vgic.c 59.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 ARM Ltd.
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

19
#include <linux/cpu.h>
20 21 22 23
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <linux/io.h>
24 25 26
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
27
#include <linux/uaccess.h>
28 29 30

#include <linux/irqchip/arm-gic.h>

31
#include <asm/kvm_emulate.h>
32 33
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
34

35 36 37 38
/*
 * How the whole thing works (courtesy of Christoffer Dall):
 *
 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
39 40 41 42 43
 *   something is pending on the CPU interface.
 * - Interrupts that are pending on the distributor are stored on the
 *   vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
 *   ioctls and guest mmio ops, and other in-kernel peripherals such as the
 *   arch. timers).
44 45 46 47
 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
 *   recalculated
 * - To calculate the oracle, we need info for each cpu from
 *   compute_pending_for_cpu, which considers:
48 49
 *   - PPI: dist->irq_pending & dist->irq_enable
 *   - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
50
 *   - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
51 52 53
 *     registers, stored on each vcpu. We only keep one bit of
 *     information per interrupt, making sure that only one vcpu can
 *     accept the interrupt.
54
 * - If any of the above state changes, we must recalculate the oracle.
55 56 57 58 59 60 61 62 63
 * - The same is true when injecting an interrupt, except that we only
 *   consider a single interrupt at a time. The irq_spi_cpu array
 *   contains the target CPU for each SPI.
 *
 * The handling of level interrupts adds some extra complexity. We
 * need to track when the interrupt has been EOIed, so we can sample
 * the 'line' again. This is achieved as such:
 *
 * - When a level interrupt is moved onto a vcpu, the corresponding
64
 *   bit in irq_queued is set. As long as this bit is set, the line
65 66 67 68
 *   will be ignored for further interrupts. The interrupt is injected
 *   into the vcpu with the GICH_LR_EOI bit set (generate a
 *   maintenance interrupt on EOI).
 * - When the interrupt is EOIed, the maintenance interrupt fires,
69
 *   and clears the corresponding bit in irq_queued. This allows the
70
 *   interrupt line to be sampled again.
71 72 73 74 75
 * - Note that level-triggered interrupts can also be set to pending from
 *   writes to GICD_ISPENDRn and lowering the external input line does not
 *   cause the interrupt to become inactive in such a situation.
 *   Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
 *   inactive as long as the external input line is held high.
76 77
 */

78 79 80
#define VGIC_ADDR_UNDEF		(-1)
#define IS_VGIC_ADDR_UNDEF(_x)  ((_x) == VGIC_ADDR_UNDEF)

81 82 83 84
#define PRODUCT_ID_KVM		0x4b	/* ASCII code K */
#define IMPLEMENTER_ARM		0x43b
#define GICC_ARCH_VERSION_V2	0x2

85 86 87 88 89 90 91 92 93
#define ACCESS_READ_VALUE	(1 << 0)
#define ACCESS_READ_RAZ		(0 << 0)
#define ACCESS_READ_MASK(x)	((x) & (1 << 0))
#define ACCESS_WRITE_IGNORED	(0 << 1)
#define ACCESS_WRITE_SETBIT	(1 << 1)
#define ACCESS_WRITE_CLEARBIT	(2 << 1)
#define ACCESS_WRITE_VALUE	(3 << 1)
#define ACCESS_WRITE_MASK(x)	((x) & (3 << 1))

94
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
95
static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
96
static void vgic_update_state(struct kvm *kvm);
97
static void vgic_kick_vcpus(struct kvm *kvm);
98
static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi);
99
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
100 101
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
102 103
static void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
104

105 106
static const struct vgic_ops *vgic_ops;
static const struct vgic_params *vgic;
107

108
/*
109 110
 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
 * extracts u32s out of them.
111 112 113 114 115 116 117 118 119 120 121 122 123 124
 *
 * This does not work on 64-bit BE systems, because the bitmap access
 * will store two consecutive 32-bit words with the higher-addressed
 * register's bits at the lower index and the lower-addressed register's
 * bits at the higher index.
 *
 * Therefore, swizzle the register index when accessing the 32-bit word
 * registers to access the right register's value.
 */
#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
#define REG_OFFSET_SWIZZLE	1
#else
#define REG_OFFSET_SWIZZLE	0
#endif
125

126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
{
	int nr_longs;

	nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);

	b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
	if (!b->private)
		return -ENOMEM;

	b->shared = b->private + nr_cpus;

	return 0;
}

static void vgic_free_bitmap(struct vgic_bitmap *b)
{
	kfree(b->private);
	b->private = NULL;
	b->shared = NULL;
}

148 149 150 151 152
static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
				int cpuid, u32 offset)
{
	offset >>= 2;
	if (!offset)
153
		return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
154
	else
155
		return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
156 157 158 159 160 161
}

static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
				   int cpuid, int irq)
{
	if (irq < VGIC_NR_PRIVATE_IRQS)
162
		return test_bit(irq, x->private + cpuid);
163

164
	return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
165 166 167 168 169 170 171 172
}

static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
				    int irq, int val)
{
	unsigned long *reg;

	if (irq < VGIC_NR_PRIVATE_IRQS) {
173
		reg = x->private + cpuid;
174
	} else {
175
		reg = x->shared;
176 177 178 179 180 181 182 183 184 185 186
		irq -= VGIC_NR_PRIVATE_IRQS;
	}

	if (val)
		set_bit(irq, reg);
	else
		clear_bit(irq, reg);
}

static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
{
187
	return x->private + cpuid;
188 189 190 191
}

static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
{
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
	return x->shared;
}

static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
{
	int size;

	size  = nr_cpus * VGIC_NR_PRIVATE_IRQS;
	size += nr_irqs - VGIC_NR_PRIVATE_IRQS;

	x->private = kzalloc(size, GFP_KERNEL);
	if (!x->private)
		return -ENOMEM;

	x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
	return 0;
}

static void vgic_free_bytemap(struct vgic_bytemap *b)
{
	kfree(b->private);
	b->private = NULL;
	b->shared = NULL;
215 216 217 218
}

static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
{
219 220 221 222 223 224 225 226 227 228 229
	u32 *reg;

	if (offset < VGIC_NR_PRIVATE_IRQS) {
		reg = x->private;
		offset += cpuid * VGIC_NR_PRIVATE_IRQS;
	} else {
		reg = x->shared;
		offset -= VGIC_NR_PRIVATE_IRQS;
	}

	return reg + (offset / sizeof(u32));
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
}

#define VGIC_CFG_LEVEL	0
#define VGIC_CFG_EDGE	1

static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	int irq_val;

	irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
	return irq_val == VGIC_CFG_EDGE;
}

static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
}

251
static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
252 253 254
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

255
	return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
256 257
}

258
static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
259 260 261
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

262
	vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
263 264
}

265
static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
266 267 268
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

269
	vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
270 271
}

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
}

static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
}

static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
}

static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
}

static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
}

307 308 309 310
static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

311
	return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
312 313
}

314
static void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
315 316 317
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

318
	vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
319 320
}

321
static void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
322 323 324
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

325
	vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
}

static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
{
	if (irq < VGIC_NR_PRIVATE_IRQS)
		set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
	else
		set_bit(irq - VGIC_NR_PRIVATE_IRQS,
			vcpu->arch.vgic_cpu.pending_shared);
}

static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
{
	if (irq < VGIC_NR_PRIVATE_IRQS)
		clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
	else
		clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
			  vcpu->arch.vgic_cpu.pending_shared);
}

346 347 348 349 350
static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
{
	return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
}

351 352
static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
{
353
	return le32_to_cpu(*((u32 *)mmio->data)) & mask;
354 355 356 357
}

static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
{
358
	*((u32 *)mmio->data) = cpu_to_le32(value) & mask;
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
}

