phy.c 123.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
/******************************************************************************
 *
 * Copyright(c) 2009-2010  Realtek Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
 *
 * The full GNU General Public License is included in this distribution in the
 * file called LICENSE.
 *
 * Contact Information:
 * wlanfae <wlanfae@realtek.com>
 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
 * Hsinchu 300, Taiwan.
 *
 * Larry Finger <Larry.Finger@lwfinger.net>
 *
 *****************************************************************************/

#include "../wifi.h"
#include "../pci.h"
#include "../ps.h"
#include "reg.h"
#include "def.h"
#include "phy.h"
#include "rf.h"
#include "dm.h"
#include "table.h"
#include "sw.h"
#include "hw.h"

#define MAX_RF_IMR_INDEX			12
#define MAX_RF_IMR_INDEX_NORMAL			13
#define RF_REG_NUM_FOR_C_CUT_5G			6
#define RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA	7
#define RF_REG_NUM_FOR_C_CUT_2G			5
#define RF_CHNL_NUM_5G				19
#define RF_CHNL_NUM_5G_40M			17
#define TARGET_CHNL_NUM_5G			221
#define TARGET_CHNL_NUM_2G			14
#define CV_CURVE_CNT				64

static u32 rf_reg_for_5g_swchnl_normal[MAX_RF_IMR_INDEX_NORMAL] = {
	0, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x0
};

static u8 rf_reg_for_c_cut_5g[RF_REG_NUM_FOR_C_CUT_5G] = {
	RF_SYN_G1, RF_SYN_G2, RF_SYN_G3, RF_SYN_G4, RF_SYN_G5, RF_SYN_G6
};

static u8 rf_reg_for_c_cut_2g[RF_REG_NUM_FOR_C_CUT_2G] = {
	RF_SYN_G1, RF_SYN_G2, RF_SYN_G3, RF_SYN_G7, RF_SYN_G8
};

static u8 rf_for_c_cut_5g_internal_pa[RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA] = {
	0x0B, 0x48, 0x49, 0x4B, 0x03, 0x04, 0x0E
};

static u32 rf_reg_mask_for_c_cut_2g[RF_REG_NUM_FOR_C_CUT_2G] = {
	BIT(19) | BIT(18) | BIT(17) | BIT(14) | BIT(1),
	BIT(10) | BIT(9),
	BIT(18) | BIT(17) | BIT(16) | BIT(1),
	BIT(2) | BIT(1),
	BIT(15) | BIT(14) | BIT(13) | BIT(12) | BIT(11)
};

static u8 rf_chnl_5g[RF_CHNL_NUM_5G] = {
	36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108,
	112, 116, 120, 124, 128, 132, 136, 140
};

static u8 rf_chnl_5g_40m[RF_CHNL_NUM_5G_40M] = {
	38, 42, 46, 50, 54, 58, 62, 102, 106, 110, 114,
	118, 122, 126, 130, 134, 138
};
static u32 rf_reg_pram_c_5g[5][RF_REG_NUM_FOR_C_CUT_5G] = {
	{0xE43BE, 0xFC638, 0x77C0A, 0xDE471, 0xd7110, 0x8EB04},
	{0xE43BE, 0xFC078, 0xF7C1A, 0xE0C71, 0xD7550, 0xAEB04},
	{0xE43BF, 0xFF038, 0xF7C0A, 0xDE471, 0xE5550, 0xAEB04},
	{0xE43BF, 0xFF079, 0xF7C1A, 0xDE471, 0xE5550, 0xAEB04},
	{0xE43BF, 0xFF038, 0xF7C1A, 0xDE471, 0xd7550, 0xAEB04}
};

static u32 rf_reg_param_for_c_cut_2g[3][RF_REG_NUM_FOR_C_CUT_2G] = {
	{0x643BC, 0xFC038, 0x77C1A, 0x41289, 0x01840},
	{0x643BC, 0xFC038, 0x07C1A, 0x41289, 0x01840},
	{0x243BC, 0xFC438, 0x07C1A, 0x4128B, 0x0FC41}
};

static u32 rf_syn_g4_for_c_cut_2g = 0xD1C31 & 0x7FF;

static u32 rf_pram_c_5g_int_pa[3][RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA] = {
	{0x01a00, 0x40443, 0x00eb5, 0x89bec, 0x94a12, 0x94a12, 0x94a12},
	{0x01800, 0xc0443, 0x00730, 0x896ee, 0x94a52, 0x94a52, 0x94a52},
	{0x01800, 0xc0443, 0x00730, 0x896ee, 0x94a12, 0x94a12, 0x94a12}
};

/* [mode][patha+b][reg] */
static u32 rf_imr_param_normal[1][3][MAX_RF_IMR_INDEX_NORMAL] = {
	{
		/* channel 1-14. */
		{
			0x70000, 0x00ff0, 0x4400f, 0x00ff0, 0x0, 0x0, 0x0,
			0x0, 0x0, 0x64888, 0xe266c, 0x00090, 0x22fff
		},
		/* path 36-64 */
		{
			0x70000, 0x22880, 0x4470f, 0x55880, 0x00070, 0x88000,
			0x0, 0x88080, 0x70000, 0x64a82, 0xe466c, 0x00090,
			0x32c9a
		},
		/* 100 -165 */
		{
			0x70000, 0x44880, 0x4477f, 0x77880, 0x00070, 0x88000,
			0x0, 0x880b0, 0x0, 0x64b82, 0xe466c, 0x00090, 0x32c9a
		}
	}
};

static u32 curveindex_5g[TARGET_CHNL_NUM_5G] = {0};

static u32 curveindex_2g[TARGET_CHNL_NUM_2G] = {0};

static u32 targetchnl_5g[TARGET_CHNL_NUM_5G] = {
	25141, 25116, 25091, 25066, 25041,
	25016, 24991, 24966, 24941, 24917,
	24892, 24867, 24843, 24818, 24794,
	24770, 24765, 24721, 24697, 24672,
	24648, 24624, 24600, 24576, 24552,
	24528, 24504, 24480, 24457, 24433,
	24409, 24385, 24362, 24338, 24315,
	24291, 24268, 24245, 24221, 24198,
	24175, 24151, 24128, 24105, 24082,
	24059, 24036, 24013, 23990, 23967,
	23945, 23922, 23899, 23876, 23854,
	23831, 23809, 23786, 23764, 23741,
	23719, 23697, 23674, 23652, 23630,
	23608, 23586, 23564, 23541, 23519,
	23498, 23476, 23454, 23432, 23410,
	23388, 23367, 23345, 23323, 23302,
	23280, 23259, 23237, 23216, 23194,
	23173, 23152, 23130, 23109, 23088,
	23067, 23046, 23025, 23003, 22982,
	22962, 22941, 22920, 22899, 22878,
	22857, 22837, 22816, 22795, 22775,
	22754, 22733, 22713, 22692, 22672,
	22652, 22631, 22611, 22591, 22570,
	22550, 22530, 22510, 22490, 22469,
	22449, 22429, 22409, 22390, 22370,
	22350, 22336, 22310, 22290, 22271,
	22251, 22231, 22212, 22192, 22173,
	22153, 22134, 22114, 22095, 22075,
	22056, 22037, 22017, 21998, 21979,
	21960, 21941, 21921, 21902, 21883,
	21864, 21845, 21826, 21807, 21789,
	21770, 21751, 21732, 21713, 21695,
	21676, 21657, 21639, 21620, 21602,
	21583, 21565, 21546, 21528, 21509,
	21491, 21473, 21454, 21436, 21418,
	21400, 21381, 21363, 21345, 21327,
	21309, 21291, 21273, 21255, 21237,
	21219, 21201, 21183, 21166, 21148,
	21130, 21112, 21095, 21077, 21059,
	21042, 21024, 21007, 20989, 20972,
	25679, 25653, 25627, 25601, 25575,
	25549, 25523, 25497, 25471, 25446,
	25420, 25394, 25369, 25343, 25318,
	25292, 25267, 25242, 25216, 25191,
	25166
};

/* channel 1~14 */
static u32 targetchnl_2g[TARGET_CHNL_NUM_2G] = {
	26084, 26030, 25976, 25923, 25869, 25816, 25764,
	25711, 25658, 25606, 25554, 25502, 25451, 25328
};

static u32 _rtl92d_phy_calculate_bit_shift(u32 bitmask)
{
	u32 i;

	for (i = 0; i <= 31; i++) {
		if (((bitmask >> i) & 0x1) == 1)
			break;
	}

	return i;
}

u32 rtl92d_phy_query_bb_reg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
	u32 returnvalue, originalvalue, bitshift;
	u8 dbi_direct;

207 208
	RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x)\n",
		 regaddr, bitmask);
209 210 211 212 213 214 215 216 217 218 219 220 221 222
	if (rtlhal->during_mac1init_radioa || rtlhal->during_mac0init_radiob) {
		/* mac1 use phy0 read radio_b. */
		/* mac0 use phy1 read radio_b. */
		if (rtlhal->during_mac1init_radioa)
			dbi_direct = BIT(3);
		else if (rtlhal->during_mac0init_radiob)
			dbi_direct = BIT(3) | BIT(2);
		originalvalue = rtl92de_read_dword_dbi(hw, (u16)regaddr,
			dbi_direct);
	} else {
		originalvalue = rtl_read_dword(rtlpriv, regaddr);
	}
	bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
	returnvalue = (originalvalue & bitmask) >> bitshift;
223 224 225
	RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
		 "BBR MASK=0x%x Addr[0x%x]=0x%x\n",
		 bitmask, regaddr, originalvalue);
226 227 228 229 230 231 232 233 234 235 236
	return returnvalue;
}

void rtl92d_phy_set_bb_reg(struct ieee80211_hw *hw,
			   u32 regaddr, u32 bitmask, u32 data)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
	u8 dbi_direct = 0;
	u32 originalvalue, bitshift;

237 238 239
	RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
		 "regaddr(%#x), bitmask(%#x), data(%#x)\n",
		 regaddr, bitmask, data);
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
	if (rtlhal->during_mac1init_radioa)
		dbi_direct = BIT(3);
	else if (rtlhal->during_mac0init_radiob)
		/* mac0 use phy1 write radio_b. */
		dbi_direct = BIT(3) | BIT(2);
	if (bitmask != BMASKDWORD) {
		if (rtlhal->during_mac1init_radioa ||
		    rtlhal->during_mac0init_radiob)
			originalvalue = rtl92de_read_dword_dbi(hw,
					(u16) regaddr,
					dbi_direct);
		else
			originalvalue = rtl_read_dword(rtlpriv, regaddr);
		bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
		data = ((originalvalue & (~bitmask)) | (data << bitshift));
	}
	if (rtlhal->during_mac1init_radioa || rtlhal->during_mac0init_radiob)
		rtl92de_write_dword_dbi(hw, (u16) regaddr, data, dbi_direct);
	else
		rtl_write_dword(rtlpriv, regaddr, data);
260 261 262
	RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
		 "regaddr(%#x), bitmask(%#x), data(%#x)\n",
		 regaddr, bitmask, data);
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
}

static u32 _rtl92d_phy_rf_serial_read(struct ieee80211_hw *hw,
				      enum radio_path rfpath, u32 offset)
{

	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
	u32 newoffset;
	u32 tmplong, tmplong2;
	u8 rfpi_enable = 0;
	u32 retvalue;

	newoffset = offset;
	tmplong = rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, BMASKDWORD);
	if (rfpath == RF90_PATH_A)
		tmplong2 = tmplong;
	else
		tmplong2 = rtl_get_bbreg(hw, pphyreg->rfhssi_para2, BMASKDWORD);
	tmplong2 = (tmplong2 & (~BLSSIREADADDRESS)) |
		(newoffset << 23) | BLSSIREADEDGE;
	rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, BMASKDWORD,
		tmplong & (~BLSSIREADEDGE));
	udelay(10);
	rtl_set_bbreg(hw, pphyreg->rfhssi_para2, BMASKDWORD, tmplong2);
	udelay(50);
	udelay(50);
	rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, BMASKDWORD,
		tmplong | BLSSIREADEDGE);
	udelay(10);
	if (rfpath == RF90_PATH_A)
		rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1,
			      BIT(8));
	else if (rfpath == RF90_PATH_B)
		rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XB_HSSIPARAMETER1,
			      BIT(8));
	if (rfpi_enable)
		retvalue = rtl_get_bbreg(hw, pphyreg->rflssi_readbackpi,
			BLSSIREADBACKDATA);
	else
		retvalue = rtl_get_bbreg(hw, pphyreg->rflssi_readback,
			BLSSIREADBACKDATA);
306 307
	RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFR-%d Addr[0x%x] = 0x%x\n",
		 rfpath, pphyreg->rflssi_readback, retvalue);
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
	return retvalue;
}

static void _rtl92d_phy_rf_serial_write(struct ieee80211_hw *hw,
					enum radio_path rfpath,
					u32 offset, u32 data)
{
	u32 data_and_addr;
	u32 newoffset;
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];

	newoffset = offset;
	/* T65 RF */
	data_and_addr = ((newoffset << 20) | (data & 0x000fffff)) & 0x0fffffff;
	rtl_set_bbreg(hw, pphyreg->rf3wire_offset, BMASKDWORD, data_and_addr);
325 326
	RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFW-%d Addr[0x%x]=0x%x\n",
		 rfpath, pphyreg->rf3wire_offset, data_and_addr);
327 328 329 330 331 332 333 334 335
}

u32 rtl92d_phy_query_rf_reg(struct ieee80211_hw *hw,
			    enum radio_path rfpath, u32 regaddr, u32 bitmask)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u32 original_value, readback_value, bitshift;
	unsigned long flags;

336 337 338
	RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
		 "regaddr(%#x), rfpath(%#x), bitmask(%#x)\n",
		 regaddr, rfpath, bitmask);
339 340 341 342 343
	spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags);
	original_value = _rtl92d_phy_rf_serial_read(hw, rfpath, regaddr);
	bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
	readback_value = (original_value & bitmask) >> bitshift;
	spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags);
344 345 346
	RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
		 "regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n",
		 regaddr, rfpath, bitmask, original_value);
347 348 349 350 351 352 353 354 355 356 357 358
	return readback_value;
}

void rtl92d_phy_set_rf_reg(struct ieee80211_hw *hw, enum radio_path rfpath,
	u32 regaddr, u32 bitmask, u32 data)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	u32 original_value, bitshift;
	unsigned long flags;

	RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
359 360
		 "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
		 regaddr, bitmask, data, rfpath);
361 362 363 364 365 366 367 368 369 370 371 372 373 374
	if (bitmask == 0)
		return;
	spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags);
	if (rtlphy->rf_mode != RF_OP_BY_FW) {
		if (bitmask != BRFREGOFFSETMASK) {
			original_value = _rtl92d_phy_rf_serial_read(hw,
				rfpath, regaddr);
			bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
			data = ((original_value & (~bitmask)) |
				(data << bitshift));
		}
		_rtl92d_phy_rf_serial_write(hw, rfpath, regaddr, data);
	}
	spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags);
375 376 377
	RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
		 "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
		 regaddr, bitmask, data, rfpath);
378 379 380 381 382 383 384 385 386
}

bool rtl92d_phy_mac_config(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u32 i;
	u32 arraylength;
	u32 *ptrarray;

387
	RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Read Rtl819XMACPHY_Array\n");
388 389
	arraylength = MAC_2T_ARRAYLENGTH;
	ptrarray = rtl8192de_mac_2tarray;
390
	RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Img:Rtl819XMAC_Array\n");
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
	for (i = 0; i < arraylength; i = i + 2)
		rtl_write_byte(rtlpriv, ptrarray[i], (u8) ptrarray[i + 1]);
	if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) {
		/* improve 2-stream TX EVM */
		/* rtl_write_byte(rtlpriv, 0x14,0x71); */
		/* AMPDU aggregation number 9 */
		/* rtl_write_word(rtlpriv, REG_MAX_AGGR_NUM, MAX_AGGR_NUM); */
		rtl_write_byte(rtlpriv, REG_MAX_AGGR_NUM, 0x0B);
	} else {
		/* 92D need to test to decide the num. */
		rtl_write_byte(rtlpriv, REG_MAX_AGGR_NUM, 0x07);
	}
	return true;
}

static void _rtl92d_phy_init_bb_rf_register_definition(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);

	/* RF Interface Sowrtware Control */
	/* 16 LSBs if read 32-bit from 0x870 */
	rtlphy->phyreg_def[RF90_PATH_A].rfintfs = RFPGA0_XAB_RFINTERFACESW;
	/* 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872) */
	rtlphy->phyreg_def[RF90_PATH_B].rfintfs = RFPGA0_XAB_RFINTERFACESW;
	/* 16 LSBs if read 32-bit from 0x874 */
	rtlphy->phyreg_def[RF90_PATH_C].rfintfs = RFPGA0_XCD_RFINTERFACESW;
	/* 16 MSBs if read 32-bit from 0x874 (16-bit for 0x876) */

	rtlphy->phyreg_def[RF90_PATH_D].rfintfs = RFPGA0_XCD_RFINTERFACESW;
	/* RF Interface Readback Value */
	/* 16 LSBs if read 32-bit from 0x8E0 */
	rtlphy->phyreg_def[RF90_PATH_A].rfintfi = RFPGA0_XAB_RFINTERFACERB;
	/* 16 MSBs if read 32-bit from 0x8E0 (16-bit for 0x8E2) */
	rtlphy->phyreg_def[RF90_PATH_B].rfintfi = RFPGA0_XAB_RFINTERFACERB;
	/* 16 LSBs if read 32-bit from 0x8E4 */
	rtlphy->phyreg_def[RF90_PATH_C].rfintfi = RFPGA0_XCD_RFINTERFACERB;
	/* 16 MSBs if read 32-bit from 0x8E4 (16-bit for 0x8E6) */
	rtlphy->phyreg_def[RF90_PATH_D].rfintfi = RFPGA0_XCD_RFINTERFACERB;

	/* RF Interface Output (and Enable) */
	/* 16 LSBs if read 32-bit from 0x860 */
	rtlphy->phyreg_def[RF90_PATH_A].rfintfo = RFPGA0_XA_RFINTERFACEOE;
	/* 16 LSBs if read 32-bit from 0x864 */
	rtlphy->phyreg_def[RF90_PATH_B].rfintfo = RFPGA0_XB_RFINTERFACEOE;

	/* RF Interface (Output and)  Enable */
	/* 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862) */
	rtlphy->phyreg_def[RF90_PATH_A].rfintfe = RFPGA0_XA_RFINTERFACEOE;
	/* 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866) */
	rtlphy->phyreg_def[RF90_PATH_B].rfintfe = RFPGA0_XB_RFINTERFACEOE;

	/* Addr of LSSI. Wirte RF register by driver */
	/* LSSI Parameter */
	rtlphy->phyreg_def[RF90_PATH_A].rf3wire_offset =
				 RFPGA0_XA_LSSIPARAMETER;
	rtlphy->phyreg_def[RF90_PATH_B].rf3wire_offset =
				 RFPGA0_XB_LSSIPARAMETER;

	/* RF parameter */
	/* BB Band Select */
	rtlphy->phyreg_def[RF90_PATH_A].rflssi_select = RFPGA0_XAB_RFPARAMETER;
	rtlphy->phyreg_def[RF90_PATH_B].rflssi_select = RFPGA0_XAB_RFPARAMETER;
	rtlphy->phyreg_def[RF90_PATH_C].rflssi_select = RFPGA0_XCD_RFPARAMETER;
	rtlphy->phyreg_def[RF90_PATH_D].rflssi_select = RFPGA0_XCD_RFPARAMETER;

	/* Tx AGC Gain Stage (same for all path. Should we remove this?) */
	/* Tx gain stage */
	rtlphy->phyreg_def[RF90_PATH_A].rftxgain_stage = RFPGA0_TXGAINSTAGE;
	/* Tx gain stage */
	rtlphy->phyreg_def[RF90_PATH_B].rftxgain_stage = RFPGA0_TXGAINSTAGE;
	/* Tx gain stage */
	rtlphy->phyreg_def[RF90_PATH_C].rftxgain_stage = RFPGA0_TXGAINSTAGE;
	/* Tx gain stage */
	rtlphy->phyreg_def[RF90_PATH_D].rftxgain_stage = RFPGA0_TXGAINSTAGE;

	/* Tranceiver A~D HSSI Parameter-1 */
	/* wire control parameter1 */
	rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para1 = RFPGA0_XA_HSSIPARAMETER1;
	/* wire control parameter1 */
	rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para1 = RFPGA0_XB_HSSIPARAMETER1;

	/* Tranceiver A~D HSSI Parameter-2 */
	/* wire control parameter2 */
	rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para2 = RFPGA0_XA_HSSIPARAMETER2;
	/* wire control parameter2 */
	rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para2 = RFPGA0_XB_HSSIPARAMETER2;

