intel_dp.c 36.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/i2c.h>
#include "drmP.h"
#include "drm.h"
#include "drm_crtc.h"
#include "drm_crtc_helper.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
36
#include "drm_dp_helper.h"
37

38

39 40 41 42 43
#define DP_LINK_STATUS_SIZE	6
#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)

#define DP_LINK_CONFIGURATION_SIZE	9

44 45
#define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)

46 47 48 49 50 51 52
struct intel_dp_priv {
	uint32_t output_reg;
	uint32_t DP;
	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
	uint32_t save_DP;
	uint8_t  save_link_configuration[DP_LINK_CONFIGURATION_SIZE];
	bool has_audio;
53
	int dpms_mode;
54 55 56
	uint8_t link_bw;
	uint8_t lane_count;
	uint8_t dpcd[4];
57
	struct intel_encoder *intel_encoder;
58 59 60 61 62
	struct i2c_adapter adapter;
	struct i2c_algo_dp_aux_data algo;
};

static void
63
intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
64 65 66
		    uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);

static void
67
intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP);
68

69
void
70
intel_edp_link_config (struct intel_encoder *intel_encoder,
71 72
		int *lane_num, int *link_bw)
{
73
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
74 75 76 77 78 79 80 81

	*lane_num = dp_priv->lane_count;
	if (dp_priv->link_bw == DP_LINK_BW_1_62)
		*link_bw = 162000;
	else if (dp_priv->link_bw == DP_LINK_BW_2_7)
		*link_bw = 270000;
}

82
static int
83
intel_dp_max_lane_count(struct intel_encoder *intel_encoder)
84
{
85
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
	int max_lane_count = 4;

	if (dp_priv->dpcd[0] >= 0x11) {
		max_lane_count = dp_priv->dpcd[2] & 0x1f;
		switch (max_lane_count) {
		case 1: case 2: case 4:
			break;
		default:
			max_lane_count = 4;
		}
	}
	return max_lane_count;
}

static int
101
intel_dp_max_link_bw(struct intel_encoder *intel_encoder)
102
{
103
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
	int max_link_bw = dp_priv->dpcd[1];

	switch (max_link_bw) {
	case DP_LINK_BW_1_62:
	case DP_LINK_BW_2_7:
		break;
	default:
		max_link_bw = DP_LINK_BW_1_62;
		break;
	}
	return max_link_bw;
}

static int
intel_dp_link_clock(uint8_t link_bw)
{
	if (link_bw == DP_LINK_BW_2_7)
		return 270000;
	else
		return 162000;
}

/* I think this is a fiction */
static int
128
intel_dp_link_required(struct drm_device *dev,
129
		       struct intel_encoder *intel_encoder, int pixel_clock)
130
{
131 132
	struct drm_i915_private *dev_priv = dev->dev_private;

133
	if (IS_eDP(intel_encoder))
134 135 136
		return (pixel_clock * dev_priv->edp_bpp) / 8;
	else
		return pixel_clock * 3;
137 138 139 140 141 142
}

static int
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
143 144 145
	struct intel_encoder *intel_encoder = to_intel_encoder(connector);
	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_encoder));
	int max_lanes = intel_dp_max_lane_count(intel_encoder);
146

147
	if (intel_dp_link_required(connector->dev, intel_encoder, mode->clock)
148
			> max_link_clock * max_lanes)
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
		return MODE_CLOCK_HIGH;

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

	return MODE_OK;
}

static uint32_t
pack_aux(uint8_t *src, int src_bytes)
{
	int	i;
	uint32_t v = 0;

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
	return v;
}

static void
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/* hrawclock is 1/4 the FSB frequency */
static int
intel_hrawclk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t clkcfg;

	clkcfg = I915_READ(CLKCFG);
	switch (clkcfg & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_400:
		return 100;
	case CLKCFG_FSB_533:
		return 133;
	case CLKCFG_FSB_667:
		return 166;
	case CLKCFG_FSB_800:
		return 200;
	case CLKCFG_FSB_1067:
		return 266;
	case CLKCFG_FSB_1333:
		return 333;
	/* these two are just a guess; one of them might be right */
	case CLKCFG_FSB_1600:
	case CLKCFG_FSB_1600_ALT:
		return 400;
	default:
		return 133;
	}
}

210
static int
211
intel_dp_aux_ch(struct intel_encoder *intel_encoder,
212 213 214
		uint8_t *send, int send_bytes,
		uint8_t *recv, int recv_size)
{
215
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
216
	uint32_t output_reg = dp_priv->output_reg;
217
	struct drm_device *dev = intel_encoder->base.dev;
218 219 220 221 222 223 224
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t ch_ctl = output_reg + 0x10;
	uint32_t ch_data = ch_ctl + 4;
	int i;
	int recv_bytes;
	uint32_t ctl;
	uint32_t status;
225 226
	uint32_t aux_clock_divider;
	int try;
227 228

