dib0090.c 73.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner.
 *
 * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *
 * This code is more or less generated from another driver, please
 * excuse some codingstyle oddities.
 *
 */

#include <linux/kernel.h>
28
#include <linux/slab.h>
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
#include <linux/i2c.h>

#include "dvb_frontend.h"

#include "dib0090.h"
#include "dibx000_common.h"

static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");

#define dprintk(args...) do { \
	if (debug) { \
		printk(KERN_DEBUG "DiB0090: "); \
		printk(args); \
		printk("\n"); \
	} \
} while (0)

48
#define CONFIG_SYS_DVBT
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
#define CONFIG_SYS_ISDBT
#define CONFIG_BAND_CBAND
#define CONFIG_BAND_VHF
#define CONFIG_BAND_UHF
#define CONFIG_DIB0090_USE_PWM_AGC

#define EN_LNA0      0x8000
#define EN_LNA1      0x4000
#define EN_LNA2      0x2000
#define EN_LNA3      0x1000
#define EN_MIX0      0x0800
#define EN_MIX1      0x0400
#define EN_MIX2      0x0200
#define EN_MIX3      0x0100
#define EN_IQADC     0x0040
#define EN_PLL       0x0020
#define EN_TX        0x0010
#define EN_BB        0x0008
#define EN_LO        0x0004
#define EN_BIAS      0x0001

#define EN_IQANA     0x0002
#define EN_DIGCLK    0x0080	/* not in the 0x24 reg, only in 0x1b */
#define EN_CRYSTAL   0x0002

#define EN_UHF		 0x22E9
#define EN_VHF		 0x44E9
#define EN_LBD		 0x11E9
#define EN_SBD		 0x44E9
#define EN_CAB		 0x88E9

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
/* Calibration defines */
#define      DC_CAL 0x1
#define     WBD_CAL 0x2
#define    TEMP_CAL 0x4
#define CAPTRIM_CAL 0x8

#define KROSUS_PLL_LOCKED   0x800
#define KROSUS              0x2

/* Use those defines to identify SOC version */
#define SOC               0x02
#define SOC_7090_P1G_11R1 0x82
#define SOC_7090_P1G_21R1 0x8a
#define SOC_8090_P1G_11R1 0x86
#define SOC_8090_P1G_21R1 0x8e

/* else use thos ones to check */
#define P1A_B      0x0
#define P1C	   0x1
#define P1D_E_F    0x3
#define P1G	   0x7
#define P1G_21R2   0xf

#define MP001 0x1		/* Single 9090/8096 */
#define MP005 0x4		/* Single Sband */
#define MP008 0x6		/* Dual diversity VHF-UHF-LBAND */
#define MP009 0x7		/* Dual diversity 29098 CBAND-UHF-LBAND-SBAND */

108 109 110 111 112 113 114 115
#define pgm_read_word(w) (*w)

struct dc_calibration;

struct dib0090_tuning {
	u32 max_freq;		/* for every frequency less than or equal to that field: this information is correct */
	u8 switch_trim;
	u8 lna_tune;
116
	u16 lna_bias;
117 118 119 120 121 122 123 124 125 126 127 128 129 130
	u16 v2i;
	u16 mix;
	u16 load;
	u16 tuner_enable;
};

struct dib0090_pll {
	u32 max_freq;		/* for every frequency less than or equal to that field: this information is correct */
	u8 vco_band;
	u8 hfdiv_code;
	u8 hfdiv;
	u8 topresc;
};

131 132 133 134 135 136 137
struct dib0090_identity {
	u8 version;
	u8 product;
	u8 p1g;
	u8 in_soc;
};

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
struct dib0090_state {
	struct i2c_adapter *i2c;
	struct dvb_frontend *fe;
	const struct dib0090_config *config;

	u8 current_band;
	enum frontend_tune_state tune_state;
	u32 current_rf;

	u16 wbd_offset;
	s16 wbd_target;		/* in dB */

	s16 rf_gain_limit;	/* take-over-point: where to split between bb and rf gain */
	s16 current_gain;	/* keeps the currently programmed gain */
	u8 agc_step;		/* new binary search */

	u16 gain[2];		/* for channel monitoring */

	const u16 *rf_ramp;
	const u16 *bb_ramp;

	/* for the software AGC ramps */
	u16 bb_1_def;
	u16 rf_lt_def;
	u16 gain_reg[4];

	/* for the captrim/dc-offset search */
	s8 step;
	s16 adc_diff;
	s16 min_adc_diff;

	s8 captrim;
	s8 fcaptrim;

	const struct dc_calibration *dc;
	u16 bb6, bb7;

	const struct dib0090_tuning *current_tune_table_index;
	const struct dib0090_pll *current_pll_table_index;

	u8 tuner_is_tuned;
	u8 agc_freeze;

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
	struct dib0090_identity identity;

	u32 rf_request;
	u8 current_standard;

	u8 calibrate;
	u32 rest;
	u16 bias;
	s16 temperature;

	u8 wbd_calibration_gain;
	const struct dib0090_wbd_slope *current_wbd_table;
	u16 wbdmux;
};

struct dib0090_fw_state {
	struct i2c_adapter *i2c;
	struct dvb_frontend *fe;
	struct dib0090_identity identity;
	const struct dib0090_config *config;
201 202 203 204 205 206
};

static u16 dib0090_read_reg(struct dib0090_state *state, u8 reg)
{
	u8 b[2];
	struct i2c_msg msg[2] = {
207 208
		{.addr = state->config->i2c_address,.flags = 0,.buf = &reg,.len = 1},
		{.addr = state->config->i2c_address,.flags = I2C_M_RD,.buf = b,.len = 2},
209 210 211 212 213 214 215 216 217 218 219
	};
	if (i2c_transfer(state->i2c, msg, 2) != 2) {
		printk(KERN_WARNING "DiB0090 I2C read failed\n");
		return 0;
	}
	return (b[0] << 8) | b[1];
}

static int dib0090_write_reg(struct dib0090_state *state, u32 reg, u16 val)
{
	u8 b[3] = { reg & 0xff, val >> 8, val & 0xff };
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
	struct i2c_msg msg = {.addr = state->config->i2c_address,.flags = 0,.buf = b,.len = 3 };
	if (i2c_transfer(state->i2c, &msg, 1) != 1) {
		printk(KERN_WARNING "DiB0090 I2C write failed\n");
		return -EREMOTEIO;
	}
	return 0;
}

static u16 dib0090_fw_read_reg(struct dib0090_fw_state *state, u8 reg)
{
	u8 b[2];
	struct i2c_msg msg = {.addr = reg,.flags = I2C_M_RD,.buf = b,.len = 2 };
	if (i2c_transfer(state->i2c, &msg, 1) != 1) {
		printk(KERN_WARNING "DiB0090 I2C read failed\n");
		return 0;
	}
	return (b[0] << 8) | b[1];
}

static int dib0090_fw_write_reg(struct dib0090_fw_state *state, u8 reg, u16 val)
{
	u8 b[2] = { val >> 8, val & 0xff };
	struct i2c_msg msg = {.addr = reg,.flags = 0,.buf = b,.len = 2 };
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
	if (i2c_transfer(state->i2c, &msg, 1) != 1) {
		printk(KERN_WARNING "DiB0090 I2C write failed\n");
		return -EREMOTEIO;
	}
	return 0;
}

#define HARD_RESET(state) do {  if (cfg->reset) {  if (cfg->sleep) cfg->sleep(fe, 0); msleep(10);  cfg->reset(fe, 1); msleep(10);  cfg->reset(fe, 0); msleep(10);  }  } while (0)
#define ADC_TARGET -220
#define GAIN_ALPHA 5
#define WBD_ALPHA 6
#define LPF	100
static void dib0090_write_regs(struct dib0090_state *state, u8 r, const u16 * b, u8 c)
{
	do {
		dib0090_write_reg(state, r++, *b++);
	} while (--c);
}

262
static int dib0090_identify(struct dvb_frontend *fe)
263 264 265
{
	struct dib0090_state *state = fe->tuner_priv;
	u16 v;
266
	struct dib0090_identity *identity = &state->identity;
267 268 269

	v = dib0090_read_reg(state, 0x1a);

270 271 272 273
	identity->p1g = 0;
	identity->in_soc = 0;

	dprintk("Tuner identification (Version = 0x%04x)", v);
274 275

	/* without PLL lock info */
276
	v &= ~KROSUS_PLL_LOCKED;
277

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
	identity->version = v & 0xff;
	identity->product = (v >> 8) & 0xf;

	if (identity->product != KROSUS)
		goto identification_error;

	if ((identity->version & 0x3) == SOC) {
		identity->in_soc = 1;
		switch (identity->version) {
		case SOC_8090_P1G_11R1:
			dprintk("SOC 8090 P1-G11R1 Has been detected");
			identity->p1g = 1;
			break;
		case SOC_8090_P1G_21R1:
			dprintk("SOC 8090 P1-G21R1 Has been detected");
			identity->p1g = 1;
			break;
		case SOC_7090_P1G_11R1:
			dprintk("SOC 7090 P1-G11R1 Has been detected");
			identity->p1g = 1;
			break;
		case SOC_7090_P1G_21R1:
			dprintk("SOC 7090 P1-G21R1 Has been detected");
			identity->p1g = 1;
			break;
		default:
			goto identification_error;
		}
	} else {
		switch ((identity->version >> 5) & 0x7) {
		case MP001:
			dprintk("MP001 : 9090/8096");
			break;
		case MP005:
			dprintk("MP005 : Single Sband");
			break;
		case MP008:
			dprintk("MP008 : diversity VHF-UHF-LBAND");
			break;
		case MP009:
			dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND");
			break;
		default:
			goto identification_error;
		}

		switch (identity->version & 0x1f) {
		case P1G_21R2:
			dprintk("P1G_21R2 detected");
			identity->p1g = 1;
			break;
		case P1G:
			dprintk("P1G detected");
			identity->p1g = 1;
			break;
		case P1D_E_F:
			dprintk("P1D/E/F detected");
			break;
		case P1C:
			dprintk("P1C detected");
			break;
		case P1A_B:
			dprintk("P1-A/B detected: driver is deactivated - not available");
			goto identification_error;
			break;
		default:
			goto identification_error;
		}
346 347
	}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
	return 0;

 identification_error:
	return -EIO;
}

static int dib0090_fw_identify(struct dvb_frontend *fe)
{
	struct dib0090_fw_state *state = fe->tuner_priv;
	struct dib0090_identity *identity = &state->identity;

	u16 v = dib0090_fw_read_reg(state, 0x1a);
	identity->p1g = 0;
	identity->in_soc = 0;

	dprintk("FE: Tuner identification (Version = 0x%04x)", v);

	/* without PLL lock info */
	v &= ~KROSUS_PLL_LOCKED;

	identity->version = v & 0xff;
	identity->product = (v >> 8) & 0xf;

	if (identity->product != KROSUS)
		goto identification_error;