	/* RF switch Control */
	/* TR/Ant switch control */
	rtlphy->phyreg_def[RF90_PATH_A].rfswitch_control =
		RFPGA0_XAB_SWITCHCONTROL;
	rtlphy->phyreg_def[RF90_PATH_B].rfswitch_control =
	    RFPGA0_XAB_SWITCHCONTROL;
	rtlphy->phyreg_def[RF90_PATH_C].rfswitch_control =
	    RFPGA0_XCD_SWITCHCONTROL;
	rtlphy->phyreg_def[RF90_PATH_D].rfswitch_control =
	    RFPGA0_XCD_SWITCHCONTROL;

	/* AGC control 1 */
	rtlphy->phyreg_def[RF90_PATH_A].rfagc_control1 = ROFDM0_XAAGCCORE1;
	rtlphy->phyreg_def[RF90_PATH_B].rfagc_control1 = ROFDM0_XBAGCCORE1;
	rtlphy->phyreg_def[RF90_PATH_C].rfagc_control1 = ROFDM0_XCAGCCORE1;
	rtlphy->phyreg_def[RF90_PATH_D].rfagc_control1 = ROFDM0_XDAGCCORE1;

	/* AGC control 2  */
	rtlphy->phyreg_def[RF90_PATH_A].rfagc_control2 = ROFDM0_XAAGCCORE2;
	rtlphy->phyreg_def[RF90_PATH_B].rfagc_control2 = ROFDM0_XBAGCCORE2;
	rtlphy->phyreg_def[RF90_PATH_C].rfagc_control2 = ROFDM0_XCAGCCORE2;
	rtlphy->phyreg_def[RF90_PATH_D].rfagc_control2 = ROFDM0_XDAGCCORE2;

	/* RX AFE control 1 */
	rtlphy->phyreg_def[RF90_PATH_A].rfrxiq_imbalance =
	    ROFDM0_XARXIQIMBALANCE;
	rtlphy->phyreg_def[RF90_PATH_B].rfrxiq_imbalance =
	    ROFDM0_XBRXIQIMBALANCE;
	rtlphy->phyreg_def[RF90_PATH_C].rfrxiq_imbalance =
	    ROFDM0_XCRXIQIMBALANCE;
	rtlphy->phyreg_def[RF90_PATH_D].rfrxiq_imbalance =
	    ROFDM0_XDRXIQIMBALANCE;

	/*RX AFE control 1 */
	rtlphy->phyreg_def[RF90_PATH_A].rfrx_afe = ROFDM0_XARXAFE;
	rtlphy->phyreg_def[RF90_PATH_B].rfrx_afe = ROFDM0_XBRXAFE;
	rtlphy->phyreg_def[RF90_PATH_C].rfrx_afe = ROFDM0_XCRXAFE;
	rtlphy->phyreg_def[RF90_PATH_D].rfrx_afe = ROFDM0_XDRXAFE;

	/* Tx AFE control 1 */
	rtlphy->phyreg_def[RF90_PATH_A].rftxiq_imbalance =
	    ROFDM0_XATxIQIMBALANCE;
	rtlphy->phyreg_def[RF90_PATH_B].rftxiq_imbalance =
	    ROFDM0_XBTxIQIMBALANCE;
	rtlphy->phyreg_def[RF90_PATH_C].rftxiq_imbalance =
	    ROFDM0_XCTxIQIMBALANCE;
	rtlphy->phyreg_def[RF90_PATH_D].rftxiq_imbalance =
	    ROFDM0_XDTxIQIMBALANCE;

	/* Tx AFE control 2 */
	rtlphy->phyreg_def[RF90_PATH_A].rftx_afe = ROFDM0_XATxAFE;
	rtlphy->phyreg_def[RF90_PATH_B].rftx_afe = ROFDM0_XBTxAFE;
	rtlphy->phyreg_def[RF90_PATH_C].rftx_afe = ROFDM0_XCTxAFE;
	rtlphy->phyreg_def[RF90_PATH_D].rftx_afe = ROFDM0_XDTxAFE;

	/* Tranceiver LSSI Readback SI mode */
	rtlphy->phyreg_def[RF90_PATH_A].rflssi_readback =
	    RFPGA0_XA_LSSIREADBACK;
	rtlphy->phyreg_def[RF90_PATH_B].rflssi_readback =
	    RFPGA0_XB_LSSIREADBACK;
	rtlphy->phyreg_def[RF90_PATH_C].rflssi_readback =
	    RFPGA0_XC_LSSIREADBACK;
	rtlphy->phyreg_def[RF90_PATH_D].rflssi_readback =
	    RFPGA0_XD_LSSIREADBACK;

	/* Tranceiver LSSI Readback PI mode */
	rtlphy->phyreg_def[RF90_PATH_A].rflssi_readbackpi =
	    TRANSCEIVERA_HSPI_READBACK;
	rtlphy->phyreg_def[RF90_PATH_B].rflssi_readbackpi =
	    TRANSCEIVERB_HSPI_READBACK;
}

static bool _rtl92d_phy_config_bb_with_headerfile(struct ieee80211_hw *hw,
	u8 configtype)
{
	int i;
	u32 *phy_regarray_table;
	u32 *agctab_array_table = NULL;
	u32 *agctab_5garray_table;
	u16 phy_reg_arraylen, agctab_arraylen = 0, agctab_5garraylen;
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));

	/* Normal chip,Mac0 use AGC_TAB.txt for 2G and 5G band. */
	if (rtlhal->interfaceindex == 0) {
		agctab_arraylen = AGCTAB_ARRAYLENGTH;
		agctab_array_table = rtl8192de_agctab_array;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
567
			 " ===> phy:MAC0, Rtl819XAGCTAB_Array\n");
568 569 570 571 572
	} else {
		if (rtlhal->current_bandtype == BAND_ON_2_4G) {
			agctab_arraylen = AGCTAB_2G_ARRAYLENGTH;
			agctab_array_table = rtl8192de_agctab_2garray;
			RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
573
				 " ===> phy:MAC1, Rtl819XAGCTAB_2GArray\n");
574 575 576 577
		} else {
			agctab_5garraylen = AGCTAB_5G_ARRAYLENGTH;
			agctab_5garray_table = rtl8192de_agctab_5garray;
			RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
578
				 " ===> phy:MAC1, Rtl819XAGCTAB_5GArray\n");
579 580 581 582 583 584

		}
	}
	phy_reg_arraylen = PHY_REG_2T_ARRAYLENGTH;
	phy_regarray_table = rtl8192de_phy_reg_2tarray;
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
585
		 " ===> phy:Rtl819XPHY_REG_Array_PG\n");
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
	if (configtype == BASEBAND_CONFIG_PHY_REG) {
		for (i = 0; i < phy_reg_arraylen; i = i + 2) {
			if (phy_regarray_table[i] == 0xfe)
				mdelay(50);
			else if (phy_regarray_table[i] == 0xfd)
				mdelay(5);
			else if (phy_regarray_table[i] == 0xfc)
				mdelay(1);
			else if (phy_regarray_table[i] == 0xfb)
				udelay(50);
			else if (phy_regarray_table[i] == 0xfa)
				udelay(5);
			else if (phy_regarray_table[i] == 0xf9)
				udelay(1);
			rtl_set_bbreg(hw, phy_regarray_table[i], BMASKDWORD,
				      phy_regarray_table[i + 1]);
			udelay(1);
			RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
604 605 606
				 "The phy_regarray_table[0] is %x Rtl819XPHY_REGArray[1] is %x\n",
				 phy_regarray_table[i],
				 phy_regarray_table[i + 1]);
607 608 609 610 611 612 613 614 615 616 617
		}
	} else if (configtype == BASEBAND_CONFIG_AGC_TAB) {
		if (rtlhal->interfaceindex == 0) {
			for (i = 0; i < agctab_arraylen; i = i + 2) {
				rtl_set_bbreg(hw, agctab_array_table[i],
					BMASKDWORD,
					agctab_array_table[i + 1]);
				/* Add 1us delay between BB/RF register
				 * setting. */
				udelay(1);
				RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
618
					 "The Rtl819XAGCTAB_Array_Table[0] is %ul Rtl819XPHY_REGArray[1] is %ul\n",
619
					 agctab_array_table[i],
620
					 agctab_array_table[i + 1]);
621 622
			}
			RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
623
				 "Normal Chip, MAC0, load Rtl819XAGCTAB_Array\n");
624 625 626 627 628 629 630 631 632 633
		} else {
			if (rtlhal->current_bandtype == BAND_ON_2_4G) {
				for (i = 0; i < agctab_arraylen; i = i + 2) {
					rtl_set_bbreg(hw, agctab_array_table[i],
						BMASKDWORD,
						agctab_array_table[i + 1]);
					/* Add 1us delay between BB/RF register
					 * setting. */
					udelay(1);
					RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
634
						 "The Rtl819XAGCTAB_Array_Table[0] is %ul Rtl819XPHY_REGArray[1] is %ul\n",
635
						 agctab_array_table[i],
636
						 agctab_array_table[i + 1]);
637 638
				}
				RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
639
					 "Load Rtl819XAGCTAB_2GArray\n");
640 641 642 643 644 645 646 647 648 649
			} else {
				for (i = 0; i < agctab_5garraylen; i = i + 2) {
					rtl_set_bbreg(hw,
						agctab_5garray_table[i],
						BMASKDWORD,
						agctab_5garray_table[i + 1]);
					/* Add 1us delay between BB/RF registeri
					 * setting. */
					udelay(1);
					RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
650
						 "The Rtl819XAGCTAB_5GArray_Table[0] is %ul Rtl819XPHY_REGArray[1] is %ul\n",
651
						 agctab_5garray_table[i],
652
						 agctab_5garray_table[i + 1]);
653 654
				}
				RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
655
					 "Load Rtl819XAGCTAB_5GArray\n");
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
			}
		}
	}
	return true;
}

static void _rtl92d_store_pwrindex_diffrate_offset(struct ieee80211_hw *hw,
						   u32 regaddr, u32 bitmask,
						   u32 data)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);

	if (regaddr == RTXAGC_A_RATE18_06) {
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][0] =
									 data;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
673
			 "MCSTxPowerLevelOriginalOffset[%d][0] = 0x%ulx\n",
674 675
			 rtlphy->pwrgroup_cnt,
			 rtlphy->mcs_txpwrlevel_origoffset
676
			 [rtlphy->pwrgroup_cnt][0]);
677 678 679 680 681
	}
	if (regaddr == RTXAGC_A_RATE54_24) {
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][1] =
									 data;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
682
			 "MCSTxPowerLevelOriginalOffset[%d][1] = 0x%ulx\n",
683 684
			 rtlphy->pwrgroup_cnt,
			 rtlphy->mcs_txpwrlevel_origoffset
685
			 [rtlphy->pwrgroup_cnt][1]);
686 687 688 689 690
	}
	if (regaddr == RTXAGC_A_CCK1_MCS32) {
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][6] =
									 data;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
691
			 "MCSTxPowerLevelOriginalOffset[%d][6] = 0x%ulx\n",
692 693
			 rtlphy->pwrgroup_cnt,
			 rtlphy->mcs_txpwrlevel_origoffset
694
			 [rtlphy->pwrgroup_cnt][6]);
695 696 697 698 699
	}
	if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0xffffff00) {
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][7] =
									 data;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
700
			 "MCSTxPowerLevelOriginalOffset[%d][7] = 0x%ulx\n",
701 702
			 rtlphy->pwrgroup_cnt,
			 rtlphy->mcs_txpwrlevel_origoffset
703
			 [rtlphy->pwrgroup_cnt][7]);
704 705 706 707 708
	}
	if (regaddr == RTXAGC_A_MCS03_MCS00) {
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][2] =
									 data;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
709
			 "MCSTxPowerLevelOriginalOffset[%d][2] = 0x%ulx\n",
710 711
			 rtlphy->pwrgroup_cnt,
			 rtlphy->mcs_txpwrlevel_origoffset
712
			 [rtlphy->pwrgroup_cnt][2]);
713 714 715 716 717
	}
	if (regaddr == RTXAGC_A_MCS07_MCS04) {
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][3] =
									 data;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
718
			 "MCSTxPowerLevelOriginalOffset[%d][3] = 0x%ulx\n",
719 720
			 rtlphy->pwrgroup_cnt,
			 rtlphy->mcs_txpwrlevel_origoffset
721
			 [rtlphy->pwrgroup_cnt][3]);
722 723 724 725 726
	}
	if (regaddr == RTXAGC_A_MCS11_MCS08) {
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][4] =
									 data;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
727
			 "MCSTxPowerLevelOriginalOffset[%d][4] = 0x%ulx\n",
728 729
			 rtlphy->pwrgroup_cnt,
			 rtlphy->mcs_txpwrlevel_origoffset
730
			 [rtlphy->pwrgroup_cnt][4]);
731 732 733 734 735
	}
	if (regaddr == RTXAGC_A_MCS15_MCS12) {
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][5] =
									 data;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
736
			 "MCSTxPowerLevelOriginalOffset[%d][5] = 0x%ulx\n",
737 738
			 rtlphy->pwrgroup_cnt,
			 rtlphy->mcs_txpwrlevel_origoffset
739
			 [rtlphy->pwrgroup_cnt][5]);
740 741 742 743 744
	}
	if (regaddr == RTXAGC_B_RATE18_06) {
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][8] =
									 data;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
745
			 "MCSTxPowerLevelOriginalOffset[%d][8] = 0x%ulx\n",
746 747
			 rtlphy->pwrgroup_cnt,
			 rtlphy->mcs_txpwrlevel_origoffset
748
			 [rtlphy->pwrgroup_cnt][8]);
749 750 751 752 753
	}
	if (regaddr == RTXAGC_B_RATE54_24) {
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][9] =
									 data;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
754
			 "MCSTxPowerLevelOriginalOffset[%d][9] = 0x%ulx\n",
755 756
			 rtlphy->pwrgroup_cnt,
			 rtlphy->mcs_txpwrlevel_origoffset
757
			 [rtlphy->pwrgroup_cnt][9]);
758 759 760 761 762
	}
	if (regaddr == RTXAGC_B_CCK1_55_MCS32) {
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][14] =
									 data;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
763
			 "MCSTxPowerLevelOriginalOffset[%d][14] = 0x%ulx\n",
764 765
			 rtlphy->pwrgroup_cnt,
			 rtlphy->mcs_txpwrlevel_origoffset
766
			 [rtlphy->pwrgroup_cnt][14]);
767 768 769 770 771
	}
	if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0x000000ff) {
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][15] =
									 data;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
772
			 "MCSTxPowerLevelOriginalOffset[%d][15] = 0x%ulx\n",
773 774
			 rtlphy->pwrgroup_cnt,
			 rtlphy->mcs_txpwrlevel_origoffset
775
			 [rtlphy->pwrgroup_cnt][15]);
776 777 778 779 780
	}
	if (regaddr == RTXAGC_B_MCS03_MCS00) {
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][10] =
									 data;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
781
			 "MCSTxPowerLevelOriginalOffset[%d][10] = 0x%ulx\n",
782 783
			 rtlphy->pwrgroup_cnt,
			 rtlphy->mcs_txpwrlevel_origoffset
784
			 [rtlphy->pwrgroup_cnt][10]);
785 786 787 788 789
	}
	if (regaddr == RTXAGC_B_MCS07_MCS04) {
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][11] =
									 data;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
790
			 "MCSTxPowerLevelOriginalOffset[%d][11] = 0x%ulx\n",
791 792
			 rtlphy->pwrgroup_cnt,
			 rtlphy->mcs_txpwrlevel_origoffset
793
			 [rtlphy->pwrgroup_cnt][11]);
794 795 796 797 798
	}
	if (regaddr == RTXAGC_B_MCS11_MCS08) {
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][12] =
									 data;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
799 800 801 802
			 "MCSTxPowerLevelOriginalOffset[%d][12] = 0x%ulx\n",
			 rtlphy->pwrgroup_cnt,
			 rtlphy->mcs_txpwrlevel_origoffset
			 [rtlphy->pwrgroup_cnt][12]);
803 804 805 806 807
	}
	if (regaddr == RTXAGC_B_MCS15_MCS12) {
		rtlphy->mcs_txpwrlevel_origoffset[rtlphy->pwrgroup_cnt][13] =
									 data;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
808 809 810 811
			 "MCSTxPowerLevelOriginalOffset[%d][13] = 0x%ulx\n",
			 rtlphy->pwrgroup_cnt,
			 rtlphy->mcs_txpwrlevel_origoffset
			 [rtlphy->pwrgroup_cnt][13]);
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
		rtlphy->pwrgroup_cnt++;
	}
}

static bool _rtl92d_phy_config_bb_with_pgheaderfile(struct ieee80211_hw *hw,
	u8 configtype)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	int i;
	u32 *phy_regarray_table_pg;
	u16 phy_regarray_pg_len;

	phy_regarray_pg_len = PHY_REG_ARRAY_PG_LENGTH;
	phy_regarray_table_pg = rtl8192de_phy_reg_array_pg;
	if (configtype == BASEBAND_CONFIG_PHY_REG) {
		for (i = 0; i < phy_regarray_pg_len; i = i + 3) {
			if (phy_regarray_table_pg[i] == 0xfe)
				mdelay(50);
			else if (phy_regarray_table_pg[i] == 0xfd)
				mdelay(5);
			else if (phy_regarray_table_pg[i] == 0xfc)
				mdelay(1);
			else if (phy_regarray_table_pg[i] == 0xfb)
				udelay(50);
			else if (phy_regarray_table_pg[i] == 0xfa)
				udelay(5);
			else if (phy_regarray_table_pg[i] == 0xf9)
				udelay(1);
			_rtl92d_store_pwrindex_diffrate_offset(hw,
				phy_regarray_table_pg[i],
				phy_regarray_table_pg[i + 1],
				phy_regarray_table_pg[i + 2]);
		}
	} else {
		RT_TRACE(rtlpriv, COMP_SEND, DBG_TRACE,
847
			 "configtype != BaseBand_Config_PHY_REG\n");
848 849 850 851 852 853 854 855 856 857 858
	}
	return true;
}

static bool _rtl92d_phy_bb_config(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
	bool rtstatus = true;

859
	RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "==>\n");
860 861 862
	rtstatus = _rtl92d_phy_config_bb_with_headerfile(hw,
		BASEBAND_CONFIG_PHY_REG);
	if (rtstatus != true) {
863
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Write BB Reg Fail!!\n");
864 865 866 867 868
		return false;
	}

	/* if (rtlphy->rf_type == RF_1T2R) {
	 *      _rtl92c_phy_bb_config_1t(hw);
869
	 *     RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Config to 1T!!\n");
870 871 872 873 874 875 876 877
	 *} */

	if (rtlefuse->autoload_failflag == false) {
		rtlphy->pwrgroup_cnt = 0;
		rtstatus = _rtl92d_phy_config_bb_with_pgheaderfile(hw,
			BASEBAND_CONFIG_PHY_REG);
	}
	if (rtstatus != true) {
878
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "BB_PG Reg Fail!!\n");
879 880 881 882 883
		return false;
	}
	rtstatus = _rtl92d_phy_config_bb_with_headerfile(hw,
		BASEBAND_CONFIG_AGC_TAB);
	if (rtstatus != true) {
884
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "AGC Table Fail\n");
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
		return false;
	}
	rtlphy->cck_high_power = (bool) (rtl_get_bbreg(hw,
		RFPGA0_XA_HSSIPARAMETER2, 0x200));

	return true;
}

bool rtl92d_phy_bb_config(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u16 regval;
	u32 regvaldw;
	u8 value;

