kprobes.c 24.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/*
 *  Kernel Probes (KProbes)
 *  arch/ia64/kernel/kprobes.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) IBM Corporation, 2002, 2004
 * Copyright (C) Intel Corporation, 2005
 *
 * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
 *              <anil.s.keshavamurthy@intel.com> adapted from i386
 */

#include <linux/config.h>
#include <linux/kprobes.h>
#include <linux/ptrace.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/preempt.h>
#include <linux/moduleloader.h>

#include <asm/pgtable.h>
#include <asm/kdebug.h>
36
#include <asm/sections.h>
37
#include <asm/uaccess.h>
38

39 40
extern void jprobe_inst_return(void);

41 42
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

enum instruction_type {A, I, M, F, B, L, X, u};
static enum instruction_type bundle_encoding[32][3] = {
  { M, I, I },				/* 00 */
  { M, I, I },				/* 01 */
  { M, I, I },				/* 02 */
  { M, I, I },				/* 03 */
  { M, L, X },				/* 04 */
  { M, L, X },				/* 05 */
  { u, u, u },  			/* 06 */
  { u, u, u },  			/* 07 */
  { M, M, I },				/* 08 */
  { M, M, I },				/* 09 */
  { M, M, I },				/* 0A */
  { M, M, I },				/* 0B */
  { M, F, I },				/* 0C */
  { M, F, I },				/* 0D */
  { M, M, F },				/* 0E */
  { M, M, F },				/* 0F */
  { M, I, B },				/* 10 */
  { M, I, B },				/* 11 */
  { M, B, B },				/* 12 */
  { M, B, B },				/* 13 */
  { u, u, u },  			/* 14 */
  { u, u, u },  			/* 15 */
  { B, B, B },				/* 16 */
  { B, B, B },				/* 17 */
  { M, M, B },				/* 18 */
  { M, M, B },				/* 19 */
  { u, u, u },  			/* 1A */
  { u, u, u },  			/* 1B */
  { M, F, B },				/* 1C */
  { M, F, B },				/* 1D */
  { u, u, u },  			/* 1E */
  { u, u, u },  			/* 1F */
};

80 81 82 83 84
/*
 * In this function we check to see if the instruction
 * is IP relative instruction and update the kprobe
 * inst flag accordingly
 */
85 86 87 88
static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
					      uint major_opcode,
					      unsigned long kprobe_inst,
					      struct kprobe *p)
89
{
R
Rusty Lynch 已提交
90 91
	p->ainsn.inst_flag = 0;
	p->ainsn.target_br_reg = 0;
92

93 94 95 96 97 98 99 100 101 102 103
	/* Check for Break instruction
 	 * Bits 37:40 Major opcode to be zero
	 * Bits 27:32 X6 to be zero
	 * Bits 32:35 X3 to be zero
	 */
	if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
		/* is a break instruction */
	 	p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
		return;
	}

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
	if (bundle_encoding[template][slot] == B) {
		switch (major_opcode) {
		  case INDIRECT_CALL_OPCODE:
	 		p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
 			break;
		  case IP_RELATIVE_PREDICT_OPCODE:
		  case IP_RELATIVE_BRANCH_OPCODE:
			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
 			break;
		  case IP_RELATIVE_CALL_OPCODE:
 			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
 			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
 			break;
		}
 	} else if (bundle_encoding[template][slot] == X) {
		switch (major_opcode) {
		  case LONG_CALL_OPCODE:
			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
		  break;
		}
	}
	return;
}
130