	//From the SOC the version definition has changed

	if ((identity->version & 0x3) == SOC) {
		identity->in_soc = 1;
		switch (identity->version) {
		case SOC_8090_P1G_11R1:
			dprintk("SOC 8090 P1-G11R1 Has been detected");
			identity->p1g = 1;
			break;
		case SOC_8090_P1G_21R1:
			dprintk("SOC 8090 P1-G21R1 Has been detected");
			identity->p1g = 1;
			break;
		case SOC_7090_P1G_11R1:
			dprintk("SOC 7090 P1-G11R1 Has been detected");
			identity->p1g = 1;
			break;
		case SOC_7090_P1G_21R1:
			dprintk("SOC 7090 P1-G21R1 Has been detected");
			identity->p1g = 1;
			break;
		default:
			goto identification_error;
		}
	} else {
		switch ((identity->version >> 5) & 0x7) {
		case MP001:
			dprintk("MP001 : 9090/8096");
			break;
		case MP005:
			dprintk("MP005 : Single Sband");
			break;
		case MP008:
			dprintk("MP008 : diversity VHF-UHF-LBAND");
			break;
		case MP009:
			dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND");
			break;
		default:
			goto identification_error;
		}

		switch (identity->version & 0x1f) {
		case P1G_21R2:
			dprintk("P1G_21R2 detected");
			identity->p1g = 1;
			break;
		case P1G:
			dprintk("P1G detected");
			identity->p1g = 1;
			break;
		case P1D_E_F:
			dprintk("P1D/E/F detected");
			break;
		case P1C:
			dprintk("P1C detected");
			break;
		case P1A_B:
			dprintk("P1-A/B detected: driver is deactivated - not available");
			goto identification_error;
			break;
		default:
			goto identification_error;
		}
	}

	return 0;

 identification_error:
	return -EIO;;
444 445 446 447 448
}

static void dib0090_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg)
{
	struct dib0090_state *state = fe->tuner_priv;
449
	u16 PllCfg, i, v;
450 451 452

	HARD_RESET(state);

453
	dib0090_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL);
454 455
	dib0090_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL);	/* PLL, DIG_CLK and CRYSTAL remain */

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
	if (!cfg->in_soc) {
		/* adcClkOutRatio=8->7, release reset */
		dib0090_write_reg(state, 0x20, ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0);
		if (cfg->clkoutdrive != 0)
			dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
					  | (cfg->clkoutdrive << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0));
		else
			dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
					  | (7 << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0));
	}

	/* Read Pll current config * */
	PllCfg = dib0090_read_reg(state, 0x21);

	/** Reconfigure PLL if current setting is different from default setting **/
	if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && (!cfg->in_soc)
			&& !cfg->io.pll_bypass) {

		/* Set Bypass mode */
		PllCfg |= (1 << 15);
		dib0090_write_reg(state, 0x21, PllCfg);

		/* Set Reset Pll */
		PllCfg &= ~(1 << 13);
		dib0090_write_reg(state, 0x21, PllCfg);

	/*** Set new Pll configuration in bypass and reset state ***/
		PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv);
		dib0090_write_reg(state, 0x21, PllCfg);

		/* Remove Reset Pll */
		PllCfg |= (1 << 13);
		dib0090_write_reg(state, 0x21, PllCfg);

	/*** Wait for PLL lock ***/
		i = 100;
		do {
			v = !!(dib0090_read_reg(state, 0x1a) & 0x800);
			if (v)
				break;
		} while (--i);

		if (i == 0) {
			dprintk("Pll: Unable to lock Pll");
			return;
		}

		/* Finally Remove Bypass mode */
		PllCfg &= ~(1 << 15);
		dib0090_write_reg(state, 0x21, PllCfg);
	}

	if (cfg->io.pll_bypass) {
		PllCfg |= (cfg->io.pll_bypass << 15);
		dib0090_write_reg(state, 0x21, PllCfg);
	}
}

static int dib0090_fw_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg)
{
	struct dib0090_fw_state *state = fe->tuner_priv;
	u16 PllCfg;
	u16 v;
	int i;

	dprintk("fw reset digital");
	HARD_RESET(state);

	dib0090_fw_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL);
	dib0090_fw_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL);	/* PLL, DIG_CLK and CRYSTAL remain */

	dib0090_fw_write_reg(state, 0x20,
			((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (cfg->data_tx_drv << 4) | cfg->ls_cfg_pad_drv);

	v = (0 << 15) | ((!cfg->analog_output) << 14) | (1 << 9) | (0 << 8) | (cfg->clkouttobamse << 4) | (0 << 2) | (0);
531
	if (cfg->clkoutdrive != 0)
532
		v |= cfg->clkoutdrive << 5;
533
	else
534 535 536 537 538 539 540 541 542 543
		v |= 7 << 5;

	v |= 2 << 10;
	dib0090_fw_write_reg(state, 0x23, v);

	/* Read Pll current config * */
	PllCfg = dib0090_fw_read_reg(state, 0x21);

	/** Reconfigure PLL if current setting is different from default setting **/
	if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && !cfg->io.pll_bypass) {
544

545 546 547
		/* Set Bypass mode */
		PllCfg |= (1 << 15);
		dib0090_fw_write_reg(state, 0x21, PllCfg);
548

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
		/* Set Reset Pll */
		PllCfg &= ~(1 << 13);
		dib0090_fw_write_reg(state, 0x21, PllCfg);

	/*** Set new Pll configuration in bypass and reset state ***/
		PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv);
		dib0090_fw_write_reg(state, 0x21, PllCfg);

		/* Remove Reset Pll */
		PllCfg |= (1 << 13);
		dib0090_fw_write_reg(state, 0x21, PllCfg);

	/*** Wait for PLL lock ***/
		i = 100;
		do {
			v = !!(dib0090_fw_read_reg(state, 0x1a) & 0x800);
			if (v)
				break;
		} while (--i);

		if (i == 0) {
			dprintk("Pll: Unable to lock Pll");
			return -EIO;
		}

		/* Finally Remove Bypass mode */
		PllCfg &= ~(1 << 15);
		dib0090_fw_write_reg(state, 0x21, PllCfg);
	}

	if (cfg->io.pll_bypass) {
		PllCfg |= (cfg->io.pll_bypass << 15);
		dib0090_fw_write_reg(state, 0x21, PllCfg);
	}

	return dib0090_fw_identify(fe);
585 586 587 588 589 590 591
}

static int dib0090_wakeup(struct dvb_frontend *fe)
{
	struct dib0090_state *state = fe->tuner_priv;
	if (state->config->sleep)
		state->config->sleep(fe, 0);
592 593 594

	/* enable dataTX in case we have been restarted in the wrong moment */
	dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
595 596 597 598 599 600 601 602 603 604 605
	return 0;
}

static int dib0090_sleep(struct dvb_frontend *fe)
{
	struct dib0090_state *state = fe->tuner_priv;
	if (state->config->sleep)
		state->config->sleep(fe, 1);
	return 0;
}

606
void dib0090_dcc_freq(struct dvb_frontend *fe, u8 fast)
607 608 609
{
	struct dib0090_state *state = fe->tuner_priv;
	if (fast)
610
		dib0090_write_reg(state, 0x04, 0);
611
	else
612
		dib0090_write_reg(state, 0x04, 1);
613
}
614

615
EXPORT_SYMBOL(dib0090_dcc_freq);
616

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
static const u16 bb_ramp_pwm_normal_socs[] = {
	550,			/* max BB gain in 10th of dB */
	(1 << 9) | 8,		/* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
	440,
	(4 << 9) | 0,		/* BB_RAMP3 = 26dB */
	(0 << 9) | 208,		/* BB_RAMP4 */
	(4 << 9) | 208,		/* BB_RAMP5 = 29dB */
	(0 << 9) | 440,		/* BB_RAMP6 */
};

static const u16 rf_ramp_pwm_cband_7090[] = {
	280,			/* max RF gain in 10th of dB */
	18,			/* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
	504,			/* ramp_max = maximum X used on the ramp */
	(29 << 10) | 364,	/* RF_RAMP5, LNA 1 = 8dB */
	(0 << 10) | 504,	/* RF_RAMP6, LNA 1 */
	(60 << 10) | 228,	/* RF_RAMP7, LNA 2 = 7.7dB */
	(0 << 10) | 364,	/* RF_RAMP8, LNA 2 */
	(34 << 10) | 109,	/* GAIN_4_1, LNA 3 = 6.8dB */
	(0 << 10) | 228,	/* GAIN_4_2, LNA 3 */
	(37 << 10) | 0,		/* RF_RAMP3, LNA 4 = 6.2dB */
	(0 << 10) | 109,	/* RF_RAMP4, LNA 4 */
};

static const u16 rf_ramp_pwm_cband_8090[] = {
	345,			/* max RF gain in 10th of dB */
	29,			/* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
	1000,			/* ramp_max = maximum X used on the ramp */
	(35 << 10) | 772,	/* RF_RAMP3, LNA 1 = 8dB */
	(0 << 10) | 1000,	/* RF_RAMP4, LNA 1 */
	(58 << 10) | 496,	/* RF_RAMP5, LNA 2 = 9.5dB */
	(0 << 10) | 772,	/* RF_RAMP6, LNA 2 */
	(27 << 10) | 200,	/* RF_RAMP7, LNA 3 = 10.5dB */
	(0 << 10) | 496,	/* RF_RAMP8, LNA 3 */
	(40 << 10) | 0,		/* GAIN_4_1, LNA 4 = 7dB */
	(0 << 10) | 200,	/* GAIN_4_2, LNA 4 */
};

static const u16 rf_ramp_pwm_uhf_7090[] = {
	407,			/* max RF gain in 10th of dB */
	13,			/* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
	529,			/* ramp_max = maximum X used on the ramp */
	(23 << 10) | 0,		/* RF_RAMP3, LNA 1 = 14.7dB */
	(0 << 10) | 176,	/* RF_RAMP4, LNA 1 */
	(63 << 10) | 400,	/* RF_RAMP5, LNA 2 = 8dB */
	(0 << 10) | 529,	/* RF_RAMP6, LNA 2 */
	(48 << 10) | 316,	/* RF_RAMP7, LNA 3 = 6.8dB */
	(0 << 10) | 400,	/* RF_RAMP8, LNA 3 */
	(29 << 10) | 176,	/* GAIN_4_1, LNA 4 = 11.5dB */
	(0 << 10) | 316,	/* GAIN_4_2, LNA 4 */
};

static const u16 rf_ramp_pwm_uhf_8090[] = {
	388,			/* max RF gain in 10th of dB */
	26,			/* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
	1008,			/* ramp_max = maximum X used on the ramp */
	(11 << 10) | 0,		/* RF_RAMP3, LNA 1 = 14.7dB */
	(0 << 10) | 369,	/* RF_RAMP4, LNA 1 */
	(41 << 10) | 809,	/* RF_RAMP5, LNA 2 = 8dB */
	(0 << 10) | 1008,	/* RF_RAMP6, LNA 2 */
	(27 << 10) | 659,	/* RF_RAMP7, LNA 3 = 6dB */
	(0 << 10) | 809,	/* RF_RAMP8, LNA 3 */
	(14 << 10) | 369,	/* GAIN_4_1, LNA 4 = 11.5dB */
	(0 << 10) | 659,	/* GAIN_4_2, LNA 4 */
};