	_rtl92d_phy_init_bb_rf_register_definition(hw);
	regval = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN,
		       regval | BIT(13) | BIT(0) | BIT(1));
	rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x83);
	rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL + 1, 0xdb);
	/* 0x1f bit7 bit6 represent for mac0/mac1 driver ready */
	value = rtl_read_byte(rtlpriv, REG_RF_CTRL);
	rtl_write_byte(rtlpriv, REG_RF_CTRL, value | RF_EN | RF_RSTB |
		RF_SDMRSTB);
	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, FEN_PPLL | FEN_PCIEA |
		FEN_DIO_PCIE | FEN_BB_GLB_RSTn | FEN_BBRSTB);
	rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL + 1, 0x80);
	if (!(IS_92D_SINGLEPHY(rtlpriv->rtlhal.version))) {
		regvaldw = rtl_read_dword(rtlpriv, REG_LEDCFG0);
		rtl_write_dword(rtlpriv, REG_LEDCFG0, regvaldw | BIT(23));
	}

	return _rtl92d_phy_bb_config(hw);
}

bool rtl92d_phy_rf_config(struct ieee80211_hw *hw)
{
	return rtl92d_phy_rf6052_config(hw);
}

bool rtl92d_phy_config_rf_with_headerfile(struct ieee80211_hw *hw,
					  enum rf_content content,
					  enum radio_path rfpath)
{
930
	int i;
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	u32 *radioa_array_table;
	u32 *radiob_array_table;
	u16 radioa_arraylen, radiob_arraylen;
	struct rtl_priv *rtlpriv = rtl_priv(hw);

	radioa_arraylen = RADIOA_2T_ARRAYLENGTH;
	radioa_array_table = rtl8192de_radioa_2tarray;
	radiob_arraylen = RADIOB_2T_ARRAYLENGTH;
	radiob_array_table = rtl8192de_radiob_2tarray;
	if (rtlpriv->efuse.internal_pa_5g[0]) {
		radioa_arraylen = RADIOA_2T_INT_PA_ARRAYLENGTH;
		radioa_array_table = rtl8192de_radioa_2t_int_paarray;
	}
	if (rtlpriv->efuse.internal_pa_5g[1]) {
		radiob_arraylen = RADIOB_2T_INT_PA_ARRAYLENGTH;
		radiob_array_table = rtl8192de_radiob_2t_int_paarray;
	}
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
949
		 "PHY_ConfigRFWithHeaderFile() Radio_A:Rtl819XRadioA_1TArray\n");
950
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
951 952
		 "PHY_ConfigRFWithHeaderFile() Radio_B:Rtl819XRadioB_1TArray\n");
	RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Radio No %x\n", rfpath);
953 954 955 956 957 958

	/* this only happens when DMDP, mac0 start on 2.4G,
	 * mac1 start on 5G, mac 0 has to set phy0&phy1
	 * pathA or mac1 has to set phy0&phy1 pathA */
	if ((content == radiob_txt) && (rfpath == RF90_PATH_A)) {
		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
959
			 " ===> althougth Path A, we load radiob.txt\n");
960 961 962 963 964 965 966 967 968 969
		radioa_arraylen = radiob_arraylen;
		radioa_array_table = radiob_array_table;
	}
	switch (rfpath) {
	case RF90_PATH_A:
		for (i = 0; i < radioa_arraylen; i = i + 2) {
			if (radioa_array_table[i] == 0xfe) {
				mdelay(50);
			} else if (radioa_array_table[i] == 0xfd) {
				/* delay_ms(5); */
970
				mdelay(5);
971 972
			} else if (radioa_array_table[i] == 0xfc) {
				/* delay_ms(1); */
973
				mdelay(1);
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
			} else if (radioa_array_table[i] == 0xfb) {
				udelay(50);
			} else if (radioa_array_table[i] == 0xfa) {
				udelay(5);
			} else if (radioa_array_table[i] == 0xf9) {
				udelay(1);
			} else {
				rtl_set_rfreg(hw, rfpath, radioa_array_table[i],
					      BRFREGOFFSETMASK,
					      radioa_array_table[i + 1]);
				/*  Add 1us delay between BB/RF register set. */
				udelay(1);
			}
		}
		break;
	case RF90_PATH_B:
		for (i = 0; i < radiob_arraylen; i = i + 2) {
			if (radiob_array_table[i] == 0xfe) {
				/* Delay specific ms. Only RF configuration
				 * requires delay. */
				mdelay(50);
			} else if (radiob_array_table[i] == 0xfd) {
				/* delay_ms(5); */
997
				mdelay(5);
998 999
			} else if (radiob_array_table[i] == 0xfc) {
				/* delay_ms(1); */
1000
				mdelay(1);
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
			} else if (radiob_array_table[i] == 0xfb) {
				udelay(50);
			} else if (radiob_array_table[i] == 0xfa) {
				udelay(5);
			} else if (radiob_array_table[i] == 0xf9) {
				udelay(1);
			} else {
				rtl_set_rfreg(hw, rfpath, radiob_array_table[i],
					      BRFREGOFFSETMASK,
					      radiob_array_table[i + 1]);
				/*  Add 1us delay between BB/RF register set. */
				udelay(1);
			}
		}
		break;
	case RF90_PATH_C:
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1018
			 "switch case not processed\n");
1019 1020 1021
		break;
	case RF90_PATH_D:
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1022
			 "switch case not processed\n");
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
		break;
	}
	return true;
}

void rtl92d_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);

	rtlphy->default_initialgain[0] =
	    (u8) rtl_get_bbreg(hw, ROFDM0_XAAGCCORE1, BMASKBYTE0);
	rtlphy->default_initialgain[1] =
	    (u8) rtl_get_bbreg(hw, ROFDM0_XBAGCCORE1, BMASKBYTE0);
	rtlphy->default_initialgain[2] =
	    (u8) rtl_get_bbreg(hw, ROFDM0_XCAGCCORE1, BMASKBYTE0);
	rtlphy->default_initialgain[3] =
	    (u8) rtl_get_bbreg(hw, ROFDM0_XDAGCCORE1, BMASKBYTE0);
	RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1042 1043 1044 1045 1046
		 "Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x\n",
		 rtlphy->default_initialgain[0],
		 rtlphy->default_initialgain[1],
		 rtlphy->default_initialgain[2],
		 rtlphy->default_initialgain[3]);
1047 1048 1049 1050 1051
	rtlphy->framesync = (u8)rtl_get_bbreg(hw, ROFDM0_RXDETECTOR3,
					      BMASKBYTE0);
	rtlphy->framesync_c34 = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR2,
					      BMASKDWORD);
	RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1052 1053
		 "Default framesync (0x%x) = 0x%x\n",
		 ROFDM0_RXDETECTOR3, rtlphy->framesync);
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
}

static void _rtl92d_get_txpower_index(struct ieee80211_hw *hw, u8 channel,
	u8 *cckpowerlevel, u8 *ofdmpowerlevel)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
	u8 index = (channel - 1);

	/* 1. CCK */
	if (rtlhal->current_bandtype == BAND_ON_2_4G) {
		/* RF-A */
		cckpowerlevel[RF90_PATH_A] =
				 rtlefuse->txpwrlevel_cck[RF90_PATH_A][index];
		/* RF-B */
		cckpowerlevel[RF90_PATH_B] =
				 rtlefuse->txpwrlevel_cck[RF90_PATH_B][index];
	} else {
		cckpowerlevel[RF90_PATH_A] = 0;
		cckpowerlevel[RF90_PATH_B] = 0;
	}
	/* 2. OFDM for 1S or 2S */
	if (rtlphy->rf_type == RF_1T2R || rtlphy->rf_type == RF_1T1R) {
		/*  Read HT 40 OFDM TX power */
		ofdmpowerlevel[RF90_PATH_A] =
		    rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index];
		ofdmpowerlevel[RF90_PATH_B] =
		    rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_B][index];
	} else if (rtlphy->rf_type == RF_2T2R) {
		/* Read HT 40 OFDM TX power */
		ofdmpowerlevel[RF90_PATH_A] =
		    rtlefuse->txpwrlevel_ht40_2s[RF90_PATH_A][index];
		ofdmpowerlevel[RF90_PATH_B] =
		    rtlefuse->txpwrlevel_ht40_2s[RF90_PATH_B][index];
	}
}

static void _rtl92d_ccxpower_index_check(struct ieee80211_hw *hw,
	u8 channel, u8 *cckpowerlevel, u8 *ofdmpowerlevel)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);

	rtlphy->cur_cck_txpwridx = cckpowerlevel[0];
	rtlphy->cur_ofdm24g_txpwridx = ofdmpowerlevel[0];
}

static u8 _rtl92c_phy_get_rightchnlplace(u8 chnl)
{
	u8 channel_5g[59] = {
		1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
		36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
		60, 62, 64, 100, 102, 104, 106, 108, 110, 112,
		114, 116, 118, 120, 122, 124, 126, 128,
		130, 132, 134, 136, 138, 140, 149, 151,
		153, 155, 157, 159, 161, 163, 165
	};
	u8 place = chnl;

	if (chnl > 14) {
		for (place = 14; place < sizeof(channel_5g); place++) {
			if (channel_5g[place] == chnl) {
				place++;
				break;
			}
		}
	}
	return place;
}

void rtl92d_phy_set_txpower_level(struct ieee80211_hw *hw, u8 channel)
{
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u8 cckpowerlevel[2], ofdmpowerlevel[2];

	if (rtlefuse->txpwr_fromeprom == false)
		return;
	channel = _rtl92c_phy_get_rightchnlplace(channel);
	_rtl92d_get_txpower_index(hw, channel, &cckpowerlevel[0],
		&ofdmpowerlevel[0]);
	if (rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G)
		_rtl92d_ccxpower_index_check(hw, channel, &cckpowerlevel[0],
				&ofdmpowerlevel[0]);
	if (rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G)
		rtl92d_phy_rf6052_set_cck_txpower(hw, &cckpowerlevel[0]);
	rtl92d_phy_rf6052_set_ofdm_txpower(hw, &ofdmpowerlevel[0], channel);
}

void rtl92d_phy_scan_operation_backup(struct ieee80211_hw *hw, u8 operation)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	enum io_type iotype;

	if (!is_hal_stop(rtlhal)) {
		switch (operation) {
		case SCAN_OPT_BACKUP:
			rtlhal->current_bandtypebackup =
						 rtlhal->current_bandtype;
			iotype = IO_CMD_PAUSE_DM_BY_SCAN;
			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_IO_CMD,
						      (u8 *)&iotype);
			break;
		case SCAN_OPT_RESTORE:
			iotype = IO_CMD_RESUME_DM_BY_SCAN;
			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_IO_CMD,
						      (u8 *)&iotype);
			break;
		default:
			RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1167
				 "Unknown Scan Backup operation\n");
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
			break;
		}
	}
}

void rtl92d_phy_set_bw_mode(struct ieee80211_hw *hw,
			    enum nl80211_channel_type ch_type)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
	unsigned long flag = 0;
	u8 reg_prsr_rsc;
	u8 reg_bw_opmode;

	if (rtlphy->set_bwmode_inprogress)
		return;
	if ((is_hal_stop(rtlhal)) || (RT_CANNOT_IO(hw))) {
		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1188
			 "FALSE driver sleep or unload\n");
1189 1190 1191
		return;
	}
	rtlphy->set_bwmode_inprogress = true;
1192 1193 1194
	RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "Switch to %s bandwidth\n",
		 rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20 ?
		 "20MHz" : "40MHz");
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	reg_bw_opmode = rtl_read_byte(rtlpriv, REG_BWOPMODE);
	reg_prsr_rsc = rtl_read_byte(rtlpriv, REG_RRSR + 2);
	switch (rtlphy->current_chan_bw) {
	case HT_CHANNEL_WIDTH_20:
		reg_bw_opmode |= BW_OPMODE_20MHZ;
		rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
		break;
	case HT_CHANNEL_WIDTH_20_40:
		reg_bw_opmode &= ~BW_OPMODE_20MHZ;
		rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);

		reg_prsr_rsc = (reg_prsr_rsc & 0x90) |
			(mac->cur_40_prime_sc << 5);
		rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_prsr_rsc);
		break;
	default:
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1212
			 "unknown bandwidth: %#X\n", rtlphy->current_chan_bw);
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
		break;
	}
	switch (rtlphy->current_chan_bw) {
	case HT_CHANNEL_WIDTH_20:
		rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x0);
		rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x0);
		/* SET BIT10 BIT11  for receive cck */
		rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
			      BIT(11), 3);
		break;
	case HT_CHANNEL_WIDTH_20_40:
		rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x1);
		rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x1);
		/* Set Control channel to upper or lower.
		 * These settings are required only for 40MHz */
		if (rtlhal->current_bandtype == BAND_ON_2_4G) {
			rtl92d_acquire_cckandrw_pagea_ctl(hw, &flag);
			rtl_set_bbreg(hw, RCCK0_SYSTEM, BCCKSIDEBAND,
				(mac->cur_40_prime_sc >> 1));
			rtl92d_release_cckandrw_pagea_ctl(hw, &flag);
		}
		rtl_set_bbreg(hw, ROFDM1_LSTF, 0xC00, mac->cur_40_prime_sc);
		/* SET BIT10 BIT11  for receive cck */
		rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
			      BIT(11), 0);
		rtl_set_bbreg(hw, 0x818, (BIT(26) | BIT(27)),
			(mac->cur_40_prime_sc ==
			HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1);
		break;
	default:
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1244
			 "unknown bandwidth: %#X\n", rtlphy->current_chan_bw);
1245 1246 1247 1248 1249
		break;

	}
	rtl92d_phy_rf6052_set_bandwidth(hw, rtlphy->current_chan_bw);
	rtlphy->set_bwmode_inprogress = false;
1250
	RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "<==\n");
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
}

static void _rtl92d_phy_stop_trx_before_changeband(struct ieee80211_hw *hw)
{
	rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0);
	rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0);
	rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, BMASKBYTE0, 0x00);
	rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0x0);
}

static void rtl92d_phy_switch_wirelessband(struct ieee80211_hw *hw, u8 band)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1265
	u8 value8;
1266

1267
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==>\n");
1268 1269 1270 1271 1272 1273 1274 1275 1276
	rtlhal->bandset = band;
	rtlhal->current_bandtype = band;
	if (IS_92D_SINGLEPHY(rtlhal->version))
		rtlhal->bandset = BAND_ON_BOTH;
	/* stop RX/Tx */
	_rtl92d_phy_stop_trx_before_changeband(hw);
	/* reconfig BB/RF according to wireless mode */
	if (rtlhal->current_bandtype == BAND_ON_2_4G) {
		/* BB & RF Config */
1277
		RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "====>2.4G\n");
1278 1279 1280 1281 1282
		if (rtlhal->interfaceindex == 1)
			_rtl92d_phy_config_bb_with_headerfile(hw,
				BASEBAND_CONFIG_AGC_TAB);
	} else {
		/* 5G band */
1283
		RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "====>5G\n");
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
		if (rtlhal->interfaceindex == 1)
			_rtl92d_phy_config_bb_with_headerfile(hw,
				BASEBAND_CONFIG_AGC_TAB);
	}
	rtl92d_update_bbrf_configuration(hw);
	if (rtlhal->current_bandtype == BAND_ON_2_4G)
		rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
	rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);

	/* 20M BW. */
	/* rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1); */
	rtlhal->reloadtxpowerindex = true;
	/* notice fw know band status  0x81[1]/0x53[1] = 0: 5G, 1: 2G */
	if (rtlhal->current_bandtype == BAND_ON_2_4G) {
		value8 = rtl_read_byte(rtlpriv,	(rtlhal->interfaceindex ==
			0 ? REG_MAC0 : REG_MAC1));
		value8 |= BIT(1);
		rtl_write_byte(rtlpriv, (rtlhal->interfaceindex ==
			0 ? REG_MAC0 : REG_MAC1), value8);
	} else {
		value8 = rtl_read_byte(rtlpriv, (rtlhal->interfaceindex ==
			0 ? REG_MAC0 : REG_MAC1));
		value8 &= (~BIT(1));
		rtl_write_byte(rtlpriv, (rtlhal->interfaceindex ==
			0 ? REG_MAC0 : REG_MAC1), value8);
	}
1310
	mdelay(1);
1311
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<==Switch Band OK\n");
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
}

static void _rtl92d_phy_reload_imr_setting(struct ieee80211_hw *hw,
	u8 channel, u8 rfpath)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u32 imr_num = MAX_RF_IMR_INDEX;
	u32 rfmask = BRFREGOFFSETMASK;
	u8 group, i;
	unsigned long flag = 0;

1323
	RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>path %d\n", rfpath);
1324
	if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G) {
1325
		RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>5G\n");
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
		rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(25) | BIT(24), 0);
		rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
		/* fc area 0xd2c */
		if (channel > 99)
			rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(13) |
				      BIT(14), 2);
		else
			rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(13) |
				      BIT(14), 1);
		/* leave 0 for channel1-14. */
		group = channel <= 64 ? 1 : 2;
		imr_num = MAX_RF_IMR_INDEX_NORMAL;
		for (i = 0; i < imr_num; i++)
			rtl_set_rfreg(hw, (enum radio_path)rfpath,
				      rf_reg_for_5g_swchnl_normal[i], rfmask,
				      rf_imr_param_normal[0][group][i]);
		rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0);
		rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 1);
	} else {
		/* G band. */
		RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD,
1347 1348 1349
			 "Load RF IMR parameters for G band. IMR already setting %d\n",
			 rtlpriv->rtlhal.load_imrandiqk_setting_for2g);
		RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>2.4G\n");
1350 1351
		if (!rtlpriv->rtlhal.load_imrandiqk_setting_for2g) {
			RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD,
1352 1353
				 "Load RF IMR parameters for G band. %d\n",
				 rfpath);
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
			rtl92d_acquire_cckandrw_pagea_ctl(hw, &flag);
			rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(25) | BIT(24), 0);
			rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4,
				      0x00f00000, 0xf);
			imr_num = MAX_RF_IMR_INDEX_NORMAL;
			for (i = 0; i < imr_num; i++) {
				rtl_set_rfreg(hw, (enum radio_path)rfpath,
					      rf_reg_for_5g_swchnl_normal[i],
					      BRFREGOFFSETMASK,
					      rf_imr_param_normal[0][0][i]);
			}
			rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4,
				      0x00f00000, 0);
			rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN | BCCKEN, 3);
			rtl92d_release_cckandrw_pagea_ctl(hw, &flag);
		}
	}
1371
	RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
1372 1373 1374 1375 1376 1377 1378 1379 1380
}

static void _rtl92d_phy_enable_rf_env(struct ieee80211_hw *hw,
	u8 rfpath, u32 *pu4_regval)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];

1381
	RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "====>\n");
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	/*----Store original RFENV control type----*/
	switch (rfpath) {
	case RF90_PATH_A:
	case RF90_PATH_C:
		*pu4_regval = rtl_get_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV);
		break;
	case RF90_PATH_B:
	case RF90_PATH_D:
		*pu4_regval =
		    rtl_get_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV << 16);
		break;
	}
	/*----Set RF_ENV enable----*/
	rtl_set_bbreg(hw, pphyreg->rfintfe, BRFSI_RFENV << 16, 0x1);
	udelay(1);
	/*----Set RF_ENV output high----*/
	rtl_set_bbreg(hw, pphyreg->rfintfo, BRFSI_RFENV, 0x1);
	udelay(1);
	/* Set bit number of Address and Data for RF register */
	/* Set 1 to 4 bits for 8255 */
	rtl_set_bbreg(hw, pphyreg->rfhssi_para2, B3WIREADDRESSLENGTH, 0x0);
	udelay(1);
	/*Set 0 to 12 bits for 8255 */
	rtl_set_bbreg(hw, pphyreg->rfhssi_para2, B3WIREDATALENGTH, 0x0);
	udelay(1);
1407
	RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "<====\n");
1408 1409 1410 1411 1412 1413 1414 1415 1416
}

static void _rtl92d_phy_restore_rf_env(struct ieee80211_hw *hw, u8 rfpath,
				       u32 *pu4_regval)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];

1417
	RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "=====>\n");
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	/*----Restore RFENV control type----*/ ;
	switch (rfpath) {
	case RF90_PATH_A:
	case RF90_PATH_C:
		rtl_set_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV, *pu4_regval);
		break;
	case RF90_PATH_B:
	case RF90_PATH_D:
		rtl_set_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV << 16,
			      *pu4_regval);
		break;
	}
1430
	RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "<=====\n");
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
}

static void _rtl92d_phy_switch_rf_setting(struct ieee80211_hw *hw, u8 channel)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
	u8 path = rtlhal->current_bandtype ==
	    BAND_ON_5G ? RF90_PATH_A : RF90_PATH_B;
	u8 index = 0, i = 0, rfpath = RF90_PATH_A;
	bool need_pwr_down = false, internal_pa = false;
	u32 u4regvalue, mask = 0x1C000, value = 0, u4tmp, u4tmp2;

