i2c-eg20t.c 28.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright (C) 2010 OKI SEMICONDUCTOR CO., LTD.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA.
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/i2c.h>
#include <linux/fs.h>
#include <linux/io.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/jiffies.h>
#include <linux/pci.h>
#include <linux/mutex.h>
#include <linux/ktime.h>
32
#include <linux/slab.h>
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

#define PCH_EVENT_SET	0	/* I2C Interrupt Event Set Status */
#define PCH_EVENT_NONE	1	/* I2C Interrupt Event Clear Status */
#define PCH_MAX_CLK		100000	/* Maximum Clock speed in MHz */
#define PCH_BUFFER_MODE_ENABLE	0x0002	/* flag for Buffer mode enable */
#define PCH_EEPROM_SW_RST_MODE_ENABLE	0x0008	/* EEPROM SW RST enable flag */

#define PCH_I2CSADR	0x00	/* I2C slave address register */
#define PCH_I2CCTL	0x04	/* I2C control register */
#define PCH_I2CSR	0x08	/* I2C status register */
#define PCH_I2CDR	0x0C	/* I2C data register */
#define PCH_I2CMON	0x10	/* I2C bus monitor register */
#define PCH_I2CBC	0x14	/* I2C bus transfer rate setup counter */
#define PCH_I2CMOD	0x18	/* I2C mode register */
#define PCH_I2CBUFSLV	0x1C	/* I2C buffer mode slave address register */
#define PCH_I2CBUFSUB	0x20	/* I2C buffer mode subaddress register */
#define PCH_I2CBUFFOR	0x24	/* I2C buffer mode format register */
#define PCH_I2CBUFCTL	0x28	/* I2C buffer mode control register */
#define PCH_I2CBUFMSK	0x2C	/* I2C buffer mode interrupt mask register */
#define PCH_I2CBUFSTA	0x30	/* I2C buffer mode status register */
#define PCH_I2CBUFLEV	0x34	/* I2C buffer mode level register */
#define PCH_I2CESRFOR	0x38	/* EEPROM software reset mode format register */
#define PCH_I2CESRCTL	0x3C	/* EEPROM software reset mode ctrl register */
#define PCH_I2CESRMSK	0x40	/* EEPROM software reset mode */
#define PCH_I2CESRSTA	0x44	/* EEPROM software reset mode status register */
#define PCH_I2CTMR	0x48	/* I2C timer register */
#define PCH_I2CSRST	0xFC	/* I2C reset register */
#define PCH_I2CNF	0xF8	/* I2C noise filter register */

#define BUS_IDLE_TIMEOUT	20
#define PCH_I2CCTL_I2CMEN	0x0080
#define TEN_BIT_ADDR_DEFAULT	0xF000
#define TEN_BIT_ADDR_MASK	0xF0
#define PCH_START		0x0020
67
#define PCH_RESTART		0x0004
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#define PCH_ESR_START		0x0001
#define PCH_BUFF_START		0x1
#define PCH_REPSTART		0x0004
#define PCH_ACK			0x0008
#define PCH_GETACK		0x0001
#define CLR_REG			0x0
#define I2C_RD			0x1
#define I2CMCF_BIT		0x0080
#define I2CMIF_BIT		0x0002
#define I2CMAL_BIT		0x0010
#define I2CBMFI_BIT		0x0001
#define I2CBMAL_BIT		0x0002
#define I2CBMNA_BIT		0x0004
#define I2CBMTO_BIT		0x0008
#define I2CBMIS_BIT		0x0010
#define I2CESRFI_BIT		0X0001
#define I2CESRTO_BIT		0x0002
#define I2CESRFIIE_BIT		0x1
#define I2CESRTOIE_BIT		0x2
#define I2CBMDZ_BIT		0x0040
#define I2CBMAG_BIT		0x0020
#define I2CMBB_BIT		0x0020
#define BUFFER_MODE_MASK	(I2CBMFI_BIT | I2CBMAL_BIT | I2CBMNA_BIT | \
				I2CBMTO_BIT | I2CBMIS_BIT)
#define I2C_ADDR_MSK		0xFF
#define I2C_MSB_2B_MSK		0x300
#define FAST_MODE_CLK		400
#define FAST_MODE_EN		0x0001
#define SUB_ADDR_LEN_MAX	4
#define BUF_LEN_MAX		32
#define PCH_BUFFER_MODE		0x1
#define EEPROM_SW_RST_MODE	0x0002
#define NORMAL_INTR_ENBL	0x0300
#define EEPROM_RST_INTR_ENBL	(I2CESRFIIE_BIT | I2CESRTOIE_BIT)
#define EEPROM_RST_INTR_DISBL	0x0
#define BUFFER_MODE_INTR_ENBL	0x001F
#define BUFFER_MODE_INTR_DISBL	0x0
#define NORMAL_MODE		0x0
#define BUFFER_MODE		0x1
#define EEPROM_SR_MODE		0x2
#define I2C_TX_MODE		0x0010
#define PCH_BUF_TX		0xFFF7
#define PCH_BUF_RD		0x0008
#define I2C_ERROR_MASK	(I2CESRTO_EVENT | I2CBMIS_EVENT | I2CBMTO_EVENT | \
			I2CBMNA_EVENT | I2CBMAL_EVENT | I2CMAL_EVENT)
#define I2CMAL_EVENT		0x0001
#define I2CMCF_EVENT		0x0002
#define I2CBMFI_EVENT		0x0004
#define I2CBMAL_EVENT		0x0008
#define I2CBMNA_EVENT		0x0010
#define I2CBMTO_EVENT		0x0020
#define I2CBMIS_EVENT		0x0040
#define I2CESRFI_EVENT		0x0080
#define I2CESRTO_EVENT		0x0100
#define PCI_DEVICE_ID_PCH_I2C	0x8817