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
static const u16 rf_ramp_pwm_cband[] = {
	0,			/* max RF gain in 10th of dB */
	0,			/* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
	0,			/* ramp_max = maximum X used on the ramp */
	(0 << 10) | 0,		/* 0x2c, LNA 1 = 0dB */
	(0 << 10) | 0,		/* 0x2d, LNA 1 */
	(0 << 10) | 0,		/* 0x2e, LNA 2 = 0dB */
	(0 << 10) | 0,		/* 0x2f, LNA 2 */
	(0 << 10) | 0,		/* 0x30, LNA 3 = 0dB */
	(0 << 10) | 0,		/* 0x31, LNA 3 */
	(0 << 10) | 0,		/* GAIN_4_1, LNA 4 = 0dB */
	(0 << 10) | 0,		/* GAIN_4_2, LNA 4 */
};

static const u16 rf_ramp_vhf[] = {
	412,			/* max RF gain in 10th of dB */
	132, 307, 127,		/* LNA1,  13.2dB */
	105, 412, 255,		/* LNA2,  10.5dB */
	50, 50, 127,		/* LNA3,  5dB */
	125, 175, 127,		/* LNA4,  12.5dB */
	0, 0, 127,		/* CBAND, 0dB */
};

static const u16 rf_ramp_uhf[] = {
	412,			/* max RF gain in 10th of dB */
	132, 307, 127,		/* LNA1  : total gain = 13.2dB, point on the ramp where this amp is full gain, value to write to get full gain */
	105, 412, 255,		/* LNA2  : 10.5 dB */
	50, 50, 127,		/* LNA3  :  5.0 dB */
	125, 175, 127,		/* LNA4  : 12.5 dB */
	0, 0, 127,		/* CBAND :  0.0 dB */
};

715 716 717 718 719 720 721 722 723 724
static const u16 rf_ramp_cband_broadmatching[] =	/* for p1G only */
{
	314,			/* Calibrated at 200MHz order has been changed g4-g3-g2-g1 */
	84, 314, 127,		/* LNA1 */
	80, 230, 255,		/* LNA2 */
	80, 150, 127,		/* LNA3  It was measured 12dB, do not lock if 120 */
	70, 70, 127,		/* LNA4 */
	0, 0, 127,		/* CBAND */
};

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
static const u16 rf_ramp_cband[] = {
	332,			/* max RF gain in 10th of dB */
	132, 252, 127,		/* LNA1,  dB */
	80, 332, 255,		/* LNA2,  dB */
	0, 0, 127,		/* LNA3,  dB */
	0, 0, 127,		/* LNA4,  dB */
	120, 120, 127,		/* LT1 CBAND */
};

static const u16 rf_ramp_pwm_vhf[] = {
	404,			/* max RF gain in 10th of dB */
	25,			/* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
	1011,			/* ramp_max = maximum X used on the ramp */
	(6 << 10) | 417,	/* 0x2c, LNA 1 = 13.2dB */
	(0 << 10) | 756,	/* 0x2d, LNA 1 */
	(16 << 10) | 756,	/* 0x2e, LNA 2 = 10.5dB */
	(0 << 10) | 1011,	/* 0x2f, LNA 2 */
	(16 << 10) | 290,	/* 0x30, LNA 3 = 5dB */
	(0 << 10) | 417,	/* 0x31, LNA 3 */
	(7 << 10) | 0,		/* GAIN_4_1, LNA 4 = 12.5dB */
	(0 << 10) | 290,	/* GAIN_4_2, LNA 4 */
};

static const u16 rf_ramp_pwm_uhf[] = {
	404,			/* max RF gain in 10th of dB */
	25,			/* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
	1011,			/* ramp_max = maximum X used on the ramp */
	(6 << 10) | 417,	/* 0x2c, LNA 1 = 13.2dB */
	(0 << 10) | 756,	/* 0x2d, LNA 1 */
	(16 << 10) | 756,	/* 0x2e, LNA 2 = 10.5dB */
	(0 << 10) | 1011,	/* 0x2f, LNA 2 */
	(16 << 10) | 0,		/* 0x30, LNA 3 = 5dB */
	(0 << 10) | 127,	/* 0x31, LNA 3 */
	(7 << 10) | 127,	/* GAIN_4_1, LNA 4 = 12.5dB */
	(0 << 10) | 417,	/* GAIN_4_2, LNA 4 */
};

static const u16 bb_ramp_boost[] = {
	550,			/* max BB gain in 10th of dB */
	260, 260, 26,		/* BB1, 26dB */
	290, 550, 29,		/* BB2, 29dB */
};

static const u16 bb_ramp_pwm_normal[] = {
	500,			/* max RF gain in 10th of dB */
	8,			/* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x34 */
	400,
	(2 << 9) | 0,		/* 0x35 = 21dB */
	(0 << 9) | 168,		/* 0x36 */
	(2 << 9) | 168,		/* 0x37 = 29dB */
	(0 << 9) | 400,		/* 0x38 */
};

struct slope {
779 780
	s16 range;
	s16 slope;
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
};
static u16 slopes_to_scale(const struct slope *slopes, u8 num, s16 val)
{
	u8 i;
	u16 rest;
	u16 ret = 0;
	for (i = 0; i < num; i++) {
		if (val > slopes[i].range)
			rest = slopes[i].range;
		else
			rest = val;
		ret += (rest * slopes[i].slope) / slopes[i].range;
		val -= rest;
	}
	return ret;
}

static const struct slope dib0090_wbd_slopes[3] = {
	{66, 120},		/* -64,-52: offset -   65 */
	{600, 170},		/* -52,-35: 65     -  665 */
	{170, 250},		/* -45,-10: 665    - 835 */
};

static s16 dib0090_wbd_to_db(struct dib0090_state *state, u16 wbd)
{
	wbd &= 0x3ff;
	if (wbd < state->wbd_offset)
		wbd = 0;
	else
		wbd -= state->wbd_offset;
	/* -64dB is the floor */
	return -640 + (s16) slopes_to_scale(dib0090_wbd_slopes, ARRAY_SIZE(dib0090_wbd_slopes), wbd);
}

static void dib0090_wbd_target(struct dib0090_state *state, u32 rf)
{
	u16 offset = 250;

	/* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */

	if (state->current_band == BAND_VHF)
		offset = 650;
#ifndef FIRMWARE_FIREFLY
	if (state->current_band == BAND_VHF)
		offset = state->config->wbd_vhf_offset;
	if (state->current_band == BAND_CBAND)
		offset = state->config->wbd_cband_offset;
#endif

	state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + offset);
	dprintk("wbd-target: %d dB", (u32) state->wbd_target);
}

static const int gain_reg_addr[4] = {
	0x08, 0x0a, 0x0f, 0x01
};

static void dib0090_gain_apply(struct dib0090_state *state, s16 gain_delta, s16 top_delta, u8 force)
{
	u16 rf, bb, ref;
	u16 i, v, gain_reg[4] = { 0 }, gain;
	const u16 *g;

	if (top_delta < -511)
		top_delta = -511;
	if (top_delta > 511)
		top_delta = 511;

	if (force) {
		top_delta *= (1 << WBD_ALPHA);
		gain_delta *= (1 << GAIN_ALPHA);
	}

	if (top_delta >= ((s16) (state->rf_ramp[0] << WBD_ALPHA) - state->rf_gain_limit))	/* overflow */
		state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA;
	else
		state->rf_gain_limit += top_delta;

	if (state->rf_gain_limit < 0)	/*underflow */
		state->rf_gain_limit = 0;

	/* use gain as a temporary variable and correct current_gain */
	gain = ((state->rf_gain_limit >> WBD_ALPHA) + state->bb_ramp[0]) << GAIN_ALPHA;
	if (gain_delta >= ((s16) gain - state->current_gain))	/* overflow */
		state->current_gain = gain;
	else
		state->current_gain += gain_delta;
	/* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */
	if (state->current_gain < 0)
		state->current_gain = 0;

	/* now split total gain to rf and bb gain */
	gain = state->current_gain >> GAIN_ALPHA;

	/* requested gain is bigger than rf gain limit - ACI/WBD adjustment */
	if (gain > (state->rf_gain_limit >> WBD_ALPHA)) {
		rf = state->rf_gain_limit >> WBD_ALPHA;
		bb = gain - rf;
		if (bb > state->bb_ramp[0])
			bb = state->bb_ramp[0];
	} else {		/* high signal level -> all gains put on RF */
		rf = gain;
		bb = 0;
	}

	state->gain[0] = rf;
	state->gain[1] = bb;

	/* software ramp */
	/* Start with RF gains */
	g = state->rf_ramp + 1;	/* point on RF LNA1 max gain */
	ref = rf;
	for (i = 0; i < 7; i++) {	/* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */
		if (g[0] == 0 || ref < (g[1] - g[0]))	/* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */
			v = 0;	/* force the gain to write for the current amp to be null */
		else if (ref >= g[1])	/* Gain to set is higher than the high working point of this amp */
			v = g[2];	/* force this amp to be full gain */
		else		/* compute the value to set to this amp because we are somewhere in his range */
			v = ((ref - (g[1] - g[0])) * g[2]) / g[0];

		if (i == 0)	/* LNA 1 reg mapping */
			gain_reg[0] = v;
		else if (i == 1)	/* LNA 2 reg mapping */
			gain_reg[0] |= v << 7;
		else if (i == 2)	/* LNA 3 reg mapping */
			gain_reg[1] = v;
		else if (i == 3)	/* LNA 4 reg mapping */
			gain_reg[1] |= v << 7;
		else if (i == 4)	/* CBAND LNA reg mapping */
			gain_reg[2] = v | state->rf_lt_def;
		else if (i == 5)	/* BB gain 1 reg mapping */
			gain_reg[3] = v << 3;
		else if (i == 6)	/* BB gain 2 reg mapping */
			gain_reg[3] |= v << 8;

		g += 3;		/* go to next gain bloc */

		/* When RF is finished, start with BB */
		if (i == 4) {
			g = state->bb_ramp + 1;	/* point on BB gain 1 max gain */
			ref = bb;
		}
	}
	gain_reg[3] |= state->bb_1_def;
	gain_reg[3] |= ((bb % 10) * 100) / 125;

#ifdef DEBUG_AGC
	dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x", rf, bb, rf + bb,
		gain_reg[0], gain_reg[1], gain_reg[2], gain_reg[3]);
#endif