/**
 * vgic_reg_access - access vgic register
 * @mmio:   pointer to the data describing the mmio access
 * @reg:    pointer to the virtual backing of vgic distributor data
 * @offset: least significant 2 bits used for word offset
 * @mode:   ACCESS_ mode (see defines above)
 *
 * Helper to make vgic register access easier using one of the access
 * modes defined for vgic register access
 * (read,raz,write-ignored,setbit,clearbit,write)
 */
static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
			    phys_addr_t offset, int mode)
{
	int word_offset = (offset & 3) * 8;
	u32 mask = (1UL << (mmio->len * 8)) - 1;
	u32 regval;

	/*
	 * Any alignment fault should have been delivered to the guest
	 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
	 */

	if (reg) {
		regval = *reg;
	} else {
		BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
		regval = 0;
	}

	if (mmio->is_write) {
		u32 data = mmio_data_read(mmio, mask) << word_offset;
		switch (ACCESS_WRITE_MASK(mode)) {
		case ACCESS_WRITE_IGNORED:
			return;

		case ACCESS_WRITE_SETBIT:
			regval |= data;
			break;

		case ACCESS_WRITE_CLEARBIT:
			regval &= ~data;
			break;

		case ACCESS_WRITE_VALUE:
			regval = (regval & ~(mask << word_offset)) | data;
			break;
		}
		*reg = regval;
	} else {
		switch (ACCESS_READ_MASK(mode)) {
		case ACCESS_READ_RAZ:
			regval = 0;
			/* fall through */

		case ACCESS_READ_VALUE:
			mmio_data_write(mmio, mask, regval >> word_offset);
		}
	}
}

422 423 424 425 426 427 428
static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
			     struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 reg;
	u32 word_offset = offset & 3;

	switch (offset & ~3) {
429
	case 0:			/* GICD_CTLR */
430 431 432 433 434 435 436 437 438 439
		reg = vcpu->kvm->arch.vgic.enabled;
		vgic_reg_access(mmio, &reg, word_offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
		if (mmio->is_write) {
			vcpu->kvm->arch.vgic.enabled = reg & 1;
			vgic_update_state(vcpu->kvm);
			return true;
		}
		break;

440
	case 4:			/* GICD_TYPER */
441 442 443 444 445 446
		reg  = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
		reg |= (VGIC_NR_IRQS >> 5) - 1;
		vgic_reg_access(mmio, &reg, word_offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
		break;

447 448
	case 8:			/* GICD_IIDR */
		reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
		vgic_reg_access(mmio, &reg, word_offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
		break;
	}

	return false;
}

static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
			       struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	vgic_reg_access(mmio, NULL, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
	return false;
}

static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
				       struct kvm_exit_mmio *mmio,
				       phys_addr_t offset)
{
	u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
				       vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
	if (mmio->is_write) {
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
					 struct kvm_exit_mmio *mmio,
					 phys_addr_t offset)
{
	u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
				       vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
	if (mmio->is_write) {
		if (offset < 4) /* Force SGI enabled */
			*reg |= 0xffff;
492
		vgic_retire_disabled_irqs(vcpu);
493 494 495 496 497 498 499 500 501 502 503
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
					struct kvm_exit_mmio *mmio,
					phys_addr_t offset)
{
504
	u32 *reg, orig;
505 506 507 508 509 510 511 512
	u32 level_mask;
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu->vcpu_id, offset);
	level_mask = (~(*reg));

	/* Mark both level and edge triggered irqs as pending */
	reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
513
	orig = *reg;
514 515
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
516

517
	if (mmio->is_write) {
518 519 520 521 522 523 524
		/* Set the soft-pending flag only for level-triggered irqs */
		reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
					  vcpu->vcpu_id, offset);
		vgic_reg_access(mmio, reg, offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
		*reg &= level_mask;

525 526 527 528 529 530
		/* Ignore writes to SGIs */
		if (offset < 2) {
			*reg &= ~0xffff;
			*reg |= orig & 0xffff;
		}

531 532 533 534 535 536 537 538 539 540 541
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
					  struct kvm_exit_mmio *mmio,
					  phys_addr_t offset)
{
542
	u32 *level_active;
543
	u32 *reg, orig;
544 545 546
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
547
	orig = *reg;
548 549 550
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
	if (mmio->is_write) {
551 552 553 554 555 556 557
		/* Re-set level triggered level-active interrupts */
		level_active = vgic_bitmap_get_reg(&dist->irq_level,
					  vcpu->vcpu_id, offset);
		reg = vgic_bitmap_get_reg(&dist->irq_pending,
					  vcpu->vcpu_id, offset);
		*reg |= *level_active;

558 559 560 561 562 563
		/* Ignore writes to SGIs */
		if (offset < 2) {
			*reg &= ~0xffff;
			*reg |= orig & 0xffff;
		}

564 565 566 567 568 569
		/* Clear soft-pending flags */
		reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
					  vcpu->vcpu_id, offset);
		vgic_reg_access(mmio, reg, offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
				     struct kvm_exit_mmio *mmio,
				     phys_addr_t offset)
{
	u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
					vcpu->vcpu_id, offset);
	vgic_reg_access(mmio, reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	return false;
}

#define GICD_ITARGETSR_SIZE	32
#define GICD_CPUTARGETS_BITS	8
#define GICD_IRQS_PER_ITARGETSR	(GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
594
	int i;
595 596 597 598
	u32 val = 0;

	irq -= VGIC_NR_PRIVATE_IRQS;

599 600
	for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
		val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702

	return val;
}

static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int i, c;
	unsigned long *bmap;
	u32 target;

	irq -= VGIC_NR_PRIVATE_IRQS;

	/*
	 * Pick the LSB in each byte. This ensures we target exactly
	 * one vcpu per IRQ. If the byte is null, assume we target
	 * CPU0.
	 */
	for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
		int shift = i * GICD_CPUTARGETS_BITS;
		target = ffs((val >> shift) & 0xffU);
		target = target ? (target - 1) : 0;
		dist->irq_spi_cpu[irq + i] = target;
		kvm_for_each_vcpu(c, vcpu, kvm) {
			bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
			if (c == target)
				set_bit(irq + i, bmap);
			else
				clear_bit(irq + i, bmap);
		}
	}
}

static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
				   struct kvm_exit_mmio *mmio,
				   phys_addr_t offset)
{
	u32 reg;

	/* We treat the banked interrupts targets as read-only */
	if (offset < 32) {
		u32 roreg = 1 << vcpu->vcpu_id;
		roreg |= roreg << 8;
		roreg |= roreg << 16;

		vgic_reg_access(mmio, &roreg, offset,
				ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
		return false;
	}

	reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	if (mmio->is_write) {
		vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

static u32 vgic_cfg_expand(u16 val)
{
	u32 res = 0;
	int i;

	/*
	 * Turn a 16bit value like abcd...mnop into a 32bit word
	 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
	 */
	for (i = 0; i < 16; i++)
		res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);

	return res;
}

static u16 vgic_cfg_compress(u32 val)
{
	u16 res = 0;
	int i;

	/*
	 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
	 * abcd...mnop which is what we really care about.
	 */
	for (i = 0; i < 16; i++)
		res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;

	return res;
}

/*
 * The distributor uses 2 bits per IRQ for the CFG register, but the
 * LSB is always 0. As such, we only keep the upper bit, and use the
 * two above functions to compress/expand the bits
 */
static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
				struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 val;
703 704 705
	u32 *reg;

	reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
706
				  vcpu->vcpu_id, offset >> 1);
707