1444
	RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>\n");
1445 1446
	/* config path A for 5G */
	if (rtlhal->current_bandtype == BAND_ON_5G) {
1447
		RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>5G\n");
1448
		u4tmp = curveindex_5g[channel - 1];
1449 1450
		RTPRINT(rtlpriv, FINIT, INIT_IQK,
			"ver 1 set RF-A, 5G, 0x28 = 0x%x !!\n", u4tmp);
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
		for (i = 0; i < RF_CHNL_NUM_5G; i++) {
			if (channel == rf_chnl_5g[i] && channel <= 140)
				index = 0;
		}
		for (i = 0; i < RF_CHNL_NUM_5G_40M; i++) {
			if (channel == rf_chnl_5g_40m[i] && channel <= 140)
				index = 1;
		}
		if (channel == 149 || channel == 155 || channel == 161)
			index = 2;
		else if (channel == 151 || channel == 153 || channel == 163
			 || channel == 165)
			index = 3;
		else if (channel == 157 || channel == 159)
			index = 4;

		if (rtlhal->macphymode == DUALMAC_DUALPHY
		    && rtlhal->interfaceindex == 1) {
			need_pwr_down = rtl92d_phy_enable_anotherphy(hw, false);
			rtlhal->during_mac1init_radioa = true;
			/* asume no this case */
			if (need_pwr_down)
				_rtl92d_phy_enable_rf_env(hw, path,
							  &u4regvalue);
		}
		for (i = 0; i < RF_REG_NUM_FOR_C_CUT_5G; i++) {
			if (i == 0 && (rtlhal->macphymode == DUALMAC_DUALPHY)) {
				rtl_set_rfreg(hw, (enum radio_path)path,
					      rf_reg_for_c_cut_5g[i],
					      BRFREGOFFSETMASK, 0xE439D);
			} else if (rf_reg_for_c_cut_5g[i] == RF_SYN_G4) {
				u4tmp2 = (rf_reg_pram_c_5g[index][i] &
				     0x7FF) | (u4tmp << 11);
				if (channel == 36)
					u4tmp2 &= ~(BIT(7) | BIT(6));
				rtl_set_rfreg(hw, (enum radio_path)path,
					      rf_reg_for_c_cut_5g[i],
					      BRFREGOFFSETMASK, u4tmp2);
			} else {
				rtl_set_rfreg(hw, (enum radio_path)path,
					      rf_reg_for_c_cut_5g[i],
					      BRFREGOFFSETMASK,
					      rf_reg_pram_c_5g[index][i]);
			}
			RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
1496 1497 1498 1499 1500 1501 1502
				 "offset 0x%x value 0x%x path %d index %d readback 0x%x\n",
				 rf_reg_for_c_cut_5g[i],
				 rf_reg_pram_c_5g[index][i],
				 path, index,
				 rtl_get_rfreg(hw, (enum radio_path)path,
					       rf_reg_for_c_cut_5g[i],
					       BRFREGOFFSETMASK));
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
		}
		if (need_pwr_down)
			_rtl92d_phy_restore_rf_env(hw, path, &u4regvalue);
		if (rtlhal->during_mac1init_radioa)
			rtl92d_phy_powerdown_anotherphy(hw, false);
		if (channel < 149)
			value = 0x07;
		else if (channel >= 149)
			value = 0x02;
		if (channel >= 36 && channel <= 64)
			index = 0;
		else if (channel >= 100 && channel <= 140)
			index = 1;
		else
			index = 2;
		for (rfpath = RF90_PATH_A; rfpath < rtlphy->num_total_rfpath;
			rfpath++) {
			if (rtlhal->macphymode == DUALMAC_DUALPHY &&
				rtlhal->interfaceindex == 1)	/* MAC 1 5G */
				internal_pa = rtlpriv->efuse.internal_pa_5g[1];
			else
				internal_pa =
					 rtlpriv->efuse.internal_pa_5g[rfpath];
			if (internal_pa) {
				for (i = 0;
				     i < RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA;
				     i++) {
					rtl_set_rfreg(hw, rfpath,
						rf_for_c_cut_5g_internal_pa[i],
						BRFREGOFFSETMASK,
						rf_pram_c_5g_int_pa[index][i]);
					RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD,
1535
						 "offset 0x%x value 0x%x path %d index %d\n",
1536 1537
						 rf_for_c_cut_5g_internal_pa[i],
						 rf_pram_c_5g_int_pa[index][i],
1538
						 rfpath, index);
1539 1540 1541 1542 1543 1544 1545
				}
			} else {
				rtl_set_rfreg(hw, (enum radio_path)rfpath, 0x0B,
					      mask, value);
			}
		}
	} else if (rtlhal->current_bandtype == BAND_ON_2_4G) {
1546
		RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>2.4G\n");
1547
		u4tmp = curveindex_2g[channel - 1];
1548 1549
		RTPRINT(rtlpriv, FINIT, INIT_IQK,
			"ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n", u4tmp);
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
		if (channel == 1 || channel == 2 || channel == 4 || channel == 9
		    || channel == 10 || channel == 11 || channel == 12)
			index = 0;
		else if (channel == 3 || channel == 13 || channel == 14)
			index = 1;
		else if (channel >= 5 && channel <= 8)
			index = 2;
		if (rtlhal->macphymode == DUALMAC_DUALPHY) {
			path = RF90_PATH_A;
			if (rtlhal->interfaceindex == 0) {
				need_pwr_down =
					 rtl92d_phy_enable_anotherphy(hw, true);
				rtlhal->during_mac0init_radiob = true;

				if (need_pwr_down)
					_rtl92d_phy_enable_rf_env(hw, path,
								  &u4regvalue);
			}
		}
		for (i = 0; i < RF_REG_NUM_FOR_C_CUT_2G; i++) {
			if (rf_reg_for_c_cut_2g[i] == RF_SYN_G7)
				rtl_set_rfreg(hw, (enum radio_path)path,
					rf_reg_for_c_cut_2g[i],
					BRFREGOFFSETMASK,
					(rf_reg_param_for_c_cut_2g[index][i] |
					BIT(17)));
			else
				rtl_set_rfreg(hw, (enum radio_path)path,
					      rf_reg_for_c_cut_2g[i],
					      BRFREGOFFSETMASK,
					      rf_reg_param_for_c_cut_2g
					      [index][i]);
			RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
1583 1584 1585 1586 1587 1588 1589
				 "offset 0x%x value 0x%x mak 0x%x path %d index %d readback 0x%x\n",
				 rf_reg_for_c_cut_2g[i],
				 rf_reg_param_for_c_cut_2g[index][i],
				 rf_reg_mask_for_c_cut_2g[i], path, index,
				 rtl_get_rfreg(hw, (enum radio_path)path,
					       rf_reg_for_c_cut_2g[i],
					       BRFREGOFFSETMASK));
1590 1591
		}
		RTPRINT(rtlpriv, FINIT, INIT_IQK,
1592 1593
			"cosa ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n",
			rf_syn_g4_for_c_cut_2g | (u4tmp << 11));
1594 1595 1596 1597 1598 1599 1600 1601 1602

		rtl_set_rfreg(hw, (enum radio_path)path, RF_SYN_G4,
			      BRFREGOFFSETMASK,
			      rf_syn_g4_for_c_cut_2g | (u4tmp << 11));
		if (need_pwr_down)
			_rtl92d_phy_restore_rf_env(hw, path, &u4regvalue);
		if (rtlhal->during_mac0init_radiob)
			rtl92d_phy_powerdown_anotherphy(hw, true);
	}
1603
	RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
}

u8 rtl92d_get_rightchnlplace_for_iqk(u8 chnl)
{
	u8 channel_all[59] = {
		1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
		36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
		60, 62, 64, 100, 102, 104, 106, 108, 110, 112,
		114, 116, 118, 120, 122, 124, 126, 128,	130,
		132, 134, 136, 138, 140, 149, 151, 153, 155,
		157, 159, 161, 163, 165
	};
	u8 place = chnl;

	if (chnl > 14) {
		for (place = 14; place < sizeof(channel_all); place++) {
			if (channel_all[place] == chnl)
				return place - 13;
		}
	}

	return 0;
}

#define MAX_TOLERANCE		5
#define IQK_DELAY_TIME		1	/* ms */
#define MAX_TOLERANCE_92D	3

/* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
static u8 _rtl92d_phy_patha_iqk(struct ieee80211_hw *hw, bool configpathb)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	u32 regeac, rege94, rege9c, regea4;
	u8 result = 0;

1640
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "Path A IQK!\n");
1641
	/* path-A IQK setting */
1642
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "Path-A IQK setting!\n");
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
	if (rtlhal->interfaceindex == 0) {
		rtl_set_bbreg(hw, 0xe30, BMASKDWORD, 0x10008c1f);
		rtl_set_bbreg(hw, 0xe34, BMASKDWORD, 0x10008c1f);
	} else {
		rtl_set_bbreg(hw, 0xe30, BMASKDWORD, 0x10008c22);
		rtl_set_bbreg(hw, 0xe34, BMASKDWORD, 0x10008c22);
	}
	rtl_set_bbreg(hw, 0xe38, BMASKDWORD, 0x82140102);
	rtl_set_bbreg(hw, 0xe3c, BMASKDWORD, 0x28160206);
	/* path-B IQK setting */
	if (configpathb) {
		rtl_set_bbreg(hw, 0xe50, BMASKDWORD, 0x10008c22);
		rtl_set_bbreg(hw, 0xe54, BMASKDWORD, 0x10008c22);
		rtl_set_bbreg(hw, 0xe58, BMASKDWORD, 0x82140102);
		rtl_set_bbreg(hw, 0xe5c, BMASKDWORD, 0x28160206);
	}
	/* LO calibration setting */
1660
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "LO calibration setting!\n");
1661 1662
	rtl_set_bbreg(hw, 0xe4c, BMASKDWORD, 0x00462911);
	/* One shot, path A LOK & IQK */
1663
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "One shot, path A LOK & IQK!\n");
1664 1665 1666 1667
	rtl_set_bbreg(hw, 0xe48, BMASKDWORD, 0xf9000000);
	rtl_set_bbreg(hw, 0xe48, BMASKDWORD, 0xf8000000);
	/* delay x ms */
	RTPRINT(rtlpriv, FINIT, INIT_IQK,
1668 1669
		"Delay %d ms for One shot, path A LOK & IQK\n",
		IQK_DELAY_TIME);
1670
	mdelay(IQK_DELAY_TIME);
1671 1672
	/* Check failed */
	regeac = rtl_get_bbreg(hw, 0xeac, BMASKDWORD);
1673
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "0xeac = 0x%x\n", regeac);
1674
	rege94 = rtl_get_bbreg(hw, 0xe94, BMASKDWORD);
1675
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "0xe94 = 0x%x\n", rege94);
1676
	rege9c = rtl_get_bbreg(hw, 0xe9c, BMASKDWORD);
1677
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "0xe9c = 0x%x\n", rege9c);
1678
	regea4 = rtl_get_bbreg(hw, 0xea4, BMASKDWORD);
1679
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "0xea4 = 0x%x\n", regea4);
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	if (!(regeac & BIT(28)) && (((rege94 & 0x03FF0000) >> 16) != 0x142) &&
	    (((rege9c & 0x03FF0000) >> 16) != 0x42))
		result |= 0x01;
	else			/* if Tx not OK, ignore Rx */
		return result;
	/* if Tx is OK, check whether Rx is OK */
	if (!(regeac & BIT(27)) && (((regea4 & 0x03FF0000) >> 16) != 0x132) &&
	    (((regeac & 0x03FF0000) >> 16) != 0x36))
		result |= 0x02;
	else
1690
		RTPRINT(rtlpriv, FINIT, INIT_IQK,  "Path A Rx IQK fail!!\n");
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
	return result;
}

/* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
static u8 _rtl92d_phy_patha_iqk_5g_normal(struct ieee80211_hw *hw,
					  bool configpathb)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	u32 regeac, rege94, rege9c, regea4;
	u8 result = 0;
	u8 i;
	u8 retrycount = 2;
	u32 TxOKBit = BIT(28), RxOKBit = BIT(27);

	if (rtlhal->interfaceindex == 1) {	/* PHY1 */
		TxOKBit = BIT(31);
		RxOKBit = BIT(30);
	}
1711
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "Path A IQK!\n");
1712
	/* path-A IQK setting */
1713
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "Path-A IQK setting!\n");
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	rtl_set_bbreg(hw, 0xe30, BMASKDWORD, 0x18008c1f);
	rtl_set_bbreg(hw, 0xe34, BMASKDWORD, 0x18008c1f);
	rtl_set_bbreg(hw, 0xe38, BMASKDWORD, 0x82140307);
	rtl_set_bbreg(hw, 0xe3c, BMASKDWORD, 0x68160960);
	/* path-B IQK setting */
	if (configpathb) {
		rtl_set_bbreg(hw, 0xe50, BMASKDWORD, 0x18008c2f);
		rtl_set_bbreg(hw, 0xe54, BMASKDWORD, 0x18008c2f);
		rtl_set_bbreg(hw, 0xe58, BMASKDWORD, 0x82110000);
		rtl_set_bbreg(hw, 0xe5c, BMASKDWORD, 0x68110000);
	}
	/* LO calibration setting */
1726
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "LO calibration setting!\n");
1727 1728 1729 1730 1731 1732 1733
	rtl_set_bbreg(hw, 0xe4c, BMASKDWORD, 0x00462911);
	/* path-A PA on */
	rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BMASKDWORD, 0x07000f60);
	rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BMASKDWORD, 0x66e60e30);
	for (i = 0; i < retrycount; i++) {
		/* One shot, path A LOK & IQK */
		RTPRINT(rtlpriv, FINIT, INIT_IQK,
1734
			"One shot, path A LOK & IQK!\n");
1735 1736 1737 1738
		rtl_set_bbreg(hw, 0xe48, BMASKDWORD, 0xf9000000);
		rtl_set_bbreg(hw, 0xe48, BMASKDWORD, 0xf8000000);
		/* delay x ms */
		RTPRINT(rtlpriv, FINIT, INIT_IQK,
1739 1740
			"Delay %d ms for One shot, path A LOK & IQK.\n",
			IQK_DELAY_TIME);
1741
		mdelay(IQK_DELAY_TIME * 10);
1742 1743
		/* Check failed */
		regeac = rtl_get_bbreg(hw, 0xeac, BMASKDWORD);
1744
		RTPRINT(rtlpriv, FINIT, INIT_IQK,  "0xeac = 0x%x\n", regeac);
1745
		rege94 = rtl_get_bbreg(hw, 0xe94, BMASKDWORD);
1746
		RTPRINT(rtlpriv, FINIT, INIT_IQK,  "0xe94 = 0x%x\n", rege94);
1747
		rege9c = rtl_get_bbreg(hw, 0xe9c, BMASKDWORD);
1748
		RTPRINT(rtlpriv, FINIT, INIT_IQK,  "0xe9c = 0x%x\n", rege9c);
1749
		regea4 = rtl_get_bbreg(hw, 0xea4, BMASKDWORD);
1750
		RTPRINT(rtlpriv, FINIT, INIT_IQK,  "0xea4 = 0x%x\n", regea4);
1751 1752 1753 1754 1755
		if (!(regeac & TxOKBit) &&
		     (((rege94 & 0x03FF0000) >> 16) != 0x142)) {
			result |= 0x01;
		} else { /* if Tx not OK, ignore Rx */
			RTPRINT(rtlpriv, FINIT, INIT_IQK,
1756
				"Path A Tx IQK fail!!\n");
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
			continue;
		}

		/* if Tx is OK, check whether Rx is OK */
		if (!(regeac & RxOKBit) &&
		    (((regea4 & 0x03FF0000) >> 16) != 0x132)) {
			result |= 0x02;
			break;
		} else {
			RTPRINT(rtlpriv, FINIT, INIT_IQK,
1767
				"Path A Rx IQK fail!!\n");
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
		}
	}
	/* path A PA off */
	rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BMASKDWORD,
		      rtlphy->iqk_bb_backup[0]);
	rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BMASKDWORD,
		      rtlphy->iqk_bb_backup[1]);
	return result;
}

/* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
static u8 _rtl92d_phy_pathb_iqk(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u32 regeac, regeb4, regebc, regec4, regecc;
	u8 result = 0;

1785
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "Path B IQK!\n");
1786
	/* One shot, path B LOK & IQK */
1787
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "One shot, path A LOK & IQK!\n");
1788 1789 1790 1791
	rtl_set_bbreg(hw, 0xe60, BMASKDWORD, 0x00000002);
	rtl_set_bbreg(hw, 0xe60, BMASKDWORD, 0x00000000);
	/* delay x ms  */
	RTPRINT(rtlpriv, FINIT, INIT_IQK,
1792
		"Delay %d ms for One shot, path B LOK & IQK\n", IQK_DELAY_TIME);
1793
	mdelay(IQK_DELAY_TIME);
1794 1795
	/* Check failed */
	regeac = rtl_get_bbreg(hw, 0xeac, BMASKDWORD);
1796
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "0xeac = 0x%x\n", regeac);
1797
	regeb4 = rtl_get_bbreg(hw, 0xeb4, BMASKDWORD);
1798
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "0xeb4 = 0x%x\n", regeb4);
1799
	regebc = rtl_get_bbreg(hw, 0xebc, BMASKDWORD);
1800
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "0xebc = 0x%x\n", regebc);
1801
	regec4 = rtl_get_bbreg(hw, 0xec4, BMASKDWORD);
1802
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "0xec4 = 0x%x\n", regec4);
1803
	regecc = rtl_get_bbreg(hw, 0xecc, BMASKDWORD);
1804
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "0xecc = 0x%x\n", regecc);
1805 1806 1807 1808 1809 1810 1811 1812 1813
	if (!(regeac & BIT(31)) && (((regeb4 & 0x03FF0000) >> 16) != 0x142) &&
	    (((regebc & 0x03FF0000) >> 16) != 0x42))
		result |= 0x01;
	else
		return result;
	if (!(regeac & BIT(30)) && (((regec4 & 0x03FF0000) >> 16) != 0x132) &&
	    (((regecc & 0x03FF0000) >> 16) != 0x36))
		result |= 0x02;
	else
1814
		RTPRINT(rtlpriv, FINIT, INIT_IQK,  "Path B Rx IQK fail!!\n");
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
	return result;
}

/* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
static u8 _rtl92d_phy_pathb_iqk_5g_normal(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	u32 regeac, regeb4, regebc, regec4, regecc;
	u8 result = 0;
	u8 i;
	u8 retrycount = 2;

1828
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "Path B IQK!\n");
1829
	/* path-A IQK setting */
1830
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "Path-A IQK setting!\n");
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
	rtl_set_bbreg(hw, 0xe30, BMASKDWORD, 0x18008c1f);
	rtl_set_bbreg(hw, 0xe34, BMASKDWORD, 0x18008c1f);
	rtl_set_bbreg(hw, 0xe38, BMASKDWORD, 0x82110000);
	rtl_set_bbreg(hw, 0xe3c, BMASKDWORD, 0x68110000);

	/* path-B IQK setting */
	rtl_set_bbreg(hw, 0xe50, BMASKDWORD, 0x18008c2f);
	rtl_set_bbreg(hw, 0xe54, BMASKDWORD, 0x18008c2f);
	rtl_set_bbreg(hw, 0xe58, BMASKDWORD, 0x82140307);
	rtl_set_bbreg(hw, 0xe5c, BMASKDWORD, 0x68160960);

	/* LO calibration setting */
1843
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "LO calibration setting!\n");
1844 1845 1846 1847 1848 1849 1850 1851 1852
	rtl_set_bbreg(hw, 0xe4c, BMASKDWORD, 0x00462911);

	/* path-B PA on */
	rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BMASKDWORD, 0x0f600700);
	rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, BMASKDWORD, 0x061f0d30);

	for (i = 0; i < retrycount; i++) {
		/* One shot, path B LOK & IQK */
		RTPRINT(rtlpriv, FINIT, INIT_IQK,
1853
			"One shot, path A LOK & IQK!\n");
1854 1855 1856 1857 1858
		rtl_set_bbreg(hw, 0xe48, BMASKDWORD, 0xfa000000);
		rtl_set_bbreg(hw, 0xe48, BMASKDWORD, 0xf8000000);

		/* delay x ms */
		RTPRINT(rtlpriv, FINIT, INIT_IQK,
1859
			"Delay %d ms for One shot, path B LOK & IQK.\n", 10);
1860
		mdelay(IQK_DELAY_TIME * 10);
1861 1862 1863

		/* Check failed */
		regeac = rtl_get_bbreg(hw, 0xeac, BMASKDWORD);
1864
		RTPRINT(rtlpriv, FINIT, INIT_IQK,  "0xeac = 0x%x\n", regeac);
1865
		regeb4 = rtl_get_bbreg(hw, 0xeb4, BMASKDWORD);
1866
		RTPRINT(rtlpriv, FINIT, INIT_IQK,  "0xeb4 = 0x%x\n", regeb4);
1867
		regebc = rtl_get_bbreg(hw, 0xebc, BMASKDWORD);
1868
		RTPRINT(rtlpriv, FINIT, INIT_IQK,  "0xebc = 0x%x\n", regebc);
1869
		regec4 = rtl_get_bbreg(hw, 0xec4, BMASKDWORD);
1870
		RTPRINT(rtlpriv, FINIT, INIT_IQK,  "0xec4 = 0x%x\n", regec4);
1871
		regecc = rtl_get_bbreg(hw, 0xecc, BMASKDWORD);
1872
		RTPRINT(rtlpriv, FINIT, INIT_IQK,  "0xecc = 0x%x\n", regecc);
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
		if (!(regeac & BIT(31)) &&
		    (((regeb4 & 0x03FF0000) >> 16) != 0x142))
			result |= 0x01;
		else
			continue;
		if (!(regeac & BIT(30)) &&
		    (((regec4 & 0x03FF0000) >> 16) != 0x132)) {
			result |= 0x02;
			break;
		} else {
			RTPRINT(rtlpriv, FINIT, INIT_IQK,
1884
				"Path B Rx IQK fail!!\n");
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
		}
	}