	/* Write the amplifier regs */
	for (i = 0; i < 4; i++) {
		v = gain_reg[i];
		if (force || state->gain_reg[i] != v) {
			state->gain_reg[i] = v;
			dib0090_write_reg(state, gain_reg_addr[i], v);
		}
	}
}

static void dib0090_set_boost(struct dib0090_state *state, int onoff)
{
	state->bb_1_def &= 0xdfff;
	state->bb_1_def |= onoff << 13;
}

static void dib0090_set_rframp(struct dib0090_state *state, const u16 * cfg)
{
	state->rf_ramp = cfg;
}

static void dib0090_set_rframp_pwm(struct dib0090_state *state, const u16 * cfg)
{
	state->rf_ramp = cfg;

	dib0090_write_reg(state, 0x2a, 0xffff);

	dprintk("total RF gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x2a));

	dib0090_write_regs(state, 0x2c, cfg + 3, 6);
	dib0090_write_regs(state, 0x3e, cfg + 9, 2);
}

static void dib0090_set_bbramp(struct dib0090_state *state, const u16 * cfg)
{
	state->bb_ramp = cfg;
	dib0090_set_boost(state, cfg[0] > 500);	/* we want the boost if the gain is higher that 50dB */
}

static void dib0090_set_bbramp_pwm(struct dib0090_state *state, const u16 * cfg)
{
	state->bb_ramp = cfg;

	dib0090_set_boost(state, cfg[0] > 500);	/* we want the boost if the gain is higher that 50dB */

	dib0090_write_reg(state, 0x33, 0xffff);
	dprintk("total BB gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x33));
	dib0090_write_regs(state, 0x35, cfg + 3, 4);
}

void dib0090_pwm_gain_reset(struct dvb_frontend *fe)
{
	struct dib0090_state *state = fe->tuner_priv;
	/* reset the AGC */

	if (state->config->use_pwm_agc) {
#ifdef CONFIG_BAND_SBAND
		if (state->current_band == BAND_SBAND) {
			dib0090_set_rframp_pwm(state, rf_ramp_pwm_sband);
			dib0090_set_bbramp_pwm(state, bb_ramp_pwm_boost);
		} else
#endif
#ifdef CONFIG_BAND_CBAND
		if (state->current_band == BAND_CBAND) {
996 997 998 999 1000 1001 1002 1003 1004 1005
			if (state->identity.in_soc) {
				dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal_socs);
				if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
					dib0090_set_rframp_pwm(state, rf_ramp_pwm_cband_8090);
				else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1)
					dib0090_set_rframp_pwm(state, rf_ramp_pwm_cband_7090);
			} else {
				dib0090_set_rframp_pwm(state, rf_ramp_pwm_cband);
				dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal);
			}
1006 1007 1008 1009
		} else
#endif
#ifdef CONFIG_BAND_VHF
		if (state->current_band == BAND_VHF) {
1010 1011 1012 1013 1014 1015 1016
			if (state->identity.in_soc) {
				dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal_socs);
				//dib0090_set_rframp_pwm(state, rf_ramp_pwm_vhf_socs); /* TODO */
			} else {
				dib0090_set_rframp_pwm(state, rf_ramp_pwm_vhf);
				dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal);
			}
1017 1018 1019
		} else
#endif
		{
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
			if (state->identity.in_soc) {
				if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
					dib0090_set_rframp_pwm(state, rf_ramp_pwm_uhf_8090);
				else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1)
					dib0090_set_rframp_pwm(state, rf_ramp_pwm_uhf_7090);
				dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal_socs);
			} else {
				dib0090_set_rframp_pwm(state, rf_ramp_pwm_uhf);
				dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal);
			}
1030 1031 1032 1033 1034 1035 1036
		}

		if (state->rf_ramp[0] != 0)
			dib0090_write_reg(state, 0x32, (3 << 11));
		else
			dib0090_write_reg(state, 0x32, (0 << 11));

1037
		dib0090_write_reg(state, 0x04, 0x01);
1038
		dib0090_write_reg(state, 0x39, (1 << 10));
1039 1040
	}
}
1041

1042
EXPORT_SYMBOL(dib0090_pwm_gain_reset);
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052
static u32 dib0090_get_slow_adc_val(struct dib0090_state *state)
{
	u16 adc_val = dib0090_read_reg(state, 0x1d);
	if (state->identity.in_soc) {
		adc_val >>= 2;
	}
	return adc_val;
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
int dib0090_gain_control(struct dvb_frontend *fe)
{
	struct dib0090_state *state = fe->tuner_priv;
	enum frontend_tune_state *tune_state = &state->tune_state;
	int ret = 10;

	u16 wbd_val = 0;
	u8 apply_gain_immediatly = 1;
	s16 wbd_error = 0, adc_error = 0;

	if (*tune_state == CT_AGC_START) {
		state->agc_freeze = 0;
		dib0090_write_reg(state, 0x04, 0x0);

#ifdef CONFIG_BAND_SBAND
		if (state->current_band == BAND_SBAND) {
			dib0090_set_rframp(state, rf_ramp_sband);
			dib0090_set_bbramp(state, bb_ramp_boost);
		} else
#endif
#ifdef CONFIG_BAND_VHF
1074
		if (state->current_band == BAND_VHF && !state->identity.p1g) {
1075 1076 1077 1078 1079
			dib0090_set_rframp(state, rf_ramp_vhf);
			dib0090_set_bbramp(state, bb_ramp_boost);
		} else
#endif
#ifdef CONFIG_BAND_CBAND
1080
		if (state->current_band == BAND_CBAND && !state->identity.p1g) {
1081 1082 1083 1084
			dib0090_set_rframp(state, rf_ramp_cband);
			dib0090_set_bbramp(state, bb_ramp_boost);
		} else
#endif
1085 1086 1087 1088
		if ((state->current_band == BAND_CBAND || state->current_band == BAND_VHF) && state->identity.p1g) {
			dib0090_set_rframp(state, rf_ramp_cband_broadmatching);
			dib0090_set_bbramp(state, bb_ramp_boost);
		} else {
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
			dib0090_set_rframp(state, rf_ramp_uhf);
			dib0090_set_bbramp(state, bb_ramp_boost);
		}

		dib0090_write_reg(state, 0x32, 0);
		dib0090_write_reg(state, 0x39, 0);

		dib0090_wbd_target(state, state->current_rf);

		state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA;
		state->current_gain = ((state->rf_ramp[0] + state->bb_ramp[0]) / 2) << GAIN_ALPHA;

		*tune_state = CT_AGC_STEP_0;
	} else if (!state->agc_freeze) {
1103
		s16 wbd = 0, i, cnt;
1104 1105

		int adc;
1106
		wbd_val = dib0090_get_slow_adc_val(state);
1107

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
		if (*tune_state == CT_AGC_STEP_0)
			cnt = 5;
		else
			cnt = 1;

		for (i = 0; i < cnt; i++) {
			wbd_val = dib0090_get_slow_adc_val(state);
			wbd += dib0090_wbd_to_db(state, wbd_val);
		}
		wbd /= cnt;
1118 1119 1120
		wbd_error = state->wbd_target - wbd;

		if (*tune_state == CT_AGC_STEP_0) {
1121
			if (wbd_error < 0 && state->rf_gain_limit > 0 && !state->identity.p1g) {
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
#ifdef CONFIG_BAND_CBAND
				/* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */
				u8 ltg2 = (state->rf_lt_def >> 10) & 0x7;
				if (state->current_band == BAND_CBAND && ltg2) {
					ltg2 >>= 1;
					state->rf_lt_def &= ltg2 << 10;	/* reduce in 3 steps from 7 to 0 */
				}
#endif
			} else {
				state->agc_step = 0;
				*tune_state = CT_AGC_STEP_1;
			}
		} else {
			/* calc the adc power */
			adc = state->config->get_adc_power(fe);
			adc = (adc * ((s32) 355774) + (((s32) 1) << 20)) >> 21;	/* included in [0:-700] */

			adc_error = (s16) (((s32) ADC_TARGET) - adc);
#ifdef CONFIG_STANDARD_DAB
			if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB)
1142
				adc_error -= 10;
1143 1144 1145
#endif
#ifdef CONFIG_STANDARD_DVBT
			if (state->fe->dtv_property_cache.delivery_system == STANDARD_DVBT &&
1146
					(state->fe->dtv_property_cache.modulation == QAM_64 || state->fe->dtv_property_cache.modulation == QAM_16))
1147 1148 1149 1150
				adc_error += 60;
#endif
#ifdef CONFIG_SYS_ISDBT
			if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT) && (((state->fe->dtv_property_cache.layer[0].segment_count >
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
								0)
							&&
							((state->fe->dtv_property_cache.layer[0].modulation ==
							  QAM_64)
							 || (state->fe->dtv_property_cache.
								 layer[0].modulation == QAM_16)))
						||
						((state->fe->dtv_property_cache.layer[1].segment_count >
						  0)
						 &&
						 ((state->fe->dtv_property_cache.layer[1].modulation ==
						   QAM_64)
						  || (state->fe->dtv_property_cache.
							  layer[1].modulation == QAM_16)))
						||
						((state->fe->dtv_property_cache.layer[2].segment_count >
						  0)
						 &&
						 ((state->fe->dtv_property_cache.layer[2].modulation ==
						   QAM_64)
						  || (state->fe->dtv_property_cache.
							  layer[2].modulation == QAM_16)))
						)
				)
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
				adc_error += 60;
#endif

			if (*tune_state == CT_AGC_STEP_1) {	/* quickly go to the correct range of the ADC power */
				if (ABS(adc_error) < 50 || state->agc_step++ > 5) {

#ifdef CONFIG_STANDARD_DAB
					if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) {
						dib0090_write_reg(state, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63));	/* cap value = 63 : narrow BB filter : Fc = 1.8MHz */
						dib0090_write_reg(state, 0x04, 0x0);
					} else
#endif
					{
						dib0090_write_reg(state, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32));
						dib0090_write_reg(state, 0x04, 0x01);	/*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */
					}

					*tune_state = CT_AGC_STOP;
				}
			} else {
				/* everything higher than or equal to CT_AGC_STOP means tracking */
				ret = 100;	/* 10ms interval */
				apply_gain_immediatly = 0;
			}
		}
#ifdef DEBUG_AGC
		dprintk
1202 1203 1204
			("tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm",
			 (u32) * tune_state, (u32) adc, (u32) adc_error, (u32) wbd, (u32) wbd_error, (u32) wbd_val,
			 (u32) state->rf_gain_limit >> WBD_ALPHA, (s32) 200 + adc - (state->current_gain >> GAIN_ALPHA));
1205 1206 1207 1208 1209 1210 1211 1212
#endif
	}

	/* apply gain */
	if (!state->agc_freeze)
		dib0090_gain_apply(state, adc_error, wbd_error, apply_gain_immediatly);
	return ret;
}
1213