131 132 133 134 135 136
/*
 * In this function we check to see if the instruction
 * on which we are inserting kprobe is supported.
 * Returns 0 if supported
 * Returns -EINVAL if unsupported
 */
137 138 139 140
static int __kprobes unsupported_inst(uint template, uint  slot,
				      uint major_opcode,
				      unsigned long kprobe_inst,
				      struct kprobe *p)
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
{
	unsigned long addr = (unsigned long)p->addr;

	if (bundle_encoding[template][slot] == I) {
		switch (major_opcode) {
			case 0x0: //I_UNIT_MISC_OPCODE:
			/*
			 * Check for Integer speculation instruction
			 * - Bit 33-35 to be equal to 0x1
			 */
			if (((kprobe_inst >> 33) & 0x7) == 1) {
				printk(KERN_WARNING
					"Kprobes on speculation inst at <0x%lx> not supported\n",
					addr);
				return -EINVAL;
			}

			/*
			 * IP relative mov instruction
			 *  - Bit 27-35 to be equal to 0x30
			 */
			if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
				printk(KERN_WARNING
					"Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
					addr);
				return -EINVAL;

			}
		}
	}
	return 0;
}


175 176 177 178 179 180
/*
 * In this function we check to see if the instruction
 * (qp) cmpx.crel.ctype p1,p2=r2,r3
 * on which we are inserting kprobe is cmp instruction
 * with ctype as unc.
 */
181 182 183
static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
					    uint major_opcode,
					    unsigned long kprobe_inst)
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
{
	cmp_inst_t cmp_inst;
	uint ctype_unc = 0;

	if (!((bundle_encoding[template][slot] == I) ||
		(bundle_encoding[template][slot] == M)))
		goto out;

	if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
		(major_opcode == 0xE)))
		goto out;

	cmp_inst.l = kprobe_inst;
	if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
		/* Integere compare - Register Register (A6 type)*/
		if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
				&&(cmp_inst.f.c == 1))
			ctype_unc = 1;
	} else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
		/* Integere compare - Immediate Register (A8 type)*/
		if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
			ctype_unc = 1;
	}
out:
	return ctype_unc;
}

211 212 213 214
/*
 * In this function we override the bundle with
 * the break instruction at the given slot.
 */
215 216 217 218
static void __kprobes prepare_break_inst(uint template, uint  slot,
					 uint major_opcode,
					 unsigned long kprobe_inst,
					 struct kprobe *p)
219 220 221 222 223 224
{
	unsigned long break_inst = BREAK_INST;
	bundle_t *bundle = &p->ainsn.insn.bundle;

	/*
	 * Copy the original kprobe_inst qualifying predicate(qp)
225 226 227 228
	 * to the break instruction iff !is_cmp_ctype_unc_inst
	 * because for cmp instruction with ctype equal to unc,
	 * which is a special instruction always needs to be
	 * executed regradless of qp
229
	 */
230 231
	if (!is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst))
		break_inst |= (0x3f & kprobe_inst);
232 233 234 235 236 237 238 239 240 241 242 243

	switch (slot) {
	  case 0:
		bundle->quad0.slot0 = break_inst;
		break;
	  case 1:
		bundle->quad0.slot1_p0 = break_inst;
		bundle->quad1.slot1_p1 = break_inst >> (64-46);
		break;
	  case 2:
		bundle->quad1.slot2 = break_inst;
		break;
R
Rusty Lynch 已提交
244
	}
245

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
	/*
	 * Update the instruction flag, so that we can
	 * emulate the instruction properly after we
	 * single step on original instruction
	 */
	update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
}

static inline void get_kprobe_inst(bundle_t *bundle, uint slot,
	       	unsigned long *kprobe_inst, uint *major_opcode)
{
	unsigned long kprobe_inst_p0, kprobe_inst_p1;
	unsigned int template;

	template = bundle->quad0.template;
261 262

	switch (slot) {
263 264 265
	  case 0:
 		*major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
 		*kprobe_inst = bundle->quad0.slot0;
266
		break;
267 268 269 270 271
	  case 1:
 		*major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
  		kprobe_inst_p0 = bundle->quad0.slot1_p0;
  		kprobe_inst_p1 = bundle->quad1.slot1_p1;
  		*kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
272
		break;
273 274 275
	  case 2:
 		*major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
 		*kprobe_inst = bundle->quad1.slot2;
276 277
		break;
	}
278
}
279

