(&device_domain_lock, flags);
	return domain;
error:
	/* recheck it here, maybe others set it */
	return find_domain(pdev);
}

static int iommu_prepare_identity_map(struct pci_dev *pdev, u64 start, u64 end)
{
	struct dmar_domain *domain;
	unsigned long size;
	u64 base;
	int ret;

	printk(KERN_INFO
		"IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
		pci_name(pdev), start, end);
	/* page table init */
	domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
	if (!domain)
		return -ENOMEM;

	/* The address might not be aligned */
	base = start & PAGE_MASK_4K;
	size = end - base;
	size = PAGE_ALIGN_4K(size);
	if (!reserve_iova(&domain->iovad, IOVA_PFN(base),
			IOVA_PFN(base + size) - 1)) {
		printk(KERN_ERR "IOMMU: reserve iova failed\n");
		ret = -ENOMEM;
		goto error;
	}

	pr_debug("Mapping reserved region %lx@%llx for %s\n",
		size, base, pci_name(pdev));
	/*
	 * RMRR range might have overlap with physical memory range,
	 * clear it first
	 */
	dma_pte_clear_range(domain, base, base + size);

	ret = domain_page_mapping(domain, base, base, size,
		DMA_PTE_READ|DMA_PTE_WRITE);
	if (ret)
		goto error;

	/* context entry init */
	ret = domain_context_mapping(domain, pdev);
	if (!ret)
		return 0;
error:
	domain_exit(domain);
	return ret;

}

static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
	struct pci_dev *pdev)
{
1551
	if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1552 1553 1554 1555 1556
		return 0;
	return iommu_prepare_identity_map(pdev, rmrr->base_address,
		rmrr->end_address + 1);
}

1557
#ifdef CONFIG_DMAR_GFX_WA
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
struct iommu_prepare_data {
	struct pci_dev *pdev;
	int ret;
};

static int __init iommu_prepare_work_fn(unsigned long start_pfn,
					 unsigned long end_pfn, void *datax)
{
	struct iommu_prepare_data *data;

	data = (struct iommu_prepare_data *)datax;

	data->ret = iommu_prepare_identity_map(data->pdev,
				start_pfn<<PAGE_SHIFT, end_pfn<<PAGE_SHIFT);
	return data->ret;

}

static int __init iommu_prepare_with_active_regions(struct pci_dev *pdev)
{
	int nid;
	struct iommu_prepare_data data;

	data.pdev = pdev;
	data.ret = 0;

	for_each_online_node(nid) {
		work_with_active_regions(nid, iommu_prepare_work_fn, &data);
		if (data.ret)
			return data.ret;
	}
	return data.ret;
}

1592 1593 1594 1595 1596 1597
static void __init iommu_prepare_gfx_mapping(void)
{
	struct pci_dev *pdev = NULL;
	int ret;

	for_each_pci_dev(pdev) {
1598
		if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO ||
1599 1600 1601 1602
				!IS_GFX_DEVICE(pdev))
			continue;
		printk(KERN_INFO "IOMMU: gfx device %s 1-1 mapping\n",
			pci_name(pdev));
1603 1604 1605
		ret = iommu_prepare_with_active_regions(pdev);
		if (ret)
			printk(KERN_ERR "IOMMU: mapping reserved region failed\n");
1606 1607 1608 1609
	}
}
#endif

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
#ifdef CONFIG_DMAR_FLOPPY_WA
static inline void iommu_prepare_isa(void)
{
	struct pci_dev *pdev;
	int ret;

	pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
	if (!pdev)
		return;

	printk(KERN_INFO "IOMMU: Prepare 0-16M unity mapping for LPC\n");
	ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);

	if (ret)
		printk("IOMMU: Failed to create 0-64M identity map, "
			"floppy might not work\n");

}
#else
static inline void iommu_prepare_isa(void)
{
	return;
}
#endif /* !CONFIG_DMAR_FLPY_WA */