1214
EXPORT_SYMBOL(dib0090_gain_control);
1215

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
void dib0090_get_current_gain(struct dvb_frontend *fe, u16 * rf, u16 * bb, u16 * rf_gain_limit, u16 * rflt)
{
	struct dib0090_state *state = fe->tuner_priv;
	if (rf)
		*rf = state->gain[0];
	if (bb)
		*bb = state->gain[1];
	if (rf_gain_limit)
		*rf_gain_limit = state->rf_gain_limit;
	if (rflt)
		*rflt = (state->rf_lt_def >> 10) & 0x7;
}
1228

1229
EXPORT_SYMBOL(dib0090_get_current_gain);
1230

1231
u16 dib0090_get_wbd_offset(struct dvb_frontend *fe)
1232
{
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
	struct dib0090_state *state = fe->tuner_priv;
	u32 f_MHz = state->fe->dtv_property_cache.frequency / 1000000;
	s32 current_temp = state->temperature;
	s32 wbd_thot, wbd_tcold;
	const struct dib0090_wbd_slope *wbd = state->current_wbd_table;

	while (f_MHz > wbd->max_freq)
		wbd++;

	dprintk("using wbd-table-entry with max freq %d", wbd->max_freq);

	if (current_temp < 0)
		current_temp = 0;
	if (current_temp > 128)
		current_temp = 128;

	//What Wbd gain to apply for this range of frequency
	state->wbdmux &= ~(7 << 13);
	if (wbd->wbd_gain != 0)
		state->wbdmux |= (wbd->wbd_gain << 13);
	else
		state->wbdmux |= (4 << 13);	// 4 is the default WBD gain

	dib0090_write_reg(state, 0x10, state->wbdmux);

	//All the curves are linear with slope*f/64+offset
	wbd_thot = wbd->offset_hot - (((u32) wbd->slope_hot * f_MHz) >> 6);
	wbd_tcold = wbd->offset_cold - (((u32) wbd->slope_cold * f_MHz) >> 6);

	// Iet assumes that thot-tcold = 130 equiv 128, current temperature ref is -30deg

	wbd_tcold += ((wbd_thot - wbd_tcold) * current_temp) >> 7;

	//for (offset = 0; offset < 1000; offset += 4)
	//	dbgp("offset = %d -> %d\n", offset, dib0090_wbd_to_db(state, offset));
	state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + wbd_tcold);	// get the value in dBm from the offset
	dprintk("wbd-target: %d dB", (u32) state->wbd_target);
	dprintk("wbd offset applied is %d", wbd_tcold);

	return state->wbd_offset + wbd_tcold;
1273
}
1274

1275
EXPORT_SYMBOL(dib0090_get_wbd_offset);
1276

1277 1278 1279 1280 1281 1282 1283
static const u16 dib0090_defaults[] = {

	25, 0x01,
	0x0000,
	0x99a0,
	0x6008,
	0x0000,
1284
	0x8bcb,
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
	0x0000,
	0x0405,
	0x0000,
	0x0000,
	0x0000,
	0xb802,
	0x0300,
	0x2d12,
	0xbac0,
	0x7c00,
	0xdbb9,
	0x0954,
	0x0743,
	0x8000,
	0x0001,
	0x0040,
	0x0100,
	0x0000,
	0xe910,
	0x149e,

	1, 0x1c,
	0xff2d,

	1, 0x39,
	0x0000,

	2, 0x1e,
	0x07FF,
	0x0007,

	1, 0x24,
	EN_UHF | EN_CRYSTAL,

	2, 0x3c,
	0x3ff,
	0x111,
	0
};

1325 1326 1327 1328
static const u16 dib0090_p1g_additionnal_defaults[] = {
	// additionnal INITIALISATION for p1g to be written after dib0090_defaults
	1, 0x05,
	0xabcd,
1329

1330 1331
	1, 0x11,
	0x00b4,
1332

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	1, 0x1c,
	0xfffd,

	1, 0x40,
	0x108,
	0
};

static void dib0090_set_default_config(struct dib0090_state *state, const u16 * n)
{
	u16 l, r;
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

	l = pgm_read_word(n++);
	while (l) {
		r = pgm_read_word(n++);
		do {
			dib0090_write_reg(state, r, pgm_read_word(n++));
			r++;
		} while (--l);
		l = pgm_read_word(n++);
	}
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
}

#define CAP_VALUE_MIN (u8)  9
#define CAP_VALUE_MAX (u8) 40
#define HR_MIN	      (u8) 25
#define HR_MAX	      (u8) 40
#define POLY_MIN      (u8)  0
#define POLY_MAX      (u8)  8

void dib0090_set_EFUSE(struct dib0090_state *state)
{
    u8 c,h,n;
    u16 e2,e4;
    u16 cal;

    e2=dib0090_read_reg(state,0x26);
    e4=dib0090_read_reg(state,0x28);

    if ((state->identity.version == P1D_E_F) || // All P1F uses the internal calibration
        (state->identity.version == P1G) || (e2 == 0xffff)) {	//W0090G11R1 and W0090G11R1-D  : We will find the calibration Value of the Baseband

        dib0090_write_reg(state,0x22,0x10); //Start the Calib
        cal = (dib0090_read_reg(state,0x22)>>6) & 0x3ff;

        if ((cal<670) || (cal==1023)) //Cal at 800 would give too high value for the n
            cal=850; //Recenter the n to 32
        n = 165 - ((cal * 10)>>6) ;
        e2 = e4 = (3<<12) | (34<<6) | (n);
    }

    if (e2!=e4) {
        e2 &= e4; /* Remove the redundancy  */
    }

    if (e2 != 0xffff) {
        c = e2 & 0x3f;
        n = (e2 >> 12) & 0xf;
        h= (e2 >> 6) & 0x3f;

        if ((c >= CAP_VALUE_MAX) || (c <= CAP_VALUE_MIN))
            c=32;
        if ((h >= HR_MAX) || (h <= HR_MIN))
            h=34;
        if ((n >= POLY_MAX) || (n <= POLY_MIN))
            n=3;

        dib0090_write_reg(state,0x13, (h << 10)) ;
        e2 = (n<<11) | ((h>>2)<<6) | (c);
        dib0090_write_reg(state,0x2, e2) ; /* Load the BB_2 */
    }
}

static int dib0090_reset(struct dvb_frontend *fe)
{
	struct dib0090_state *state = fe->tuner_priv;

	dib0090_reset_digital(fe, state->config);
	if (dib0090_identify(fe) < 0)
		return -EIO;

#ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT
	if (!(state->identity.version & 0x1))	/* it is P1B - reset is already done */
		return 0;
#endif

	if (!state->identity.in_soc) {
		if ((dib0090_read_reg(state, 0x1a) >> 5) & 0x2)
			dib0090_write_reg(state, 0x1b, (EN_IQADC | EN_BB | EN_BIAS | EN_DIGCLK | EN_PLL | EN_CRYSTAL));
		else
			dib0090_write_reg(state, 0x1b, (EN_DIGCLK | EN_PLL | EN_CRYSTAL));
	}

	dib0090_set_default_config(state, dib0090_defaults);

    if (state->identity.in_soc)
        dib0090_write_reg(state, 0x18, 0x2910);  /* charge pump current = 0 */

	if (state->identity.p1g)
		dib0090_set_default_config(state, dib0090_p1g_additionnal_defaults);

    if (((state->identity.version & 0x1f) >= P1D_E_F) || (state->identity.in_soc)) /* Update the efuse : Only available for KROSUS > P1C  and SOC as well*/
        dib0090_set_EFUSE(state);
1436 1437 1438

	/* Congigure in function of the crystal */
	if (state->config->io.clock_khz >= 24000)
1439
		dib0090_write_reg(state, 0x14, 1);
1440
	else
1441
		dib0090_write_reg(state, 0x14, 2);
1442 1443
	dprintk("Pll lock : %d", (dib0090_read_reg(state, 0x1a) >> 11) & 0x1);

1444
	state->calibrate = DC_CAL | WBD_CAL | TEMP_CAL;	/* enable iq-offset-calibration and wbd-calibration when tuning next time */
1445 1446 1447 1448

	return 0;
}

1449
#define steps(u) (((u) > 15) ? ((u)-16) : (u))
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
#define INTERN_WAIT 10
static int dib0090_get_offset(struct dib0090_state *state, enum frontend_tune_state *tune_state)
{
	int ret = INTERN_WAIT * 10;

	switch (*tune_state) {
	case CT_TUNER_STEP_2:
		/* Turns to positive */
		dib0090_write_reg(state, 0x1f, 0x7);
		*tune_state = CT_TUNER_STEP_3;
		break;

	case CT_TUNER_STEP_3:
		state->adc_diff = dib0090_read_reg(state, 0x1d);

		/* Turns to negative */
		dib0090_write_reg(state, 0x1f, 0x4);
		*tune_state = CT_TUNER_STEP_4;
		break;

	case CT_TUNER_STEP_4:
		state->adc_diff -= dib0090_read_reg(state, 0x1d);
		*tune_state = CT_TUNER_STEP_5;
		ret = 0;
		break;

	default:
		break;
	}

	return ret;
}

struct dc_calibration {
1484 1485 1486 1487 1488
	u8 addr;
	u8 offset;
	u8 pga:1;
	u16 bb1;
	u8 i:1;
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
};

static const struct dc_calibration dc_table[] = {
	/* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
	{0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1},
	{0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0},
	/* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
	{0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1},
	{0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0},
	{0},
};

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
static const struct dc_calibration dc_p1g_table[] = {
	/* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
	/* addr ; trim reg offset ; pga ; CTRL_BB1 value ; i or q */
	{0x06, 5, 1, (1 << 13) | (0 << 8) | (15 << 3), 1},	// offset_trim2_i_chann  0   0   5    0    0    1    6     9    5
	{0x07, 11, 1, (1 << 13) | (0 << 8) | (15 << 3), 0},	// offset_trim2_q_chann  0   0   5    0    0    1    7     15   11
	/* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
	{0x06, 0, 0, (1 << 13) | (29 << 8) | (15 << 3), 1},	// offset_trim1_i_chann  0   0   5    0    0    1    6     4    0
	{0x06, 10, 0, (1 << 13) | (29 << 8) | (15 << 3), 0},	// offset_trim1_q_chann  0   0   5    0    0    1    6     14   10
	{0},
};

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
static void dib0090_set_trim(struct dib0090_state *state)
{
	u16 *val;

	if (state->dc->addr == 0x07)
		val = &state->bb7;
	else
		val = &state->bb6;

	*val &= ~(0x1f << state->dc->offset);
	*val |= state->step << state->dc->offset;

	dib0090_write_reg(state, state->dc->addr, *val);
}

static int dib0090_dc_offset_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state)
{
	int ret = 0;
1530
	u16 reg;
1531 1532 1533

	switch (*tune_state) {
	case CT_TUNER_START:
1534
		dprintk("Start DC offset calibration");
1535 1536 1537 1538 1539

		/* force vcm2 = 0.8V */
		state->bb6 = 0;
		state->bb7 = 0x040d;