	/* path B PA off */
	rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BMASKDWORD,
		      rtlphy->iqk_bb_backup[0]);
	rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, BMASKDWORD,
		      rtlphy->iqk_bb_backup[2]);
	return result;
}

static void _rtl92d_phy_save_adda_registers(struct ieee80211_hw *hw,
					    u32 *adda_reg, u32 *adda_backup,
					    u32 regnum)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u32 i;

1903
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "Save ADDA parameters.\n");
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
	for (i = 0; i < regnum; i++)
		adda_backup[i] = rtl_get_bbreg(hw, adda_reg[i], BMASKDWORD);
}

static void _rtl92d_phy_save_mac_registers(struct ieee80211_hw *hw,
	u32 *macreg, u32 *macbackup)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u32 i;

1914
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "Save MAC parameters.\n");
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
	for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
		macbackup[i] = rtl_read_byte(rtlpriv, macreg[i]);
	macbackup[i] = rtl_read_dword(rtlpriv, macreg[i]);
}

static void _rtl92d_phy_reload_adda_registers(struct ieee80211_hw *hw,
					      u32 *adda_reg, u32 *adda_backup,
					      u32 regnum)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u32 i;

	RTPRINT(rtlpriv, FINIT, INIT_IQK,
1928
		"Reload ADDA power saving parameters !\n");
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	for (i = 0; i < regnum; i++)
		rtl_set_bbreg(hw, adda_reg[i], BMASKDWORD, adda_backup[i]);
}

static void _rtl92d_phy_reload_mac_registers(struct ieee80211_hw *hw,
					     u32 *macreg, u32 *macbackup)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u32 i;

1939
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "Reload MAC parameters !\n");
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
		rtl_write_byte(rtlpriv, macreg[i], (u8) macbackup[i]);
	rtl_write_byte(rtlpriv, macreg[i], macbackup[i]);
}

static void _rtl92d_phy_path_adda_on(struct ieee80211_hw *hw,
		u32 *adda_reg, bool patha_on, bool is2t)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u32 pathon;
	u32 i;

1952
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "ADDA ON.\n");
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
	pathon = patha_on ? 0x04db25a4 : 0x0b1b25a4;
	if (patha_on)
		pathon = rtlpriv->rtlhal.interfaceindex == 0 ?
		    0x04db25a4 : 0x0b1b25a4;
	for (i = 0; i < IQK_ADDA_REG_NUM; i++)
		rtl_set_bbreg(hw, adda_reg[i], BMASKDWORD, pathon);
}

static void _rtl92d_phy_mac_setting_calibration(struct ieee80211_hw *hw,
						u32 *macreg, u32 *macbackup)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u32 i;

1967
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "MAC settings for Calibration.\n");
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	rtl_write_byte(rtlpriv, macreg[0], 0x3F);

	for (i = 1; i < (IQK_MAC_REG_NUM - 1); i++)
		rtl_write_byte(rtlpriv, macreg[i], (u8)(macbackup[i] &
			       (~BIT(3))));
	rtl_write_byte(rtlpriv, macreg[i], (u8) (macbackup[i] & (~BIT(5))));
}

static void _rtl92d_phy_patha_standby(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
1979
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "Path-A standby mode!\n");
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

	rtl_set_bbreg(hw, 0xe28, BMASKDWORD, 0x0);
	rtl_set_bbreg(hw, RFPGA0_XA_LSSIPARAMETER, BMASKDWORD, 0x00010000);
	rtl_set_bbreg(hw, 0xe28, BMASKDWORD, 0x80800000);
}

static void _rtl92d_phy_pimode_switch(struct ieee80211_hw *hw, bool pi_mode)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u32 mode;

	RTPRINT(rtlpriv, FINIT, INIT_IQK,
1992
		"BB Switch to %s mode!\n", pi_mode ? "PI" : "SI");
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
	mode = pi_mode ? 0x01000100 : 0x01000000;
	rtl_set_bbreg(hw, 0x820, BMASKDWORD, mode);
	rtl_set_bbreg(hw, 0x828, BMASKDWORD, mode);
}

static void _rtl92d_phy_iq_calibrate(struct ieee80211_hw *hw, long result[][8],
				     u8 t, bool is2t)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	u32 i;
	u8 patha_ok, pathb_ok;
	static u32 adda_reg[IQK_ADDA_REG_NUM] = {
		RFPGA0_XCD_SWITCHCONTROL, 0xe6c, 0xe70, 0xe74,
		0xe78, 0xe7c, 0xe80, 0xe84,
		0xe88, 0xe8c, 0xed0, 0xed4,
		0xed8, 0xedc, 0xee0, 0xeec
	};
	static u32 iqk_mac_reg[IQK_MAC_REG_NUM] = {
		0x522, 0x550, 0x551, 0x040
	};
	static u32 iqk_bb_reg[IQK_BB_REG_NUM] = {
		RFPGA0_XAB_RFINTERFACESW, RFPGA0_XA_RFINTERFACEOE,
		RFPGA0_XB_RFINTERFACEOE, ROFDM0_TRMUXPAR,
		RFPGA0_XCD_RFINTERFACESW, ROFDM0_TRXPATHENABLE,
		RFPGA0_RFMOD, RFPGA0_ANALOGPARAMETER4,
		ROFDM0_XAAGCCORE1, ROFDM0_XBAGCCORE1
	};
	const u32 retrycount = 2;
	u32 bbvalue;

2024
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "IQK for 2.4G :Start!!!\n");
2025 2026
	if (t == 0) {
		bbvalue = rtl_get_bbreg(hw, RFPGA0_RFMOD, BMASKDWORD);
2027 2028 2029
		RTPRINT(rtlpriv, FINIT, INIT_IQK,  "==>0x%08x\n", bbvalue);
		RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQ Calibration for %s\n",
			is2t ? "2T2R" : "1T1R");
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066

		/*  Save ADDA parameters, turn Path A ADDA on */
		_rtl92d_phy_save_adda_registers(hw, adda_reg,
			rtlphy->adda_backup, IQK_ADDA_REG_NUM);
		_rtl92d_phy_save_mac_registers(hw, iqk_mac_reg,
			rtlphy->iqk_mac_backup);
		_rtl92d_phy_save_adda_registers(hw, iqk_bb_reg,
			rtlphy->iqk_bb_backup, IQK_BB_REG_NUM);
	}
	_rtl92d_phy_path_adda_on(hw, adda_reg, true, is2t);
	if (t == 0)
		rtlphy->rfpi_enable = (u8) rtl_get_bbreg(hw,
				RFPGA0_XA_HSSIPARAMETER1, BIT(8));

	/*  Switch BB to PI mode to do IQ Calibration. */
	if (!rtlphy->rfpi_enable)
		_rtl92d_phy_pimode_switch(hw, true);

	rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(24), 0x00);
	rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, BMASKDWORD, 0x03a05600);
	rtl_set_bbreg(hw, ROFDM0_TRMUXPAR, BMASKDWORD, 0x000800e4);
	rtl_set_bbreg(hw, RFPGA0_XCD_RFINTERFACESW, BMASKDWORD, 0x22204000);
	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xf00000, 0x0f);
	if (is2t) {
		rtl_set_bbreg(hw, RFPGA0_XA_LSSIPARAMETER, BMASKDWORD,
			      0x00010000);
		rtl_set_bbreg(hw, RFPGA0_XB_LSSIPARAMETER, BMASKDWORD,
			      0x00010000);
	}
	/* MAC settings */
	_rtl92d_phy_mac_setting_calibration(hw, iqk_mac_reg,
					    rtlphy->iqk_mac_backup);
	/* Page B init */
	rtl_set_bbreg(hw, 0xb68, BMASKDWORD, 0x0f600000);
	if (is2t)
		rtl_set_bbreg(hw, 0xb6c, BMASKDWORD, 0x0f600000);
	/* IQ calibration setting */
2067
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "IQK setting!\n");
2068 2069 2070 2071 2072 2073 2074
	rtl_set_bbreg(hw, 0xe28, BMASKDWORD, 0x80800000);
	rtl_set_bbreg(hw, 0xe40, BMASKDWORD, 0x01007c00);
	rtl_set_bbreg(hw, 0xe44, BMASKDWORD, 0x01004800);
	for (i = 0; i < retrycount; i++) {
		patha_ok = _rtl92d_phy_patha_iqk(hw, is2t);
		if (patha_ok == 0x03) {
			RTPRINT(rtlpriv, FINIT, INIT_IQK,
2075
				"Path A IQK Success!!\n");
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
			result[t][0] = (rtl_get_bbreg(hw, 0xe94, BMASKDWORD) &
					0x3FF0000) >> 16;
			result[t][1] = (rtl_get_bbreg(hw, 0xe9c, BMASKDWORD) &
					0x3FF0000) >> 16;
			result[t][2] = (rtl_get_bbreg(hw, 0xea4, BMASKDWORD) &
					0x3FF0000) >> 16;
			result[t][3] = (rtl_get_bbreg(hw, 0xeac, BMASKDWORD) &
					0x3FF0000) >> 16;
			break;
		} else if (i == (retrycount - 1) && patha_ok == 0x01) {
			/* Tx IQK OK */
			RTPRINT(rtlpriv, FINIT, INIT_IQK,
2088
				"Path A IQK Only  Tx Success!!\n");
2089 2090 2091 2092 2093 2094 2095 2096

			result[t][0] = (rtl_get_bbreg(hw, 0xe94, BMASKDWORD) &
					0x3FF0000) >> 16;
			result[t][1] = (rtl_get_bbreg(hw, 0xe9c, BMASKDWORD) &
					0x3FF0000) >> 16;
		}
	}
	if (0x00 == patha_ok)
2097
		RTPRINT(rtlpriv, FINIT, INIT_IQK,  "Path A IQK failed!!\n");
2098 2099 2100 2101 2102 2103 2104 2105
	if (is2t) {
		_rtl92d_phy_patha_standby(hw);
		/* Turn Path B ADDA on */
		_rtl92d_phy_path_adda_on(hw, adda_reg, false, is2t);
		for (i = 0; i < retrycount; i++) {
			pathb_ok = _rtl92d_phy_pathb_iqk(hw);
			if (pathb_ok == 0x03) {
				RTPRINT(rtlpriv, FINIT, INIT_IQK,
2106
					"Path B IQK Success!!\n");
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
				result[t][4] = (rtl_get_bbreg(hw, 0xeb4,
					       BMASKDWORD) & 0x3FF0000) >> 16;
				result[t][5] = (rtl_get_bbreg(hw, 0xebc,
					       BMASKDWORD) & 0x3FF0000) >> 16;
				result[t][6] = (rtl_get_bbreg(hw, 0xec4,
					       BMASKDWORD) & 0x3FF0000) >> 16;
				result[t][7] = (rtl_get_bbreg(hw, 0xecc,
					       BMASKDWORD) & 0x3FF0000) >> 16;
				break;
			} else if (i == (retrycount - 1) && pathb_ok == 0x01) {
				/* Tx IQK OK */
				RTPRINT(rtlpriv, FINIT, INIT_IQK,
2119
					"Path B Only Tx IQK Success!!\n");
2120 2121 2122 2123 2124 2125 2126 2127
				result[t][4] = (rtl_get_bbreg(hw, 0xeb4,
					       BMASKDWORD) & 0x3FF0000) >> 16;
				result[t][5] = (rtl_get_bbreg(hw, 0xebc,
					       BMASKDWORD) & 0x3FF0000) >> 16;
			}
		}
		if (0x00 == pathb_ok)
			RTPRINT(rtlpriv, FINIT, INIT_IQK,
2128
				"Path B IQK failed!!\n");
2129 2130 2131 2132
	}

	/* Back to BB mode, load original value */
	RTPRINT(rtlpriv, FINIT, INIT_IQK,
2133
		"IQK:Back to BB mode, load original value!\n");
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157

	rtl_set_bbreg(hw, 0xe28, BMASKDWORD, 0);
	if (t != 0) {
		/* Switch back BB to SI mode after finish IQ Calibration. */
		if (!rtlphy->rfpi_enable)
			_rtl92d_phy_pimode_switch(hw, false);
		/* Reload ADDA power saving parameters */
		_rtl92d_phy_reload_adda_registers(hw, adda_reg,
				rtlphy->adda_backup, IQK_ADDA_REG_NUM);
		/* Reload MAC parameters */
		_rtl92d_phy_reload_mac_registers(hw, iqk_mac_reg,
					rtlphy->iqk_mac_backup);
		if (is2t)
			_rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
							  rtlphy->iqk_bb_backup,
							  IQK_BB_REG_NUM);
		else
			_rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
							  rtlphy->iqk_bb_backup,
							  IQK_BB_REG_NUM - 1);
		/* load 0xe30 IQC default value */
		rtl_set_bbreg(hw, 0xe30, BMASKDWORD, 0x01008c00);
		rtl_set_bbreg(hw, 0xe34, BMASKDWORD, 0x01008c00);
	}
2158
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "<==\n");
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
}

static void _rtl92d_phy_iq_calibrate_5g_normal(struct ieee80211_hw *hw,
					       long result[][8], u8 t)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
	u8 patha_ok, pathb_ok;
	static u32 adda_reg[IQK_ADDA_REG_NUM] = {
		RFPGA0_XCD_SWITCHCONTROL, 0xe6c, 0xe70, 0xe74,
		0xe78, 0xe7c, 0xe80, 0xe84,
		0xe88, 0xe8c, 0xed0, 0xed4,
		0xed8, 0xedc, 0xee0, 0xeec
	};
	static u32 iqk_mac_reg[IQK_MAC_REG_NUM] = {
		0x522, 0x550, 0x551, 0x040
	};
	static u32 iqk_bb_reg[IQK_BB_REG_NUM] = {
		RFPGA0_XAB_RFINTERFACESW, RFPGA0_XA_RFINTERFACEOE,
		RFPGA0_XB_RFINTERFACEOE, ROFDM0_TRMUXPAR,
		RFPGA0_XCD_RFINTERFACESW, ROFDM0_TRXPATHENABLE,
		RFPGA0_RFMOD, RFPGA0_ANALOGPARAMETER4,
		ROFDM0_XAAGCCORE1, ROFDM0_XBAGCCORE1
	};
	u32 bbvalue;
	bool is2t = IS_92D_SINGLEPHY(rtlhal->version);

	/* Note: IQ calibration must be performed after loading
	 * PHY_REG.txt , and radio_a, radio_b.txt */

2190
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "IQK for 5G NORMAL:Start!!!\n");
2191
	mdelay(IQK_DELAY_TIME * 20);
2192 2193
	if (t == 0) {
		bbvalue = rtl_get_bbreg(hw, RFPGA0_RFMOD, BMASKDWORD);
2194 2195 2196
		RTPRINT(rtlpriv, FINIT, INIT_IQK,  "==>0x%08x\n", bbvalue);
		RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQ Calibration for %s\n",
			is2t ? "2T2R" : "1T1R");
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
		/* Save ADDA parameters, turn Path A ADDA on */
		_rtl92d_phy_save_adda_registers(hw, adda_reg,
						rtlphy->adda_backup,
						IQK_ADDA_REG_NUM);
		_rtl92d_phy_save_mac_registers(hw, iqk_mac_reg,
					       rtlphy->iqk_mac_backup);
		if (is2t)
			_rtl92d_phy_save_adda_registers(hw, iqk_bb_reg,
							rtlphy->iqk_bb_backup,
							IQK_BB_REG_NUM);
		else
			_rtl92d_phy_save_adda_registers(hw, iqk_bb_reg,
							rtlphy->iqk_bb_backup,
							IQK_BB_REG_NUM - 1);
	}
	_rtl92d_phy_path_adda_on(hw, adda_reg, true, is2t);
	/* MAC settings */
	_rtl92d_phy_mac_setting_calibration(hw, iqk_mac_reg,
			rtlphy->iqk_mac_backup);
	if (t == 0)
		rtlphy->rfpi_enable = (u8) rtl_get_bbreg(hw,
			RFPGA0_XA_HSSIPARAMETER1, BIT(8));
	/*  Switch BB to PI mode to do IQ Calibration. */
	if (!rtlphy->rfpi_enable)
		_rtl92d_phy_pimode_switch(hw, true);
	rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(24), 0x00);
	rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, BMASKDWORD, 0x03a05600);
	rtl_set_bbreg(hw, ROFDM0_TRMUXPAR, BMASKDWORD, 0x000800e4);
	rtl_set_bbreg(hw, RFPGA0_XCD_RFINTERFACESW, BMASKDWORD, 0x22208000);
	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xf00000, 0x0f);

	/* Page B init */
	rtl_set_bbreg(hw, 0xb68, BMASKDWORD, 0x0f600000);
	if (is2t)
		rtl_set_bbreg(hw, 0xb6c, BMASKDWORD, 0x0f600000);
	/* IQ calibration setting  */
2233
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "IQK setting!\n");
2234 2235 2236 2237 2238
	rtl_set_bbreg(hw, 0xe28, BMASKDWORD, 0x80800000);
	rtl_set_bbreg(hw, 0xe40, BMASKDWORD, 0x10007c00);
	rtl_set_bbreg(hw, 0xe44, BMASKDWORD, 0x01004800);
	patha_ok = _rtl92d_phy_patha_iqk_5g_normal(hw, is2t);
	if (patha_ok == 0x03) {
2239
		RTPRINT(rtlpriv, FINIT, INIT_IQK,  "Path A IQK Success!!\n");
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
		result[t][0] = (rtl_get_bbreg(hw, 0xe94, BMASKDWORD) &
				0x3FF0000) >> 16;
		result[t][1] = (rtl_get_bbreg(hw, 0xe9c, BMASKDWORD) &
				0x3FF0000) >> 16;
		result[t][2] = (rtl_get_bbreg(hw, 0xea4, BMASKDWORD) &
				0x3FF0000) >> 16;
		result[t][3] = (rtl_get_bbreg(hw, 0xeac, BMASKDWORD) &
				0x3FF0000) >> 16;
	} else if (patha_ok == 0x01) {	/* Tx IQK OK */
		RTPRINT(rtlpriv, FINIT, INIT_IQK,
2250
			"Path A IQK Only  Tx Success!!\n");
2251 2252 2253 2254 2255 2256

		result[t][0] = (rtl_get_bbreg(hw, 0xe94, BMASKDWORD) &
				0x3FF0000) >> 16;
		result[t][1] = (rtl_get_bbreg(hw, 0xe9c, BMASKDWORD) &
				0x3FF0000) >> 16;
	} else {
2257
		RTPRINT(rtlpriv, FINIT, INIT_IQK,  "Path A IQK Fail!!\n");
2258 2259 2260 2261 2262 2263 2264 2265
	}
	if (is2t) {
		/* _rtl92d_phy_patha_standby(hw); */
		/* Turn Path B ADDA on  */
		_rtl92d_phy_path_adda_on(hw, adda_reg, false, is2t);
		pathb_ok = _rtl92d_phy_pathb_iqk_5g_normal(hw);
		if (pathb_ok == 0x03) {
			RTPRINT(rtlpriv, FINIT, INIT_IQK,
2266
				"Path B IQK Success!!\n");
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
			result[t][4] = (rtl_get_bbreg(hw, 0xeb4, BMASKDWORD) &
			     0x3FF0000) >> 16;
			result[t][5] = (rtl_get_bbreg(hw, 0xebc, BMASKDWORD) &
			     0x3FF0000) >> 16;
			result[t][6] = (rtl_get_bbreg(hw, 0xec4, BMASKDWORD) &
			     0x3FF0000) >> 16;
			result[t][7] = (rtl_get_bbreg(hw, 0xecc, BMASKDWORD) &
			     0x3FF0000) >> 16;
		} else if (pathb_ok == 0x01) { /* Tx IQK OK */
			RTPRINT(rtlpriv, FINIT, INIT_IQK,
2277
				"Path B Only Tx IQK Success!!\n");
2278 2279 2280 2281 2282 2283
			result[t][4] = (rtl_get_bbreg(hw, 0xeb4, BMASKDWORD) &
			     0x3FF0000) >> 16;
			result[t][5] = (rtl_get_bbreg(hw, 0xebc, BMASKDWORD) &
			     0x3FF0000) >> 16;
		} else {
			RTPRINT(rtlpriv, FINIT, INIT_IQK,
2284
				"Path B IQK failed!!\n");
2285 2286 2287 2288 2289
		}
	}