1635 1636 1637 1638 1639 1640
int __init init_dmars(void)
{
	struct dmar_drhd_unit *drhd;
	struct dmar_rmrr_unit *rmrr;
	struct pci_dev *pdev;
	struct intel_iommu *iommu;
1641
	int i, ret, unit = 0;
1642 1643 1644 1645 1646 1647 1648 1649

	/*
	 * for each drhd
	 *    allocate root
	 *    initialize and program root entry to not present
	 * endfor
	 */
	for_each_drhd_unit(drhd) {
M
mark gross 已提交
1650 1651 1652 1653 1654 1655 1656 1657
		g_num_of_iommus++;
		/*
		 * lock not needed as this is only incremented in the single
		 * threaded kernel __init code path all other access are read
		 * only
		 */
	}

1658 1659 1660
	deferred_flush = kzalloc(g_num_of_iommus *
		sizeof(struct deferred_flush_tables), GFP_KERNEL);
	if (!deferred_flush) {
M
mark gross 已提交
1661 1662 1663 1664 1665 1666 1667
		ret = -ENOMEM;
		goto error;
	}

	for_each_drhd_unit(drhd) {
		if (drhd->ignored)
			continue;
1668
		iommu = alloc_iommu(drhd);
1669 1670 1671 1672 1673
		if (!iommu) {
			ret = -ENOMEM;
			goto error;
		}

1674 1675 1676 1677
		ret = iommu_init_domains(iommu);
		if (ret)
			goto error;

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
		/*
		 * TBD:
		 * we could share the same root & context tables
		 * amoung all IOMMU's. Need to Split it later.
		 */
		ret = iommu_alloc_root_entry(iommu);
		if (ret) {
			printk(KERN_ERR "IOMMU: allocate root entry failed\n");
			goto error;
		}
	}

	/*
	 * For each rmrr
	 *   for each dev attached to rmrr
	 *   do
	 *     locate drhd for dev, alloc domain for dev
	 *     allocate free domain
	 *     allocate page table entries for rmrr
	 *     if context not allocated for bus
	 *           allocate and init context
	 *           set present in root table for this bus
	 *     init context with domain, translation etc
	 *    endfor
	 * endfor
	 */
	for_each_rmrr_units(rmrr) {
		for (i = 0; i < rmrr->devices_cnt; i++) {
			pdev = rmrr->devices[i];
			/* some BIOS lists non-exist devices in DMAR table */
			if (!pdev)
				continue;
			ret = iommu_prepare_rmrr_dev(rmrr, pdev);
			if (ret)
				printk(KERN_ERR
				 "IOMMU: mapping reserved region failed\n");
		}
	}

1717 1718
	iommu_prepare_gfx_mapping();

1719 1720
	iommu_prepare_isa();

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	/*
	 * for each drhd
	 *   enable fault log
	 *   global invalidate context cache
	 *   global invalidate iotlb
	 *   enable translation
	 */
	for_each_drhd_unit(drhd) {
		if (drhd->ignored)
			continue;
		iommu = drhd->iommu;
		sprintf (iommu->name, "dmar%d", unit++);

		iommu_flush_write_buffer(iommu);

1736 1737 1738 1739
		ret = dmar_set_interrupt(iommu);
		if (ret)
			goto error;

1740 1741 1742 1743 1744
		iommu_set_root_entry(iommu);

		iommu_flush_context_global(iommu, 0);
		iommu_flush_iotlb_global(iommu, 0);

M
mark gross 已提交
1745 1746
		iommu_disable_protect_mem_regions(iommu);

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
		ret = iommu_enable_translation(iommu);
		if (ret)
			goto error;
	}

	return 0;
error:
	for_each_drhd_unit(drhd) {
		if (drhd->ignored)
			continue;
		iommu = drhd->iommu;
		free_iommu(iommu);
	}
	return ret;
}

static inline u64 aligned_size(u64 host_addr, size_t size)
{
	u64 addr;
	addr = (host_addr & (~PAGE_MASK_4K)) + size;
	return PAGE_ALIGN_4K(addr);
}

struct iova *
1771
iommu_alloc_iova(struct dmar_domain *domain, size_t size, u64 end)
1772 1773 1774 1775 1776
{
	struct iova *piova;