1540 1541 1542 1543 1544 1545 1546 1547
		/* the LNA AND LO are off */
		reg = dib0090_read_reg(state, 0x24) & 0x0ffb;	/* shutdown lna and lo */
		dib0090_write_reg(state, 0x24, reg);

		state->wbdmux = dib0090_read_reg(state, 0x10);
		dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x7 << 3) | 0x3);	// connect BB, disable WDB enable*
		dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14));	//Discard the DataTX

1548 1549
		state->dc = dc_table;

1550 1551
		if (state->identity.p1g)
			state->dc = dc_p1g_table;
1552 1553 1554 1555 1556
		*tune_state = CT_TUNER_STEP_0;

		/* fall through */

	case CT_TUNER_STEP_0:
1557
		dprintk("Sart/continue DC calibration for %s path", (state->dc->i == 1) ? "I" : "Q");
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
		dib0090_write_reg(state, 0x01, state->dc->bb1);
		dib0090_write_reg(state, 0x07, state->bb7 | (state->dc->i << 7));

		state->step = 0;
		state->min_adc_diff = 1023;
		*tune_state = CT_TUNER_STEP_1;
		ret = 50;
		break;

	case CT_TUNER_STEP_1:
		dib0090_set_trim(state);
		*tune_state = CT_TUNER_STEP_2;
		break;

	case CT_TUNER_STEP_2:
	case CT_TUNER_STEP_3:
	case CT_TUNER_STEP_4:
		ret = dib0090_get_offset(state, tune_state);
		break;

	case CT_TUNER_STEP_5:	/* found an offset */
1579 1580 1581 1582 1583 1584 1585
		dprintk("adc_diff = %d, current step= %d", (u32) state->adc_diff, state->step);
		if (state->step == 0 && state->adc_diff < 0) {
			state->min_adc_diff = -1023;
			dprintk("Change of sign of the minimum adc diff");
		}

		dprintk("adc_diff = %d, min_adc_diff = %d current_step = %d", state->adc_diff, state->min_adc_diff, state->step);
1586 1587 1588 1589 1590 1591 1592 1593 1594

		/* first turn for this frequency */
		if (state->step == 0) {
			if (state->dc->pga && state->adc_diff < 0)
				state->step = 0x10;
			if (state->dc->pga == 0 && state->adc_diff > 0)
				state->step = 0x10;
		}

1595 1596 1597
		/* Look for a change of Sign in the Adc_diff.min_adc_diff is used to STORE the setp N-1 */
		if ((state->adc_diff & 0x8000) == (state->min_adc_diff & 0x8000) && steps(state->step) < 15) {
			/* stop search when the delta the sign is changing and Steps =15 and Step=0 is force for continuance */
1598
			state->step++;
1599
			state->min_adc_diff = state->adc_diff;	//min is used as N-1
1600 1601 1602
			*tune_state = CT_TUNER_STEP_1;
		} else {
			/* the minimum was what we have seen in the step before */
1603 1604 1605 1606
			if (ABS(state->adc_diff) > ABS(state->min_adc_diff)) {	//Come back to the previous state since the delta was better
				dprintk("Since adc_diff N = %d  > adc_diff step N-1 = %d, Come back one step", state->adc_diff, state->min_adc_diff);
				state->step--;
			}
1607

1608 1609
			dib0090_set_trim(state);
			dprintk("BB Offset Cal, BBreg=%hd,Offset=%hd,Value Set=%hd", state->dc->addr, state->adc_diff, state->step);
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620

			state->dc++;
			if (state->dc->addr == 0)	/* done */
				*tune_state = CT_TUNER_STEP_6;
			else
				*tune_state = CT_TUNER_STEP_0;

		}
		break;

	case CT_TUNER_STEP_6:
1621
		dib0090_write_reg(state, 0x07, state->bb7 & ~0x0008);	//Force the test bus to be off
1622 1623
		dib0090_write_reg(state, 0x1f, 0x7);
		*tune_state = CT_TUNER_START;	/* reset done -> real tuning can now begin */
1624
		state->calibrate &= ~DC_CAL;
1625 1626 1627 1628 1629 1630 1631 1632
	default:
		break;
	}
	return ret;
}

static int dib0090_wbd_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state)
{
1633 1634 1635
	u8 wbd_gain;
	const struct dib0090_wbd_slope *wbd = state->current_wbd_table;

1636 1637
	switch (*tune_state) {
	case CT_TUNER_START:
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
		while (state->current_rf / 1000 > wbd->max_freq)
			wbd++;
		if (wbd->wbd_gain != 0)
			wbd_gain = wbd->wbd_gain;
		else {
			wbd_gain = 4;
#if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND)
			if ((state->current_band == BAND_LBAND) || (state->current_band == BAND_SBAND))
				wbd_gain = 2;
#endif
		}
1649

1650 1651 1652 1653 1654 1655 1656 1657 1658
		if (wbd_gain == state->wbd_calibration_gain) {	/* the WBD calibration has already been done */
			*tune_state = CT_TUNER_START;
			state->calibrate &= ~WBD_CAL;
			return 0;
		}

		dib0090_write_reg(state, 0x10, 0x1b81 | (1 << 10) | (wbd_gain << 13) | (1 << 3));	// Force: WBD enable,gain to 4, mux to WBD

		dib0090_write_reg(state, 0x24, ((EN_UHF & 0x0fff) | (1 << 1)));	//Discard all LNA but crystal !!!
1659
		*tune_state = CT_TUNER_STEP_0;
1660
		state->wbd_calibration_gain = wbd_gain;
1661
		return 90;	/* wait for the WBDMUX to switch and for the ADC to sample */
1662

1663
	case CT_TUNER_STEP_0:
1664
		state->wbd_offset = dib0090_get_slow_adc_val(state);
1665 1666
		dprintk("WBD calibration offset = %d", state->wbd_offset);
		*tune_state = CT_TUNER_START;	/* reset done -> real tuning can now begin */
1667
		state->calibrate &= ~WBD_CAL;
1668
		break;
1669

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
	default:
		break;
	}
	return 0;
}

static void dib0090_set_bandwidth(struct dib0090_state *state)
{
	u16 tmp;

	if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 5000)
		tmp = (3 << 14);
	else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 6000)
		tmp = (2 << 14);
	else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 7000)
		tmp = (1 << 14);
	else
		tmp = (0 << 14);

	state->bb_1_def &= 0x3fff;
	state->bb_1_def |= tmp;

	dib0090_write_reg(state, 0x01, state->bb_1_def);	/* be sure that we have the right bb-filter */
1693 1694 1695 1696 1697 1698 1699 1700 1701

	dib0090_write_reg(state, 0x03, 0x6008);	/* = 0x6008 : vcm3_trim = 1 ; filter2_gm1_trim = 8 ; filter2_cutoff_freq = 0 */
	dib0090_write_reg(state, 0x04, 0x1);	/* 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast */
	if (state->identity.in_soc) {
		dib0090_write_reg(state, 0x05, 0x9bcf); /* attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 1 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 15 */
	} else {
		dib0090_write_reg(state, 0x02, (5 << 11) | (8 << 6) | (22 & 0x3f));	/* 22 = cap_value */
		dib0090_write_reg(state, 0x05, 0xabcd);	/* = 0xabcd : attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 2 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 13 */
	}
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
}

static const struct dib0090_pll dib0090_pll_table[] = {
#ifdef CONFIG_BAND_CBAND
	{56000, 0, 9, 48, 6},
	{70000, 1, 9, 48, 6},
	{87000, 0, 8, 32, 4},
	{105000, 1, 8, 32, 4},
	{115000, 0, 7, 24, 6},
	{140000, 1, 7, 24, 6},
	{170000, 0, 6, 16, 4},
#endif
#ifdef CONFIG_BAND_VHF
	{200000, 1, 6, 16, 4},
	{230000, 0, 5, 12, 6},
	{280000, 1, 5, 12, 6},
	{340000, 0, 4, 8, 4},
	{380000, 1, 4, 8, 4},
	{450000, 0, 3, 6, 6},
#endif
#ifdef CONFIG_BAND_UHF
	{580000, 1, 3, 6, 6},
	{700000, 0, 2, 4, 4},
	{860000, 1, 2, 4, 4},
#endif
#ifdef CONFIG_BAND_LBAND
	{1800000, 1, 0, 2, 4},
#endif
#ifdef CONFIG_BAND_SBAND
	{2900000, 0, 14, 1, 4},
#endif
};

static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband[] = {

#ifdef CONFIG_BAND_CBAND
	{184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
	{227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
	{380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
#endif
#ifdef CONFIG_BAND_UHF
	{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
#endif
#ifdef CONFIG_BAND_LBAND
	{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
	{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
	{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
#endif
#ifdef CONFIG_BAND_SBAND
	{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
	{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
#endif
};

static const struct dib0090_tuning dib0090_tuning_table[] = {

#ifdef CONFIG_BAND_CBAND
	{170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
#endif
#ifdef CONFIG_BAND_VHF
	{184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
	{227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
	{380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
#endif
#ifdef CONFIG_BAND_UHF
	{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
	{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
#endif
#ifdef CONFIG_BAND_LBAND
	{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
	{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
	{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
#endif
#ifdef CONFIG_BAND_SBAND
	{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
	{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
#endif
};

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
static const struct dib0090_tuning dib0090_p1g_tuning_table[] = {
	//max_freq, switch_trim, lna_tune, lna_bias, v2i, mix, load, tuner_enable;
#ifdef CONFIG_BAND_CBAND
	{170000, 4, 1, 0x820f, 0x300, 0x2d22, 0x82cb, EN_CAB},	// FM EN_CAB
#endif
#ifdef CONFIG_BAND_VHF
	{184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},	// VHF EN_VHF
	{227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},	// VHF EN_VHF
	{380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},	// VHF EN_VHF
#endif
#ifdef CONFIG_BAND_UHF
	{510000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},	// UHF
	{540000, 2, 1, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},	// UHF
	{600000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},	// UHF
	{630000, 2, 4, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},	// UHF
	{680000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},	// UHF
	{720000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},	// UHF
	{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},	// UHF
#endif
#ifdef CONFIG_BAND_LBAND
	{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},	// LBD EN_LBD
	{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},	// LBD EN_LBD
	{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},	// LBD EN_LBD
#endif
#ifdef CONFIG_BAND_SBAND
	{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},	// SBD EN_SBD
	{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},	// SBD EN_SBD
#endif
};