	/* Back to BB mode, load original value */
	RTPRINT(rtlpriv, FINIT, INIT_IQK,
2290
		"IQK:Back to BB mode, load original value!\n");
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
	rtl_set_bbreg(hw, 0xe28, BMASKDWORD, 0);
	if (t != 0) {
		if (is2t)
			_rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
							  rtlphy->iqk_bb_backup,
							  IQK_BB_REG_NUM);
		else
			_rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
							  rtlphy->iqk_bb_backup,
							  IQK_BB_REG_NUM - 1);
		/* Reload MAC parameters */
		_rtl92d_phy_reload_mac_registers(hw, iqk_mac_reg,
				rtlphy->iqk_mac_backup);
		/*  Switch back BB to SI mode after finish IQ Calibration. */
		if (!rtlphy->rfpi_enable)
			_rtl92d_phy_pimode_switch(hw, false);
		/* Reload ADDA power saving parameters */
		_rtl92d_phy_reload_adda_registers(hw, adda_reg,
						  rtlphy->adda_backup,
						  IQK_ADDA_REG_NUM);
	}
2312
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "<==\n");
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
}

static bool _rtl92d_phy_simularity_compare(struct ieee80211_hw *hw,
	long result[][8], u8 c1, u8 c2)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
	u32 i, j, diff, sim_bitmap, bound;
	u8 final_candidate[2] = {0xFF, 0xFF};	/* for path A and path B */
	bool bresult = true;
	bool is2t = IS_92D_SINGLEPHY(rtlhal->version);

	if (is2t)
		bound = 8;
	else
		bound = 4;
	sim_bitmap = 0;
	for (i = 0; i < bound; i++) {
		diff = (result[c1][i] > result[c2][i]) ? (result[c1][i] -
		       result[c2][i]) : (result[c2][i] - result[c1][i]);
		if (diff > MAX_TOLERANCE_92D) {
			if ((i == 2 || i == 6) && !sim_bitmap) {
				if (result[c1][i] + result[c1][i + 1] == 0)
					final_candidate[(i / 4)] = c2;
				else if (result[c2][i] + result[c2][i + 1] == 0)
					final_candidate[(i / 4)] = c1;
				else
					sim_bitmap = sim_bitmap | (1 << i);
			} else {
				sim_bitmap = sim_bitmap | (1 << i);
			}
		}
	}
	if (sim_bitmap == 0) {
		for (i = 0; i < (bound / 4); i++) {
			if (final_candidate[i] != 0xFF) {
				for (j = i * 4; j < (i + 1) * 4 - 2; j++)
					result[3][j] =
						 result[final_candidate[i]][j];
				bresult = false;
			}
		}
		return bresult;
	}
	if (!(sim_bitmap & 0x0F)) { /* path A OK */
		for (i = 0; i < 4; i++)
			result[3][i] = result[c1][i];
	} else if (!(sim_bitmap & 0x03)) { /* path A, Tx OK */
		for (i = 0; i < 2; i++)
			result[3][i] = result[c1][i];
	}
	if (!(sim_bitmap & 0xF0) && is2t) { /* path B OK */
		for (i = 4; i < 8; i++)
			result[3][i] = result[c1][i];
	} else if (!(sim_bitmap & 0x30)) { /* path B, Tx OK */
		for (i = 4; i < 6; i++)
			result[3][i] = result[c1][i];
	}
	return false;
}

static void _rtl92d_phy_patha_fill_iqk_matrix(struct ieee80211_hw *hw,
					      bool iqk_ok, long result[][8],
					      u8 final_candidate, bool txonly)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
	u32 oldval_0, val_x, tx0_a, reg;
	long val_y, tx0_c;
	bool is2t = IS_92D_SINGLEPHY(rtlhal->version) ||
	    rtlhal->macphymode == DUALMAC_DUALPHY;

	RTPRINT(rtlpriv, FINIT, INIT_IQK,
2386
		"Path A IQ Calibration %s !\n", iqk_ok ? "Success" : "Failed");
2387 2388 2389 2390 2391 2392 2393 2394 2395
	if (final_candidate == 0xFF) {
		return;
	} else if (iqk_ok) {
		oldval_0 = (rtl_get_bbreg(hw, ROFDM0_XATxIQIMBALANCE,
			BMASKDWORD) >> 22) & 0x3FF;	/* OFDM0_D */
		val_x = result[final_candidate][0];
		if ((val_x & 0x00000200) != 0)
			val_x = val_x | 0xFFFFFC00;
		tx0_a = (val_x * oldval_0) >> 8;
2396 2397 2398
		RTPRINT(rtlpriv, FINIT, INIT_IQK,
			"X = 0x%x, tx0_a = 0x%x, oldval_0 0x%x\n",
			val_x, tx0_a, oldval_0);
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
		rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, 0x3FF, tx0_a);
		rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(24),
			      ((val_x * oldval_0 >> 7) & 0x1));
		val_y = result[final_candidate][1];
		if ((val_y & 0x00000200) != 0)
			val_y = val_y | 0xFFFFFC00;
		/* path B IQK result + 3 */
		if (rtlhal->interfaceindex == 1 &&
			rtlhal->current_bandtype == BAND_ON_5G)
			val_y += 3;
		tx0_c = (val_y * oldval_0) >> 8;
2410 2411 2412
		RTPRINT(rtlpriv, FINIT, INIT_IQK,
			"Y = 0x%lx, tx0_c = 0x%lx\n",
			val_y, tx0_c);
2413 2414 2415 2416 2417 2418 2419
		rtl_set_bbreg(hw, ROFDM0_XCTxAFE, 0xF0000000,
			      ((tx0_c & 0x3C0) >> 6));
		rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, 0x003F0000,
			      (tx0_c & 0x3F));
		if (is2t)
			rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(26),
				      ((val_y * oldval_0 >> 7) & 0x1));
2420 2421 2422
		RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xC80 = 0x%x\n",
			rtl_get_bbreg(hw, ROFDM0_XATxIQIMBALANCE,
				      BMASKDWORD));
2423
		if (txonly) {
2424
			RTPRINT(rtlpriv, FINIT, INIT_IQK,  "only Tx OK\n");
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
			return;
		}
		reg = result[final_candidate][2];
		rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, 0x3FF, reg);
		reg = result[final_candidate][3] & 0x3F;
		rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, 0xFC00, reg);
		reg = (result[final_candidate][3] >> 6) & 0xF;
		rtl_set_bbreg(hw, 0xca0, 0xF0000000, reg);
	}
}

static void _rtl92d_phy_pathb_fill_iqk_matrix(struct ieee80211_hw *hw,
	bool iqk_ok, long result[][8], u8 final_candidate, bool txonly)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
	u32 oldval_1, val_x, tx1_a, reg;
	long val_y, tx1_c;

2444 2445
	RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQ Calibration %s !\n",
		iqk_ok ? "Success" : "Failed");
2446 2447 2448 2449 2450 2451 2452 2453 2454
	if (final_candidate == 0xFF) {
		return;
	} else if (iqk_ok) {
		oldval_1 = (rtl_get_bbreg(hw, ROFDM0_XBTxIQIMBALANCE,
					  BMASKDWORD) >> 22) & 0x3FF;
		val_x = result[final_candidate][4];
		if ((val_x & 0x00000200) != 0)
			val_x = val_x | 0xFFFFFC00;
		tx1_a = (val_x * oldval_1) >> 8;
2455 2456
		RTPRINT(rtlpriv, FINIT, INIT_IQK, "X = 0x%x, tx1_a = 0x%x\n",
			val_x, tx1_a);
2457 2458 2459 2460 2461 2462 2463 2464 2465
		rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, 0x3FF, tx1_a);
		rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(28),
			      ((val_x * oldval_1 >> 7) & 0x1));
		val_y = result[final_candidate][5];
		if ((val_y & 0x00000200) != 0)
			val_y = val_y | 0xFFFFFC00;
		if (rtlhal->current_bandtype == BAND_ON_5G)
			val_y += 3;
		tx1_c = (val_y * oldval_1) >> 8;
2466 2467
		RTPRINT(rtlpriv, FINIT, INIT_IQK, "Y = 0x%lx, tx1_c = 0x%lx\n",
			val_y, tx1_c);
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
		rtl_set_bbreg(hw, ROFDM0_XDTxAFE, 0xF0000000,
			      ((tx1_c & 0x3C0) >> 6));
		rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, 0x003F0000,
			      (tx1_c & 0x3F));
		rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(30),
			      ((val_y * oldval_1 >> 7) & 0x1));
		if (txonly)
			return;
		reg = result[final_candidate][6];
		rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, 0x3FF, reg);
		reg = result[final_candidate][7] & 0x3F;
		rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, 0xFC00, reg);
		reg = (result[final_candidate][7] >> 6) & 0xF;
		rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, 0x0000F000, reg);
	}
}

void rtl92d_phy_iq_calibrate(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
	long result[4][8];
	u8 i, final_candidate, indexforchannel;
	bool patha_ok, pathb_ok;
	long rege94, rege9c, regea4, regeac, regeb4;
	long regebc, regec4, regecc, regtmp = 0;
	bool is12simular, is13simular, is23simular;
	unsigned long flag = 0;

	RTPRINT(rtlpriv, FINIT, INIT_IQK,
2499
		"IQK:Start!!!channel %d\n", rtlphy->current_channel);
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
	for (i = 0; i < 8; i++) {
		result[0][i] = 0;
		result[1][i] = 0;
		result[2][i] = 0;
		result[3][i] = 0;
	}
	final_candidate = 0xff;
	patha_ok = false;
	pathb_ok = false;
	is12simular = false;
	is23simular = false;
	is13simular = false;
	RTPRINT(rtlpriv, FINIT, INIT_IQK,
2513
		"IQK !!!currentband %d\n", rtlhal->current_bandtype);
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
	rtl92d_acquire_cckandrw_pagea_ctl(hw, &flag);
	for (i = 0; i < 3; i++) {
		if (rtlhal->current_bandtype == BAND_ON_5G) {
			_rtl92d_phy_iq_calibrate_5g_normal(hw, result, i);
		} else if (rtlhal->current_bandtype == BAND_ON_2_4G) {
			if (IS_92D_SINGLEPHY(rtlhal->version))
				_rtl92d_phy_iq_calibrate(hw, result, i, true);
			else
				_rtl92d_phy_iq_calibrate(hw, result, i, false);
		}
		if (i == 1) {
			is12simular = _rtl92d_phy_simularity_compare(hw, result,
								     0, 1);
			if (is12simular) {
				final_candidate = 0;
				break;
			}
		}
		if (i == 2) {
			is13simular = _rtl92d_phy_simularity_compare(hw, result,
								     0, 2);
			if (is13simular) {
				final_candidate = 0;
				break;
			}
			is23simular = _rtl92d_phy_simularity_compare(hw, result,
								     1, 2);
			if (is23simular) {
				final_candidate = 1;
			} else {
				for (i = 0; i < 8; i++)
					regtmp += result[3][i];

				if (regtmp != 0)
					final_candidate = 3;
				else
					final_candidate = 0xFF;
			}
		}
	}
	rtl92d_release_cckandrw_pagea_ctl(hw, &flag);
	for (i = 0; i < 4; i++) {
		rege94 = result[i][0];
		rege9c = result[i][1];
		regea4 = result[i][2];
		regeac = result[i][3];
		regeb4 = result[i][4];
		regebc = result[i][5];
		regec4 = result[i][6];
		regecc = result[i][7];
		RTPRINT(rtlpriv, FINIT, INIT_IQK,
2565
			"IQK: rege94=%lx rege9c=%lx regea4=%lx regeac=%lx regeb4=%lx regebc=%lx regec4=%lx regecc=%lx\n",
2566
			rege94, rege9c, regea4, regeac, regeb4, regebc, regec4,
2567
			regecc);
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
	}
	if (final_candidate != 0xff) {
		rtlphy->reg_e94 = rege94 = result[final_candidate][0];
		rtlphy->reg_e9c = rege9c = result[final_candidate][1];
		regea4 = result[final_candidate][2];
		regeac = result[final_candidate][3];
		rtlphy->reg_eb4 = regeb4 = result[final_candidate][4];
		rtlphy->reg_ebc = regebc = result[final_candidate][5];
		regec4 = result[final_candidate][6];
		regecc = result[final_candidate][7];
		RTPRINT(rtlpriv, FINIT, INIT_IQK,
2579
			"IQK: final_candidate is %x\n", final_candidate);
2580
		RTPRINT(rtlpriv, FINIT, INIT_IQK,
2581
			"IQK: rege94=%lx rege9c=%lx regea4=%lx regeac=%lx regeb4=%lx regebc=%lx regec4=%lx regecc=%lx\n",
2582
			rege94, rege9c, regea4, regeac, regeb4, regebc, regec4,
2583
			regecc);
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
		patha_ok = pathb_ok = true;
	} else {
		rtlphy->reg_e94 = rtlphy->reg_eb4 = 0x100; /* X default value */
		rtlphy->reg_e9c = rtlphy->reg_ebc = 0x0;   /* Y default value */
	}
	if ((rege94 != 0) /*&&(regea4 != 0) */)
		_rtl92d_phy_patha_fill_iqk_matrix(hw, patha_ok, result,
				final_candidate, (regea4 == 0));
	if (IS_92D_SINGLEPHY(rtlhal->version)) {
		if ((regeb4 != 0) /*&&(regec4 != 0) */)
			_rtl92d_phy_pathb_fill_iqk_matrix(hw, pathb_ok, result,
						final_candidate, (regec4 == 0));
	}
	if (final_candidate != 0xFF) {
		indexforchannel = rtl92d_get_rightchnlplace_for_iqk(
				  rtlphy->current_channel);

		for (i = 0; i < IQK_MATRIX_REG_NUM; i++)
			rtlphy->iqk_matrix_regsetting[indexforchannel].
				value[0][i] = result[final_candidate][i];
		rtlphy->iqk_matrix_regsetting[indexforchannel].iqk_done =
			true;

		RT_TRACE(rtlpriv, COMP_SCAN | COMP_MLME, DBG_LOUD,
2608
			 "IQK OK indexforchannel %d\n", indexforchannel);
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
	}
}

void rtl92d_phy_reload_iqk_setting(struct ieee80211_hw *hw, u8 channel)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
	u8 indexforchannel;

2619
	RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "channel %d\n", channel);
2620 2621
	/*------Do IQK for normal chip and test chip 5G band------- */
	indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel);
2622 2623 2624
	RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "indexforchannel %d done %d\n",
		 indexforchannel,
		 rtlphy->iqk_matrix_regsetting[indexforchannel].iqk_done);
2625 2626 2627 2628
	if (0 && !rtlphy->iqk_matrix_regsetting[indexforchannel].iqk_done &&
		rtlphy->need_iqk) {
		/* Re Do IQK. */
		RT_TRACE(rtlpriv, COMP_SCAN | COMP_INIT, DBG_LOUD,
2629
			 "Do IQK Matrix reg for channel:%d....\n", channel);
2630 2631 2632 2633 2634 2635 2636
		rtl92d_phy_iq_calibrate(hw);
	} else {
		/* Just load the value. */
		/* 2G band just load once. */
		if (((!rtlhal->load_imrandiqk_setting_for2g) &&
		    indexforchannel == 0) || indexforchannel > 0) {
			RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD,
2637 2638
				 "Just Read IQK Matrix reg for channel:%d....\n",
				 channel);
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
			if ((rtlphy->iqk_matrix_regsetting[indexforchannel].
			     value[0] != NULL)
				/*&&(regea4 != 0) */)
				_rtl92d_phy_patha_fill_iqk_matrix(hw, true,
					rtlphy->iqk_matrix_regsetting[
					indexforchannel].value,	0,
					(rtlphy->iqk_matrix_regsetting[
					indexforchannel].value[0][2] == 0));
			if (IS_92D_SINGLEPHY(rtlhal->version)) {
				if ((rtlphy->iqk_matrix_regsetting[
					indexforchannel].value[0][4] != 0)
					/*&&(regec4 != 0) */)
					_rtl92d_phy_pathb_fill_iqk_matrix(hw,
						true,
						rtlphy->iqk_matrix_regsetting[
						indexforchannel].value, 0,
						(rtlphy->iqk_matrix_regsetting[
						indexforchannel].value[0][6]
						== 0));
			}
		}
	}
	rtlphy->need_iqk = false;
2662
	RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
}

static u32 _rtl92d_phy_get_abs(u32 val1, u32 val2)
{
	u32 ret;

	if (val1 >= val2)
		ret = val1 - val2;
	else
		ret = val2 - val1;
	return ret;
}

static bool _rtl92d_is_legal_5g_channel(struct ieee80211_hw *hw, u8 channel)
{

	int i;
	u8 channel_5g[45] = {
		36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
		60, 62, 64, 100, 102, 104, 106, 108, 110, 112,
		114, 116, 118, 120, 122, 124, 126, 128, 130, 132,
		134, 136, 138, 140, 149, 151, 153, 155, 157, 159,
		161, 163, 165
	};

	for (i = 0; i < sizeof(channel_5g); i++)
		if (channel == channel_5g[i])
			return true;
	return false;
}

static void _rtl92d_phy_calc_curvindex(struct ieee80211_hw *hw,
				       u32 *targetchnl, u32 * curvecount_val,
				       bool is5g, u32 *curveindex)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u32 smallest_abs_val = 0xffffffff, u4tmp;
	u8 i, j;
	u8 chnl_num = is5g ? TARGET_CHNL_NUM_5G : TARGET_CHNL_NUM_2G;

	for (i = 0; i < chnl_num; i++) {
		if (is5g && !_rtl92d_is_legal_5g_channel(hw, i + 1))
			continue;
		curveindex[i] = 0;
		for (j = 0; j < (CV_CURVE_CNT * 2); j++) {
			u4tmp = _rtl92d_phy_get_abs(targetchnl[i],
				curvecount_val[j]);

			if (u4tmp < smallest_abs_val) {
				curveindex[i] = j;
				smallest_abs_val = u4tmp;
			}
		}
		smallest_abs_val = 0xffffffff;
2717 2718
		RTPRINT(rtlpriv, FINIT, INIT_IQK, "curveindex[%d] = %x\n",
			i, curveindex[i]);
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
	}
}

static void _rtl92d_phy_reload_lck_setting(struct ieee80211_hw *hw,
		u8 channel)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u8 erfpath = rtlpriv->rtlhal.current_bandtype ==
		BAND_ON_5G ? RF90_PATH_A :
		IS_92D_SINGLEPHY(rtlpriv->rtlhal.version) ?
		RF90_PATH_B : RF90_PATH_A;
	u32 u4tmp = 0, u4regvalue = 0;
	bool bneed_powerdown_radio = false;

2733
	RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "path %d\n", erfpath);
2734 2735 2736
	RTPRINT(rtlpriv, FINIT, INIT_IQK, "band type = %d\n",
		rtlpriv->rtlhal.current_bandtype);
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "channel = %d\n", channel);
2737 2738 2739
	if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G) {/* Path-A for 5G */
		u4tmp = curveindex_5g[channel-1];
		RTPRINT(rtlpriv, FINIT, INIT_IQK,
2740
			"ver 1 set RF-A, 5G,	0x28 = 0x%ulx !!\n", u4tmp);
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
		if (rtlpriv->rtlhal.macphymode == DUALMAC_DUALPHY &&
			rtlpriv->rtlhal.interfaceindex == 1) {
			bneed_powerdown_radio =
				rtl92d_phy_enable_anotherphy(hw, false);
			rtlpriv->rtlhal.during_mac1init_radioa = true;
			/* asume no this case */
			if (bneed_powerdown_radio)
				_rtl92d_phy_enable_rf_env(hw, erfpath,
							  &u4regvalue);
		}
		rtl_set_rfreg(hw, erfpath, RF_SYN_G4, 0x3f800, u4tmp);
		if (bneed_powerdown_radio)
			_rtl92d_phy_restore_rf_env(hw, erfpath, &u4regvalue);
		if (rtlpriv->rtlhal.during_mac1init_radioa)
			rtl92d_phy_powerdown_anotherphy(hw, false);
	} else if (rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G) {
		u4tmp = curveindex_2g[channel-1];
		RTPRINT(rtlpriv, FINIT, INIT_IQK,
2759
			"ver 3 set RF-B, 2G, 0x28 = 0x%ulx !!\n", u4tmp);
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
		if (rtlpriv->rtlhal.macphymode == DUALMAC_DUALPHY &&
			rtlpriv->rtlhal.interfaceindex == 0) {
			bneed_powerdown_radio =
				rtl92d_phy_enable_anotherphy(hw, true);
			rtlpriv->rtlhal.during_mac0init_radiob = true;
			if (bneed_powerdown_radio)
				_rtl92d_phy_enable_rf_env(hw, erfpath,
							  &u4regvalue);
		}
		rtl_set_rfreg(hw, erfpath, RF_SYN_G4, 0x3f800, u4tmp);
		RTPRINT(rtlpriv, FINIT, INIT_IQK,
2771 2772
			"ver 3 set RF-B, 2G, 0x28 = 0x%ulx !!\n",
			rtl_get_rfreg(hw,  erfpath, RF_SYN_G4, 0x3f800));
2773 2774 2775 2776 2777
		if (bneed_powerdown_radio)
			_rtl92d_phy_restore_rf_env(hw, erfpath, &u4regvalue);
		if (rtlpriv->rtlhal.during_mac0init_radiob)
			rtl92d_phy_powerdown_anotherphy(hw, true);
	}
2778
	RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
}

static void _rtl92d_phy_lc_calibrate_sw(struct ieee80211_hw *hw, bool is2t)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
	u8 tmpreg, index, rf_mode[2];
	u8 path = is2t ? 2 : 1;
	u8 i;
	u32 u4tmp, offset;
	u32 curvecount_val[CV_CURVE_CNT * 2] = {0};
	u16 timeout = 800, timecount = 0;