280 281 282 283 284 285 286
/* Returns non-zero if the addr is in the Interrupt Vector Table */
static inline int in_ivt_functions(unsigned long addr)
{
	return (addr >= (unsigned long)__start_ivt_text
		&& addr < (unsigned long)__end_ivt_text);
}

287 288
static int __kprobes valid_kprobe_addr(int template, int slot,
				       unsigned long addr)
289 290
{
	if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
291 292
		printk(KERN_WARNING "Attempting to insert unaligned kprobe "
				"at 0x%lx\n", addr);
293
		return -EINVAL;
R
Rusty Lynch 已提交
294
	}
295

296 297 298 299 300 301
 	if (in_ivt_functions(addr)) {
 		printk(KERN_WARNING "Kprobes can't be inserted inside "
				"IVT functions at 0x%lx\n", addr);
 		return -EINVAL;
 	}

302 303 304 305 306 307
	if (slot == 1 && bundle_encoding[template][1] != L) {
		printk(KERN_WARNING "Inserting kprobes on slot #1 "
		       "is not supported\n");
		return -EINVAL;
	}

308 309 310
	return 0;
}

311
static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
312
{
313 314
	kcb->prev_kprobe.kp = kprobe_running();
	kcb->prev_kprobe.status = kcb->kprobe_status;
315 316
}

317
static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
318
{
319 320
	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
	kcb->kprobe_status = kcb->prev_kprobe.status;
321 322
}

323 324
static inline void set_current_kprobe(struct kprobe *p,
			struct kprobe_ctlblk *kcb)
325
{
326
	__get_cpu_var(current_kprobe) = p;
327 328
}

329 330 331 332 333 334 335 336 337 338 339 340
static void kretprobe_trampoline(void)
{
}

/*
 * At this point the target function has been tricked into
 * returning into our trampoline.  Lookup the associated instance
 * and then:
 *    - call the handler function
 *    - cleanup by marking the instance as unused
 *    - long jump back to the original return address
 */
341
int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
342 343 344 345
{
	struct kretprobe_instance *ri = NULL;
	struct hlist_head *head;
	struct hlist_node *node, *tmp;
346
	unsigned long flags, orig_ret_address = 0;
347 348 349
	unsigned long trampoline_address =
		((struct fnptr *)kretprobe_trampoline)->ip;

350
	spin_lock_irqsave(&kretprobe_lock, flags);
351
	head = kretprobe_inst_table_head(current);
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

	/*
	 * It is possible to have multiple instances associated with a given
	 * task either because an multiple functions in the call path
	 * have a return probe installed on them, and/or more then one return
	 * return probe was registered for a target function.
	 *
	 * We can handle this because:
	 *     - instances are always inserted at the head of the list
	 *     - when multiple return probes are registered for the same
	 *       function, the first instance's ret_addr will point to the
	 *       real return address, and all the rest will point to
	 *       kretprobe_trampoline
	 */
	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
367
		if (ri->task != current)
368
			/* another task is sharing our hash bucket */
369
			continue;
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388

		if (ri->rp && ri->rp->handler)
			ri->rp->handler(ri, regs);

		orig_ret_address = (unsigned long)ri->ret_addr;
		recycle_rp_inst(ri);

		if (orig_ret_address != trampoline_address)
			/*
			 * This is the real return address. Any other
			 * instances associated with this task are for
			 * other calls deeper on the call stack
			 */
			break;
	}

	BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
	regs->cr_iip = orig_ret_address;

389
	reset_current_kprobe();
390
	spin_unlock_irqrestore(&kretprobe_lock, flags);
391 392
	preempt_enable_no_resched();

393 394 395 396 397
	/*
	 * By returning a non-zero value, we are telling
	 * kprobe_handler() that we don't want the post_handler
	 * to run (and have re-enabled preemption)
	 */
398
	return 1;
399 400
}