	/* The clock divider is based off the hrawclk,
229 230
	 * and would like to run at 2MHz. So, take the
	 * hrawclk value and divide by 2 and use that
231
	 */
232
	if (IS_eDP(intel_encoder))
233
		aux_clock_divider = 225; /* eDP input clock at 450Mhz */
234
	else if (HAS_PCH_SPLIT(dev))
235
		aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
236 237 238
	else
		aux_clock_divider = intel_hrawclk(dev) / 2;

239 240 241 242
	/* Must try at least 3 times according to DP spec */
	for (try = 0; try < 5; try++) {
		/* Load the send data into the aux channel data registers */
		for (i = 0; i < send_bytes; i += 4) {
243
			uint32_t    d = pack_aux(send + i, send_bytes - i);
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
	
			I915_WRITE(ch_data + i, d);
		}
	
		ctl = (DP_AUX_CH_CTL_SEND_BUSY |
		       DP_AUX_CH_CTL_TIME_OUT_400us |
		       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
		       (5 << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
		       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
		       DP_AUX_CH_CTL_DONE |
		       DP_AUX_CH_CTL_TIME_OUT_ERROR |
		       DP_AUX_CH_CTL_RECEIVE_ERROR);
	
		/* Send the command and wait for it to complete */
		I915_WRITE(ch_ctl, ctl);
		(void) I915_READ(ch_ctl);
		for (;;) {
			udelay(100);
			status = I915_READ(ch_ctl);
			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
				break;
		}
	
		/* Clear done status and any errors */
268
		I915_WRITE(ch_ctl, (status |
269 270 271 272 273
				DP_AUX_CH_CTL_DONE |
				DP_AUX_CH_CTL_TIME_OUT_ERROR |
				DP_AUX_CH_CTL_RECEIVE_ERROR));
		(void) I915_READ(ch_ctl);
		if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
274 275 276 277
			break;
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
278
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
279
		return -EBUSY;
280 281 282 283 284
	}

	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
285
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
286
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
287 288
		return -EIO;
	}
289 290 291

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
292
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
293
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
294
		return -ETIMEDOUT;
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);

	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
	
	for (i = 0; i < recv_bytes; i += 4) {
		uint32_t    d = I915_READ(ch_data + i);

		unpack_aux(d, recv + i, recv_bytes - i);
	}

	return recv_bytes;
}

/* Write data to the aux channel in native mode */
static int
315
intel_dp_aux_native_write(struct intel_encoder *intel_encoder,
316 317 318 319 320 321 322 323 324 325 326
			  uint16_t address, uint8_t *send, int send_bytes)
{
	int ret;
	uint8_t	msg[20];
	int msg_bytes;
	uint8_t	ack;

	if (send_bytes > 16)
		return -1;
	msg[0] = AUX_NATIVE_WRITE << 4;
	msg[1] = address >> 8;
327
	msg[2] = address & 0xff;
328 329 330 331
	msg[3] = send_bytes - 1;
	memcpy(&msg[4], send, send_bytes);
	msg_bytes = send_bytes + 4;
	for (;;) {
332
		ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes, &ack, 1);
333 334 335 336 337 338 339
		if (ret < 0)
			return ret;
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
			break;
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
			udelay(100);
		else
340
			return -EIO;
341 342 343 344 345 346
	}
	return send_bytes;
}

/* Write a single byte to the aux channel in native mode */
static int
347
intel_dp_aux_native_write_1(struct intel_encoder *intel_encoder,
348 349
			    uint16_t address, uint8_t byte)
{
350
	return intel_dp_aux_native_write(intel_encoder, address, &byte, 1);
351 352 353 354
}

/* read bytes from a native aux channel */
static int
355
intel_dp_aux_native_read(struct intel_encoder *intel_encoder,
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
			 uint16_t address, uint8_t *recv, int recv_bytes)
{
	uint8_t msg[4];
	int msg_bytes;
	uint8_t reply[20];
	int reply_bytes;
	uint8_t ack;
	int ret;

	msg[0] = AUX_NATIVE_READ << 4;
	msg[1] = address >> 8;
	msg[2] = address & 0xff;
	msg[3] = recv_bytes - 1;

	msg_bytes = 4;
	reply_bytes = recv_bytes + 1;

	for (;;) {
374
		ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes,
375
				      reply, reply_bytes);
376 377 378
		if (ret == 0)
			return -EPROTO;
		if (ret < 0)
379 380 381 382 383 384 385 386 387
			return ret;
		ack = reply[0];
		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
			memcpy(recv, reply + 1, ret - 1);
			return ret - 1;
		}
		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
			udelay(100);
		else
388
			return -EIO;
389 390 391 392
	}
}

static int
393 394
intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
		    uint8_t write_byte, uint8_t *read_byte)
395
{
396
	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
397 398 399
	struct intel_dp_priv *dp_priv = container_of(adapter,
						     struct intel_dp_priv,
						     adapter);
400
	struct intel_encoder *intel_encoder = dp_priv->intel_encoder;
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	uint16_t address = algo_data->address;
	uint8_t msg[5];
	uint8_t reply[2];
	int msg_bytes;
	int reply_bytes;
	int ret;