	/* Make sure it's in range */
	end = min_t(u64, DOMAIN_MAX_ADDR(domain->gaw), end);
1777
	if (!size || (IOVA_START_ADDR + size > end))
1778 1779 1780
		return NULL;

	piova = alloc_iova(&domain->iovad,
1781
			size >> PAGE_SHIFT_4K, IOVA_PFN(end), 1);
1782 1783 1784
	return piova;
}

1785 1786 1787
static struct iova *
__intel_alloc_iova(struct device *dev, struct dmar_domain *domain,
		size_t size)
1788 1789 1790 1791
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iova *iova = NULL;

1792
	if ((pdev->dma_mask <= DMA_32BIT_MASK) || (dmar_forcedac)) {
1793
		iova = iommu_alloc_iova(domain, size, pdev->dma_mask);
1794 1795 1796 1797
	} else  {
		/*
		 * First try to allocate an io virtual address in
		 * DMA_32BIT_MASK and if that fails then try allocating
J
Joe Perches 已提交
1798
		 * from higher range
1799
		 */
1800
		iova = iommu_alloc_iova(domain, size, DMA_32BIT_MASK);
1801
		if (!iova)
1802
			iova = iommu_alloc_iova(domain, size, pdev->dma_mask);
1803 1804 1805 1806
	}

	if (!iova) {
		printk(KERN_ERR"Allocating iova for %s failed", pci_name(pdev));
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
		return NULL;
	}

	return iova;
}

static struct dmar_domain *
get_valid_domain_for_dev(struct pci_dev *pdev)
{
	struct dmar_domain *domain;
	int ret;

	domain = get_domain_for_dev(pdev,
			DEFAULT_DOMAIN_ADDRESS_WIDTH);
	if (!domain) {
		printk(KERN_ERR
			"Allocating domain for %s failed", pci_name(pdev));
A
Al Viro 已提交
1824
		return NULL;
1825 1826 1827 1828 1829
	}

	/* make sure context mapping is ok */
	if (unlikely(!domain_context_mapped(domain, pdev))) {
		ret = domain_context_mapping(domain, pdev);
1830 1831 1832 1833
		if (ret) {
			printk(KERN_ERR
				"Domain context map for %s failed",
				pci_name(pdev));
A
Al Viro 已提交
1834
			return NULL;
1835
		}
1836 1837
	}

1838 1839 1840
	return domain;
}

I
Ingo Molnar 已提交
1841 1842
static dma_addr_t
intel_map_single(struct device *hwdev, phys_addr_t paddr, size_t size, int dir)
1843 1844 1845
{
	struct pci_dev *pdev = to_pci_dev(hwdev);
	struct dmar_domain *domain;
I
Ingo Molnar 已提交
1846
	unsigned long start_paddr;
1847 1848
	struct iova *iova;
	int prot = 0;
I
Ingo Molnar 已提交
1849
	int ret;
1850 1851

	BUG_ON(dir == DMA_NONE);
1852
	if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
I
Ingo Molnar 已提交
1853
		return paddr;
1854 1855 1856 1857 1858

	domain = get_valid_domain_for_dev(pdev);
	if (!domain)
		return 0;

I
Ingo Molnar 已提交
1859
	size = aligned_size((u64)paddr, size);
1860 1861 1862 1863 1864

	iova = __intel_alloc_iova(hwdev, domain, size);
	if (!iova)
		goto error;