708
	if (offset & 4)
709 710 711 712 713 714 715 716
		val = *reg >> 16;
	else
		val = *reg & 0xffff;

	val = vgic_cfg_expand(val);
	vgic_reg_access(mmio, &val, offset,
			ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
	if (mmio->is_write) {
717
		if (offset < 8) {
718 719 720 721 722
			*reg = ~0U; /* Force PPIs/SGIs to 1 */
			return false;
		}

		val = vgic_cfg_compress(val);
723
		if (offset & 4) {
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
			*reg &= 0xffff;
			*reg |= val << 16;
		} else {
			*reg &= 0xffff << 16;
			*reg |= val;
		}
	}

	return false;
}

static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
				struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	u32 reg;
	vgic_reg_access(mmio, &reg, offset,
			ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
	if (mmio->is_write) {
		vgic_dispatch_sgi(vcpu, reg);
		vgic_update_state(vcpu->kvm);
		return true;
	}

	return false;
}

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
/**
 * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
 *
 * Move any pending IRQs that have already been assigned to LRs back to the
 * emulated distributor state so that the complete emulated state can be read
 * from the main emulation structures without investigating the LRs.
 *
 * Note that IRQs in the active state in the LRs get their pending state moved
 * to the distributor but the active state stays in the LRs, because we don't
 * track the active state on the distributor side.
 */
static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	int vcpu_id = vcpu->vcpu_id;
767
	int i;
768 769

	for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
770
		struct vgic_lr lr = vgic_get_lr(vcpu, i);
771 772 773 774 775 776 777 778 779 780 781

		/*
		 * There are three options for the state bits:
		 *
		 * 01: pending
		 * 10: active
		 * 11: pending and active
		 *
		 * If the LR holds only an active interrupt (not pending) then
		 * just leave it alone.
		 */
782
		if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
783 784 785 786 787 788 789 790
			continue;

		/*
		 * Reestablish the pending state on the distributor and the
		 * CPU interface.  It may have already been pending, but that
		 * is fine, then we are only setting a few bits that were
		 * already set.
		 */
791
		vgic_dist_irq_set_pending(vcpu, lr.irq);
792
		if (lr.irq < VGIC_NR_SGIS)
793
			*vgic_get_sgi_sources(dist, vcpu_id, lr.irq) |= 1 << lr.source;
794 795
		lr.state &= ~LR_STATE_PENDING;
		vgic_set_lr(vcpu, i, lr);
796 797 798 799 800 801

		/*
		 * If there's no state left on the LR (it could still be
		 * active), then the LR does not hold any useful info and can
		 * be marked as free for other use.
		 */
802
		if (!(lr.state & LR_STATE_MASK)) {
803
			vgic_retire_lr(i, lr.irq, vcpu);
804 805
			vgic_irq_clear_queued(vcpu, lr.irq);
		}
806 807 808 809 810 811

		/* Finally update the VGIC state. */
		vgic_update_state(vcpu->kvm);
	}
}

812 813 814 815
/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
					struct kvm_exit_mmio *mmio,
					phys_addr_t offset)
816
{
817 818 819 820 821 822 823 824 825 826
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	int sgi;
	int min_sgi = (offset & ~0x3) * 4;
	int max_sgi = min_sgi + 3;
	int vcpu_id = vcpu->vcpu_id;
	u32 reg = 0;

	/* Copy source SGIs from distributor side */
	for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
		int shift = 8 * (sgi - min_sgi);
827
		reg |= ((u32)*vgic_get_sgi_sources(dist, vcpu_id, sgi)) << shift;
828 829 830
	}

	mmio_data_write(mmio, ~0, reg);
831 832 833
	return false;
}

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
					 struct kvm_exit_mmio *mmio,
					 phys_addr_t offset, bool set)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	int sgi;
	int min_sgi = (offset & ~0x3) * 4;
	int max_sgi = min_sgi + 3;
	int vcpu_id = vcpu->vcpu_id;
	u32 reg;
	bool updated = false;

	reg = mmio_data_read(mmio, ~0);

	/* Clear pending SGIs on the distributor */
	for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
		u8 mask = reg >> (8 * (sgi - min_sgi));
851
		u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi);
852
		if (set) {
853
			if ((*src & mask) != mask)
854
				updated = true;
855
			*src |= mask;
856
		} else {
857
			if (*src & mask)
858
				updated = true;
859
			*src &= ~mask;
860 861 862 863 864 865 866 867 868
		}
	}

	if (updated)
		vgic_update_state(vcpu->kvm);

	return updated;
}

869 870 871 872
static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
				struct kvm_exit_mmio *mmio,
				phys_addr_t offset)
{
873 874 875 876 877 878 879 880 881 882 883 884 885 886
	if (!mmio->is_write)
		return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
	else
		return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
}

static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
				  struct kvm_exit_mmio *mmio,
				  phys_addr_t offset)
{
	if (!mmio->is_write)
		return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
	else
		return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
887 888
}

889 890 891 892 893 894 895 896 897
/*
 * I would have liked to use the kvm_bus_io_*() API instead, but it
 * cannot cope with banked registers (only the VM pointer is passed
 * around, and we need the vcpu). One of these days, someone please
 * fix it!
 */
struct mmio_range {
	phys_addr_t base;
	unsigned long len;
898
	int bits_per_irq;
899 900 901 902
	bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
			    phys_addr_t offset);
};

903
static const struct mmio_range vgic_dist_ranges[] = {
904 905 906
	{
		.base		= GIC_DIST_CTRL,
		.len		= 12,
907
		.bits_per_irq	= 0,
908 909 910 911
		.handle_mmio	= handle_mmio_misc,
	},
	{
		.base		= GIC_DIST_IGROUP,
912 913
		.len		= VGIC_MAX_IRQS / 8,
		.bits_per_irq	= 1,
914 915 916 917
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GIC_DIST_ENABLE_SET,
918 919
		.len		= VGIC_MAX_IRQS / 8,
		.bits_per_irq	= 1,
920 921 922 923
		.handle_mmio	= handle_mmio_set_enable_reg,
	},
	{
		.base		= GIC_DIST_ENABLE_CLEAR,
924 925
		.len		= VGIC_MAX_IRQS / 8,
		.bits_per_irq	= 1,
926 927 928 929
		.handle_mmio	= handle_mmio_clear_enable_reg,
	},
	{
		.base		= GIC_DIST_PENDING_SET,
930 931
		.len		= VGIC_MAX_IRQS / 8,
		.bits_per_irq	= 1,
932 933 934 935
		.handle_mmio	= handle_mmio_set_pending_reg,
	},
	{
		.base		= GIC_DIST_PENDING_CLEAR,
936 937
		.len		= VGIC_MAX_IRQS / 8,
		.bits_per_irq	= 1,
938 939 940 941
		.handle_mmio	= handle_mmio_clear_pending_reg,
	},
	{
		.base		= GIC_DIST_ACTIVE_SET,
942 943
		.len		= VGIC_MAX_IRQS / 8,
		.bits_per_irq	= 1,
944 945 946 947
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GIC_DIST_ACTIVE_CLEAR,
948 949
		.len		= VGIC_MAX_IRQS / 8,
		.bits_per_irq	= 1,
950 951 952 953
		.handle_mmio	= handle_mmio_raz_wi,
	},
	{
		.base		= GIC_DIST_PRI,
954 955
		.len		= VGIC_MAX_IRQS,
		.bits_per_irq	= 8,
956 957 958 959
		.handle_mmio	= handle_mmio_priority_reg,
	},
	{
		.base		= GIC_DIST_TARGET,
960 961
		.len		= VGIC_MAX_IRQS,
		.bits_per_irq	= 8,
962 963 964 965
		.handle_mmio	= handle_mmio_target_reg,
	},
	{
		.base		= GIC_DIST_CONFIG,
966 967
		.len		= VGIC_MAX_IRQS / 4,
		.bits_per_irq	= 2,
968 969 970 971 972 973 974
		.handle_mmio	= handle_mmio_cfg_reg,
	},
	{
		.base		= GIC_DIST_SOFTINT,
		.len		= 4,
		.handle_mmio	= handle_mmio_sgi_reg,
	},
975 976 977 978 979 980 981 982 983 984
	{
		.base		= GIC_DIST_SGI_PENDING_CLEAR,
		.len		= VGIC_NR_SGIS,
		.handle_mmio	= handle_mmio_sgi_clear,
	},
	{
		.base		= GIC_DIST_SGI_PENDING_SET,
		.len		= VGIC_NR_SGIS,
		.handle_mmio	= handle_mmio_sgi_set,
	},
985 986 987 988 989 990
	{}
};