#define pch_dbg(adap, fmt, arg...)  \
	dev_dbg(adap->pch_adapter.dev.parent, "%s :" fmt, __func__, ##arg)

#define pch_err(adap, fmt, arg...)  \
	dev_err(adap->pch_adapter.dev.parent, "%s :" fmt, __func__, ##arg)

#define pch_pci_err(pdev, fmt, arg...)  \
	dev_err(&pdev->dev, "%s :" fmt, __func__, ##arg)

#define pch_pci_dbg(pdev, fmt, arg...)  \
	dev_dbg(&pdev->dev, "%s :" fmt, __func__, ##arg)

136 137 138 139
/*
Set the number of I2C instance max
Intel EG20T PCH :		1ch
OKI SEMICONDUCTOR ML7213 IOH :	2ch
140
OKI SEMICONDUCTOR ML7831 IOH :	1ch
141 142 143
*/
#define PCH_I2C_MAX_DEV			2

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
/**
 * struct i2c_algo_pch_data - for I2C driver functionalities
 * @pch_adapter:		stores the reference to i2c_adapter structure
 * @p_adapter_info:		stores the reference to adapter_info structure
 * @pch_base_address:		specifies the remapped base address
 * @pch_buff_mode_en:		specifies if buffer mode is enabled
 * @pch_event_flag:		specifies occurrence of interrupt events
 * @pch_i2c_xfer_in_progress:	specifies whether the transfer is completed
 */
struct i2c_algo_pch_data {
	struct i2c_adapter pch_adapter;
	struct adapter_info *p_adapter_info;
	void __iomem *pch_base_address;
	int pch_buff_mode_en;
	u32 pch_event_flag;
	bool pch_i2c_xfer_in_progress;
};

/**
 * struct adapter_info - This structure holds the adapter information for the
			 PCH i2c controller
 * @pch_data:		stores a list of i2c_algo_pch_data
 * @pch_i2c_suspended:	specifies whether the system is suspended or not
 *			perhaps with more lines and words.
168
 * @ch_num:		specifies the number of i2c instance
169 170 171 172
 *
 * pch_data has as many elements as maximum I2C channels
 */
struct adapter_info {
173
	struct i2c_algo_pch_data pch_data[PCH_I2C_MAX_DEV];
174
	bool pch_i2c_suspended;
175
	int ch_num;
176 177 178 179 180 181 182 183
};


static int pch_i2c_speed = 100; /* I2C bus speed in Kbps */
static int pch_clk = 50000;	/* specifies I2C clock speed in KHz */
static wait_queue_head_t pch_event;
static DEFINE_MUTEX(pch_mutex);

184 185 186
/* Definition for ML7213 by OKI SEMICONDUCTOR */
#define PCI_VENDOR_ID_ROHM		0x10DB
#define PCI_DEVICE_ID_ML7213_I2C	0x802D
187
#define PCI_DEVICE_ID_ML7223_I2C	0x8010
188
#define PCI_DEVICE_ID_ML7831_I2C	0x8817
189

190
static DEFINE_PCI_DEVICE_TABLE(pch_pcidev_id) = {
191 192
	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PCH_I2C),   1, },
	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_I2C), 2, },
193
	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_I2C), 1, },
194
	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_I2C), 1, },
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
	{0,}
};

static irqreturn_t pch_i2c_handler(int irq, void *pData);

static inline void pch_setbit(void __iomem *addr, u32 offset, u32 bitmask)
{
	u32 val;
	val = ioread32(addr + offset);
	val |= bitmask;
	iowrite32(val, addr + offset);
}

static inline void pch_clrbit(void __iomem *addr, u32 offset, u32 bitmask)
{
	u32 val;
	val = ioread32(addr + offset);
	val &= (~bitmask);
	iowrite32(val, addr + offset);
}

/**
 * pch_i2c_init() - hardware initialization of I2C module
 * @adap:	Pointer to struct i2c_algo_pch_data.
 */
static void pch_i2c_init(struct i2c_algo_pch_data *adap)
{
	void __iomem *p = adap->pch_base_address;
	u32 pch_i2cbc;
	u32 pch_i2ctmr;
	u32 reg_value;

	/* reset I2C controller */
	iowrite32(0x01, p + PCH_I2CSRST);
	msleep(20);
	iowrite32(0x0, p + PCH_I2CSRST);

	/* Initialize I2C registers */
	iowrite32(0x21, p + PCH_I2CNF);