	/* Set up the command byte */
	if (mode & MODE_I2C_READ)
		msg[0] = AUX_I2C_READ << 4;
	else
		msg[0] = AUX_I2C_WRITE << 4;

	if (!(mode & MODE_I2C_STOP))
		msg[0] |= AUX_I2C_MOT << 4;
416

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
	msg[1] = address >> 8;
	msg[2] = address;

	switch (mode) {
	case MODE_I2C_WRITE:
		msg[3] = 0;
		msg[4] = write_byte;
		msg_bytes = 5;
		reply_bytes = 1;
		break;
	case MODE_I2C_READ:
		msg[3] = 0;
		msg_bytes = 4;
		reply_bytes = 2;
		break;
	default:
		msg_bytes = 3;
		reply_bytes = 1;
		break;
	}

	for (;;) {
439
	  ret = intel_dp_aux_ch(intel_encoder,
440 441 442
				msg, msg_bytes,
				reply, reply_bytes);
		if (ret < 0) {
443
			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
444 445 446 447 448 449 450 451 452
			return ret;
		}
		switch (reply[0] & AUX_I2C_REPLY_MASK) {
		case AUX_I2C_REPLY_ACK:
			if (mode == MODE_I2C_READ) {
				*read_byte = reply[1];
			}
			return reply_bytes - 1;
		case AUX_I2C_REPLY_NACK:
453
			DRM_DEBUG_KMS("aux_ch nack\n");
454 455
			return -EREMOTEIO;
		case AUX_I2C_REPLY_DEFER:
456
			DRM_DEBUG_KMS("aux_ch defer\n");
457 458 459 460 461 462 463
			udelay(100);
			break;
		default:
			DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
			return -EREMOTEIO;
		}
	}
464 465 466
}

static int
467
intel_dp_i2c_init(struct intel_encoder *intel_encoder, const char *name)
468
{
469
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
470

Z
Zhenyu Wang 已提交
471
	DRM_DEBUG_KMS("i2c_init %s\n", name);
472 473 474 475 476 477 478
	dp_priv->algo.running = false;
	dp_priv->algo.address = 0;
	dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;

	memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
	dp_priv->adapter.owner = THIS_MODULE;
	dp_priv->adapter.class = I2C_CLASS_DDC;
479 480
	strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
	dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
481
	dp_priv->adapter.algo_data = &dp_priv->algo;
482
	dp_priv->adapter.dev.parent = &intel_encoder->base.kdev;
483 484 485 486 487 488 489 490
	
	return i2c_dp_aux_add_bus(&dp_priv->adapter);
}

static bool
intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
		    struct drm_display_mode *adjusted_mode)
{
491 492
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct intel_dp_priv   *dp_priv = intel_encoder->dev_priv;
493
	int lane_count, clock;
494 495
	int max_lane_count = intel_dp_max_lane_count(intel_encoder);
	int max_clock = intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
496 497 498 499 500 501
	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };

	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
		for (clock = 0; clock <= max_clock; clock++) {
			int link_avail = intel_dp_link_clock(bws[clock]) * lane_count;

502
			if (intel_dp_link_required(encoder->dev, intel_encoder, mode->clock)
503
					<= link_avail) {
504 505 506
				dp_priv->link_bw = bws[clock];
				dp_priv->lane_count = lane_count;
				adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
507 508
				DRM_DEBUG_KMS("Display port link bw %02x lane "
						"count %d clock %d\n",
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
				       dp_priv->link_bw, dp_priv->lane_count,
				       adjusted_mode->clock);
				return true;
			}
		}
	}
	return false;
}

struct intel_dp_m_n {
	uint32_t	tu;
	uint32_t	gmch_m;
	uint32_t	gmch_n;
	uint32_t	link_m;
	uint32_t	link_n;
};

static void
intel_reduce_ratio(uint32_t *num, uint32_t *den)
{
	while (*num > 0xffffff || *den > 0xffffff) {
		*num >>= 1;
		*den >>= 1;
	}
}

static void
intel_dp_compute_m_n(int bytes_per_pixel,
		     int nlanes,
		     int pixel_clock,
		     int link_clock,
		     struct intel_dp_m_n *m_n)
{
	m_n->tu = 64;
	m_n->gmch_m = pixel_clock * bytes_per_pixel;
	m_n->gmch_n = link_clock * nlanes;
	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
	m_n->link_m = pixel_clock;
	m_n->link_n = link_clock;
	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
}

void
intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
		 struct drm_display_mode *adjusted_mode)
{
	struct drm_device *dev = crtc->dev;
	struct drm_mode_config *mode_config = &dev->mode_config;
	struct drm_connector *connector;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int lane_count = 4;
	struct intel_dp_m_n m_n;