static const
struct mmio_range *find_matching_range(const struct mmio_range *ranges,
				       struct kvm_exit_mmio *mmio,
991
				       phys_addr_t offset)
992 993 994 995
{
	const struct mmio_range *r = ranges;

	while (r->len) {
996 997
		if (offset >= r->base &&
		    (offset + mmio->len) <= (r->base + r->len))
998 999 1000 1001 1002 1003 1004
			return r;
		r++;
	}

	return NULL;
}

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
static bool vgic_validate_access(const struct vgic_dist *dist,
				 const struct mmio_range *range,
				 unsigned long offset)
{
	int irq;

	if (!range->bits_per_irq)
		return true;	/* Not an irq-based access */

	irq = offset * 8 / range->bits_per_irq;
	if (irq >= dist->nr_irqs)
		return false;

	return true;
}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
/**
 * vgic_handle_mmio - handle an in-kernel MMIO access
 * @vcpu:	pointer to the vcpu performing the access
 * @run:	pointer to the kvm_run structure
 * @mmio:	pointer to the data describing the access
 *
 * returns true if the MMIO access has been performed in kernel space,
 * and false if it needs to be emulated in user space.
 */
bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
		      struct kvm_exit_mmio *mmio)
{
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	const struct mmio_range *range;
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	unsigned long base = dist->vgic_dist_base;
	bool updated_state;
	unsigned long offset;

	if (!irqchip_in_kernel(vcpu->kvm) ||
	    mmio->phys_addr < base ||
	    (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
		return false;

	/* We don't support ldrd / strd or ldm / stm to the emulated vgic */
	if (mmio->len > 4) {
		kvm_inject_dabt(vcpu, mmio->phys_addr);
		return true;
	}

1050 1051
	offset = mmio->phys_addr - base;
	range = find_matching_range(vgic_dist_ranges, mmio, offset);
1052 1053 1054 1055 1056 1057 1058 1059
	if (unlikely(!range || !range->handle_mmio)) {
		pr_warn("Unhandled access %d %08llx %d\n",
			mmio->is_write, mmio->phys_addr, mmio->len);
		return false;
	}

	spin_lock(&vcpu->kvm->arch.vgic.lock);
	offset = mmio->phys_addr - range->base - base;
1060 1061 1062 1063 1064 1065 1066
	if (vgic_validate_access(dist, range, offset)) {
		updated_state = range->handle_mmio(vcpu, mmio, offset);
	} else {
		vgic_reg_access(mmio, NULL, offset,
				ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
		updated_state = false;
	}
1067 1068 1069 1070
	spin_unlock(&vcpu->kvm->arch.vgic.lock);
	kvm_prepare_mmio(run, mmio);
	kvm_handle_mmio_return(vcpu, run);

1071 1072 1073
	if (updated_state)
		vgic_kick_vcpus(vcpu->kvm);

1074 1075 1076
	return true;
}

1077 1078 1079 1080 1081
static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi)
{
	return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi;
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
{
	struct kvm *kvm = vcpu->kvm;
	struct vgic_dist *dist = &kvm->arch.vgic;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	u8 target_cpus;
	int sgi, mode, c, vcpu_id;

	vcpu_id = vcpu->vcpu_id;

	sgi = reg & 0xf;
	target_cpus = (reg >> 16) & 0xff;
	mode = (reg >> 24) & 3;

	switch (mode) {
	case 0:
		if (!target_cpus)
			return;
1100
		break;
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

	case 1:
		target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
		break;

	case 2:
		target_cpus = 1 << vcpu_id;
		break;
	}

	kvm_for_each_vcpu(c, vcpu, kvm) {
		if (target_cpus & 1) {
			/* Flag the SGI as pending */
1114
			vgic_dist_irq_set_pending(vcpu, sgi);
1115
			*vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id;
1116 1117 1118 1119 1120 1121 1122
			kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
		}

		target_cpus >>= 1;
	}
}

1123 1124 1125 1126 1127
static int vgic_nr_shared_irqs(struct vgic_dist *dist)
{
	return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
}

1128 1129
static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
{
1130 1131 1132
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
	unsigned long pending_private, pending_shared;
1133
	int nr_shared = vgic_nr_shared_irqs(dist);
1134 1135 1136 1137 1138 1139
	int vcpu_id;

	vcpu_id = vcpu->vcpu_id;
	pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
	pend_shared = vcpu->arch.vgic_cpu.pending_shared;

1140
	pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
1141 1142 1143
	enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
	bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);

1144
	pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
1145
	enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
1146
	bitmap_and(pend_shared, pending, enabled, nr_shared);
1147 1148
	bitmap_and(pend_shared, pend_shared,
		   vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
1149
		   nr_shared);
1150 1151

	pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
1152
	pending_shared = find_first_bit(pend_shared, nr_shared);
1153
	return (pending_private < VGIC_NR_PRIVATE_IRQS ||
1154
		pending_shared < vgic_nr_shared_irqs(dist));
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
}

/*
 * Update the interrupt state and determine which CPUs have pending
 * interrupts. Must be called with distributor lock held.
 */
static void vgic_update_state(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int c;

	if (!dist->enabled) {
1168
		set_bit(0, dist->irq_pending_on_cpu);
1169 1170 1171 1172 1173 1174
		return;
	}

	kvm_for_each_vcpu(c, vcpu, kvm) {
		if (compute_pending_for_cpu(vcpu)) {
			pr_debug("CPU%d has pending interrupts\n", c);
1175
			set_bit(c, dist->irq_pending_on_cpu);
1176 1177
		}
	}
1178
}
1179

1180 1181
static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
{
1182
	return vgic_ops->get_lr(vcpu, lr);
1183 1184 1185 1186 1187
}

static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
			       struct vgic_lr vlr)
{
1188
	vgic_ops->set_lr(vcpu, lr, vlr);
1189 1190
}

1191 1192 1193
static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
			       struct vgic_lr vlr)
{
1194
	vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
1195 1196 1197 1198
}

static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
{
1199
	return vgic_ops->get_elrsr(vcpu);
1200 1201
}

1202 1203
static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
{
1204
	return vgic_ops->get_eisr(vcpu);
1205 1206
}

1207 1208
static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
{
1209
	return vgic_ops->get_interrupt_status(vcpu);
1210 1211
}

1212 1213
static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
{
1214
	vgic_ops->enable_underflow(vcpu);
1215 1216 1217 1218
}

static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
{
1219
	vgic_ops->disable_underflow(vcpu);
1220 1221
}

1222 1223
static inline void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
{
1224
	vgic_ops->get_vmcr(vcpu, vmcr);
1225 1226 1227 1228
}

static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
{
1229
	vgic_ops->set_vmcr(vcpu, vmcr);
1230 1231
}

1232 1233
static inline void vgic_enable(struct kvm_vcpu *vcpu)
{
1234
	vgic_ops->enable(vcpu);
1235 1236
}

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);

	vlr.state = 0;
	vgic_set_lr(vcpu, lr_nr, vlr);
	clear_bit(lr_nr, vgic_cpu->lr_used);
	vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
}
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

/*
 * An interrupt may have been disabled after being made pending on the
 * CPU interface (the classic case is a timer running while we're
 * rebooting the guest - the interrupt would kick as soon as the CPU
 * interface gets enabled, with deadly consequences).
 *
 * The solution is to examine already active LRs, and check the
 * interrupt is still enabled. If not, just retire it.
 */
static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	int lr;

1262
	for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
1263
		struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1264

1265 1266
		if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
			vgic_retire_lr(lr, vlr.irq, vcpu);
1267 1268
			if (vgic_irq_is_queued(vcpu, vlr.irq))
				vgic_irq_clear_queued(vcpu, vlr.irq);
1269 1270 1271 1272
		}
	}
}