235
	pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_I2CCTL_I2CMEN);
236 237 238 239 240 241 242 243 244 245 246 247 248

	if (pch_i2c_speed != 400)
		pch_i2c_speed = 100;

	reg_value = PCH_I2CCTL_I2CMEN;
	if (pch_i2c_speed == FAST_MODE_CLK) {
		reg_value |= FAST_MODE_EN;
		pch_dbg(adap, "Fast mode enabled\n");
	}

	if (pch_clk > PCH_MAX_CLK)
		pch_clk = 62500;

249
	pch_i2cbc = (pch_clk + (pch_i2c_speed * 4)) / (pch_i2c_speed * 8);
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
	/* Set transfer speed in I2CBC */
	iowrite32(pch_i2cbc, p + PCH_I2CBC);

	pch_i2ctmr = (pch_clk) / 8;
	iowrite32(pch_i2ctmr, p + PCH_I2CTMR);

	reg_value |= NORMAL_INTR_ENBL;	/* Enable interrupts in normal mode */
	iowrite32(reg_value, p + PCH_I2CCTL);

	pch_dbg(adap,
		"I2CCTL=%x pch_i2cbc=%x pch_i2ctmr=%x Enable interrupts\n",
		ioread32(p + PCH_I2CCTL), pch_i2cbc, pch_i2ctmr);

	init_waitqueue_head(&pch_event);
}

static inline bool ktime_lt(const ktime_t cmp1, const ktime_t cmp2)
{
	return cmp1.tv64 < cmp2.tv64;
}

/**
 * pch_i2c_wait_for_bus_idle() - check the status of bus.
 * @adap:	Pointer to struct i2c_algo_pch_data.
 * @timeout:	waiting time counter (us).
 */
static s32 pch_i2c_wait_for_bus_idle(struct i2c_algo_pch_data *adap,
277
				     s32 timeout)
278 279
{
	void __iomem *p = adap->pch_base_address;
280 281 282 283
	ktime_t ns_val;

	if ((ioread32(p + PCH_I2CSR) & I2CMBB_BIT) == 0)
		return 0;
284 285

	/* MAX timeout value is timeout*1000*1000nsec */
286
	ns_val = ktime_add_ns(ktime_get(), timeout*1000*1000);
287 288
	do {
		msleep(20);
289 290
		if ((ioread32(p + PCH_I2CSR) & I2CMBB_BIT) == 0)
			return 0;
291 292 293
	} while (ktime_lt(ktime_get(), ns_val));

	pch_dbg(adap, "I2CSR = %x\n", ioread32(p + PCH_I2CSR));
294
	pch_err(adap, "%s: Timeout Error.return%d\n", __func__, -ETIME);
295
	pch_i2c_init(adap);
296

297
	return -ETIME;
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
}

/**
 * pch_i2c_start() - Generate I2C start condition in normal mode.
 * @adap:	Pointer to struct i2c_algo_pch_data.
 *
 * Generate I2C start condition in normal mode by setting I2CCTL.I2CMSTA to 1.
 */
static void pch_i2c_start(struct i2c_algo_pch_data *adap)
{
	void __iomem *p = adap->pch_base_address;
	pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
	pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_START);
}

/**
 * pch_i2c_wait_for_xfer_complete() - initiates a wait for the tx complete event
 * @adap:	Pointer to struct i2c_algo_pch_data.
 */
static s32 pch_i2c_wait_for_xfer_complete(struct i2c_algo_pch_data *adap)
{
319
	long ret;
320 321 322 323 324
	ret = wait_event_timeout(pch_event,
			(adap->pch_event_flag != 0), msecs_to_jiffies(50));

	if (ret == 0) {
		pch_err(adap, "timeout: %x\n", adap->pch_event_flag);
325
		adap->pch_event_flag = 0;
326 327 328 329 330
		return -ETIMEDOUT;
	}

	if (adap->pch_event_flag & I2C_ERROR_MASK) {
		pch_err(adap, "error bits set: %x\n", adap->pch_event_flag);
331
		adap->pch_event_flag = 0;
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
		return -EIO;
	}

	adap->pch_event_flag = 0;

	return 0;
}

/**
 * pch_i2c_getack() - to confirm ACK/NACK
 * @adap:	Pointer to struct i2c_algo_pch_data.
 */
static s32 pch_i2c_getack(struct i2c_algo_pch_data *adap)
{
	u32 reg_val;
	void __iomem *p = adap->pch_base_address;
	reg_val = ioread32(p + PCH_I2CSR) & PCH_GETACK;

	if (reg_val != 0) {
		pch_err(adap, "return%d\n", -EPROTO);
		return -EPROTO;
	}

	return 0;
}

/**
 * pch_i2c_stop() - generate stop condition in normal mode.
 * @adap:	Pointer to struct i2c_algo_pch_data.
 */
static void pch_i2c_stop(struct i2c_algo_pch_data *adap)
{
	void __iomem *p = adap->pch_base_address;
	pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
	/* clear the start bit */
	pch_clrbit(adap->pch_base_address, PCH_I2CCTL, PCH_START);
}

/**
 * pch_i2c_repstart() - generate repeated start condition in normal mode
 * @adap:	Pointer to struct i2c_algo_pch_data.
 */
static void pch_i2c_repstart(struct i2c_algo_pch_data *adap)
{
	void __iomem *p = adap->pch_base_address;
	pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
	pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_REPSTART);
}