I
Ingo Molnar 已提交
1865
	start_paddr = iova->pfn_lo << PAGE_SHIFT_4K;
1866

1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
			!cap_zlr(domain->iommu->cap))
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;
	/*
I
Ingo Molnar 已提交
1877
	 * paddr - (paddr + size) might be partial page, we should map the whole
1878
	 * page.  Note: if two part of one page are separately mapped, we
I
Ingo Molnar 已提交
1879
	 * might have two guest_addr mapping to the same host paddr, but this
1880 1881
	 * is not a big problem
	 */
I
Ingo Molnar 已提交
1882 1883
	ret = domain_page_mapping(domain, start_paddr,
		((u64)paddr) & PAGE_MASK_4K, size, prot);
1884 1885 1886 1887
	if (ret)
		goto error;

	pr_debug("Device %s request: %lx@%llx mapping: %lx@%llx, dir %d\n",
I
Ingo Molnar 已提交
1888 1889
		pci_name(pdev), size, (u64)paddr,
		size, (u64)start_paddr, dir);
1890 1891 1892

	/* it's a non-present to present mapping */
	ret = iommu_flush_iotlb_psi(domain->iommu, domain->id,
I
Ingo Molnar 已提交
1893
			start_paddr, size >> PAGE_SHIFT_4K, 1);
1894 1895 1896
	if (ret)
		iommu_flush_write_buffer(domain->iommu);

I
Ingo Molnar 已提交
1897
	return (start_paddr + ((u64)paddr & (~PAGE_MASK_4K)));
1898 1899

error:
1900 1901
	if (iova)
		__free_iova(&domain->iovad, iova);
1902
	printk(KERN_ERR"Device %s request: %lx@%llx dir %d --- failed\n",
I
Ingo Molnar 已提交
1903
		pci_name(pdev), size, (u64)paddr, dir);
1904 1905 1906
	return 0;
}

M
mark gross 已提交
1907 1908
static void flush_unmaps(void)
{
1909
	int i, j;
M
mark gross 已提交
1910 1911 1912 1913 1914

	timer_on = 0;

	/* just flush them all */
	for (i = 0; i < g_num_of_iommus; i++) {
1915
		if (deferred_flush[i].next) {
1916 1917 1918 1919
			struct intel_iommu *iommu =
				deferred_flush[i].domain[0]->iommu;

			iommu_flush_iotlb_global(iommu, 0);
1920 1921 1922 1923 1924 1925
			for (j = 0; j < deferred_flush[i].next; j++) {
				__free_iova(&deferred_flush[i].domain[j]->iovad,
						deferred_flush[i].iova[j]);
			}
			deferred_flush[i].next = 0;
		}
M
mark gross 已提交
1926 1927 1928 1929 1930 1931 1932
	}

	list_size = 0;
}

static void flush_unmaps_timeout(unsigned long data)
{
1933 1934 1935
	unsigned long flags;

	spin_lock_irqsave(&async_umap_flush_lock, flags);
M
mark gross 已提交
1936
	flush_unmaps();
1937
	spin_unlock_irqrestore(&async_umap_flush_lock, flags);
M
mark gross 已提交
1938 1939 1940 1941 1942
}

static void add_unmap(struct dmar_domain *dom, struct iova *iova)
{
	unsigned long flags;
1943
	int next, iommu_id;
M
mark gross 已提交
1944 1945

	spin_lock_irqsave(&async_umap_flush_lock, flags);
1946 1947 1948
	if (list_size == HIGH_WATER_MARK)
		flush_unmaps();

1949 1950
	iommu_id = dom->iommu->seq_id;

1951 1952 1953 1954
	next = deferred_flush[iommu_id].next;
	deferred_flush[iommu_id].domain[next] = dom;
	deferred_flush[iommu_id].iova[next] = iova;
	deferred_flush[iommu_id].next++;
M
mark gross 已提交
1955 1956 1957 1958 1959 1960 1961 1962 1963

	if (!timer_on) {
		mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
		timer_on = 1;
	}
	list_size++;
	spin_unlock_irqrestore(&async_umap_flush_lock, flags);
}

1964
static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr,
1965 1966 1967
	size_t size, int dir)
{
	struct pci_dev *pdev = to_pci_dev(dev);
1968 1969
	struct dmar_domain *domain;
	unsigned long start_addr;
1970 1971
	struct iova *iova;