	/* Check continuous TX and Packet TX */
	tmpreg = rtl_read_byte(rtlpriv, 0xd03);
	/* if Deal with contisuous TX case, disable all continuous TX */
	/* if Deal with Packet TX case, block all queues */
	if ((tmpreg & 0x70) != 0)
		rtl_write_byte(rtlpriv, 0xd03, tmpreg & 0x8F);
	else
		rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xF00000, 0x0F);
	for (index = 0; index < path; index++) {
		/* 1. Read original RF mode */
		offset = index == 0 ? ROFDM0_XAAGCCORE1 : ROFDM0_XBAGCCORE1;
		rf_mode[index] = rtl_read_byte(rtlpriv, offset);
		/* 2. Set RF mode = standby mode */
		rtl_set_rfreg(hw, (enum radio_path)index, RF_AC,
			      BRFREGOFFSETMASK, 0x010000);
		if (rtlpci->init_ready) {
			/* switch CV-curve control by LC-calibration */
			rtl_set_rfreg(hw, (enum radio_path)index, RF_SYN_G7,
				      BIT(17), 0x0);
			/* 4. Set LC calibration begin */
			rtl_set_rfreg(hw, (enum radio_path)index, RF_CHNLBW,
				      0x08000, 0x01);
		}
		u4tmp = rtl_get_rfreg(hw, (enum radio_path)index, RF_SYN_G6,
				  BRFREGOFFSETMASK);
		while ((!(u4tmp & BIT(11))) && timecount <= timeout) {
			mdelay(50);
			timecount += 50;
			u4tmp = rtl_get_rfreg(hw, (enum radio_path)index,
					      RF_SYN_G6, BRFREGOFFSETMASK);
		}
		RTPRINT(rtlpriv, FINIT, INIT_IQK,
2826
			"PHY_LCK finish delay for %d ms=2\n", timecount);
2827 2828 2829
		u4tmp = rtl_get_rfreg(hw, index, RF_SYN_G4, BRFREGOFFSETMASK);
		if (index == 0 && rtlhal->interfaceindex == 0) {
			RTPRINT(rtlpriv, FINIT, INIT_IQK,
2830
				"path-A / 5G LCK\n");
2831 2832
		} else {
			RTPRINT(rtlpriv, FINIT, INIT_IQK,
2833
				"path-B / 2.4G LCK\n");
2834 2835 2836 2837 2838
		}
		memset(&curvecount_val[0], 0, CV_CURVE_CNT * 2);
		/* Set LC calibration off */
		rtl_set_rfreg(hw, (enum radio_path)index, RF_CHNLBW,
			      0x08000, 0x0);
2839
		RTPRINT(rtlpriv, FINIT, INIT_IQK,  "set RF 0x18[15] = 0\n");
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
		/* save Curve-counting number */
		for (i = 0; i < CV_CURVE_CNT; i++) {
			u32 readval = 0, readval2 = 0;
			rtl_set_rfreg(hw, (enum radio_path)index, 0x3F,
				      0x7f, i);

			rtl_set_rfreg(hw, (enum radio_path)index, 0x4D,
				BRFREGOFFSETMASK, 0x0);
			readval = rtl_get_rfreg(hw, (enum radio_path)index,
					  0x4F, BRFREGOFFSETMASK);
			curvecount_val[2 * i + 1] = (readval & 0xfffe0) >> 5;
			/* reg 0x4f [4:0] */
			/* reg 0x50 [19:10] */
			readval2 = rtl_get_rfreg(hw, (enum radio_path)index,
						 0x50, 0xffc00);
			curvecount_val[2 * i] = (((readval & 0x1F) << 10) |
						 readval2);
		}
		if (index == 0 && rtlhal->interfaceindex == 0)
			_rtl92d_phy_calc_curvindex(hw, targetchnl_5g,
						   curvecount_val,
						   true, curveindex_5g);
		else
			_rtl92d_phy_calc_curvindex(hw, targetchnl_2g,
						   curvecount_val,
						   false, curveindex_2g);
		/* switch CV-curve control mode */
		rtl_set_rfreg(hw, (enum radio_path)index, RF_SYN_G7,
			      BIT(17), 0x1);
	}

	/* Restore original situation  */
	for (index = 0; index < path; index++) {
		offset = index == 0 ? ROFDM0_XAAGCCORE1 : ROFDM0_XBAGCCORE1;
		rtl_write_byte(rtlpriv, offset, 0x50);
		rtl_write_byte(rtlpriv, offset, rf_mode[index]);
	}
	if ((tmpreg & 0x70) != 0)
		rtl_write_byte(rtlpriv, 0xd03, tmpreg);
	else /*Deal with Packet TX case */
		rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xF00000, 0x00);
	_rtl92d_phy_reload_lck_setting(hw, rtlpriv->phy.current_channel);
}

static void _rtl92d_phy_lc_calibrate(struct ieee80211_hw *hw, bool is2t)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);

2889
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "cosa PHY_LCK ver=2\n");
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
	_rtl92d_phy_lc_calibrate_sw(hw, is2t);
}

void rtl92d_phy_lc_calibrate(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
	u32 timeout = 2000, timecount = 0;

	while (rtlpriv->mac80211.act_scanning && timecount < timeout) {
		udelay(50);
		timecount += 50;
	}

	rtlphy->lck_inprogress = true;
	RTPRINT(rtlpriv, FINIT, INIT_IQK,
2907 2908
		"LCK:Start!!! currentband %x delay %d ms\n",
		rtlhal->current_bandtype, timecount);
2909 2910 2911 2912 2913 2914 2915
	if (IS_92D_SINGLEPHY(rtlhal->version)) {
		_rtl92d_phy_lc_calibrate(hw, true);
	} else {
		/* For 1T1R */
		_rtl92d_phy_lc_calibrate(hw, false);
	}
	rtlphy->lck_inprogress = false;
2916
	RTPRINT(rtlpriv, FINIT, INIT_IQK,  "LCK:Finish!!!\n");
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
}

void rtl92d_phy_ap_calibrate(struct ieee80211_hw *hw, char delta)
{
	return;
}

static bool _rtl92d_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable,
		u32 cmdtableidx, u32 cmdtablesz, enum swchnlcmd_id cmdid,
		u32 para1, u32 para2, u32 msdelay)
{
	struct swchnlcmd *pcmd;

	if (cmdtable == NULL) {
2931
		RT_ASSERT(false, "cmdtable cannot be NULL\n");
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
		return false;
	}
	if (cmdtableidx >= cmdtablesz)
		return false;

	pcmd = cmdtable + cmdtableidx;
	pcmd->cmdid = cmdid;
	pcmd->para1 = para1;
	pcmd->para2 = para2;
	pcmd->msdelay = msdelay;
	return true;
}

void rtl92d_phy_reset_iqk_result(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	u8 i;

	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
2952 2953 2954 2955
		 "settings regs %d default regs %d\n",
		 (int)(sizeof(rtlphy->iqk_matrix_regsetting) /
		       sizeof(struct iqk_matrix_regs)),
		 IQK_MATRIX_REG_NUM);
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
	/* 0xe94, 0xe9c, 0xea4, 0xeac, 0xeb4, 0xebc, 0xec4, 0xecc */
	for (i = 0; i < IQK_MATRIX_SETTINGS_NUM; i++) {
		rtlphy->iqk_matrix_regsetting[i].value[0][0] = 0x100;
		rtlphy->iqk_matrix_regsetting[i].value[0][2] = 0x100;
		rtlphy->iqk_matrix_regsetting[i].value[0][4] = 0x100;
		rtlphy->iqk_matrix_regsetting[i].value[0][6] = 0x100;
		rtlphy->iqk_matrix_regsetting[i].value[0][1] = 0x0;
		rtlphy->iqk_matrix_regsetting[i].value[0][3] = 0x0;
		rtlphy->iqk_matrix_regsetting[i].value[0][5] = 0x0;
		rtlphy->iqk_matrix_regsetting[i].value[0][7] = 0x0;
		rtlphy->iqk_matrix_regsetting[i].iqk_done = false;
	}
}

static bool _rtl92d_phy_sw_chnl_step_by_step(struct ieee80211_hw *hw,
					     u8 channel, u8 *stage, u8 *step,
					     u32 *delay)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct swchnlcmd precommoncmd[MAX_PRECMD_CNT];
	u32 precommoncmdcnt;
	struct swchnlcmd postcommoncmd[MAX_POSTCMD_CNT];
	u32 postcommoncmdcnt;
	struct swchnlcmd rfdependcmd[MAX_RFDEPENDCMD_CNT];
	u32 rfdependcmdcnt;
	struct swchnlcmd *currentcmd = NULL;
	u8 rfpath;
	u8 num_total_rfpath = rtlphy->num_total_rfpath;

	precommoncmdcnt = 0;
	_rtl92d_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
					 MAX_PRECMD_CNT,
					 CMDID_SET_TXPOWEROWER_LEVEL, 0, 0, 0);
	_rtl92d_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
					 MAX_PRECMD_CNT, CMDID_END, 0, 0, 0);
	postcommoncmdcnt = 0;
	_rtl92d_phy_set_sw_chnl_cmdarray(postcommoncmd, postcommoncmdcnt++,
					 MAX_POSTCMD_CNT, CMDID_END, 0, 0, 0);
	rfdependcmdcnt = 0;
	_rtl92d_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
					 MAX_RFDEPENDCMD_CNT, CMDID_RF_WRITEREG,
					 RF_CHNLBW, channel, 0);
	_rtl92d_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
					 MAX_RFDEPENDCMD_CNT, CMDID_END,
					 0, 0, 0);

	do {
		switch (*stage) {
		case 0:
			currentcmd = &precommoncmd[*step];
			break;
		case 1:
			currentcmd = &rfdependcmd[*step];
			break;
		case 2:
			currentcmd = &postcommoncmd[*step];
			break;
		}
		if (currentcmd->cmdid == CMDID_END) {
			if ((*stage) == 2) {
				return true;
			} else {
				(*stage)++;
				(*step) = 0;
				continue;
			}
		}
		switch (currentcmd->cmdid) {
		case CMDID_SET_TXPOWEROWER_LEVEL:
			rtl92d_phy_set_txpower_level(hw, channel);
			break;
		case CMDID_WRITEPORT_ULONG:
			rtl_write_dword(rtlpriv, currentcmd->para1,
					currentcmd->para2);
			break;
		case CMDID_WRITEPORT_USHORT:
			rtl_write_word(rtlpriv, currentcmd->para1,
				       (u16)currentcmd->para2);
			break;
		case CMDID_WRITEPORT_UCHAR:
			rtl_write_byte(rtlpriv, currentcmd->para1,
				       (u8)currentcmd->para2);
			break;
		case CMDID_RF_WRITEREG:
			for (rfpath = 0; rfpath < num_total_rfpath; rfpath++) {
				rtlphy->rfreg_chnlval[rfpath] =
					((rtlphy->rfreg_chnlval[rfpath] &
					0xffffff00) | currentcmd->para2);
				if (rtlpriv->rtlhal.current_bandtype ==
				    BAND_ON_5G) {
					if (currentcmd->para2 > 99)
						rtlphy->rfreg_chnlval[rfpath] =
						    rtlphy->rfreg_chnlval
						    [rfpath] | (BIT(18));
					else
						rtlphy->rfreg_chnlval[rfpath] =
						    rtlphy->rfreg_chnlval
						    [rfpath] & (~BIT(18));
					rtlphy->rfreg_chnlval[rfpath] |=
						 (BIT(16) | BIT(8));
				} else {
					rtlphy->rfreg_chnlval[rfpath] &=
						~(BIT(8) | BIT(16) | BIT(18));
				}
				rtl_set_rfreg(hw, (enum radio_path)rfpath,
					      currentcmd->para1,
					      BRFREGOFFSETMASK,
					      rtlphy->rfreg_chnlval[rfpath]);
				_rtl92d_phy_reload_imr_setting(hw, channel,
							       rfpath);
			}
			_rtl92d_phy_switch_rf_setting(hw, channel);
			/* do IQK when all parameters are ready */
			rtl92d_phy_reload_iqk_setting(hw, channel);
			break;
		default:
			RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
3074
				 "switch case not processed\n");
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
			break;
		}
		break;
	} while (true);
	(*delay) = currentcmd->msdelay;
	(*step)++;
	return false;
}

u8 rtl92d_phy_sw_chnl(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	u32 delay;
	u32 timeout = 1000, timecount = 0;
	u8 channel = rtlphy->current_channel;
	u32 ret_value;

	if (rtlphy->sw_chnl_inprogress)
		return 0;
	if (rtlphy->set_bwmode_inprogress)
		return 0;

	if ((is_hal_stop(rtlhal)) || (RT_CANNOT_IO(hw))) {
		RT_TRACE(rtlpriv, COMP_CHAN, DBG_LOUD,
3101
			 "sw_chnl_inprogress false driver sleep or unload\n");
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
		return 0;
	}
	while (rtlphy->lck_inprogress && timecount < timeout) {
		mdelay(50);
		timecount += 50;
	}
	if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY &&
	    rtlhal->bandset == BAND_ON_BOTH) {
		ret_value = rtl_get_bbreg(hw, RFPGA0_XAB_RFPARAMETER,
					  BMASKDWORD);
		if (rtlphy->current_channel > 14 && !(ret_value & BIT(0)))
			rtl92d_phy_switch_wirelessband(hw, BAND_ON_5G);
		else if (rtlphy->current_channel <= 14 && (ret_value & BIT(0)))
			rtl92d_phy_switch_wirelessband(hw, BAND_ON_2_4G);
	}
	switch (rtlhal->current_bandtype) {
	case BAND_ON_5G:
		/* Get first channel error when change between
		 * 5G and 2.4G band. */
		if (channel <= 14)
			return 0;
3123
		RT_ASSERT((channel > 14), "5G but channel<=14\n");
3124 3125 3126 3127 3128 3129
		break;
	case BAND_ON_2_4G:
		/* Get first channel error when change between
		 * 5G and 2.4G band. */
		if (channel > 14)
			return 0;
3130
		RT_ASSERT((channel <= 14), "2G but channel>14\n");
3131 3132
		break;
	default:
3133 3134
		RT_ASSERT(false, "Invalid WirelessMode(%#x)!!\n",
			  rtlpriv->mac80211.mode);
3135 3136 3137 3138 3139 3140 3141 3142
		break;
	}
	rtlphy->sw_chnl_inprogress = true;
	if (channel == 0)
		channel = 1;
	rtlphy->sw_chnl_stage = 0;
	rtlphy->sw_chnl_step = 0;
	RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE,
3143
		 "switch to channel%d\n", rtlphy->current_channel);
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159

	do {
		if (!rtlphy->sw_chnl_inprogress)
			break;
		if (!_rtl92d_phy_sw_chnl_step_by_step(hw,
						      rtlphy->current_channel,
		    &rtlphy->sw_chnl_stage, &rtlphy->sw_chnl_step, &delay)) {
			if (delay > 0)
				mdelay(delay);
			else
				continue;
		} else {
			rtlphy->sw_chnl_inprogress = false;
		}
		break;
	} while (true);
3160
	RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "<==\n");
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
	rtlphy->sw_chnl_inprogress = false;
	return 1;
}

static void rtl92d_phy_set_io(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);

	RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
3171 3172
		 "--->Cmd(%#x), set_io_inprogress(%d)\n",
		 rtlphy->current_io_type, rtlphy->set_io_inprogress);
3173 3174
	switch (rtlphy->current_io_type) {
	case IO_CMD_RESUME_DM_BY_SCAN:
3175
		de_digtable.cur_igvalue = rtlphy->initgain_backup.xaagccore1;
3176 3177 3178 3179
		rtl92d_dm_write_dig(hw);
		rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel);
		break;
	case IO_CMD_PAUSE_DM_BY_SCAN:
3180 3181
		rtlphy->initgain_backup.xaagccore1 = de_digtable.cur_igvalue;
		de_digtable.cur_igvalue = 0x17;
3182 3183 3184 3185
		rtl92d_dm_write_dig(hw);
		break;
	default:
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
3186
			 "switch case not processed\n");
3187 3188 3189
		break;
	}
	rtlphy->set_io_inprogress = false;
3190 3191
	RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "<---(%#x)\n",
		 rtlphy->current_io_type);
3192 3193 3194 3195 3196 3197 3198 3199 3200
}

bool rtl92d_phy_set_io_cmd(struct ieee80211_hw *hw, enum io_type iotype)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	bool postprocessing = false;

	RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
3201 3202
		 "-->IO Cmd(%#x), set_io_inprogress(%d)\n",
		 iotype, rtlphy->set_io_inprogress);
3203 3204 3205 3206
	do {
		switch (iotype) {
		case IO_CMD_RESUME_DM_BY_SCAN:
			RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
3207
				 "[IO CMD] Resume DM after scan\n");
3208 3209 3210 3211
			postprocessing = true;
			break;
		case IO_CMD_PAUSE_DM_BY_SCAN:
			RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
3212
				 "[IO CMD] Pause DM before scan\n");
3213 3214 3215 3216
			postprocessing = true;
			break;
		default:
			RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
3217
				 "switch case not processed\n");
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
			break;
		}
	} while (false);
	if (postprocessing && !rtlphy->set_io_inprogress) {
		rtlphy->set_io_inprogress = true;
		rtlphy->current_io_type = iotype;
	} else {
		return false;
	}
	rtl92d_phy_set_io(hw);
3228
	RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "<--IO Type(%#x)\n", iotype);
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
	return true;
}

static void _rtl92d_phy_set_rfon(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);

	/* a.  SYS_CLKR 0x08[11] = 1  restore MAC clock */
	/* b.  SPS_CTRL 0x11[7:0] = 0x2b */
	if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY)
		rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
	/* c.  For PCIE: SYS_FUNC_EN 0x02[7:0] = 0xE3 enable BB TRX function */
	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
	/* RF_ON_EXCEP(d~g): */
	/* d.  APSD_CTRL 0x600[7:0] = 0x00 */
	rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x00);
	/* e.  SYS_FUNC_EN 0x02[7:0] = 0xE2  reset BB TRX function again */
	/* f.  SYS_FUNC_EN 0x02[7:0] = 0xE3  enable BB TRX function*/
	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
	/* g.   txpause 0x522[7:0] = 0x00  enable mac tx queue */
	rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
}

static void _rtl92d_phy_set_rfsleep(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u32 u4btmp;
	u8 delay = 5;

	/* a.   TXPAUSE 0x522[7:0] = 0xFF  Pause MAC TX queue  */
	rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
	/* b.   RF path 0 offset 0x00 = 0x00  disable RF  */
	rtl_set_rfreg(hw, RF90_PATH_A, 0x00, BRFREGOFFSETMASK, 0x00);
	/* c.   APSD_CTRL 0x600[7:0] = 0x40 */
	rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
	/* d. APSD_CTRL 0x600[7:0] = 0x00
	 * APSD_CTRL 0x600[7:0] = 0x00
	 * RF path 0 offset 0x00 = 0x00
	 * APSD_CTRL 0x600[7:0] = 0x40
	 * */
	u4btmp = rtl_get_rfreg(hw, RF90_PATH_A, 0, BRFREGOFFSETMASK);
	while (u4btmp != 0 && delay > 0) {
		rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x0);
		rtl_set_rfreg(hw, RF90_PATH_A, 0x00, BRFREGOFFSETMASK, 0x00);
		rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
		u4btmp = rtl_get_rfreg(hw, RF90_PATH_A, 0, BRFREGOFFSETMASK);
		delay--;
	}
	if (delay == 0) {
		/* Jump out the LPS turn off sequence to RF_ON_EXCEP */
		rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x00);