	/*
564
	 * Find the lane count in the intel_encoder private
565 566
	 */
	list_for_each_entry(connector, &mode_config->connector_list, head) {
567 568
		struct intel_encoder *intel_encoder = to_intel_encoder(connector);
		struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
569 570 571 572

		if (!connector->encoder || connector->encoder->crtc != crtc)
			continue;

573
		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
574 575 576 577 578 579 580 581 582 583 584 585 586
			lane_count = dp_priv->lane_count;
			break;
		}
	}

	/*
	 * Compute the GMCH and Link ratios. The '3' here is
	 * the number of bytes_per_pixel post-LUT, which we always
	 * set up for 8-bits of R/G/B, or 3 bytes total.
	 */
	intel_dp_compute_m_n(3, lane_count,
			     mode->clock, adjusted_mode->clock, &m_n);

587
	if (HAS_PCH_SPLIT(dev)) {
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
		if (intel_crtc->pipe == 0) {
			I915_WRITE(TRANSA_DATA_M1,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
			I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
			I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
		} else {
			I915_WRITE(TRANSB_DATA_M1,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
			I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
			I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
		}
603
	} else {
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
		if (intel_crtc->pipe == 0) {
			I915_WRITE(PIPEA_GMCH_DATA_M,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(PIPEA_GMCH_DATA_N,
				   m_n.gmch_n);
			I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
			I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
		} else {
			I915_WRITE(PIPEB_GMCH_DATA_M,
				   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
				   m_n.gmch_m);
			I915_WRITE(PIPEB_GMCH_DATA_N,
					m_n.gmch_n);
			I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
			I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
		}
621 622 623 624 625 626 627
	}
}

static void
intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
		  struct drm_display_mode *adjusted_mode)
{
628 629 630
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
	struct drm_crtc *crtc = intel_encoder->enc.crtc;
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	dp_priv->DP = (DP_LINK_TRAIN_OFF |
			DP_VOLTAGE_0_4 |
			DP_PRE_EMPHASIS_0 |
			DP_SYNC_VS_HIGH |
			DP_SYNC_HS_HIGH);

	switch (dp_priv->lane_count) {
	case 1:
		dp_priv->DP |= DP_PORT_WIDTH_1;
		break;
	case 2:
		dp_priv->DP |= DP_PORT_WIDTH_2;
		break;
	case 4:
		dp_priv->DP |= DP_PORT_WIDTH_4;
		break;
	}
	if (dp_priv->has_audio)
		dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;

	memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
	dp_priv->link_configuration[0] = dp_priv->link_bw;
	dp_priv->link_configuration[1] = dp_priv->lane_count;

	/*
	 * Check for DPCD version > 1.1,
	 * enable enahanced frame stuff in that case
	 */
	if (dp_priv->dpcd[0] >= 0x11) {
		dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
		dp_priv->DP |= DP_ENHANCED_FRAMING;
	}

	if (intel_crtc->pipe == 1)
		dp_priv->DP |= DP_PIPEB_SELECT;
668

669
	if (IS_eDP(intel_encoder)) {
670 671 672 673 674 675 676
		/* don't miss out required setting for eDP */
		dp_priv->DP |= DP_PLL_ENABLE;
		if (adjusted_mode->clock < 200000)
			dp_priv->DP |= DP_PLL_FREQ_160MHZ;
		else
			dp_priv->DP |= DP_PLL_FREQ_270MHZ;
	}
677 678
}

679
static void ironlake_edp_backlight_on (struct drm_device *dev)
680 681 682 683
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;

684
	DRM_DEBUG_KMS("\n");
685 686 687 688 689
	pp = I915_READ(PCH_PP_CONTROL);
	pp |= EDP_BLC_ENABLE;
	I915_WRITE(PCH_PP_CONTROL, pp);
}

690
static void ironlake_edp_backlight_off (struct drm_device *dev)
691 692 693 694
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;

695
	DRM_DEBUG_KMS("\n");
696 697 698 699
	pp = I915_READ(PCH_PP_CONTROL);
	pp &= ~EDP_BLC_ENABLE;
	I915_WRITE(PCH_PP_CONTROL, pp);
}
700 701 702 703

static void
intel_dp_dpms(struct drm_encoder *encoder, int mode)
{
704 705 706
	struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
	struct drm_device *dev = intel_encoder->base.dev;
707 708 709 710
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dp_reg = I915_READ(dp_priv->output_reg);

	if (mode != DRM_MODE_DPMS_ON) {
711
		if (dp_reg & DP_PORT_EN) {
712 713
			intel_dp_link_down(intel_encoder, dp_priv->DP);
			if (IS_eDP(intel_encoder))
714
				ironlake_edp_backlight_off(dev);
715
		}
716
	} else {
717
		if (!(dp_reg & DP_PORT_EN)) {
718 719
			intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
			if (IS_eDP(intel_encoder))
720
				ironlake_edp_backlight_on(dev);
721
		}
722
	}
723
	dp_priv->dpms_mode = mode;
724 725 726 727 728 729 730
}