401
/* Called with kretprobe_lock held */
402 403
void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
				      struct pt_regs *regs)
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
{
	struct kretprobe_instance *ri;

	if ((ri = get_free_rp_inst(rp)) != NULL) {
		ri->rp = rp;
		ri->task = current;
		ri->ret_addr = (kprobe_opcode_t *)regs->b0;

		/* Replace the return addr with trampoline addr */
		regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;

		add_rp_inst(ri);
	} else {
		rp->nmissed++;
	}
}

421
int __kprobes arch_prepare_kprobe(struct kprobe *p)
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
{
	unsigned long addr = (unsigned long) p->addr;
	unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
	unsigned long kprobe_inst=0;
	unsigned int slot = addr & 0xf, template, major_opcode = 0;
	bundle_t *bundle = &p->ainsn.insn.bundle;

	memcpy(&p->opcode.bundle, kprobe_addr, sizeof(bundle_t));
	memcpy(&p->ainsn.insn.bundle, kprobe_addr, sizeof(bundle_t));

 	template = bundle->quad0.template;

	if(valid_kprobe_addr(template, slot, addr))
		return -EINVAL;

	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
 	if (slot == 1 && bundle_encoding[template][1] == L)
  		slot++;

	/* Get kprobe_inst and major_opcode from the bundle */
	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);

444 445 446
	if (unsupported_inst(template, slot, major_opcode, kprobe_inst, p))
			return -EINVAL;

447
	prepare_break_inst(template, slot, major_opcode, kprobe_inst, p);
R
Rusty Lynch 已提交
448 449 450 451

	return 0;
}

452
void __kprobes arch_arm_kprobe(struct kprobe *p)
R
Rusty Lynch 已提交
453 454 455 456 457
{
	unsigned long addr = (unsigned long)p->addr;
	unsigned long arm_addr = addr & ~0xFULL;

	memcpy((char *)arm_addr, &p->ainsn.insn.bundle, sizeof(bundle_t));
458 459 460
	flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
}

461
void __kprobes arch_disarm_kprobe(struct kprobe *p)
462 463 464 465 466 467 468 469 470 471 472 473 474
{
	unsigned long addr = (unsigned long)p->addr;
	unsigned long arm_addr = addr & ~0xFULL;

	/* p->opcode contains the original unaltered bundle */
	memcpy((char *) arm_addr, (char *) &p->opcode.bundle, sizeof(bundle_t));
	flush_icache_range(arm_addr, arm_addr + sizeof(bundle_t));
}

/*
 * We are resuming execution after a single step fault, so the pt_regs
 * structure reflects the register state after we executed the instruction
 * located in the kprobe (p->ainsn.insn.bundle).  We still need to adjust
475 476 477
 * the ip to point back to the original stack address. To set the IP address
 * to original stack address, handle the case where we need to fixup the
 * relative IP address and/or fixup branch register.
478
 */
479
static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
480
{
R
Rusty Lynch 已提交
481
  	unsigned long bundle_addr = ((unsigned long) (&p->opcode.bundle)) & ~0xFULL;
482 483 484
  	unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
 	unsigned long template;
 	int slot = ((unsigned long)p->addr & 0xf);
485

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	template = p->opcode.bundle.quad0.template;

 	if (slot == 1 && bundle_encoding[template][1] == L)
 		slot = 2;

	if (p->ainsn.inst_flag) {

		if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
			/* Fix relative IP address */
 			regs->cr_iip = (regs->cr_iip - bundle_addr) + resume_addr;
		}

		if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
		/*
		 * Fix target branch register, software convention is
		 * to use either b0 or b6 or b7, so just checking
		 * only those registers
		 */
			switch (p->ainsn.target_br_reg) {
			case 0:
				if ((regs->b0 == bundle_addr) ||
					(regs->b0 == bundle_addr + 0x10)) {
					regs->b0 = (regs->b0 - bundle_addr) +
						resume_addr;
				}
				break;
			case 6:
				if ((regs->b6 == bundle_addr) ||
					(regs->b6 == bundle_addr + 0x10)) {
					regs->b6 = (regs->b6 - bundle_addr) +
						resume_addr;
				}
				break;
			case 7:
				if ((regs->b7 == bundle_addr) ||
					(regs->b7 == bundle_addr + 0x10)) {
					regs->b7 = (regs->b7 - bundle_addr) +
						resume_addr;
				}
				break;
			} /* end switch */
		}
		goto turn_ss_off;
	}
530