static const struct dib0090_pll dib0090_p1g_pll_table[] = {
#ifdef CONFIG_BAND_CBAND
	{57000, 0, 11, 48, 6},	// CAB
	{70000, 1, 11, 48, 6},	// CAB
	{86000, 0, 10, 32, 4},	// CAB
	{105000, 1, 10, 32, 4},	// FM
	{115000, 0, 9, 24, 6},	// FM
	{140000, 1, 9, 24, 6},	// MID FM VHF
	{170000, 0, 8, 16, 4},	// MID FM VHF
#endif
#ifdef CONFIG_BAND_VHF
	{200000, 1, 8, 16, 4},	// VHF
	{230000, 0, 7, 12, 6},	// VHF
	{280000, 1, 7, 12, 6},	// MID VHF UHF
	{340000, 0, 6, 8, 4},	// MID VHF UHF
	{380000, 1, 6, 8, 4},	// MID VHF UHF
	{455000, 0, 5, 6, 6},	// MID VHF UHF
#endif
#ifdef CONFIG_BAND_UHF
	{580000, 1, 5, 6, 6},	// UHF
	{680000, 0, 4, 4, 4},	// UHF
	{860000, 1, 4, 4, 4},	// UHF
#endif
#ifdef CONFIG_BAND_LBAND
	{1800000, 1, 2, 2, 4},	// LBD
#endif
#ifdef CONFIG_BAND_SBAND
	{2900000, 0, 1, 1, 6},	// SBD
#endif
};

static const struct dib0090_tuning dib0090_p1g_tuning_table_fm_vhf_on_cband[] = {
	//max_freq, switch_trim, lna_tune, lna_bias, v2i, mix, load, tuner_enable;
#ifdef CONFIG_BAND_CBAND
	{184000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},	// FM EN_CAB      // 0x8190 Good perf but higher current //0x4187 Low current
	{227000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},	// FM EN_CAB
	{380000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},	// FM EN_CAB
#endif
#ifdef CONFIG_BAND_UHF
	{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},	// UHF
	{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},	// UHF
	{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},	// UHF
	{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},	// UHF
	{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},	// UHF
	{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},	// UHF
#endif
#ifdef CONFIG_BAND_LBAND
	{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},	// LBD EN_LBD
	{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},	// LBD EN_LBD
	{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},	// LBD EN_LBD
#endif
#ifdef CONFIG_BAND_SBAND
	{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},	// SBD EN_SBD
	{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},	// SBD EN_SBD
#endif
};

static const struct dib0090_tuning dib0090_tuning_table_cband_7090[] = {
	//max_freq, switch_trim, lna_tune, lna_bias, v2i, mix, load, tuner_enable;
#ifdef CONFIG_BAND_CBAND
	//{ 184000,  4,  3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB }, // 0x81ce 0x8190 Good perf but higher current //0x4187 Low current
	{300000, 4, 3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
	{380000, 4, 10, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},	//0x4187
	{570000, 4, 10, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
	{858000, 4, 5, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
#endif
};

static int dib0090_captrim_search(struct dib0090_state *state, enum frontend_tune_state *tune_state)
{
	int ret = 0;
	u16 lo4 = 0xe900;

	s16 adc_target;
	u16 adc;
	s8 step_sign;
	u8 force_soft_search = 0;

	if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
		force_soft_search = 1;

	if (*tune_state == CT_TUNER_START) {
		dprintk("Start Captrim search : %s", (force_soft_search == 1) ? "FORCE SOFT SEARCH" : "AUTO");
		dib0090_write_reg(state, 0x10, 0x2B1);
		dib0090_write_reg(state, 0x1e, 0x0032);

		if (!state->tuner_is_tuned) {
			/* prepare a complete captrim */
			if (!state->identity.p1g || force_soft_search)
				state->step = state->captrim = state->fcaptrim = 64;

			state->current_rf = state->rf_request;
		} else {	/* we are already tuned to this frequency - the configuration is correct  */
			if (!state->identity.p1g || force_soft_search) {
				/* do a minimal captrim even if the frequency has not changed */
				state->step = 4;
				state->captrim = state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7f;
			}
		}
		state->adc_diff = 3000;	// start with a unreachable high number : only set for KROSUS < P1G */
		*tune_state = CT_TUNER_STEP_0;

	} else if (*tune_state == CT_TUNER_STEP_0) {
		if (state->identity.p1g && !force_soft_search) {
			// 30MHz => Code 15 for the ration => 128us to lock. Giving approximately
			u8 ratio = 31;	// (state->config->io.clock_khz / 1024 + 1) & 0x1f;

			dib0090_write_reg(state, 0x40, (3 << 7) | (ratio << 2) | (1 << 1) | 1);
			dib0090_read_reg(state, 0x40);
			//dib0090_write_reg(state, 0x40, (3<<7) | ((((state->config->io.clock_khz >> 11)+1) & 0x1f)<<2) | (1<<1) | 1);
			ret = 50;
		} else {
			state->step /= 2;
			dib0090_write_reg(state, 0x18, lo4 | state->captrim);

			if (state->identity.in_soc)
				ret = 25;
		}
		*tune_state = CT_TUNER_STEP_1;

	} else if (*tune_state == CT_TUNER_STEP_1) {
		if (state->identity.p1g && !force_soft_search) {
			dib0090_write_reg(state, 0x40, 0x18c | (0 << 1) | 0);
			dib0090_read_reg(state, 0x40);

			state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7F;
			dprintk("***Final Captrim= 0x%x", state->fcaptrim);
			*tune_state = CT_TUNER_STEP_3;

		} else {
			/* MERGE for all krosus before P1G */
			adc = dib0090_get_slow_adc_val(state);
			dprintk("CAPTRIM=%d; ADC = %d (ADC) & %dmV", (u32) state->captrim, (u32) adc, (u32) (adc) * (u32) 1800 / (u32) 1024);

			if (state->rest == 0 || state->identity.in_soc) {	/* Just for 8090P SOCS where auto captrim HW bug : TO CHECK IN ACI for SOCS !!! if 400 for 8090p SOC => tune issue !!! */
				adc_target = 200;
			} else
				adc_target = 400;

			if (adc >= adc_target) {
				adc -= adc_target;
				step_sign = -1;
			} else {
				adc = adc_target - adc;
				step_sign = 1;
			}

			if (adc < state->adc_diff) {
				dprintk("CAPTRIM=%d is closer to target (%d/%d)", (u32) state->captrim, (u32) adc, (u32) state->adc_diff);
				state->adc_diff = adc;
				state->fcaptrim = state->captrim;
				//we could break here, to save time, if we reached a close-enough value
				//e.g.: if (state->adc_diff < 20)
				//break;
			}

			state->captrim += step_sign * state->step;
			if (state->step >= 1)
				*tune_state = CT_TUNER_STEP_0;
			else
				*tune_state = CT_TUNER_STEP_2;

			ret = 25;	//LOLO changed from 15
		}
	} else if (*tune_state == CT_TUNER_STEP_2) {	/* this step is only used by krosus < P1G */
		/*write the final cptrim config */
		dib0090_write_reg(state, 0x18, lo4 | state->fcaptrim);

		*tune_state = CT_TUNER_STEP_3;

	} else if (*tune_state == CT_TUNER_STEP_3) {
		state->calibrate &= ~CAPTRIM_CAL;
		*tune_state = CT_TUNER_STEP_0;
	}

	return ret;
}

static int dib0090_get_temperature(struct dib0090_state *state, enum frontend_tune_state *tune_state)
{
	int ret = 15;
	s16 val;

	//The assumption is that the AGC is not active
	switch (*tune_state) {
	case CT_TUNER_START:
		state->wbdmux = dib0090_read_reg(state, 0x10);
		dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x8 << 3));	//Move to the bias and clear the wbd enable

		state->bias = dib0090_read_reg(state, 0x13);
		dib0090_write_reg(state, 0x13, state->bias | (0x3 << 8));	//Move to the Ref

		*tune_state = CT_TUNER_STEP_0;
		/* wait for the WBDMUX to switch and for the ADC to sample */
		break;

	case CT_TUNER_STEP_0:
		state->adc_diff = dib0090_get_slow_adc_val(state);	// Get the value for the Ref
		dib0090_write_reg(state, 0x13, (state->bias & ~(0x3 << 8)) | (0x2 << 8));	//Move to the Ptat
		*tune_state = CT_TUNER_STEP_1;
		break;

	case CT_TUNER_STEP_1:
		val = dib0090_get_slow_adc_val(state);	// Get the value for the Ptat
		state->temperature = ((s16) ((val - state->adc_diff) * 180) >> 8) + 55;	// +55 is defined as = -30deg

		dprintk("temperature: %d C", state->temperature - 30);

		*tune_state = CT_TUNER_STEP_2;
		break;

	case CT_TUNER_STEP_2:
		//Reload the start values.
		dib0090_write_reg(state, 0x13, state->bias);
		dib0090_write_reg(state, 0x10, state->wbdmux);	/* write back original WBDMUX */

		*tune_state = CT_TUNER_START;
		state->calibrate &= ~TEMP_CAL;
		if (state->config->analog_output == 0)
			dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));	//Set the DataTX

		break;

	default:
		ret = 0;
		break;
	}
	return ret;
}

2050 2051 2052 2053 2054 2055 2056 2057
#define WBD     0x781		/* 1 1 1 1 0000 0 0 1 */
static int dib0090_tune(struct dvb_frontend *fe)
{
	struct dib0090_state *state = fe->tuner_priv;
	const struct dib0090_tuning *tune = state->current_tune_table_index;
	const struct dib0090_pll *pll = state->current_pll_table_index;
	enum frontend_tune_state *tune_state = &state->tune_state;

2058
	u16 lo5, lo6, Den, tmp;
2059 2060 2061 2062
	u32 FBDiv, Rest, FREF, VCOF_kHz = 0;
	int ret = 10;		/* 1ms is the default delay most of the time */
	u8 c, i;

2063
	/************************* VCO ***************************/
2064 2065 2066 2067
	/* Default values for FG                                 */
	/* from these are needed :                               */
	/* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv             */

2068 2069 2070 2071 2072 2073 2074 2075
	/* in any case we first need to do a calibration if needed */
	if (*tune_state == CT_TUNER_START) {
		/* deactivate DataTX before some calibrations */
		if (state->calibrate & (DC_CAL | TEMP_CAL | WBD_CAL))
			dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14));
		else /* Activate DataTX in case a calibration has been done before */ if (state->config->analog_output == 0)
			dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
	}
2076

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
	if (state->calibrate & DC_CAL)
		return dib0090_dc_offset_calibration(state, tune_state);
	else if (state->calibrate & WBD_CAL) {
		if (state->current_rf == 0) {
			state->current_rf = state->fe->dtv_property_cache.frequency / 1000;
		}
		return dib0090_wbd_calibration(state, tune_state);
	} else if (state->calibrate & TEMP_CAL)
		return dib0090_get_temperature(state, tune_state);
	else if (state->calibrate & CAPTRIM_CAL)
		return dib0090_captrim_search(state, tune_state);
2088

2089 2090 2091 2092 2093 2094 2095
	if (*tune_state == CT_TUNER_START) {
		/* if soc and AGC pwm control, disengage mux to be able to R/W access to 0x01 register to set the right filter (cutoff_freq_select) during the tune sequence, otherwise, SOC SERPAR error when accessing to 0x01 */
		if (state->config->use_pwm_agc && state->identity.in_soc) {
			tmp = dib0090_read_reg(state, 0x39);
			if ((tmp >> 10) & 0x1)
				dib0090_write_reg(state, 0x39, tmp & ~(1 << 10));	// disengage mux : en_mux_bb1 = 0
		}
2096