/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
static bool
731
intel_dp_get_link_status(struct intel_encoder *intel_encoder,
732 733 734 735
			 uint8_t link_status[DP_LINK_STATUS_SIZE])
{
	int ret;

736
	ret = intel_dp_aux_native_read(intel_encoder,
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
				       DP_LANE0_1_STATUS,
				       link_status, DP_LINK_STATUS_SIZE);
	if (ret != DP_LINK_STATUS_SIZE)
		return false;
	return true;
}

static uint8_t
intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
		     int r)
{
	return link_status[r - DP_LANE0_1_STATUS];
}

static void
intel_dp_save(struct drm_connector *connector)
{
754 755
	struct intel_encoder *intel_encoder = to_intel_encoder(connector);
	struct drm_device *dev = intel_encoder->base.dev;
756
	struct drm_i915_private *dev_priv = dev->dev_private;
757
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
758 759

	dp_priv->save_DP = I915_READ(dp_priv->output_reg);
760
	intel_dp_aux_native_read(intel_encoder, DP_LINK_BW_SET,
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
				 dp_priv->save_link_configuration,
				 sizeof (dp_priv->save_link_configuration));
}

static uint8_t
intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
				 int lane)
{
	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
	int	    s = ((lane & 1) ?
			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
	uint8_t l = intel_dp_link_status(link_status, i);

	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
}

static uint8_t
intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
				      int lane)
{
	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
	int	    s = ((lane & 1) ?
			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
	uint8_t l = intel_dp_link_status(link_status, i);

	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
}


#if 0
static char	*voltage_names[] = {
	"0.4V", "0.6V", "0.8V", "1.2V"
};
static char	*pre_emph_names[] = {
	"0dB", "3.5dB", "6dB", "9.5dB"
};
static char	*link_train_names[] = {
	"pattern 1", "pattern 2", "idle", "off"
};
#endif

/*
 * These are source-specific values; current Intel hardware supports
 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
 */
#define I830_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_800

static uint8_t
intel_dp_pre_emphasis_max(uint8_t voltage_swing)
{
	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
	case DP_TRAIN_VOLTAGE_SWING_400:
		return DP_TRAIN_PRE_EMPHASIS_6;
	case DP_TRAIN_VOLTAGE_SWING_600:
		return DP_TRAIN_PRE_EMPHASIS_6;
	case DP_TRAIN_VOLTAGE_SWING_800:
		return DP_TRAIN_PRE_EMPHASIS_3_5;
	case DP_TRAIN_VOLTAGE_SWING_1200:
	default:
		return DP_TRAIN_PRE_EMPHASIS_0;
	}
}

static void
827
intel_get_adjust_train(struct intel_encoder *intel_encoder,
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
		       uint8_t link_status[DP_LINK_STATUS_SIZE],
		       int lane_count,
		       uint8_t train_set[4])
{
	uint8_t v = 0;
	uint8_t p = 0;
	int lane;

	for (lane = 0; lane < lane_count; lane++) {
		uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
		uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);

		if (this_v > v)
			v = this_v;
		if (this_p > p)
			p = this_p;
	}

	if (v >= I830_DP_VOLTAGE_MAX)
		v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;

	if (p >= intel_dp_pre_emphasis_max(v))
		p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;

	for (lane = 0; lane < 4; lane++)
		train_set[lane] = v | p;
}

static uint32_t
intel_dp_signal_levels(uint8_t train_set, int lane_count)
{
	uint32_t	signal_levels = 0;

	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
	case DP_TRAIN_VOLTAGE_SWING_400:
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
	case DP_TRAIN_VOLTAGE_SWING_600:
		signal_levels |= DP_VOLTAGE_0_6;
		break;
	case DP_TRAIN_VOLTAGE_SWING_800:
		signal_levels |= DP_VOLTAGE_0_8;
		break;
	case DP_TRAIN_VOLTAGE_SWING_1200:
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
	case DP_TRAIN_PRE_EMPHASIS_0:
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
	case DP_TRAIN_PRE_EMPHASIS_3_5:
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
	case DP_TRAIN_PRE_EMPHASIS_6:
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
	case DP_TRAIN_PRE_EMPHASIS_9_5:
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

static uint8_t
intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
		      int lane)
{
	int i = DP_LANE0_1_STATUS + (lane >> 1);
	int s = (lane & 1) * 4;
	uint8_t l = intel_dp_link_status(link_status, i);

	return (l >> s) & 0xf;
}

/* Check for clock recovery is done on all channels */
static bool
intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
	int lane;
	uint8_t lane_status;

	for (lane = 0; lane < lane_count; lane++) {
		lane_status = intel_get_lane_status(link_status, lane);
		if ((lane_status & DP_LANE_CR_DONE) == 0)
			return false;
	}
	return true;
}