		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
		rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
		RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
3286
			 "Fail !!! Switch RF timeout\n");
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
		return;
	}
	/* e.   For PCIE: SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB TRX function */
	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
	/* f.   SPS_CTRL 0x11[7:0] = 0x22 */
	if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY)
		rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x22);
	/* g.    SYS_CLKR 0x08[11] = 0  gated MAC clock */
}

bool rtl92d_phy_set_rf_power_state(struct ieee80211_hw *hw,
				   enum rf_pwrstate rfpwr_state)
{

	bool bresult = true;
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
	u8 i, queue_id;
	struct rtl8192_tx_ring *ring = NULL;

	if (rfpwr_state == ppsc->rfpwr_state)
		return false;
	switch (rfpwr_state) {
	case ERFON:
		if ((ppsc->rfpwr_state == ERFOFF) &&
		    RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
			bool rtstatus;
			u32 InitializeCount = 0;
			do {
				InitializeCount++;
				RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
3321
					 "IPS Set eRf nic enable\n");
3322 3323 3324 3325 3326 3327 3328 3329
				rtstatus = rtl_ps_enable_nic(hw);
			} while ((rtstatus != true) &&
				 (InitializeCount < 10));

			RT_CLEAR_PS_LEVEL(ppsc,
					  RT_RF_OFF_LEVL_HALT_NIC);
		} else {
			RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
3330
				 "awake, sleeped:%d ms state_inap:%x\n",
3331
				 jiffies_to_msecs(jiffies -
3332 3333
						  ppsc->last_sleep_jiffies),
				 rtlpriv->psc.state_inap);
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
			ppsc->last_awake_jiffies = jiffies;
			_rtl92d_phy_set_rfon(hw);
		}

		if (mac->link_state == MAC80211_LINKED)
			rtlpriv->cfg->ops->led_control(hw,
					 LED_CTL_LINK);
		else
			rtlpriv->cfg->ops->led_control(hw,
					 LED_CTL_NO_LINK);
		break;
	case ERFOFF:
		if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) {
			RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
3348
				 "IPS Set eRf nic disable\n");
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
			rtl_ps_disable_nic(hw);
			RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
		} else {
			if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
				rtlpriv->cfg->ops->led_control(hw,
						 LED_CTL_NO_LINK);
			else
				rtlpriv->cfg->ops->led_control(hw,
						 LED_CTL_POWER_OFF);
		}
		break;
	case ERFSLEEP:
		if (ppsc->rfpwr_state == ERFOFF)
3362
			return false;
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372

		for (queue_id = 0, i = 0;
		     queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
			ring = &pcipriv->dev.tx_ring[queue_id];
			if (skb_queue_len(&ring->queue) == 0 ||
			    queue_id == BEACON_QUEUE) {
				queue_id++;
				continue;
			} else if (rtlpci->pdev->current_state != PCI_D0) {
				RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
3373 3374
					 "eRf Off/Sleep: %d times TcbBusyQueue[%d] !=0 but lower power state!\n",
					 i + 1, queue_id);
3375 3376 3377
				break;
			} else {
				RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
3378 3379 3380
					 "eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n",
					 i + 1, queue_id,
					 skb_queue_len(&ring->queue));
3381 3382 3383 3384 3385 3386
				udelay(10);
				i++;
			}

			if (i >= MAX_DOZE_WAITING_TIMES_9x) {
				RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
3387 3388 3389
					 "ERFOFF: %d times TcbBusyQueue[%d] = %d !\n",
					 MAX_DOZE_WAITING_TIMES_9x, queue_id,
					 skb_queue_len(&ring->queue));
3390 3391 3392 3393
				break;
			}
		}
		RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
3394 3395 3396 3397 3398 3399 3400
			 "Set rfsleep awaked:%d ms\n",
			 jiffies_to_msecs(jiffies - ppsc->last_awake_jiffies));
		RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
			 "sleep awaked:%d ms state_inap:%x\n",
			 jiffies_to_msecs(jiffies -
					  ppsc->last_awake_jiffies),
			 rtlpriv->psc.state_inap);
3401 3402 3403 3404 3405
		ppsc->last_sleep_jiffies = jiffies;
		_rtl92d_phy_set_rfsleep(hw);
		break;
	default:
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
3406
			 "switch case not processed\n");
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
		bresult = false;
		break;
	}
	if (bresult)
		ppsc->rfpwr_state = rfpwr_state;
	return bresult;
}

void rtl92d_phy_config_macphymode(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	u8 offset = REG_MAC_PHY_CTRL_NORMAL;

	switch (rtlhal->macphymode) {
	case DUALMAC_DUALPHY:
		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
3424
			 "MacPhyMode: DUALMAC_DUALPHY\n");
3425 3426 3427 3428
		rtl_write_byte(rtlpriv, offset, 0xF3);
		break;
	case SINGLEMAC_SINGLEPHY:
		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
3429
			 "MacPhyMode: SINGLEMAC_SINGLEPHY\n");
3430 3431 3432 3433
		rtl_write_byte(rtlpriv, offset, 0xF4);
		break;
	case DUALMAC_SINGLEPHY:
		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
3434
			 "MacPhyMode: DUALMAC_SINGLEPHY\n");
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
		rtl_write_byte(rtlpriv, offset, 0xF1);
		break;
	}
}

void rtl92d_phy_config_macphymode_info(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	struct rtl_phy *rtlphy = &(rtlpriv->phy);

	switch (rtlhal->macphymode) {
	case DUALMAC_SINGLEPHY:
		rtlphy->rf_type = RF_2T2R;
		rtlhal->version |= CHIP_92D_SINGLEPHY;
		rtlhal->bandset = BAND_ON_BOTH;
		rtlhal->current_bandtype = BAND_ON_2_4G;
		break;

	case SINGLEMAC_SINGLEPHY:
		rtlphy->rf_type = RF_2T2R;
		rtlhal->version |= CHIP_92D_SINGLEPHY;
		rtlhal->bandset = BAND_ON_BOTH;
		rtlhal->current_bandtype = BAND_ON_2_4G;
		break;

	case DUALMAC_DUALPHY:
		rtlphy->rf_type = RF_1T1R;
		rtlhal->version &= (~CHIP_92D_SINGLEPHY);
		/* Now we let MAC0 run on 5G band. */
		if (rtlhal->interfaceindex == 0) {
			rtlhal->bandset = BAND_ON_5G;
			rtlhal->current_bandtype = BAND_ON_5G;
		} else {
			rtlhal->bandset = BAND_ON_2_4G;
			rtlhal->current_bandtype = BAND_ON_2_4G;
		}
		break;
	default:
		break;
	}
}

u8 rtl92d_get_chnlgroup_fromarray(u8 chnl)
{
	u8 group;
	u8 channel_info[59] = {
		1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
		36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56,
		58, 60, 62, 64, 100, 102, 104, 106, 108,
		110, 112, 114, 116, 118, 120, 122, 124,
		126, 128, 130, 132, 134, 136, 138, 140,
		149, 151, 153, 155, 157, 159, 161, 163,
		165
	};

	if (channel_info[chnl] <= 3)
		group = 0;
	else if (channel_info[chnl] <= 9)
		group = 1;
	else if (channel_info[chnl] <= 14)
		group = 2;
	else if (channel_info[chnl] <= 44)
		group = 3;
	else if (channel_info[chnl] <= 54)
		group = 4;
	else if (channel_info[chnl] <= 64)
		group = 5;
	else if (channel_info[chnl] <= 112)
		group = 6;
	else if (channel_info[chnl] <= 126)
		group = 7;
	else if (channel_info[chnl] <= 140)
		group = 8;
	else if (channel_info[chnl] <= 153)
		group = 9;
	else if (channel_info[chnl] <= 159)
		group = 10;
	else
		group = 11;
	return group;
}

void rtl92d_phy_set_poweron(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	unsigned long flags;
	u8 value8;
	u16 i;
	u32 mac_reg = (rtlhal->interfaceindex == 0 ? REG_MAC0 : REG_MAC1);

	/* notice fw know band status  0x81[1]/0x53[1] = 0: 5G, 1: 2G */
	if (rtlhal->current_bandtype == BAND_ON_2_4G) {
		value8 = rtl_read_byte(rtlpriv, mac_reg);
		value8 |= BIT(1);
		rtl_write_byte(rtlpriv, mac_reg, value8);
	} else {
		value8 = rtl_read_byte(rtlpriv, mac_reg);
		value8 &= (~BIT(1));
		rtl_write_byte(rtlpriv, mac_reg, value8);
	}

	if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY) {
		value8 = rtl_read_byte(rtlpriv, REG_MAC0);
		rtl_write_byte(rtlpriv, REG_MAC0, value8 | MAC0_ON);
	} else {
		spin_lock_irqsave(&globalmutex_power, flags);
		if (rtlhal->interfaceindex == 0) {
			value8 = rtl_read_byte(rtlpriv, REG_MAC0);
			rtl_write_byte(rtlpriv, REG_MAC0, value8 | MAC0_ON);
		} else {
			value8 = rtl_read_byte(rtlpriv, REG_MAC1);
			rtl_write_byte(rtlpriv, REG_MAC1, value8 | MAC1_ON);
		}
		value8 = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
		spin_unlock_irqrestore(&globalmutex_power, flags);
		for (i = 0; i < 200; i++) {
			if ((value8 & BIT(7)) == 0) {
				break;
			} else {
				udelay(500);
				spin_lock_irqsave(&globalmutex_power, flags);
				value8 = rtl_read_byte(rtlpriv,
						    REG_POWER_OFF_IN_PROCESS);
				spin_unlock_irqrestore(&globalmutex_power,
						       flags);
			}
		}
		if (i == 200)
3565
			RT_ASSERT(false, "Another mac power off over time\n");
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
	}
}

void rtl92d_phy_config_maccoexist_rfpage(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);

	switch (rtlpriv->rtlhal.macphymode) {
	case DUALMAC_DUALPHY:
		rtl_write_byte(rtlpriv, REG_DMC, 0x0);
		rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x08);
		rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x13ff);
		break;
	case DUALMAC_SINGLEPHY:
		rtl_write_byte(rtlpriv, REG_DMC, 0xf8);
		rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x08);
		rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x13ff);
		break;
	case SINGLEMAC_SINGLEPHY:
		rtl_write_byte(rtlpriv, REG_DMC, 0x0);
		rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x10);
		rtl_write_word(rtlpriv, (REG_TRXFF_BNDY + 2), 0x27FF);
		break;
	default:
		break;
	}
}

void rtl92d_update_bbrf_configuration(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
	u8 rfpath, i;

3602
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==>\n");
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
	/* r_select_5G for path_A/B 0 for 2.4G, 1 for 5G */
	if (rtlhal->current_bandtype == BAND_ON_2_4G) {
		/* r_select_5G for path_A/B,0x878 */
		rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(0), 0x0);
		rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15), 0x0);
		if (rtlhal->macphymode != DUALMAC_DUALPHY) {
			rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(16), 0x0);
			rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(31), 0x0);
		}
		/* rssi_table_select:index 0 for 2.4G.1~3 for 5G,0xc78 */
		rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, BIT(6) | BIT(7), 0x0);
		/* fc_area  0xd2c */
		rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(14) | BIT(13), 0x0);
		/* 5G LAN ON */
		rtl_set_bbreg(hw, 0xB30, 0x00F00000, 0xa);
		/* TX BB gain shift*1,Just for testchip,0xc80,0xc88 */
		rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, BMASKDWORD,
			      0x40000100);
		rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, BMASKDWORD,
			      0x40000100);
		if (rtlhal->macphymode == DUALMAC_DUALPHY) {
			rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
				      BIT(10) | BIT(6) | BIT(5),
				      ((rtlefuse->eeprom_c9 & BIT(3)) >> 3) |
				      (rtlefuse->eeprom_c9 & BIT(1)) |
				      ((rtlefuse->eeprom_cc & BIT(1)) << 4));
			rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE,
				      BIT(10) | BIT(6) | BIT(5),
				      ((rtlefuse->eeprom_c9 & BIT(2)) >> 2) |
				      ((rtlefuse->eeprom_c9 & BIT(0)) << 1) |
				      ((rtlefuse->eeprom_cc & BIT(0)) << 5));
			rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15), 0);
		} else {
			rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
				      BIT(26) | BIT(22) | BIT(21) | BIT(10) |
				      BIT(6) | BIT(5),
				      ((rtlefuse->eeprom_c9 & BIT(3)) >> 3) |
				      (rtlefuse->eeprom_c9 & BIT(1)) |
				      ((rtlefuse->eeprom_cc & BIT(1)) << 4) |
				      ((rtlefuse->eeprom_c9 & BIT(7)) << 9) |
				      ((rtlefuse->eeprom_c9 & BIT(5)) << 12) |
				      ((rtlefuse->eeprom_cc & BIT(3)) << 18));
			rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE,
				      BIT(10) | BIT(6) | BIT(5),
				      ((rtlefuse->eeprom_c9 & BIT(2)) >> 2) |
				      ((rtlefuse->eeprom_c9 & BIT(0)) << 1) |
				      ((rtlefuse->eeprom_cc & BIT(0)) << 5));
			rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
				      BIT(10) | BIT(6) | BIT(5),
				      ((rtlefuse->eeprom_c9 & BIT(6)) >> 6) |
				      ((rtlefuse->eeprom_c9 & BIT(4)) >> 3) |
				      ((rtlefuse->eeprom_cc & BIT(2)) << 3));
			rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER,
				      BIT(31) | BIT(15), 0);
		}
		/* 1.5V_LDO */
	} else {
		/* r_select_5G for path_A/B */
		rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(0), 0x1);
		rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15), 0x1);
		if (rtlhal->macphymode != DUALMAC_DUALPHY) {
			rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(16), 0x1);
			rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(31), 0x1);
		}
		/* rssi_table_select:index 0 for 2.4G.1~3 for 5G */
		rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, BIT(6) | BIT(7), 0x1);
		/* fc_area */
		rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(14) | BIT(13), 0x1);
		/* 5G LAN ON */
		rtl_set_bbreg(hw, 0xB30, 0x00F00000, 0x0);
		/* TX BB gain shift,Just for testchip,0xc80,0xc88 */
		if (rtlefuse->internal_pa_5g[0])
			rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, BMASKDWORD,
				      0x2d4000b5);
		else
			rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, BMASKDWORD,
				      0x20000080);
		if (rtlefuse->internal_pa_5g[1])
			rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, BMASKDWORD,
				      0x2d4000b5);
		else
			rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, BMASKDWORD,
				      0x20000080);
		if (rtlhal->macphymode == DUALMAC_DUALPHY) {
			rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
				      BIT(10) | BIT(6) | BIT(5),
				      (rtlefuse->eeprom_cc & BIT(5)));
			rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BIT(10),
				      ((rtlefuse->eeprom_cc & BIT(4)) >> 4));
			rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15),
				      (rtlefuse->eeprom_cc & BIT(4)) >> 4);
		} else {
			rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
				      BIT(26) | BIT(22) | BIT(21) | BIT(10) |
				      BIT(6) | BIT(5),
				      (rtlefuse->eeprom_cc & BIT(5)) |
				      ((rtlefuse->eeprom_cc & BIT(7)) << 14));
			rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BIT(10),
				      ((rtlefuse->eeprom_cc & BIT(4)) >> 4));
			rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, BIT(10),
				      ((rtlefuse->eeprom_cc & BIT(6)) >> 6));
			rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER,
				      BIT(31) | BIT(15),
				      ((rtlefuse->eeprom_cc & BIT(4)) >> 4) |
				      ((rtlefuse->eeprom_cc & BIT(6)) << 10));
		}
	}
	/* update IQK related settings */
	rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, BMASKDWORD, 0x40000100);
	rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, BMASKDWORD, 0x40000100);
	rtl_set_bbreg(hw, ROFDM0_XCTxAFE, 0xF0000000, 0x00);
	rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(30) | BIT(28) |
		      BIT(26) | BIT(24), 0x00);
	rtl_set_bbreg(hw, ROFDM0_XDTxAFE, 0xF0000000, 0x00);
	rtl_set_bbreg(hw, 0xca0, 0xF0000000, 0x00);
	rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, 0x0000F000, 0x00);

	/* Update RF */
	for (rfpath = RF90_PATH_A; rfpath < rtlphy->num_total_rfpath;
	     rfpath++) {
		if (rtlhal->current_bandtype == BAND_ON_2_4G) {
			/* MOD_AG for RF paht_A 0x18 BIT8,BIT16 */
			rtl_set_rfreg(hw, rfpath, RF_CHNLBW, BIT(8) | BIT(16) |
				      BIT(18), 0);
			/* RF0x0b[16:14] =3b'111 */
			rtl_set_rfreg(hw, (enum radio_path)rfpath, 0x0B,
				      0x1c000, 0x07);
		} else {
			/* MOD_AG for RF paht_A 0x18 BIT8,BIT16 */
			rtl_set_rfreg(hw, rfpath, RF_CHNLBW, BIT(8) |
				      BIT(16) | BIT(18),
				      (BIT(16) | BIT(8)) >> 8);
		}
	}
	/* Update for all band. */
	/* DMDP */
	if (rtlphy->rf_type == RF_1T1R) {
		/* Use antenna 0,0xc04,0xd04 */
		rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, BMASKBYTE0, 0x11);
		rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0x1);

		/* enable ad/da clock1 for dual-phy reg0x888 */
		if (rtlhal->interfaceindex == 0) {
			rtl_set_bbreg(hw, RFPGA0_ADDALLOCKEN, BIT(12) |
				      BIT(13), 0x3);
		} else {
			rtl92d_phy_enable_anotherphy(hw, false);
			RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
3751
				 "MAC1 use DBI to update 0x888\n");
3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
			/* 0x888 */
			rtl92de_write_dword_dbi(hw, RFPGA0_ADDALLOCKEN,
						rtl92de_read_dword_dbi(hw,
						RFPGA0_ADDALLOCKEN,
						BIT(3)) | BIT(12) | BIT(13),
						BIT(3));
			rtl92d_phy_powerdown_anotherphy(hw, false);
		}
	} else {
		/* Single PHY */
		/* Use antenna 0 & 1,0xc04,0xd04 */
		rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, BMASKBYTE0, 0x33);
		rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0x3);
		/* disable ad/da clock1,0x888 */
		rtl_set_bbreg(hw, RFPGA0_ADDALLOCKEN, BIT(12) | BIT(13), 0);
	}
	for (rfpath = RF90_PATH_A; rfpath < rtlphy->num_total_rfpath;
	     rfpath++) {
		rtlphy->rfreg_chnlval[rfpath] = rtl_get_rfreg(hw, rfpath,
						RF_CHNLBW, BRFREGOFFSETMASK);
		rtlphy->reg_rf3c[rfpath] = rtl_get_rfreg(hw, rfpath, 0x3C,
			BRFREGOFFSETMASK);
	}
	for (i = 0; i < 2; i++)
3776 3777 3778
		RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "RF 0x18 = 0x%x\n",
			 rtlphy->rfreg_chnlval[i]);
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<==\n");
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815

}

bool rtl92d_phy_check_poweroff(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	u8 u1btmp;
	unsigned long flags;

	if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY) {
		u1btmp = rtl_read_byte(rtlpriv, REG_MAC0);
		rtl_write_byte(rtlpriv, REG_MAC0, u1btmp & (~MAC0_ON));
		return true;
	}
	spin_lock_irqsave(&globalmutex_power, flags);
	if (rtlhal->interfaceindex == 0) {
		u1btmp = rtl_read_byte(rtlpriv, REG_MAC0);
		rtl_write_byte(rtlpriv, REG_MAC0, u1btmp & (~MAC0_ON));
		u1btmp = rtl_read_byte(rtlpriv, REG_MAC1);
		u1btmp &= MAC1_ON;
	} else {
		u1btmp = rtl_read_byte(rtlpriv, REG_MAC1);
		rtl_write_byte(rtlpriv, REG_MAC1, u1btmp & (~MAC1_ON));
		u1btmp = rtl_read_byte(rtlpriv, REG_MAC0);
		u1btmp &= MAC0_ON;
	}
	if (u1btmp) {
		spin_unlock_irqrestore(&globalmutex_power, flags);
		return false;
	}
	u1btmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
	u1btmp |= BIT(7);
	rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1btmp);
	spin_unlock_irqrestore(&globalmutex_power, flags);
	return true;
}