531 532 533 534 535 536 537 538
	if (slot == 2) {
 		if (regs->cr_iip == bundle_addr + 0x10) {
 			regs->cr_iip = resume_addr + 0x10;
 		}
 	} else {
 		if (regs->cr_iip == bundle_addr) {
 			regs->cr_iip = resume_addr;
 		}
539
	}
540

541 542 543
turn_ss_off:
  	/* Turn off Single Step bit */
  	ia64_psr(regs)->ss = 0;
544 545
}

546
static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
547
{
R
Rusty Lynch 已提交
548
	unsigned long bundle_addr = (unsigned long) &p->opcode.bundle;
549 550
	unsigned long slot = (unsigned long)p->addr & 0xf;

551 552 553 554 555
	/* single step inline if break instruction */
	if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
		regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
	else
		regs->cr_iip = bundle_addr & ~0xFULL;
556 557 558 559 560 561 562 563 564 565

	if (slot > 2)
		slot = 0;

	ia64_psr(regs)->ri = slot;

	/* turn on single stepping */
	ia64_psr(regs)->ss = 1;
}

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
{
	unsigned int slot = ia64_psr(regs)->ri;
	unsigned int template, major_opcode;
	unsigned long kprobe_inst;
	unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
	bundle_t bundle;

	memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
	template = bundle.quad0.template;

	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
	if (slot == 1 && bundle_encoding[template][1] == L)
  		slot++;

	/* Get Kprobe probe instruction at given slot*/
	get_kprobe_inst(&bundle, slot, &kprobe_inst, &major_opcode);

	/* For break instruction,
	 * Bits 37:40 Major opcode to be zero
	 * Bits 27:32 X6 to be zero
	 * Bits 32:35 X3 to be zero
	 */
	if (major_opcode || ((kprobe_inst >> 27) & 0x1FF) ) {
		/* Not a break instruction */
		return 0;
	}

	/* Is a break instruction */
	return 1;
}

598
static int __kprobes pre_kprobes_handler(struct die_args *args)
599 600 601
{
	struct kprobe *p;
	int ret = 0;
602
	struct pt_regs *regs = args->regs;
603
	kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
604 605 606 607 608 609 610 611
	struct kprobe_ctlblk *kcb;

	/*
	 * We don't want to be preempted for the entire
	 * duration of kprobe processing
	 */
	preempt_disable();
	kcb = get_kprobe_ctlblk();
612 613 614 615 616

	/* Handle recursion cases */
	if (kprobe_running()) {
		p = get_kprobe(addr);
		if (p) {
617
			if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
618 619
	 		     (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
  				ia64_psr(regs)->ss = 0;
620 621
				goto no_kprobe;
			}
622 623 624 625 626 627
			/* We have reentered the pre_kprobe_handler(), since
			 * another probe was hit while within the handler.
			 * We here save the original kprobes variables and
			 * just single step on the instruction of the new probe
			 * without calling any user handlers.
			 */
628 629
			save_previous_kprobe(kcb);
			set_current_kprobe(p, kcb);
630
			kprobes_inc_nmissed_count(p);
631
			prepare_ss(p, regs);
632
			kcb->kprobe_status = KPROBE_REENTER;
633
			return 1;
634
		} else if (args->err == __IA64_BREAK_JPROBE) {
635 636 637
			/*
			 * jprobe instrumented function just completed
			 */
638
			p = __get_cpu_var(current_kprobe);
639 640 641
			if (p->break_handler && p->break_handler(p, regs)) {
				goto ss_probe;
			}
642 643 644 645 646 647 648
		} else if (!is_ia64_break_inst(regs)) {
			/* The breakpoint instruction was removed by
			 * another cpu right after we hit, no further
			 * handling of this interrupt is appropriate
			 */
			ret = 1;
			goto no_kprobe;
649 650 651
		} else {
			/* Not our break */
			goto no_kprobe;
652 653 654 655 656
		}
	}