1972
	if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1973
		return;
1974 1975 1976 1977
	domain = find_domain(pdev);
	BUG_ON(!domain);

	iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
1978
	if (!iova)
1979 1980
		return;

1981 1982
	start_addr = iova->pfn_lo << PAGE_SHIFT_4K;
	size = aligned_size((u64)dev_addr, size);
1983

1984 1985
	pr_debug("Device %s unmapping: %lx@%llx\n",
		pci_name(pdev), size, (u64)start_addr);
1986

1987 1988 1989 1990
	/*  clear the whole page */
	dma_pte_clear_range(domain, start_addr, start_addr + size);
	/* free page tables */
	dma_pte_free_pagetable(domain, start_addr, start_addr + size);
M
mark gross 已提交
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
	if (intel_iommu_strict) {
		if (iommu_flush_iotlb_psi(domain->iommu,
			domain->id, start_addr, size >> PAGE_SHIFT_4K, 0))
			iommu_flush_write_buffer(domain->iommu);
		/* free iova */
		__free_iova(&domain->iovad, iova);
	} else {
		add_unmap(domain, iova);
		/*
		 * queue up the release of the unmap to save the 1/6th of the
		 * cpu used up by the iotlb flush operation...
		 */
	}
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
}

static void * intel_alloc_coherent(struct device *hwdev, size_t size,
		       dma_addr_t *dma_handle, gfp_t flags)
{
	void *vaddr;
	int order;

	size = PAGE_ALIGN_4K(size);
	order = get_order(size);
	flags &= ~(GFP_DMA | GFP_DMA32);

	vaddr = (void *)__get_free_pages(flags, order);
	if (!vaddr)
		return NULL;
	memset(vaddr, 0, size);

I
Ingo Molnar 已提交
2021
	*dma_handle = intel_map_single(hwdev, virt_to_bus(vaddr), size, DMA_BIDIRECTIONAL);
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	if (*dma_handle)
		return vaddr;
	free_pages((unsigned long)vaddr, order);
	return NULL;
}

static void intel_free_coherent(struct device *hwdev, size_t size,
	void *vaddr, dma_addr_t dma_handle)
{
	int order;

	size = PAGE_ALIGN_4K(size);
	order = get_order(size);

	intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
	free_pages((unsigned long)vaddr, order);
}

F
FUJITA Tomonori 已提交
2040
#define SG_ENT_VIRT_ADDRESS(sg)	(sg_virt((sg)))
F
FUJITA Tomonori 已提交
2041
static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2042 2043 2044 2045 2046
	int nelems, int dir)
{
	int i;
	struct pci_dev *pdev = to_pci_dev(hwdev);
	struct dmar_domain *domain;
2047 2048 2049 2050
	unsigned long start_addr;
	struct iova *iova;
	size_t size = 0;
	void *addr;
F
FUJITA Tomonori 已提交
2051
	struct scatterlist *sg;
2052

2053
	if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2054 2055 2056 2057
		return;

	domain = find_domain(pdev);

F
FUJITA Tomonori 已提交
2058
	iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2059 2060
	if (!iova)
		return;
F
FUJITA Tomonori 已提交
2061
	for_each_sg(sglist, sg, nelems, i) {
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
		addr = SG_ENT_VIRT_ADDRESS(sg);
		size += aligned_size((u64)addr, sg->length);
	}

	start_addr = iova->pfn_lo << PAGE_SHIFT_4K;

	/*  clear the whole page */
	dma_pte_clear_range(domain, start_addr, start_addr + size);
	/* free page tables */
	dma_pte_free_pagetable(domain, start_addr, start_addr + size);

	if (iommu_flush_iotlb_psi(domain->iommu, domain->id, start_addr,
			size >> PAGE_SHIFT_4K, 0))
2075
		iommu_flush_write_buffer(domain->iommu);
2076 2077 2078

	/* free iova */
	__free_iova(&domain->iovad, iova);
2079 2080 2081
}

static int intel_nontranslate_map_sg(struct device *hddev,
F
FUJITA Tomonori 已提交
2082
	struct scatterlist *sglist, int nelems, int dir)
2083 2084
{
	int i;
F
FUJITA Tomonori 已提交
2085
	struct scatterlist *sg;
2086