/* Check to see if channel eq is done on all channels */
#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
			 DP_LANE_CHANNEL_EQ_DONE|\
			 DP_LANE_SYMBOL_LOCKED)
static bool
intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
	uint8_t lane_align;
	uint8_t lane_status;
	int lane;

	lane_align = intel_dp_link_status(link_status,
					  DP_LANE_ALIGN_STATUS_UPDATED);
	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
		return false;
	for (lane = 0; lane < lane_count; lane++) {
		lane_status = intel_get_lane_status(link_status, lane);
		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
			return false;
	}
	return true;
}

static bool
944
intel_dp_set_link_train(struct intel_encoder *intel_encoder,
945 946 947 948 949
			uint32_t dp_reg_value,
			uint8_t dp_train_pat,
			uint8_t train_set[4],
			bool first)
{
950
	struct drm_device *dev = intel_encoder->base.dev;
951
	struct drm_i915_private *dev_priv = dev->dev_private;
952
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
953 954 955 956 957 958 959
	int ret;

	I915_WRITE(dp_priv->output_reg, dp_reg_value);
	POSTING_READ(dp_priv->output_reg);
	if (first)
		intel_wait_for_vblank(dev);

960
	intel_dp_aux_native_write_1(intel_encoder,
961 962 963
				    DP_TRAINING_PATTERN_SET,
				    dp_train_pat);

964
	ret = intel_dp_aux_native_write(intel_encoder,
965 966 967 968 969 970 971 972
					DP_TRAINING_LANE0_SET, train_set, 4);
	if (ret != 4)
		return false;

	return true;
}

static void
973
intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
974 975
		    uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
{
976
	struct drm_device *dev = intel_encoder->base.dev;
977
	struct drm_i915_private *dev_priv = dev->dev_private;
978
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
979 980 981 982 983 984 985 986 987 988
	uint8_t	train_set[4];
	uint8_t link_status[DP_LINK_STATUS_SIZE];
	int i;
	uint8_t voltage;
	bool clock_recovery = false;
	bool channel_eq = false;
	bool first = true;
	int tries;

	/* Write the link configuration data */
989
	intel_dp_aux_native_write(intel_encoder, 0x100,
990 991 992 993 994 995 996 997 998 999 1000 1001 1002
				  link_configuration, DP_LINK_CONFIGURATION_SIZE);

	DP |= DP_PORT_EN;
	DP &= ~DP_LINK_TRAIN_MASK;
	memset(train_set, 0, 4);
	voltage = 0xff;
	tries = 0;
	clock_recovery = false;
	for (;;) {
		/* Use train_set[0] to set the voltage and pre emphasis values */
		uint32_t    signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
		DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;

1003
		if (!intel_dp_set_link_train(intel_encoder, DP | DP_LINK_TRAIN_PAT_1,
1004 1005 1006 1007 1008 1009
					     DP_TRAINING_PATTERN_1, train_set, first))
			break;
		first = false;
		/* Set training pattern 1 */

		udelay(100);
1010
		if (!intel_dp_get_link_status(intel_encoder, link_status))
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
			break;

		if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
			clock_recovery = true;
			break;
		}

		/* Check to see if we've tried the max voltage */
		for (i = 0; i < dp_priv->lane_count; i++)
			if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
				break;
		if (i == dp_priv->lane_count)
			break;

		/* Check to see if we've tried the same voltage 5 times */
		if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
			++tries;
			if (tries == 5)
				break;
		} else
			tries = 0;
		voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;

		/* Compute new train_set as requested by target */
1035
		intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
	}

	/* channel equalization */
	tries = 0;
	channel_eq = false;
	for (;;) {
		/* Use train_set[0] to set the voltage and pre emphasis values */
		uint32_t    signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
		DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;

		/* channel eq pattern */
1047
		if (!intel_dp_set_link_train(intel_encoder, DP | DP_LINK_TRAIN_PAT_2,
1048 1049 1050 1051 1052
					     DP_TRAINING_PATTERN_2, train_set,
					     false))
			break;

		udelay(400);
1053
		if (!intel_dp_get_link_status(intel_encoder, link_status))
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
			break;

		if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
			channel_eq = true;
			break;
		}

		/* Try 5 times */
		if (tries > 5)
			break;

		/* Compute new train_set as requested by target */
1066
		intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
1067 1068 1069 1070 1071
		++tries;
	}

	I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_OFF);
	POSTING_READ(dp_priv->output_reg);
1072
	intel_dp_aux_native_write_1(intel_encoder,
1073 1074 1075 1076
				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
}

static void
1077
intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP)
1078
{
1079
	struct drm_device *dev = intel_encoder->base.dev;
1080
	struct drm_i915_private *dev_priv = dev->dev_private;
1081
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1082

1083
	DRM_DEBUG_KMS("\n");
1084

1085
	if (IS_eDP(intel_encoder)) {
1086 1087 1088 1089 1090 1091
		DP &= ~DP_PLL_ENABLE;
		I915_WRITE(dp_priv->output_reg, DP);
		POSTING_READ(dp_priv->output_reg);
		udelay(100);
	}