/**
 * pch_i2c_writebytes() - write data to I2C bus in normal mode
 * @i2c_adap:	Pointer to the struct i2c_adapter.
 * @last:	specifies whether last message or not.
 *		In the case of compound mode it will be 1 for last message,
 *		otherwise 0.
 * @first:	specifies whether first message or not.
 *		1 for first message otherwise 0.
 */
static s32 pch_i2c_writebytes(struct i2c_adapter *i2c_adap,
			      struct i2c_msg *msgs, u32 last, u32 first)
{
	struct i2c_algo_pch_data *adap = i2c_adap->algo_data;
	u8 *buf;
	u32 length;
	u32 addr;
	u32 addr_2_msb;
	u32 addr_8_lsb;
	s32 wrcount;
400
	s32 rtn;
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
	void __iomem *p = adap->pch_base_address;

	length = msgs->len;
	buf = msgs->buf;
	addr = msgs->addr;

	/* enable master tx */
	pch_setbit(adap->pch_base_address, PCH_I2CCTL, I2C_TX_MODE);

	pch_dbg(adap, "I2CCTL = %x msgs->len = %d\n", ioread32(p + PCH_I2CCTL),
		length);

	if (first) {
		if (pch_i2c_wait_for_bus_idle(adap, BUS_IDLE_TIMEOUT) == -ETIME)
			return -ETIME;
	}

	if (msgs->flags & I2C_M_TEN) {
419
		addr_2_msb = ((addr & I2C_MSB_2B_MSK) >> 7) & 0x06;
420 421 422
		iowrite32(addr_2_msb | TEN_BIT_ADDR_MASK, p + PCH_I2CDR);
		if (first)
			pch_i2c_start(adap);
423 424 425 426 427 428 429 430

		rtn = pch_i2c_wait_for_xfer_complete(adap);
		if (rtn == 0) {
			if (pch_i2c_getack(adap)) {
				pch_dbg(adap, "Receive NACK for slave address"
					"setting\n");
				return -EIO;
			}
431 432
			addr_8_lsb = (addr & I2C_ADDR_MSK);
			iowrite32(addr_8_lsb, p + PCH_I2CDR);
433 434 435 436 437 438 439 440 441
		} else if (rtn == -EIO) { /* Arbitration Lost */
			pch_err(adap, "Lost Arbitration\n");
			pch_clrbit(adap->pch_base_address, PCH_I2CSR,
				   I2CMAL_BIT);
			pch_clrbit(adap->pch_base_address, PCH_I2CSR,
				   I2CMIF_BIT);
			pch_i2c_init(adap);
			return -EAGAIN;
		} else { /* wait-event timeout */
442 443 444 445 446 447 448 449 450 451
			pch_i2c_stop(adap);
			return -ETIME;
		}
	} else {
		/* set 7 bit slave address and R/W bit as 0 */
		iowrite32(addr << 1, p + PCH_I2CDR);
		if (first)
			pch_i2c_start(adap);
	}

452 453 454 455 456 457 458 459 460 461 462
	rtn = pch_i2c_wait_for_xfer_complete(adap);
	if (rtn == 0) {
		if (pch_i2c_getack(adap)) {
			pch_dbg(adap, "Receive NACK for slave address"
				"setting\n");
			return -EIO;
		}
	} else if (rtn == -EIO) { /* Arbitration Lost */
		pch_err(adap, "Lost Arbitration\n");
		pch_clrbit(adap->pch_base_address, PCH_I2CSR, I2CMAL_BIT);
		pch_clrbit(adap->pch_base_address, PCH_I2CSR, I2CMIF_BIT);
463
		pch_i2c_init(adap);
464 465
		return -EAGAIN;
	} else { /* wait-event timeout */
466
		pch_i2c_stop(adap);
467 468
		return -ETIME;
	}
469

470 471 472 473
	for (wrcount = 0; wrcount < length; ++wrcount) {
		/* write buffer value to I2C data register */
		iowrite32(buf[wrcount], p + PCH_I2CDR);
		pch_dbg(adap, "writing %x to Data register\n", buf[wrcount]);
474

475 476 477 478 479
		rtn = pch_i2c_wait_for_xfer_complete(adap);
		if (rtn == 0) {
			if (pch_i2c_getack(adap)) {
				pch_dbg(adap, "Receive NACK for slave address"
					"setting\n");
480
				return -EIO;
481 482 483 484 485 486
			}
			pch_clrbit(adap->pch_base_address, PCH_I2CSR,
				   I2CMCF_BIT);
			pch_clrbit(adap->pch_base_address, PCH_I2CSR,
				   I2CMIF_BIT);
		} else { /* wait-event timeout */
487
			pch_i2c_stop(adap);
488
			return -ETIME;
489
		}
490
	}
491

492 493
	/* check if this is the last message */
	if (last)
494
		pch_i2c_stop(adap);
495 496
	else
		pch_i2c_repstart(adap);
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524

	pch_dbg(adap, "return=%d\n", wrcount);

	return wrcount;
}

/**
 * pch_i2c_sendack() - send ACK
 * @adap:	Pointer to struct i2c_algo_pch_data.
 */
static void pch_i2c_sendack(struct i2c_algo_pch_data *adap)
{
	void __iomem *p = adap->pch_base_address;
	pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
	pch_clrbit(adap->pch_base_address, PCH_I2CCTL, PCH_ACK);
}