	p = get_kprobe(addr);
	if (!p) {
657 658 659 660 661 662 663 664 665 666 667 668 669
		if (!is_ia64_break_inst(regs)) {
			/*
			 * The breakpoint instruction was removed right
			 * after we hit it.  Another cpu has removed
			 * either a probepoint or a debugger breakpoint
			 * at this address.  In either case, no further
			 * handling of this interrupt is appropriate.
			 */
			ret = 1;

		}

		/* Not one of our break, let kernel handle it */
670 671 672
		goto no_kprobe;
	}

673 674
	set_current_kprobe(p, kcb);
	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
675 676 677 678

	if (p->pre_handler && p->pre_handler(p, regs))
		/*
		 * Our pre-handler is specifically requesting that we just
679 680
		 * do a return.  This is used for both the jprobe pre-handler
		 * and the kretprobe trampoline
681 682 683 684 685
		 */
		return 1;

ss_probe:
	prepare_ss(p, regs);
686
	kcb->kprobe_status = KPROBE_HIT_SS;
687 688 689
	return 1;

no_kprobe:
690
	preempt_enable_no_resched();
691 692 693
	return ret;
}

694
static int __kprobes post_kprobes_handler(struct pt_regs *regs)
695
{
696 697 698 699
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

	if (!cur)
700 701
		return 0;

702 703 704
	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
		kcb->kprobe_status = KPROBE_HIT_SSDONE;
		cur->post_handler(cur, regs, 0);
705
	}
706

707
	resume_execution(cur, regs);
708

709
	/*Restore back the original saved kprobes variables and continue. */
710 711
	if (kcb->kprobe_status == KPROBE_REENTER) {
		restore_previous_kprobe(kcb);
712 713
		goto out;
	}
714
	reset_current_kprobe();
715 716

out:
717 718 719 720
	preempt_enable_no_resched();
	return 1;
}

721
static int __kprobes kprobes_fault_handler(struct pt_regs *regs, int trapnr)
722
{
723 724 725
	struct kprobe *cur = kprobe_running();
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();

726

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
	switch(kcb->kprobe_status) {
	case KPROBE_HIT_SS:
	case KPROBE_REENTER:
		/*
		 * We are here because the instruction being single
		 * stepped caused a page fault. We reset the current
		 * kprobe and the instruction pointer points back to
		 * the probe address and allow the page fault handler
		 * to continue as a normal page fault.
		 */
		regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
		ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
		if (kcb->kprobe_status == KPROBE_REENTER)
			restore_previous_kprobe(kcb);
		else
			reset_current_kprobe();
743
		preempt_enable_no_resched();
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
		break;
	case KPROBE_HIT_ACTIVE:
	case KPROBE_HIT_SSDONE:
		/*
		 * We increment the nmissed count for accounting,
		 * we can also use npre/npostfault count for accouting
		 * these specific fault cases.
		 */
		kprobes_inc_nmissed_count(cur);

		/*
		 * We come here because instructions in the pre/post
		 * handler caused the page_fault, this could happen
		 * if handler tries to access user space by
		 * copy_from_user(), get_user() etc. Let the
		 * user-specified handler try to fix it first.
		 */
		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
			return 1;

		/*
		 * Let ia64_do_page_fault() fix it.
		 */
		break;
	default:
		break;
770 771 772 773 774
	}

	return 0;
}

775 776
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
				       unsigned long val, void *data)
777 778
{
	struct die_args *args = (struct die_args *)data;
779 780
	int ret = NOTIFY_DONE;