1092 1093 1094 1095 1096 1097
	DP &= ~DP_LINK_TRAIN_MASK;
	I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
	POSTING_READ(dp_priv->output_reg);

	udelay(17000);

1098
	if (IS_eDP(intel_encoder))
1099
		DP |= DP_LINK_TRAIN_OFF;
1100 1101 1102 1103 1104 1105 1106
	I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(dp_priv->output_reg);
}

static void
intel_dp_restore(struct drm_connector *connector)
{
1107 1108
	struct intel_encoder *intel_encoder = to_intel_encoder(connector);
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1109 1110

	if (dp_priv->save_DP & DP_PORT_EN)
1111
		intel_dp_link_train(intel_encoder, dp_priv->save_DP, dp_priv->save_link_configuration);
1112
	else
1113
		intel_dp_link_down(intel_encoder,  dp_priv->save_DP);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
}

/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
 */

static void
1126
intel_dp_check_link_status(struct intel_encoder *intel_encoder)
1127
{
1128
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1129 1130
	uint8_t link_status[DP_LINK_STATUS_SIZE];

1131
	if (!intel_encoder->enc.crtc)
1132 1133
		return;

1134 1135
	if (!intel_dp_get_link_status(intel_encoder, link_status)) {
		intel_dp_link_down(intel_encoder, dp_priv->DP);
1136 1137 1138 1139
		return;
	}

	if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
1140
		intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
1141 1142
}

1143
static enum drm_connector_status
1144
ironlake_dp_detect(struct drm_connector *connector)
1145
{
1146 1147
	struct intel_encoder *intel_encoder = to_intel_encoder(connector);
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1148 1149 1150
	enum drm_connector_status status;

	status = connector_status_disconnected;
1151
	if (intel_dp_aux_native_read(intel_encoder,
1152 1153 1154 1155 1156 1157 1158 1159 1160
				     0x000, dp_priv->dpcd,
				     sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
	{
		if (dp_priv->dpcd[0] != 0)
			status = connector_status_connected;
	}
	return status;
}

1161 1162 1163 1164 1165 1166 1167 1168 1169
/**
 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
 *
 * \return true if DP port is connected.
 * \return false if DP port is disconnected.
 */
static enum drm_connector_status
intel_dp_detect(struct drm_connector *connector)
{
1170 1171
	struct intel_encoder *intel_encoder = to_intel_encoder(connector);
	struct drm_device *dev = intel_encoder->base.dev;
1172
	struct drm_i915_private *dev_priv = dev->dev_private;
1173
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1174 1175 1176 1177 1178
	uint32_t temp, bit;
	enum drm_connector_status status;

	dp_priv->has_audio = false;

1179
	if (HAS_PCH_SPLIT(dev))
1180
		return ironlake_dp_detect(connector);
1181

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	temp = I915_READ(PORT_HOTPLUG_EN);

	I915_WRITE(PORT_HOTPLUG_EN,
	       temp |
	       DPB_HOTPLUG_INT_EN |
	       DPC_HOTPLUG_INT_EN |
	       DPD_HOTPLUG_INT_EN);

	POSTING_READ(PORT_HOTPLUG_EN);

	switch (dp_priv->output_reg) {
	case DP_B:
		bit = DPB_HOTPLUG_INT_STATUS;
		break;
	case DP_C:
		bit = DPC_HOTPLUG_INT_STATUS;
		break;
	case DP_D:
		bit = DPD_HOTPLUG_INT_STATUS;
		break;
	default:
		return connector_status_unknown;
	}

	temp = I915_READ(PORT_HOTPLUG_STAT);

	if ((temp & bit) == 0)
		return connector_status_disconnected;

	status = connector_status_disconnected;
1212
	if (intel_dp_aux_native_read(intel_encoder,
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
				     0x000, dp_priv->dpcd,
				     sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
	{
		if (dp_priv->dpcd[0] != 0)
			status = connector_status_connected;
	}
	return status;
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
1224 1225
	struct intel_encoder *intel_encoder = to_intel_encoder(connector);
	struct drm_device *dev = intel_encoder->base.dev;
1226 1227
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;
1228 1229 1230 1231

	/* We should parse the EDID data and find out if it has an audio sink
	 */

1232
	ret = intel_ddc_get_modes(intel_encoder);
1233 1234 1235 1236
	if (ret)
		return ret;

	/* if eDP has no EDID, try to use fixed panel mode from VBT */
1237
	if (IS_eDP(intel_encoder)) {
1238 1239 1240 1241 1242 1243 1244 1245
		if (dev_priv->panel_fixed_mode != NULL) {
			struct drm_display_mode *mode;
			mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
	return 0;
1246 1247 1248 1249 1250
}

static void
intel_dp_destroy (struct drm_connector *connector)
{
1251
	struct intel_encoder *intel_encoder = to_intel_encoder(connector);
1252