1273 1274 1275 1276 1277 1278 1279
/*
 * Queue an interrupt to a CPU virtual interface. Return true on success,
 * or false if it wasn't possible to queue it.
 */
static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1280
	struct vgic_lr vlr;
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
	int lr;

	/* Sanitize the input... */
	BUG_ON(sgi_source_id & ~7);
	BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
	BUG_ON(irq >= VGIC_NR_IRQS);

	kvm_debug("Queue IRQ%d\n", irq);

	lr = vgic_cpu->vgic_irq_lr_map[irq];

	/* Do we have an active interrupt for the same CPUID? */
1293 1294 1295 1296 1297 1298 1299 1300 1301
	if (lr != LR_EMPTY) {
		vlr = vgic_get_lr(vcpu, lr);
		if (vlr.source == sgi_source_id) {
			kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
			BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
			vlr.state |= LR_STATE_PENDING;
			vgic_set_lr(vcpu, lr, vlr);
			return true;
		}
1302 1303 1304 1305
	}

	/* Try to use another LR for this interrupt */
	lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1306 1307
			       vgic->nr_lr);
	if (lr >= vgic->nr_lr)
1308 1309 1310 1311 1312 1313
		return false;

	kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
	vgic_cpu->vgic_irq_lr_map[irq] = lr;
	set_bit(lr, vgic_cpu->lr_used);

1314 1315 1316
	vlr.irq = irq;
	vlr.source = sgi_source_id;
	vlr.state = LR_STATE_PENDING;
1317
	if (!vgic_irq_is_edge(vcpu, irq))
1318 1319 1320
		vlr.state |= LR_EOI_INT;

	vgic_set_lr(vcpu, lr, vlr);
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

	return true;
}

static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	unsigned long sources;
	int vcpu_id = vcpu->vcpu_id;
	int c;

1332
	sources = *vgic_get_sgi_sources(dist, vcpu_id, irq);
1333

1334
	for_each_set_bit(c, &sources, dist->nr_cpus) {
1335 1336 1337 1338
		if (vgic_queue_irq(vcpu, c, irq))
			clear_bit(c, &sources);
	}

1339
	*vgic_get_sgi_sources(dist, vcpu_id, irq) = sources;
1340 1341 1342 1343 1344 1345 1346 1347

	/*
	 * If the sources bitmap has been cleared it means that we
	 * could queue all the SGIs onto link registers (see the
	 * clear_bit above), and therefore we are done with them in
	 * our emulated gic and can get rid of them.
	 */
	if (!sources) {
1348
		vgic_dist_irq_clear_pending(vcpu, irq);
1349 1350 1351 1352 1353 1354 1355 1356 1357
		vgic_cpu_irq_clear(vcpu, irq);
		return true;
	}

	return false;
}

static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
{
1358
	if (!vgic_can_sample_irq(vcpu, irq))
1359 1360 1361 1362
		return true; /* level interrupt, already queued */

	if (vgic_queue_irq(vcpu, 0, irq)) {
		if (vgic_irq_is_edge(vcpu, irq)) {
1363
			vgic_dist_irq_clear_pending(vcpu, irq);
1364 1365
			vgic_cpu_irq_clear(vcpu, irq);
		} else {
1366
			vgic_irq_set_queued(vcpu, irq);
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
		}

		return true;
	}

	return false;
}

/*
 * Fill the list registers with pending interrupts before running the
 * guest.
 */
static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	int i, vcpu_id;
	int overflow = 0;

	vcpu_id = vcpu->vcpu_id;

	/*
	 * We may not have any pending interrupt, or the interrupts
	 * may have been serviced from another vcpu. In all cases,
	 * move along.
	 */
	if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
		pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
		goto epilog;
	}

	/* SGIs */
	for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
		if (!vgic_queue_sgi(vcpu, i))
			overflow = 1;
	}

	/* PPIs */
	for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
		if (!vgic_queue_hwirq(vcpu, i))
			overflow = 1;
	}

	/* SPIs */
1411
	for_each_set_bit(i, vgic_cpu->pending_shared, vgic_nr_shared_irqs(dist)) {
1412 1413 1414 1415 1416 1417
		if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
			overflow = 1;
	}

epilog:
	if (overflow) {
1418
		vgic_enable_underflow(vcpu);
1419
	} else {
1420
		vgic_disable_underflow(vcpu);
1421 1422 1423 1424 1425 1426
		/*
		 * We're about to run this VCPU, and we've consumed
		 * everything the distributor had in store for
		 * us. Claim we don't have anything pending. We'll
		 * adjust that if needed while exiting.
		 */
1427
		clear_bit(vcpu_id, dist->irq_pending_on_cpu);
1428 1429 1430 1431 1432
	}
}

static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
{
1433
	u32 status = vgic_get_interrupt_status(vcpu);
1434 1435
	bool level_pending = false;

1436
	kvm_debug("STATUS = %08x\n", status);
1437

1438
	if (status & INT_STATUS_EOI) {
1439 1440 1441 1442
		/*
		 * Some level interrupts have been EOIed. Clear their
		 * active bit.
		 */
1443 1444
		u64 eisr = vgic_get_eisr(vcpu);
		unsigned long *eisr_ptr = (unsigned long *)&eisr;
1445
		int lr;
1446

1447
		for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
1448
			struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
1449
			WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
1450

1451
			vgic_irq_clear_queued(vcpu, vlr.irq);
1452 1453 1454
			WARN_ON(vlr.state & LR_STATE_MASK);
			vlr.state = 0;
			vgic_set_lr(vcpu, lr, vlr);
1455

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
			/*
			 * If the IRQ was EOIed it was also ACKed and we we
			 * therefore assume we can clear the soft pending
			 * state (should it had been set) for this interrupt.
			 *
			 * Note: if the IRQ soft pending state was set after
			 * the IRQ was acked, it actually shouldn't be
			 * cleared, but we have no way of knowing that unless
			 * we start trapping ACKs when the soft-pending state
			 * is set.
			 */
			vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);

1469
			/* Any additional pending interrupt? */
1470
			if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
1471
				vgic_cpu_irq_set(vcpu, vlr.irq);
1472 1473
				level_pending = true;
			} else {
1474
				vgic_dist_irq_clear_pending(vcpu, vlr.irq);
1475
				vgic_cpu_irq_clear(vcpu, vlr.irq);
1476
			}
1477 1478 1479 1480 1481

			/*
			 * Despite being EOIed, the LR may not have
			 * been marked as empty.
			 */
1482
			vgic_sync_lr_elrsr(vcpu, lr, vlr);
1483 1484 1485
		}
	}

1486
	if (status & INT_STATUS_UNDERFLOW)
1487
		vgic_disable_underflow(vcpu);
1488 1489 1490 1491 1492

	return level_pending;
}

/*
1493 1494
 * Sync back the VGIC state after a guest run. The distributor lock is
 * needed so we don't get preempted in the middle of the state processing.
1495 1496 1497 1498 1499
 */
static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1500 1501
	u64 elrsr;
	unsigned long *elrsr_ptr;
1502 1503 1504 1505
	int lr, pending;
	bool level_pending;

	level_pending = vgic_process_maintenance(vcpu);
1506 1507
	elrsr = vgic_get_elrsr(vcpu);
	elrsr_ptr = (unsigned long *)&elrsr;
1508 1509

	/* Clear mappings for empty LRs */
1510
	for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
1511
		struct vgic_lr vlr;
1512 1513 1514 1515

		if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
			continue;

1516
		vlr = vgic_get_lr(vcpu, lr);
1517

1518 1519
		BUG_ON(vlr.irq >= VGIC_NR_IRQS);
		vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
1520 1521 1522
	}

	/* Check if we still have something up our sleeve... */
1523 1524
	pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
	if (level_pending || pending < vgic->nr_lr)
1525
		set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
}

void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	if (!irqchip_in_kernel(vcpu->kvm))
		return;

	spin_lock(&dist->lock);
	__kvm_vgic_flush_hwstate(vcpu);
	spin_unlock(&dist->lock);
}

void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
{
1542 1543
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