F
FUJITA Tomonori 已提交
2087
	for_each_sg(sglist, sg, nelems, i) {
F
FUJITA Tomonori 已提交
2088
		BUG_ON(!sg_page(sg));
F
FUJITA Tomonori 已提交
2089 2090
		sg->dma_address = virt_to_bus(SG_ENT_VIRT_ADDRESS(sg));
		sg->dma_length = sg->length;
2091 2092 2093 2094
	}
	return nelems;
}

F
FUJITA Tomonori 已提交
2095 2096
static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist,
				int nelems, int dir)
2097 2098 2099 2100 2101
{
	void *addr;
	int i;
	struct pci_dev *pdev = to_pci_dev(hwdev);
	struct dmar_domain *domain;
2102 2103 2104 2105 2106
	size_t size = 0;
	int prot = 0;
	size_t offset = 0;
	struct iova *iova = NULL;
	int ret;
F
FUJITA Tomonori 已提交
2107
	struct scatterlist *sg;
2108
	unsigned long start_addr;
2109 2110

	BUG_ON(dir == DMA_NONE);
2111
	if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
F
FUJITA Tomonori 已提交
2112
		return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2113

2114 2115 2116 2117
	domain = get_valid_domain_for_dev(pdev);
	if (!domain)
		return 0;

F
FUJITA Tomonori 已提交
2118
	for_each_sg(sglist, sg, nelems, i) {
2119
		addr = SG_ENT_VIRT_ADDRESS(sg);
2120 2121 2122 2123 2124 2125
		addr = (void *)virt_to_phys(addr);
		size += aligned_size((u64)addr, sg->length);
	}

	iova = __intel_alloc_iova(hwdev, domain, size);
	if (!iova) {
F
FUJITA Tomonori 已提交
2126
		sglist->dma_length = 0;
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
		return 0;
	}

	/*
	 * Check if DMAR supports zero-length reads on write only
	 * mappings..
	 */
	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
			!cap_zlr(domain->iommu->cap))
		prot |= DMA_PTE_READ;
	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
		prot |= DMA_PTE_WRITE;

	start_addr = iova->pfn_lo << PAGE_SHIFT_4K;
	offset = 0;
F
FUJITA Tomonori 已提交
2142
	for_each_sg(sglist, sg, nelems, i) {
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
		addr = SG_ENT_VIRT_ADDRESS(sg);
		addr = (void *)virt_to_phys(addr);
		size = aligned_size((u64)addr, sg->length);
		ret = domain_page_mapping(domain, start_addr + offset,
			((u64)addr) & PAGE_MASK_4K,
			size, prot);
		if (ret) {
			/*  clear the page */
			dma_pte_clear_range(domain, start_addr,
				  start_addr + offset);
			/* free page tables */
			dma_pte_free_pagetable(domain, start_addr,
				  start_addr + offset);
			/* free iova */
			__free_iova(&domain->iovad, iova);
2158 2159
			return 0;
		}
2160 2161
		sg->dma_address = start_addr + offset +
				((u64)addr & (~PAGE_MASK_4K));
2162
		sg->dma_length = sg->length;
2163
		offset += size;
2164 2165 2166
	}

	/* it's a non-present to present mapping */
2167 2168
	if (iommu_flush_iotlb_psi(domain->iommu, domain->id,
			start_addr, offset >> PAGE_SHIFT_4K, 1))
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
		iommu_flush_write_buffer(domain->iommu);
	return nelems;
}

static struct dma_mapping_ops intel_dma_ops = {
	.alloc_coherent = intel_alloc_coherent,
	.free_coherent = intel_free_coherent,
	.map_single = intel_map_single,
	.unmap_single = intel_unmap_single,
	.map_sg = intel_map_sg,
	.unmap_sg = intel_unmap_sg,
};

static inline int iommu_domain_cache_init(void)
{
	int ret = 0;

	iommu_domain_cache = kmem_cache_create("iommu_domain",
					 sizeof(struct dmar_domain),
					 0,
					 SLAB_HWCACHE_ALIGN,