/**
 * pch_i2c_sendnack() - send NACK
 * @adap:	Pointer to struct i2c_algo_pch_data.
 */
static void pch_i2c_sendnack(struct i2c_algo_pch_data *adap)
{
	void __iomem *p = adap->pch_base_address;
	pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
	pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_ACK);
}

525 526 527 528 529 530 531 532 533 534 535 536 537
/**
 * pch_i2c_restart() - Generate I2C restart condition in normal mode.
 * @adap:	Pointer to struct i2c_algo_pch_data.
 *
 * Generate I2C restart condition in normal mode by setting I2CCTL.I2CRSTA.
 */
static void pch_i2c_restart(struct i2c_algo_pch_data *adap)
{
	void __iomem *p = adap->pch_base_address;
	pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
	pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_RESTART);
}

538 539 540 541 542 543 544
/**
 * pch_i2c_readbytes() - read data  from I2C bus in normal mode.
 * @i2c_adap:	Pointer to the struct i2c_adapter.
 * @msgs:	Pointer to i2c_msg structure.
 * @last:	specifies whether last message or not.
 * @first:	specifies whether first message or not.
 */
545 546
static s32 pch_i2c_readbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs,
			     u32 last, u32 first)
547 548 549 550 551 552 553 554
{
	struct i2c_algo_pch_data *adap = i2c_adap->algo_data;

	u8 *buf;
	u32 count;
	u32 length;
	u32 addr;
	u32 addr_2_msb;
555
	u32 addr_8_lsb;
556
	void __iomem *p = adap->pch_base_address;
557
	s32 rtn;
558 559 560 561 562 563 564 565 566 567 568 569 570 571

	length = msgs->len;
	buf = msgs->buf;
	addr = msgs->addr;

	/* enable master reception */
	pch_clrbit(adap->pch_base_address, PCH_I2CCTL, I2C_TX_MODE);

	if (first) {
		if (pch_i2c_wait_for_bus_idle(adap, BUS_IDLE_TIMEOUT) == -ETIME)
			return -ETIME;
	}

	if (msgs->flags & I2C_M_TEN) {
572
		addr_2_msb = ((addr & I2C_MSB_2B_MSK) >> 7);
573
		iowrite32(addr_2_msb | TEN_BIT_ADDR_MASK, p + PCH_I2CDR);
574 575
		if (first)
			pch_i2c_start(adap);
576

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
		rtn = pch_i2c_wait_for_xfer_complete(adap);
		if (rtn == 0) {
			if (pch_i2c_getack(adap)) {
				pch_dbg(adap, "Receive NACK for slave address"
					"setting\n");
				return -EIO;
			}
			addr_8_lsb = (addr & I2C_ADDR_MSK);
			iowrite32(addr_8_lsb, p + PCH_I2CDR);
		} else if (rtn == -EIO) { /* Arbitration Lost */
			pch_err(adap, "Lost Arbitration\n");
			pch_clrbit(adap->pch_base_address, PCH_I2CSR,
				   I2CMAL_BIT);
			pch_clrbit(adap->pch_base_address, PCH_I2CSR,
				   I2CMIF_BIT);
			pch_i2c_init(adap);
			return -EAGAIN;
		} else { /* wait-event timeout */
			pch_i2c_stop(adap);
			return -ETIME;
		}
		pch_i2c_restart(adap);
		rtn = pch_i2c_wait_for_xfer_complete(adap);
		if (rtn == 0) {
			if (pch_i2c_getack(adap)) {
				pch_dbg(adap, "Receive NACK for slave address"
					"setting\n");
				return -EIO;
			}
			addr_2_msb |= I2C_RD;
			iowrite32(addr_2_msb | TEN_BIT_ADDR_MASK,
				  p + PCH_I2CDR);
		} else if (rtn == -EIO) { /* Arbitration Lost */
			pch_err(adap, "Lost Arbitration\n");
			pch_clrbit(adap->pch_base_address, PCH_I2CSR,
				   I2CMAL_BIT);
			pch_clrbit(adap->pch_base_address, PCH_I2CSR,
				   I2CMIF_BIT);
			pch_i2c_init(adap);
			return -EAGAIN;
		} else { /* wait-event timeout */
			pch_i2c_stop(adap);
			return -ETIME;
		}
621 622 623 624 625 626 627 628 629 630
	} else {
		/* 7 address bits + R/W bit */
		addr = (((addr) << 1) | (I2C_RD));
		iowrite32(addr, p + PCH_I2CDR);
	}

	/* check if it is the first message */
	if (first)
		pch_i2c_start(adap);