781 782 783
	if (args->regs && user_mode(args->regs))
		return ret;

784 785
	switch(val) {
	case DIE_BREAK:
786
		/* err is break number from ia64_bad_break() */
787
		if (args->err == 0x80200 || args->err == 0x80300 || args->err == 0)
788 789
			if (pre_kprobes_handler(args))
				ret = NOTIFY_STOP;
790
		break;
791 792 793 794 795
	case DIE_FAULT:
		/* err is vector number from ia64_fault() */
		if (args->err == 36)
			if (post_kprobes_handler(args->regs))
				ret = NOTIFY_STOP;
796 797
		break;
	case DIE_PAGE_FAULT:
798 799 800 801
		/* kprobe_running() needs smp_processor_id() */
		preempt_disable();
		if (kprobe_running() &&
			kprobes_fault_handler(args->regs, args->trapnr))
802
			ret = NOTIFY_STOP;
803
		preempt_enable();
804 805 806
	default:
		break;
	}
807
	return ret;
808 809
}

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
struct param_bsp_cfm {
	unsigned long ip;
	unsigned long *bsp;
	unsigned long cfm;
};

static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
{
	unsigned long ip;
	struct param_bsp_cfm *lp = arg;

	do {
		unw_get_ip(info, &ip);
		if (ip == 0)
			break;
		if (ip == lp->ip) {
			unw_get_bsp(info, (unsigned long*)&lp->bsp);
			unw_get_cfm(info, (unsigned long*)&lp->cfm);
			return;
		}
	} while (unw_unwind(info) >= 0);
	lp->bsp = 0;
	lp->cfm = 0;
	return;
}

836
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
837
{
838 839
	struct jprobe *jp = container_of(p, struct jprobe, kp);
	unsigned long addr = ((struct fnptr *)(jp->entry))->ip;
840
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
	struct param_bsp_cfm pa;
	int bytes;

	/*
	 * Callee owns the argument space and could overwrite it, eg
	 * tail call optimization. So to be absolutely safe
	 * we save the argument space before transfering the control
	 * to instrumented jprobe function which runs in
	 * the process context
	 */
	pa.ip = regs->cr_iip;
	unw_init_running(ia64_get_bsp_cfm, &pa);
	bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f)
				- (char *)pa.bsp;
	memcpy( kcb->jprobes_saved_stacked_regs,
		pa.bsp,
		bytes );
	kcb->bsp = pa.bsp;
	kcb->cfm = pa.cfm;
860

861
	/* save architectural state */
862
	kcb->jprobe_saved_regs = *regs;
863 864 865 866 867 868 869 870 871 872 873 874 875

	/* after rfi, execute the jprobe instrumented function */
	regs->cr_iip = addr & ~0xFULL;
	ia64_psr(regs)->ri = addr & 0xf;
	regs->r1 = ((struct fnptr *)(jp->entry))->gp;

	/*
	 * fix the return address to our jprobe_inst_return() function
	 * in the jprobes.S file
	 */
 	regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;

	return 1;
876 877
}

878
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
879
{
880
	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
881
	int bytes;
882

883
	/* restoring architectural state */
884
	*regs = kcb->jprobe_saved_regs;
885 886 887 888 889 890 891 892 893 894

	/* restoring the original argument space */
	flush_register_stack();
	bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f)
				- (char *)kcb->bsp;
	memcpy( kcb->bsp,
		kcb->jprobes_saved_stacked_regs,
		bytes );
	invalidate_stacked_regs();

895
	preempt_enable_no_resched();
896
	return 1;
897
}
898 899 900 901 902

static struct kprobe trampoline_p = {
	.pre_handler = trampoline_probe_handler
};

903
int __init arch_init_kprobes(void)
904 905 906 907 908
{
	trampoline_p.addr =
		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
	return register_kprobe(&trampoline_p);
}