					 NULL);
	if (!iommu_domain_cache) {
		printk(KERN_ERR "Couldn't create iommu_domain cache\n");
		ret = -ENOMEM;
	}

	return ret;
}

static inline int iommu_devinfo_cache_init(void)
{
	int ret = 0;

	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
					 sizeof(struct device_domain_info),
					 0,
					 SLAB_HWCACHE_ALIGN,

					 NULL);
	if (!iommu_devinfo_cache) {
		printk(KERN_ERR "Couldn't create devinfo cache\n");
		ret = -ENOMEM;
	}

	return ret;
}

static inline int iommu_iova_cache_init(void)
{
	int ret = 0;

	iommu_iova_cache = kmem_cache_create("iommu_iova",
					 sizeof(struct iova),
					 0,
					 SLAB_HWCACHE_ALIGN,

					 NULL);
	if (!iommu_iova_cache) {
		printk(KERN_ERR "Couldn't create iova cache\n");
		ret = -ENOMEM;
	}

	return ret;
}

static int __init iommu_init_mempool(void)
{
	int ret;
	ret = iommu_iova_cache_init();
	if (ret)
		return ret;

	ret = iommu_domain_cache_init();
	if (ret)
		goto domain_error;

	ret = iommu_devinfo_cache_init();
	if (!ret)
		return ret;

	kmem_cache_destroy(iommu_domain_cache);
domain_error:
	kmem_cache_destroy(iommu_iova_cache);

	return -ENOMEM;
}

static void __init iommu_exit_mempool(void)
{
	kmem_cache_destroy(iommu_devinfo_cache);
	kmem_cache_destroy(iommu_domain_cache);
	kmem_cache_destroy(iommu_iova_cache);

}

void __init detect_intel_iommu(void)
{
	if (swiotlb || no_iommu || iommu_detected || dmar_disabled)
		return;
	if (early_dmar_detect()) {
		iommu_detected = 1;
	}
}

static void __init init_no_remapping_devices(void)
{
	struct dmar_drhd_unit *drhd;

	for_each_drhd_unit(drhd) {
		if (!drhd->include_all) {
			int i;
			for (i = 0; i < drhd->devices_cnt; i++)
				if (drhd->devices[i] != NULL)
					break;
			/* ignore DMAR unit if no pci devices exist */
			if (i == drhd->devices_cnt)
				drhd->ignored = 1;
		}
	}

	if (dmar_map_gfx)
		return;

	for_each_drhd_unit(drhd) {
		int i;
		if (drhd->ignored || drhd->include_all)
			continue;

		for (i = 0; i < drhd->devices_cnt; i++)
			if (drhd->devices[i] &&
				!IS_GFX_DEVICE(drhd->devices[i]))
				break;

		if (i < drhd->devices_cnt)
			continue;

		/* bypass IOMMU if it is just for gfx devices */
		drhd->ignored = 1;
		for (i = 0; i < drhd->devices_cnt; i++) {
			if (!drhd->devices[i])
				continue;
2312
			drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
		}
	}
}

int __init intel_iommu_init(void)
{
	int ret = 0;

	if (no_iommu || swiotlb || dmar_disabled)
		return -ENODEV;

	if (dmar_table_init())
		return 	-ENODEV;

	iommu_init_mempool();
	dmar_init_reserved_ranges();

	init_no_remapping_devices();

	ret = init_dmars();
	if (ret) {
		printk(KERN_ERR "IOMMU: dmar init failed\n");
		put_iova_domain(&reserved_iova_list);
		iommu_exit_mempool();
		return ret;
	}
	printk(KERN_INFO
	"PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");

M
mark gross 已提交
2342
	init_timer(&unmap_timer);
2343 2344 2345 2346
	force_iommu = 1;
	dma_ops = &intel_dma_ops;
	return 0;
}
2347