631 632 633 634 635 636 637 638 639 640 641
	rtn = pch_i2c_wait_for_xfer_complete(adap);
	if (rtn == 0) {
		if (pch_i2c_getack(adap)) {
			pch_dbg(adap, "Receive NACK for slave address"
				"setting\n");
			return -EIO;
		}
	} else if (rtn == -EIO) { /* Arbitration Lost */
		pch_err(adap, "Lost Arbitration\n");
		pch_clrbit(adap->pch_base_address, PCH_I2CSR, I2CMAL_BIT);
		pch_clrbit(adap->pch_base_address, PCH_I2CSR, I2CMIF_BIT);
642
		pch_i2c_init(adap);
643 644
		return -EAGAIN;
	} else { /* wait-event timeout */
645
		pch_i2c_stop(adap);
646 647
		return -ETIME;
	}
648

649 650 651
	if (length == 0) {
		pch_i2c_stop(adap);
		ioread32(p + PCH_I2CDR); /* Dummy read needs */
652

653 654 655 656 657
		count = length;
	} else {
		int read_index;
		int loop;
		pch_i2c_sendack(adap);
658

659 660 661
		/* Dummy read */
		for (loop = 1, read_index = 0; loop < length; loop++) {
			buf[read_index] = ioread32(p + PCH_I2CDR);
662

663 664
			if (loop != 1)
				read_index++;
665

666 667 668 669 670 671
			rtn = pch_i2c_wait_for_xfer_complete(adap);
			if (rtn == 0) {
				if (pch_i2c_getack(adap)) {
					pch_dbg(adap, "Receive NACK for slave"
						"address setting\n");
					return -EIO;
672
				}
673 674 675 676
			} else { /* wait-event timeout */
				pch_i2c_stop(adap);
				return -ETIME;
			}
677

678
		}	/* end for */
679

680
		pch_i2c_sendnack(adap);
681

682
		buf[read_index] = ioread32(p + PCH_I2CDR); /* Read final - 1 */
683

684 685
		if (length != 1)
			read_index++;
686

687 688 689 690 691 692
		rtn = pch_i2c_wait_for_xfer_complete(adap);
		if (rtn == 0) {
			if (pch_i2c_getack(adap)) {
				pch_dbg(adap, "Receive NACK for slave"
					"address setting\n");
				return -EIO;
693
			}
694 695 696
		} else { /* wait-event timeout */
			pch_i2c_stop(adap);
			return -ETIME;
697
		}
698 699 700 701 702 703 704 705

		if (last)
			pch_i2c_stop(adap);
		else
			pch_i2c_repstart(adap);

		buf[read_index++] = ioread32(p + PCH_I2CDR); /* Read Final */
		count = read_index;
706 707 708 709 710 711
	}

	return count;
}

/**
712
 * pch_i2c_cb() - Interrupt handler Call back function
713 714
 * @adap:	Pointer to struct i2c_algo_pch_data.
 */
715
static void pch_i2c_cb(struct i2c_algo_pch_data *adap)
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
{
	u32 sts;
	void __iomem *p = adap->pch_base_address;

	sts = ioread32(p + PCH_I2CSR);
	sts &= (I2CMAL_BIT | I2CMCF_BIT | I2CMIF_BIT);
	if (sts & I2CMAL_BIT)
		adap->pch_event_flag |= I2CMAL_EVENT;

	if (sts & I2CMCF_BIT)
		adap->pch_event_flag |= I2CMCF_EVENT;

	/* clear the applicable bits */
	pch_clrbit(adap->pch_base_address, PCH_I2CSR, sts);

	pch_dbg(adap, "PCH_I2CSR = %x\n", ioread32(p + PCH_I2CSR));

	wake_up(&pch_event);
}

/**
 * pch_i2c_handler() - interrupt handler for the PCH I2C controller
 * @irq:	irq number.
 * @pData:	cookie passed back to the handler function.
 */
static irqreturn_t pch_i2c_handler(int irq, void *pData)
{
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
	u32 reg_val;
	int flag;
	int i;
	struct adapter_info *adap_info = pData;
	void __iomem *p;
	u32 mode;

	for (i = 0, flag = 0; i < adap_info->ch_num; i++) {
		p = adap_info->pch_data[i].pch_base_address;
		mode = ioread32(p + PCH_I2CMOD);
		mode &= BUFFER_MODE | EEPROM_SR_MODE;
		if (mode != NORMAL_MODE) {
			pch_err(adap_info->pch_data,
				"I2C-%d mode(%d) is not supported\n", mode, i);
			continue;
		}
		reg_val = ioread32(p + PCH_I2CSR);
		if (reg_val & (I2CMAL_BIT | I2CMCF_BIT | I2CMIF_BIT)) {
			pch_i2c_cb(&adap_info->pch_data[i]);
			flag = 1;
		}
764 765
	}

766
	return flag ? IRQ_HANDLED : IRQ_NONE;
767 768 769 770 771 772 773 774 775
}

/**
 * pch_i2c_xfer() - Reading adnd writing data through I2C bus
 * @i2c_adap:	Pointer to the struct i2c_adapter.
 * @msgs:	Pointer to i2c_msg structure.
 * @num:	number of messages.
 */
static s32 pch_i2c_xfer(struct i2c_adapter *i2c_adap,
776
			struct i2c_msg *msgs, s32 num)
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
{
	struct i2c_msg *pmsg;
	u32 i = 0;
	u32 status;
	u32 msglen;
	u32 subaddrlen;
	s32 ret;

	struct i2c_algo_pch_data *adap = i2c_adap->algo_data;

	ret = mutex_lock_interruptible(&pch_mutex);
	if (ret)
		return -ERESTARTSYS;

	if (adap->p_adapter_info->pch_i2c_suspended) {
		mutex_unlock(&pch_mutex);
		return -EBUSY;
	}

	pch_dbg(adap, "adap->p_adapter_info->pch_i2c_suspended is %d\n",
		adap->p_adapter_info->pch_i2c_suspended);
	/* transfer not completed */
	adap->pch_i2c_xfer_in_progress = true;