1544 1545 1546
	if (!irqchip_in_kernel(vcpu->kvm))
		return;

1547
	spin_lock(&dist->lock);
1548
	__kvm_vgic_sync_hwstate(vcpu);
1549
	spin_unlock(&dist->lock);
1550 1551 1552 1553 1554 1555 1556 1557 1558
}

int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
{
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;

	if (!irqchip_in_kernel(vcpu->kvm))
		return 0;

1559
	return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
1560 1561
}

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
static void vgic_kick_vcpus(struct kvm *kvm)
{
	struct kvm_vcpu *vcpu;
	int c;

	/*
	 * We've injected an interrupt, time to find out who deserves
	 * a good kick...
	 */
	kvm_for_each_vcpu(c, vcpu, kvm) {
		if (kvm_vgic_vcpu_pending_irq(vcpu))
			kvm_vcpu_kick(vcpu);
	}
}

static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
{
1579
	int edge_triggered = vgic_irq_is_edge(vcpu, irq);
1580 1581 1582 1583 1584 1585

	/*
	 * Only inject an interrupt if:
	 * - edge triggered and we have a rising edge
	 * - level triggered and we change level
	 */
1586 1587
	if (edge_triggered) {
		int state = vgic_dist_irq_is_pending(vcpu, irq);
1588
		return level > state;
1589 1590
	} else {
		int state = vgic_dist_irq_get_level(vcpu, irq);
1591
		return level != state;
1592
	}
1593 1594
}

1595
static bool vgic_update_irq_pending(struct kvm *kvm, int cpuid,
1596 1597 1598 1599
				  unsigned int irq_num, bool level)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
1600
	int edge_triggered, level_triggered;
1601 1602 1603 1604 1605 1606
	int enabled;
	bool ret = true;

	spin_lock(&dist->lock);

	vcpu = kvm_get_vcpu(kvm, cpuid);
1607 1608
	edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
	level_triggered = !edge_triggered;
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621

	if (!vgic_validate_injection(vcpu, irq_num, level)) {
		ret = false;
		goto out;
	}

	if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
		cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
		vcpu = kvm_get_vcpu(kvm, cpuid);
	}

	kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);

1622 1623 1624
	if (level) {
		if (level_triggered)
			vgic_dist_irq_set_level(vcpu, irq_num);
1625
		vgic_dist_irq_set_pending(vcpu, irq_num);
1626 1627 1628 1629 1630 1631 1632 1633 1634
	} else {
		if (level_triggered) {
			vgic_dist_irq_clear_level(vcpu, irq_num);
			if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
				vgic_dist_irq_clear_pending(vcpu, irq_num);
		} else {
			vgic_dist_irq_clear_pending(vcpu, irq_num);
		}
	}
1635 1636 1637 1638 1639 1640 1641 1642

	enabled = vgic_irq_is_enabled(vcpu, irq_num);

	if (!enabled) {
		ret = false;
		goto out;
	}

1643
	if (!vgic_can_sample_irq(vcpu, irq_num)) {
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
		/*
		 * Level interrupt in progress, will be picked up
		 * when EOId.
		 */
		ret = false;
		goto out;
	}

	if (level) {
		vgic_cpu_irq_set(vcpu, irq_num);
1654
		set_bit(cpuid, dist->irq_pending_on_cpu);
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	}

out:
	spin_unlock(&dist->lock);

	return ret;
}

/**
 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
 * @kvm:     The VM structure pointer
 * @cpuid:   The CPU for PPIs
 * @irq_num: The IRQ number that is assigned to the device
 * @level:   Edge-triggered:  true:  to trigger the interrupt
 *			      false: to ignore the call
 *	     Level-sensitive  true:  activates an interrupt
 *			      false: deactivates an interrupt
 *
 * The GIC is not concerned with devices being active-LOW or active-HIGH for
 * level-sensitive interrupts.  You can think of the level parameter as 1
 * being HIGH and 0 being LOW and all devices being active-HIGH.
 */
int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
			bool level)
{
1680 1681
	if (likely(vgic_initialized(kvm)) &&
	    vgic_update_irq_pending(kvm, cpuid, irq_num, level))
1682 1683 1684 1685 1686
		vgic_kick_vcpus(kvm);

	return 0;
}

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
static irqreturn_t vgic_maintenance_handler(int irq, void *data)
{
	/*
	 * We cannot rely on the vgic maintenance interrupt to be
	 * delivered synchronously. This means we can only use it to
	 * exit the VM, and we perform the handling of EOIed
	 * interrupts on the exit path (see vgic_process_maintenance).
	 */
	return IRQ_HANDLED;
}

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;

	kfree(vgic_cpu->pending_shared);
	kfree(vgic_cpu->vgic_irq_lr_map);
	vgic_cpu->pending_shared = NULL;
	vgic_cpu->vgic_irq_lr_map = NULL;
}

static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;

	int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
	vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
	vgic_cpu->vgic_irq_lr_map = kzalloc(nr_irqs, GFP_KERNEL);

	if (!vgic_cpu->pending_shared || !vgic_cpu->vgic_irq_lr_map) {
		kvm_vgic_vcpu_destroy(vcpu);
		return -ENOMEM;
	}

	return 0;
}

1724 1725 1726 1727 1728 1729 1730
/**
 * kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
 * @vcpu: pointer to the vcpu struct
 *
 * Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
 * this vcpu and enable the VGIC for this VCPU
 */
1731 1732 1733 1734 1735 1736
int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
	int i;

1737
	if (vcpu->vcpu_id >= dist->nr_cpus)
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
		return -EBUSY;

	for (i = 0; i < VGIC_NR_IRQS; i++) {
		if (i < VGIC_NR_PPIS)
			vgic_bitmap_set_irq_val(&dist->irq_enabled,
						vcpu->vcpu_id, i, 1);
		if (i < VGIC_NR_PRIVATE_IRQS)
			vgic_bitmap_set_irq_val(&dist->irq_cfg,
						vcpu->vcpu_id, i, VGIC_CFG_EDGE);

		vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
	}

	/*
1752 1753 1754
	 * Store the number of LRs per vcpu, so we don't have to go
	 * all the way to the distributor structure to find out. Only
	 * assembly code should use this one.
1755
	 */
1756
	vgic_cpu->nr_lr = vgic->nr_lr;
1757

1758
	vgic_enable(vcpu);
1759 1760 1761 1762

	return 0;
}

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
void kvm_vgic_destroy(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int i;

	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_vgic_vcpu_destroy(vcpu);

	vgic_free_bitmap(&dist->irq_enabled);
	vgic_free_bitmap(&dist->irq_level);
	vgic_free_bitmap(&dist->irq_pending);
	vgic_free_bitmap(&dist->irq_soft_pend);
	vgic_free_bitmap(&dist->irq_queued);
	vgic_free_bitmap(&dist->irq_cfg);
	vgic_free_bytemap(&dist->irq_priority);
	if (dist->irq_spi_target) {
		for (i = 0; i < dist->nr_cpus; i++)
			vgic_free_bitmap(&dist->irq_spi_target[i]);
	}
	kfree(dist->irq_sgi_sources);
	kfree(dist->irq_spi_cpu);
	kfree(dist->irq_spi_target);
	kfree(dist->irq_pending_on_cpu);
	dist->irq_sgi_sources = NULL;
	dist->irq_spi_cpu = NULL;
	dist->irq_spi_target = NULL;
	dist->irq_pending_on_cpu = NULL;
}

/*
 * Allocate and initialize the various data structures. Must be called
 * with kvm->lock held!
 */
static int vgic_init_maps(struct kvm *kvm)
{
	struct vgic_dist *dist = &kvm->arch.vgic;
	struct kvm_vcpu *vcpu;
	int nr_cpus, nr_irqs;
	int ret, i;