1253 1254
	if (intel_encoder->i2c_bus)
		intel_i2c_destroy(intel_encoder->i2c_bus);
1255 1256
	drm_sysfs_connector_remove(connector);
	drm_connector_cleanup(connector);
1257
	kfree(intel_encoder);
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
}

static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
	.dpms = intel_dp_dpms,
	.mode_fixup = intel_dp_mode_fixup,
	.prepare = intel_encoder_prepare,
	.mode_set = intel_dp_mode_set,
	.commit = intel_encoder_commit,
};

static const struct drm_connector_funcs intel_dp_connector_funcs = {
	.dpms = drm_helper_connector_dpms,
	.save = intel_dp_save,
	.restore = intel_dp_restore,
	.detect = intel_dp_detect,
	.fill_modes = drm_helper_probe_single_connector_modes,
	.destroy = intel_dp_destroy,
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
	.best_encoder = intel_best_encoder,
};

static void intel_dp_enc_destroy(struct drm_encoder *encoder)
{
	drm_encoder_cleanup(encoder);
}

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
	.destroy = intel_dp_enc_destroy,
};

1292
void
1293
intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1294
{
1295
	struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
1296 1297

	if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
1298
		intel_dp_check_link_status(intel_encoder);
1299
}
1300

1301 1302 1303 1304 1305
void
intel_dp_init(struct drm_device *dev, int output_reg)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_connector *connector;
1306
	struct intel_encoder *intel_encoder;
1307
	struct intel_dp_priv *dp_priv;
1308
	const char *name = NULL;
1309

1310
	intel_encoder = kcalloc(sizeof(struct intel_encoder) +
1311
			       sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
1312
	if (!intel_encoder)
1313 1314
		return;

1315
	dp_priv = (struct intel_dp_priv *)(intel_encoder + 1);
1316

1317
	connector = &intel_encoder->base;
1318 1319 1320 1321
	drm_connector_init(dev, connector, &intel_dp_connector_funcs,
			   DRM_MODE_CONNECTOR_DisplayPort);
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

1322
	if (output_reg == DP_A)
1323
		intel_encoder->type = INTEL_OUTPUT_EDP;
1324
	else
1325
		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1326

1327
	if (output_reg == DP_B || output_reg == PCH_DP_B)
1328
		intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1329
	else if (output_reg == DP_C || output_reg == PCH_DP_C)
1330
		intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1331
	else if (output_reg == DP_D || output_reg == PCH_DP_D)
1332
		intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1333

1334 1335
	if (IS_eDP(intel_encoder))
		intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
Z
Zhenyu Wang 已提交
1336

1337
	intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1338 1339 1340
	connector->interlace_allowed = true;
	connector->doublescan_allowed = 0;

1341
	dp_priv->intel_encoder = intel_encoder;
1342 1343
	dp_priv->output_reg = output_reg;
	dp_priv->has_audio = false;
1344
	dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
1345
	intel_encoder->dev_priv = dp_priv;
1346

1347
	drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
1348
			 DRM_MODE_ENCODER_TMDS);
1349
	drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
1350

1351 1352
	drm_mode_connector_attach_encoder(&intel_encoder->base,
					  &intel_encoder->enc);
1353 1354 1355
	drm_sysfs_connector_add(connector);

	/* Set up the DDC bus. */
1356
	switch (output_reg) {
1357 1358 1359
		case DP_A:
			name = "DPDDC-A";
			break;
1360 1361
		case DP_B:
		case PCH_DP_B:
1362 1363
			dev_priv->hotplug_supported_mask |=
				HDMIB_HOTPLUG_INT_STATUS;
1364 1365 1366 1367
			name = "DPDDC-B";
			break;
		case DP_C:
		case PCH_DP_C:
1368 1369
			dev_priv->hotplug_supported_mask |=
				HDMIC_HOTPLUG_INT_STATUS;
1370 1371 1372 1373
			name = "DPDDC-C";
			break;
		case DP_D:
		case PCH_DP_D:
1374 1375
			dev_priv->hotplug_supported_mask |=
				HDMID_HOTPLUG_INT_STATUS;
1376 1377 1378 1379
			name = "DPDDC-D";
			break;
	}

1380
	intel_dp_i2c_init(intel_encoder, name);
1381

1382 1383
	intel_encoder->ddc_bus = &dp_priv->adapter;
	intel_encoder->hot_plug = intel_dp_hot_plug;
1384

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	if (output_reg == DP_A) {
		/* initialize panel mode from VBT if available for eDP */
		if (dev_priv->lfp_lvds_vbt_mode) {
			dev_priv->panel_fixed_mode =
				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
			if (dev_priv->panel_fixed_mode) {
				dev_priv->panel_fixed_mode->type |=
					DRM_MODE_TYPE_PREFERRED;
			}
		}
	}

1397 1398 1399 1400 1401 1402 1403 1404 1405
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
	if (IS_G4X(dev) && !IS_GM45(dev)) {
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
}