801
	for (i = 0; i < num && ret >= 0; i++) {
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
		pmsg = &msgs[i];
		pmsg->flags |= adap->pch_buff_mode_en;
		status = pmsg->flags;
		pch_dbg(adap,
			"After invoking I2C_MODE_SEL :flag= 0x%x\n", status);
		/* calculate sub address length and message length */
		/* these are applicable only for buffer mode */
		subaddrlen = pmsg->buf[0];
		/* calculate actual message length excluding
		 * the sub address fields */
		msglen = (pmsg->len) - (subaddrlen + 1);

		if ((status & (I2C_M_RD)) != false) {
			ret = pch_i2c_readbytes(i2c_adap, pmsg, (i + 1 == num),
						(i == 0));
		} else {
			ret = pch_i2c_writebytes(i2c_adap, pmsg, (i + 1 == num),
						 (i == 0));
		}
821 822 823 824 825 826
	}

	adap->pch_i2c_xfer_in_progress = false;	/* transfer completed */

	mutex_unlock(&pch_mutex);

827
	return (ret < 0) ? ret : num;
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
}

/**
 * pch_i2c_func() - return the functionality of the I2C driver
 * @adap:	Pointer to struct i2c_algo_pch_data.
 */
static u32 pch_i2c_func(struct i2c_adapter *adap)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR;
}

static struct i2c_algorithm pch_algorithm = {
	.master_xfer = pch_i2c_xfer,
	.functionality = pch_i2c_func
};

/**
 * pch_i2c_disbl_int() - Disable PCH I2C interrupts
 * @adap:	Pointer to struct i2c_algo_pch_data.
 */
static void pch_i2c_disbl_int(struct i2c_algo_pch_data *adap)
{
	void __iomem *p = adap->pch_base_address;

	pch_clrbit(adap->pch_base_address, PCH_I2CCTL, NORMAL_INTR_ENBL);

	iowrite32(EEPROM_RST_INTR_DISBL, p + PCH_I2CESRMSK);

	iowrite32(BUFFER_MODE_INTR_DISBL, p + PCH_I2CBUFMSK);
}

static int __devinit pch_i2c_probe(struct pci_dev *pdev,
860
				   const struct pci_device_id *id)
861 862
{
	void __iomem *base_addr;
863 864
	int ret;
	int i, j;
865
	struct adapter_info *adap_info;
866
	struct i2c_adapter *pch_adap;
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895

	pch_pci_dbg(pdev, "Entered.\n");

	adap_info = kzalloc((sizeof(struct adapter_info)), GFP_KERNEL);
	if (adap_info == NULL) {
		pch_pci_err(pdev, "Memory allocation FAILED\n");
		return -ENOMEM;
	}

	ret = pci_enable_device(pdev);
	if (ret) {
		pch_pci_err(pdev, "pci_enable_device FAILED\n");
		goto err_pci_enable;
	}

	ret = pci_request_regions(pdev, KBUILD_MODNAME);
	if (ret) {
		pch_pci_err(pdev, "pci_request_regions FAILED\n");
		goto err_pci_req;
	}

	base_addr = pci_iomap(pdev, 1, 0);

	if (base_addr == NULL) {
		pch_pci_err(pdev, "pci_iomap FAILED\n");
		ret = -ENOMEM;
		goto err_pci_iomap;
	}

896 897
	/* Set the number of I2C channel instance */
	adap_info->ch_num = id->driver_data;
898

899 900 901 902 903 904 905
	ret = request_irq(pdev->irq, pch_i2c_handler, IRQF_SHARED,
		  KBUILD_MODNAME, adap_info);
	if (ret) {
		pch_pci_err(pdev, "request_irq FAILED\n");
		goto err_request_irq;
	}

906 907 908
	for (i = 0; i < adap_info->ch_num; i++) {
		pch_adap = &adap_info->pch_data[i].pch_adapter;
		adap_info->pch_i2c_suspended = false;
909

910
		adap_info->pch_data[i].p_adapter_info = adap_info;
911

912 913 914 915 916
		pch_adap->owner = THIS_MODULE;
		pch_adap->class = I2C_CLASS_HWMON;
		strcpy(pch_adap->name, KBUILD_MODNAME);
		pch_adap->algo = &pch_algorithm;
		pch_adap->algo_data = &adap_info->pch_data[i];
917

918 919
		/* base_addr + offset; */
		adap_info->pch_data[i].pch_base_address = base_addr + 0x100 * i;
920