1804
	nr_cpus = dist->nr_cpus = KVM_MAX_VCPUS;
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
	nr_irqs = dist->nr_irqs = VGIC_NR_IRQS;

	ret  = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
	ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
	ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);

	if (ret)
		goto out;

	dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
	dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
	dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
				       GFP_KERNEL);
	dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
					   GFP_KERNEL);
	if (!dist->irq_sgi_sources ||
	    !dist->irq_spi_cpu ||
	    !dist->irq_spi_target ||
	    !dist->irq_pending_on_cpu) {
		ret = -ENOMEM;
		goto out;
	}

	for (i = 0; i < nr_cpus; i++)
		ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
					nr_cpus, nr_irqs);

	if (ret)
		goto out;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
		if (ret) {
			kvm_err("VGIC: Failed to allocate vcpu memory\n");
			break;
		}
	}

out:
	if (ret)
		kvm_vgic_destroy(kvm);

	return ret;
}

1854 1855 1856 1857 1858 1859 1860 1861 1862
/**
 * kvm_vgic_init - Initialize global VGIC state before running any VCPUs
 * @kvm: pointer to the kvm struct
 *
 * Map the virtual CPU interface into the VM before running any VCPUs.  We
 * can't do this at creation time, because user space must first set the
 * virtual CPU interface address in the guest physical address space.  Also
 * initialize the ITARGETSRn regs to 0 on the emulated distributor.
 */
1863 1864 1865 1866
int kvm_vgic_init(struct kvm *kvm)
{
	int ret = 0, i;

1867 1868 1869
	if (!irqchip_in_kernel(kvm))
		return 0;

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
	mutex_lock(&kvm->lock);

	if (vgic_initialized(kvm))
		goto out;

	if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
	    IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
		kvm_err("Need to set vgic cpu and dist addresses first\n");
		ret = -ENXIO;
		goto out;
	}

	ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
1883
				    vgic->vcpu_base, KVM_VGIC_V2_CPU_SIZE);
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	if (ret) {
		kvm_err("Unable to remap VGIC CPU to VCPU\n");
		goto out;
	}

	for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
		vgic_set_target_reg(kvm, 0, i);

	kvm->arch.vgic.ready = true;
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

int kvm_vgic_create(struct kvm *kvm)
{
1900 1901
	int i, vcpu_lock_idx = -1, ret = 0;
	struct kvm_vcpu *vcpu;
1902 1903 1904

	mutex_lock(&kvm->lock);

1905
	if (kvm->arch.vgic.vctrl_base) {
1906 1907 1908 1909
		ret = -EEXIST;
		goto out;
	}

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
	/*
	 * Any time a vcpu is run, vcpu_load is called which tries to grab the
	 * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
	 * that no other VCPUs are run while we create the vgic.
	 */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (!mutex_trylock(&vcpu->mutex))
			goto out_unlock;
		vcpu_lock_idx = i;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (vcpu->arch.has_run_once) {
			ret = -EBUSY;
			goto out_unlock;
		}
	}

1928
	spin_lock_init(&kvm->arch.vgic.lock);
1929
	kvm->arch.vgic.in_kernel = true;
1930
	kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
1931 1932 1933
	kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
	kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;

1934 1935 1936 1937
	ret = vgic_init_maps(kvm);
	if (ret)
		kvm_err("Unable to allocate maps\n");

1938 1939 1940 1941 1942 1943
out_unlock:
	for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
		vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
		mutex_unlock(&vcpu->mutex);
	}

1944 1945 1946 1947 1948
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

1949
static int vgic_ioaddr_overlap(struct kvm *kvm)
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
{
	phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
	phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;

	if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
		return 0;
	if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
	    (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
		return -EBUSY;
	return 0;
}

static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
			      phys_addr_t addr, phys_addr_t size)
{
	int ret;

1967 1968 1969 1970 1971 1972
	if (addr & ~KVM_PHYS_MASK)
		return -E2BIG;

	if (addr & (SZ_4K - 1))
		return -EINVAL;

1973 1974 1975 1976 1977
	if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
		return -EEXIST;
	if (addr + size < addr)
		return -EINVAL;

1978
	*ioaddr = addr;
1979 1980
	ret = vgic_ioaddr_overlap(kvm);
	if (ret)
1981 1982
		*ioaddr = VGIC_ADDR_UNDEF;

1983 1984 1985
	return ret;
}

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
/**
 * kvm_vgic_addr - set or get vgic VM base addresses
 * @kvm:   pointer to the vm struct
 * @type:  the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
 * @addr:  pointer to address value
 * @write: if true set the address in the VM address space, if false read the
 *          address
 *
 * Set or get the vgic base addresses for the distributor and the virtual CPU
 * interface in the VM physical address space.  These addresses are properties
 * of the emulated core/SoC and therefore user space initially knows this
 * information.
 */
int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
2000 2001 2002 2003 2004 2005 2006
{
	int r = 0;
	struct vgic_dist *vgic = &kvm->arch.vgic;

	mutex_lock(&kvm->lock);
	switch (type) {
	case KVM_VGIC_V2_ADDR_TYPE_DIST:
2007 2008 2009 2010 2011 2012
		if (write) {
			r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
					       *addr, KVM_VGIC_V2_DIST_SIZE);
		} else {
			*addr = vgic->vgic_dist_base;
		}
2013 2014
		break;
	case KVM_VGIC_V2_ADDR_TYPE_CPU:
2015 2016 2017 2018 2019 2020
		if (write) {
			r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
					       *addr, KVM_VGIC_V2_CPU_SIZE);
		} else {
			*addr = vgic->vgic_cpu_base;
		}
2021 2022 2023 2024 2025 2026 2027 2028
		break;
	default:
		r = -ENODEV;
	}

	mutex_unlock(&kvm->lock);
	return r;
}
2029

2030 2031 2032
static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
				 struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
2033
	bool updated = false;
2034 2035 2036 2037 2038
	struct vgic_vmcr vmcr;
	u32 *vmcr_field;
	u32 reg;

	vgic_get_vmcr(vcpu, &vmcr);
2039 2040 2041

	switch (offset & ~0x3) {
	case GIC_CPU_CTRL:
2042
		vmcr_field = &vmcr.ctlr;
2043 2044
		break;
	case GIC_CPU_PRIMASK:
2045
		vmcr_field = &vmcr.pmr;
2046 2047
		break;
	case GIC_CPU_BINPOINT:
2048
		vmcr_field = &vmcr.bpr;
2049 2050
		break;
	case GIC_CPU_ALIAS_BINPOINT:
2051
		vmcr_field = &vmcr.abpr;
2052
		break;
2053 2054
	default:
		BUG();
2055 2056 2057
	}

	if (!mmio->is_write) {
2058
		reg = *vmcr_field;
2059 2060 2061
		mmio_data_write(mmio, ~0, reg);
	} else {
		reg = mmio_data_read(mmio, ~0);
2062 2063 2064
		if (reg != *vmcr_field) {
			*vmcr_field = reg;
			vgic_set_vmcr(vcpu, &vmcr);
2065
			updated = true;
2066
		}
2067 2068 2069 2070 2071 2072 2073 2074
	}
	return updated;
}

static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
			     struct kvm_exit_mmio *mmio, phys_addr_t offset)
{
	return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
2075 2076
}

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
				  struct kvm_exit_mmio *mmio,
				  phys_addr_t offset)
{
	u32 reg;

	if (mmio->is_write)
		return false;

	/* GICC_IIDR */
	reg = (PRODUCT_ID_KVM << 20) |
	      (GICC_ARCH_VERSION_V2 << 16) |
	      (IMPLEMENTER_ARM << 0);
	mmio_data_write(mmio, ~0, reg);
	return false;
}

/*
 * CPU Interface Register accesses - these are not accessed by the VM, but by
 * user space for saving and restoring VGIC state.
 */
2098 2099 2100 2101 2102 2103 2104 2105 2106
static const struct mmio_range vgic_cpu_ranges[] = {
	{
		.base		= GIC_CPU_CTRL,
		.len		= 12,
		.handle_mmio	= handle_cpu_mmio_misc,
	},
	{
		.base		= GIC_CPU_ALIAS_BINPOINT,
		.len		= 4,
2107
		.handle_mmio	= handle_mmio_abpr,
2108 2109 2110 2111
	},
	{
		.base		= GIC_CPU_ACTIVEPRIO,
		.len		= 16,
2112
		.handle_mmio	= handle_mmio_raz_wi,
2113 2114 2115 2116
	},
	{
		.base		= GIC_CPU_IDENT,
		.len		= 4,
2117
		.handle_mmio	= handle_cpu_mmio_ident,
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
	},
};

static int vgic_attr_regs_access(struct kvm_device *dev,
				 struct kvm_device_attr *attr,
				 u32 *reg, bool is_write)
{
	const struct mmio_range *r = NULL, *ranges;
	phys_addr_t offset;
	int ret, cpuid, c;
	struct kvm_vcpu *vcpu, *tmp_vcpu;
	struct vgic_dist *vgic;
	struct kvm_exit_mmio mmio;

	offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
	cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
		KVM_DEV_ARM_VGIC_CPUID_SHIFT;

	mutex_lock(&dev->kvm->lock);

	if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
		ret = -EINVAL;
		goto out;
	}

	vcpu = kvm_get_vcpu(dev->kvm, cpuid);
	vgic = &dev->kvm->arch.vgic;

	mmio.len = 4;
	mmio.is_write = is_write;
	if (is_write)
		mmio_data_write(&mmio, ~0, *reg);
	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
		mmio.phys_addr = vgic->vgic_dist_base + offset;
		ranges = vgic_dist_ranges;
		break;
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
		mmio.phys_addr = vgic->vgic_cpu_base + offset;
		ranges = vgic_cpu_ranges;
		break;
	default:
		BUG();
	}
	r = find_matching_range(ranges, &mmio, offset);

	if (unlikely(!r || !r->handle_mmio)) {
		ret = -ENXIO;
		goto out;
	}


	spin_lock(&vgic->lock);

	/*
	 * Ensure that no other VCPU is running by checking the vcpu->cpu
	 * field.  If no other VPCUs are running we can safely access the VGIC
	 * state, because even if another VPU is run after this point, that
	 * VCPU will not touch the vgic state, because it will block on
	 * getting the vgic->lock in kvm_vgic_sync_hwstate().
	 */
	kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
		if (unlikely(tmp_vcpu->cpu != -1)) {
			ret = -EBUSY;
			goto out_vgic_unlock;
		}
	}

2186 2187 2188 2189 2190 2191 2192 2193
	/*
	 * Move all pending IRQs from the LRs on all VCPUs so the pending
	 * state can be properly represented in the register state accessible
	 * through this API.
	 */
	kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
		vgic_unqueue_irqs(tmp_vcpu);

2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
	offset -= r->base;
	r->handle_mmio(vcpu, &mmio, offset);

	if (!is_write)
		*reg = mmio_data_read(&mmio, ~0);

	ret = 0;
out_vgic_unlock:
	spin_unlock(&vgic->lock);
out:
	mutex_unlock(&dev->kvm->lock);
	return ret;
}

2208 2209
static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
	int r;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		u64 addr;
		unsigned long type = (unsigned long)attr->attr;

		if (copy_from_user(&addr, uaddr, sizeof(addr)))
			return -EFAULT;

		r = kvm_vgic_addr(dev->kvm, type, &addr, true);
		return (r == -ENODEV) ? -ENXIO : r;
	}
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235

	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
		u32 __user *uaddr = (u32 __user *)(long)attr->addr;
		u32 reg;

		if (get_user(reg, uaddr))
			return -EFAULT;

		return vgic_attr_regs_access(dev, attr, &reg, true);
	}

2236 2237
	}

2238 2239 2240 2241 2242
	return -ENXIO;
}

static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
	int r = -ENXIO;

	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
		u64 addr;
		unsigned long type = (unsigned long)attr->attr;

		r = kvm_vgic_addr(dev->kvm, type, &addr, false);
		if (r)
			return (r == -ENODEV) ? -ENXIO : r;

		if (copy_to_user(uaddr, &addr, sizeof(addr)))
			return -EFAULT;
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
		break;
	}

	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
		u32 __user *uaddr = (u32 __user *)(long)attr->addr;
		u32 reg = 0;

		r = vgic_attr_regs_access(dev, attr, &reg, false);
		if (r)
			return r;
		r = put_user(reg, uaddr);
		break;
2270
	}
2271

2272 2273 2274
	}

	return r;
2275 2276
}

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
static int vgic_has_attr_regs(const struct mmio_range *ranges,
			      phys_addr_t offset)
{
	struct kvm_exit_mmio dev_attr_mmio;

	dev_attr_mmio.len = 4;
	if (find_matching_range(ranges, &dev_attr_mmio, offset))
		return 0;
	else
		return -ENXIO;
}

2289 2290
static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
{
2291 2292
	phys_addr_t offset;

2293 2294 2295 2296 2297 2298 2299 2300
	switch (attr->group) {
	case KVM_DEV_ARM_VGIC_GRP_ADDR:
		switch (attr->attr) {
		case KVM_VGIC_V2_ADDR_TYPE_DIST:
		case KVM_VGIC_V2_ADDR_TYPE_CPU:
			return 0;
		}
		break;
2301 2302 2303 2304 2305 2306
	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
		offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
		return vgic_has_attr_regs(vgic_dist_ranges, offset);
	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
		offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
		return vgic_has_attr_regs(vgic_cpu_ranges, offset);
2307
	}
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
	return -ENXIO;
}

static void vgic_destroy(struct kvm_device *dev)
{
	kfree(dev);
}

static int vgic_create(struct kvm_device *dev, u32 type)
{
	return kvm_vgic_create(dev->kvm);
}

2321
static struct kvm_device_ops kvm_arm_vgic_v2_ops = {
2322 2323 2324 2325 2326 2327 2328
	.name = "kvm-arm-vgic",
	.create = vgic_create,
	.destroy = vgic_destroy,
	.set_attr = vgic_set_attr,
	.get_attr = vgic_get_attr,
	.has_attr = vgic_has_attr,
};
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364

static void vgic_init_maintenance_interrupt(void *info)
{
	enable_percpu_irq(vgic->maint_irq, 0);
}

static int vgic_cpu_notify(struct notifier_block *self,
			   unsigned long action, void *cpu)
{
	switch (action) {
	case CPU_STARTING:
	case CPU_STARTING_FROZEN:
		vgic_init_maintenance_interrupt(NULL);
		break;
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		disable_percpu_irq(vgic->maint_irq);
		break;
	}

	return NOTIFY_OK;
}

static struct notifier_block vgic_cpu_nb = {
	.notifier_call = vgic_cpu_notify,
};

static const struct of_device_id vgic_ids[] = {
	{ .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
	{ .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
	{},
};

int kvm_vgic_hyp_init(void)
{
	const struct of_device_id *matched_id;
2365 2366
	const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
				const struct vgic_params **);
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
	struct device_node *vgic_node;
	int ret;

	vgic_node = of_find_matching_node_and_match(NULL,
						    vgic_ids, &matched_id);
	if (!vgic_node) {
		kvm_err("error: no compatible GIC node found\n");
		return -ENODEV;
	}

	vgic_probe = matched_id->data;
	ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
	if (ret)
		return ret;

	ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
				 "vgic", kvm_get_running_vcpus());
	if (ret) {
		kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
		return ret;
	}

	ret = __register_cpu_notifier(&vgic_cpu_nb);
	if (ret) {
		kvm_err("Cannot register vgic CPU notifier\n");
		goto out_free_irq;
	}

	/* Callback into for arch code for setup */
	vgic_arch_setup(vgic);

	on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);

	return kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
				       KVM_DEV_TYPE_ARM_VGIC_V2);

out_free_irq:
	free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
	return ret;
}