921
		pch_adap->dev.parent = &pdev->dev;
922

923
		pch_i2c_init(&adap_info->pch_data[i]);
924 925 926

		pch_adap->nr = i;
		ret = i2c_add_numbered_adapter(pch_adap);
927 928
		if (ret) {
			pch_pci_err(pdev, "i2c_add_adapter[ch:%d] FAILED\n", i);
929
			goto err_add_adapter;
930
		}
931 932 933 934 935 936
	}

	pci_set_drvdata(pdev, adap_info);
	pch_pci_dbg(pdev, "returns %d.\n", ret);
	return 0;

937
err_add_adapter:
938 939
	for (j = 0; j < i; j++)
		i2c_del_adapter(&adap_info->pch_data[j].pch_adapter);
940 941
	free_irq(pdev->irq, adap_info);
err_request_irq:
942 943 944 945 946 947 948 949 950 951 952 953
	pci_iounmap(pdev, base_addr);
err_pci_iomap:
	pci_release_regions(pdev);
err_pci_req:
	pci_disable_device(pdev);
err_pci_enable:
	kfree(adap_info);
	return ret;
}

static void __devexit pch_i2c_remove(struct pci_dev *pdev)
{
954
	int i;
955 956
	struct adapter_info *adap_info = pci_get_drvdata(pdev);

957
	free_irq(pdev->irq, adap_info);
958

959 960 961
	for (i = 0; i < adap_info->ch_num; i++) {
		pch_i2c_disbl_int(&adap_info->pch_data[i]);
		i2c_del_adapter(&adap_info->pch_data[i].pch_adapter);
962 963
	}

964 965 966 967 968 969
	if (adap_info->pch_data[0].pch_base_address)
		pci_iounmap(pdev, adap_info->pch_data[0].pch_base_address);

	for (i = 0; i < adap_info->ch_num; i++)
		adap_info->pch_data[i].pch_base_address = 0;

970 971 972 973 974 975 976 977 978 979 980 981
	pci_set_drvdata(pdev, NULL);

	pci_release_regions(pdev);

	pci_disable_device(pdev);
	kfree(adap_info);
}

#ifdef CONFIG_PM
static int pch_i2c_suspend(struct pci_dev *pdev, pm_message_t state)
{
	int ret;
982
	int i;
983
	struct adapter_info *adap_info = pci_get_drvdata(pdev);
984
	void __iomem *p = adap_info->pch_data[0].pch_base_address;
985 986 987

	adap_info->pch_i2c_suspended = true;

988 989 990 991 992
	for (i = 0; i < adap_info->ch_num; i++) {
		while ((adap_info->pch_data[i].pch_i2c_xfer_in_progress)) {
			/* Wait until all channel transfers are completed */
			msleep(20);
		}
993
	}
994

995
	/* Disable the i2c interrupts */
996 997
	for (i = 0; i < adap_info->ch_num; i++)
		pch_i2c_disbl_int(&adap_info->pch_data[i]);
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

	pch_pci_dbg(pdev, "I2CSR = %x I2CBUFSTA = %x I2CESRSTA = %x "
		"invoked function pch_i2c_disbl_int successfully\n",
		ioread32(p + PCH_I2CSR), ioread32(p + PCH_I2CBUFSTA),
		ioread32(p + PCH_I2CESRSTA));

	ret = pci_save_state(pdev);

	if (ret) {
		pch_pci_err(pdev, "pci_save_state\n");
		return ret;
	}

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_disable_device(pdev);
	pci_set_power_state(pdev, pci_choose_state(pdev, state));

	return 0;
}

static int pch_i2c_resume(struct pci_dev *pdev)
{
1020
	int i;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
	struct adapter_info *adap_info = pci_get_drvdata(pdev);

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);

	if (pci_enable_device(pdev) < 0) {
		pch_pci_err(pdev, "pch_i2c_resume:pci_enable_device FAILED\n");
		return -EIO;
	}

	pci_enable_wake(pdev, PCI_D3hot, 0);

1033 1034
	for (i = 0; i < adap_info->ch_num; i++)
		pch_i2c_init(&adap_info->pch_data[i]);
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065

	adap_info->pch_i2c_suspended = false;

	return 0;
}
#else
#define pch_i2c_suspend NULL
#define pch_i2c_resume NULL
#endif

static struct pci_driver pch_pcidriver = {
	.name = KBUILD_MODNAME,
	.id_table = pch_pcidev_id,
	.probe = pch_i2c_probe,
	.remove = __devexit_p(pch_i2c_remove),
	.suspend = pch_i2c_suspend,
	.resume = pch_i2c_resume
};

static int __init pch_pci_init(void)
{
	return pci_register_driver(&pch_pcidriver);
}
module_init(pch_pci_init);

static void __exit pch_pci_exit(void)
{
	pci_unregister_driver(&pch_pcidriver);
}
module_exit(pch_pci_exit);

1066
MODULE_DESCRIPTION("Intel EG20T PCH/OKI SEMICONDUCTOR ML7213 IOH I2C Driver");
1067 1068 1069 1070
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Tomoya MORINAGA. <tomoya-linux@dsn.okisemi.com>");
module_param(pch_i2c_speed, int, (S_IRUSR | S_IWUSR));
module_param(pch_clk, int, (S_IRUSR | S_IWUSR));