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
		state->current_band = (u8) BAND_OF_FREQUENCY(state->fe->dtv_property_cache.frequency / 1000);
		state->rf_request =
			state->fe->dtv_property_cache.frequency / 1000 + (state->current_band ==
					BAND_UHF ? state->config->freq_offset_khz_uhf : state->config->
					freq_offset_khz_vhf);

		/* in ISDB-T 1seg we shift tuning frequency */
		if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT && state->fe->dtv_property_cache.isdbt_sb_mode == 1
					&& state->fe->dtv_property_cache.isdbt_partial_reception == 0)) {
			const struct dib0090_low_if_offset_table *LUT_offset = state->config->low_if;
			u8 found_offset = 0;
			u32 margin_khz = 100;

			if (LUT_offset != NULL) {
				while (LUT_offset->RF_freq != 0xffff) {
					if (((state->rf_request > (LUT_offset->RF_freq - margin_khz))
								&& (state->rf_request < (LUT_offset->RF_freq + margin_khz)))
							&& LUT_offset->std == state->fe->dtv_property_cache.delivery_system) {
						state->rf_request += LUT_offset->offset_khz;
						found_offset = 1;
						break;
					}
					LUT_offset++;
				}
2121
			}
2122 2123 2124

			if (found_offset == 0)
				state->rf_request += 400;
2125
		}
2126 2127 2128 2129
		if (state->current_rf != state->rf_request || (state->current_standard != state->fe->dtv_property_cache.delivery_system)) {
			state->tuner_is_tuned = 0;
			state->current_rf = 0;
			state->current_standard = 0;
2130

2131 2132 2133
			tune = dib0090_tuning_table;
			if (state->identity.p1g)
				tune = dib0090_p1g_tuning_table;
2134

2135
			tmp = (state->identity.version >> 5) & 0x7;
2136

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
			if (state->identity.in_soc) {
				if (state->config->force_cband_input) {	/* Use the CBAND input for all band */
					if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF
							|| state->current_band & BAND_UHF) {
						state->current_band = BAND_CBAND;
						tune = dib0090_tuning_table_cband_7090;
					}
				} else {	/* Use the CBAND input for all band under UHF */
					if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF) {
						state->current_band = BAND_CBAND;
						tune = dib0090_tuning_table_cband_7090;
					}
				}
			} else
			 if (tmp == 0x4 || tmp == 0x7) {
				/* CBAND tuner version for VHF */
				if (state->current_band == BAND_FM || state->current_band == BAND_CBAND || state->current_band == BAND_VHF) {
					state->current_band = BAND_CBAND;	/* Force CBAND */

					tune = dib0090_tuning_table_fm_vhf_on_cband;
					if (state->identity.p1g)
						tune = dib0090_p1g_tuning_table_fm_vhf_on_cband;
				}
			}
2161

2162 2163 2164
			pll = dib0090_pll_table;
			if (state->identity.p1g)
				pll = dib0090_p1g_pll_table;
2165

2166 2167 2168 2169 2170
			/* Look for the interval */
			while (state->rf_request > tune->max_freq)
				tune++;
			while (state->rf_request > pll->max_freq)
				pll++;
2171

2172 2173
			state->current_tune_table_index = tune;
			state->current_pll_table_index = pll;
2174

2175 2176
			// select internal switch
			dib0090_write_reg(state, 0x0b, 0xb800 | (tune->switch_trim));
2177

2178 2179
			// Find the VCO frequency in MHz
			VCOF_kHz = (pll->hfdiv * state->rf_request) * 2;
2180

2181 2182 2183
			FREF = state->config->io.clock_khz;	// REFDIV is 1FREF Has to be as Close as possible to 10MHz
			if (state->config->fref_clock_ratio != 0)
				FREF /= state->config->fref_clock_ratio;
2184

2185 2186
			// Determine the FB divider
			// The reference is 10MHz, Therefore the FBdivider is on the first digits
2187
			FBDiv = (VCOF_kHz / pll->topresc / FREF);
2188
			Rest = (VCOF_kHz / pll->topresc) - FBDiv * FREF;	//in kHz
2189

2190
			// Avoid Spurs in the loopfilter bandwidth
2191 2192 2193 2194 2195 2196 2197
			if (Rest < LPF)
				Rest = 0;
			else if (Rest < 2 * LPF)
				Rest = 2 * LPF;
			else if (Rest > (FREF - LPF)) {
				Rest = 0;
				FBDiv += 1;
2198 2199
			}	//Go to the next FB
			else if (Rest > (FREF - 2 * LPF))
2200 2201
				Rest = FREF - 2 * LPF;
			Rest = (Rest * 6528) / (FREF / 10);
2202
			state->rest = Rest;
2203

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
			/* external loop filter, otherwise:
			 * lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4;
			 * lo6 = 0x0e34 */

			if (Rest == 0) {
				if (pll->vco_band)
					lo5 = 0x049f;
				//else if (state->config->analog_output)
				//	lo5 = 0x041f;
				else
					lo5 = 0x041f;
			} else {
				if (pll->vco_band)
					lo5 = 0x049e;
				else if (state->config->analog_output)
					lo5 = 0x041d;
				else
					lo5 = 0x041c;
			}

			if (state->identity.p1g) {	/* Bias is done automatically in P1G */
				if (state->identity.in_soc) {
					if (state->identity.version == SOC_8090_P1G_11R1)
						lo5 = 0x46f;
					else
						lo5 = 0x42f;
				} else
					lo5 = 0x42c;	//BIAS Lo set to 4 by default in case of the Captrim search does not take care of the VCO Bias
			}

			lo5 |= (pll->hfdiv_code << 11) | (pll->vco_band << 7);	/* bit 15 is the split to the slave, we do not do it here */

			//Internal loop filter set...
			if (!state->config->io.pll_int_loop_filt) {
				if (state->identity.in_soc)
					lo6 = 0xff98;
				else if (state->identity.p1g || (Rest == 0))
					lo6 = 0xfff8;
				else
					lo6 = 0xff28;
			} else
				lo6 = (state->config->io.pll_int_loop_filt << 3);	// take the loop filter value given by the layout
			//dprintk("lo6 = 0x%04x", (u32)lo6);
2247

2248
			Den = 1;
2249 2250 2251

			if (Rest > 0) {
				if (state->config->analog_output)
2252 2253 2254 2255 2256 2257 2258
					lo6 |= (1 << 2) | 2;	//SigmaDelta and Dither
				else {
					if (state->identity.in_soc)
						lo6 |= (1 << 2) | 2;	//SigmaDelta and Dither
					else
						lo6 |= (1 << 2) | 2;	//SigmaDelta and Dither
				}
2259 2260
				Den = 255;
			}
2261 2262
			// Now we have to define the Num and Denum
			// LO1 gets the FBdiv
2263
			dib0090_write_reg(state, 0x15, (u16) FBDiv);
2264 2265 2266 2267 2268 2269
			// LO2 gets the REFDiv
			if (state->config->fref_clock_ratio != 0)
				dib0090_write_reg(state, 0x16, (Den << 8) | state->config->fref_clock_ratio);
			else
				dib0090_write_reg(state, 0x16, (Den << 8) | 1);
			// LO3 for the Numerator
2270
			dib0090_write_reg(state, 0x17, (u16) Rest);
2271
			// VCO and HF DIV
2272
			dib0090_write_reg(state, 0x19, lo5);
2273
			// SIGMA Delta
2274 2275
			dib0090_write_reg(state, 0x1c, lo6);

2276 2277 2278
			// Check if the 0090 is analogged configured
			//Disable ADC and DigPLL =0xFF9F, 0xffbf for test purposes.
			//Enable The Outputs of the BB on DATA_Tx
2279 2280 2281 2282
			lo6 = tune->tuner_enable;
			if (state->config->analog_output)
				lo6 = (lo6 & 0xff9f) | 0x2;

2283
			dib0090_write_reg(state, 0x24, lo6 | EN_LO | state->config->use_pwm_agc * EN_CRYSTAL);
2284 2285 2286

		}

2287 2288
		state->current_rf = state->rf_request;
		state->current_standard = state->fe->dtv_property_cache.delivery_system;
2289 2290

		ret = 20;
2291 2292
		state->calibrate = CAPTRIM_CAL;	/* captrim serach now */
	}
2293

2294 2295
	else if (*tune_state == CT_TUNER_STEP_0) {	/* Warning : because of captrim cal, if you change this step, change it also in _cal.c file because it is the step following captrim cal state machine */
		const struct dib0090_wbd_slope *wbd = state->current_wbd_table;
2296

2297 2298 2299 2300
//	if(!state->identity.p1g) {
		while (state->current_rf / 1000 > wbd->max_freq)
			wbd++;
//	}
2301

2302 2303 2304 2305 2306 2307 2308 2309 2310
		dib0090_write_reg(state, 0x1e, 0x07ff);
		dprintk("Final Captrim: %d", (u32) state->fcaptrim);
		dprintk("HFDIV code: %d", (u32) pll->hfdiv_code);
		dprintk("VCO = %d", (u32) pll->vco_band);
		dprintk("VCOF in kHz: %d ((%d*%d) << 1))", (u32) ((pll->hfdiv * state->rf_request) * 2), (u32) pll->hfdiv, (u32) state->rf_request);
		dprintk("REFDIV: %d, FREF: %d", (u32) 1, (u32) state->config->io.clock_khz);
		dprintk("FBDIV: %d, Rest: %d", (u32) dib0090_read_reg(state, 0x15), (u32) dib0090_read_reg(state, 0x17));
		dprintk("Num: %d, Den: %d, SD: %d", (u32) dib0090_read_reg(state, 0x17), (u32) (dib0090_read_reg(state, 0x16) >> 8),
			(u32) dib0090_read_reg(state, 0x1c) & 0x3);
2311

2312 2313 2314
#define WBD     0x781		/* 1 1 1 1 0000 0 0 1 */
		c = 4;
		i = 3;		//wbdmux_bias
2315

2316 2317
		if (wbd->wbd_gain != 0)	//&& !state->identity.p1g)
			c = wbd->wbd_gain;
2318

2319 2320 2321
		//Store wideband mux register.
		state->wbdmux = (c << 13) | (i << 11) | (WBD | (state->config->use_pwm_agc << 1));
		dib0090_write_reg(state, 0x10, state->wbdmux);
2322

2323 2324 2325 2326 2327 2328
		if ((tune->tuner_enable == EN_CAB) && state->identity.p1g) {
			dprintk("P1G : The cable band is selected and lna_tune = %d", tune->lna_tune);
			dib0090_write_reg(state, 0x09, tune->lna_bias);
			dib0090_write_reg(state, 0x0b, 0xb800 | (tune->lna_tune << 6) | (tune->switch_trim));
		} else
			dib0090_write_reg(state, 0x09, (tune->lna_tune << 5) | tune->lna_bias);
2329 2330 2331 2332

		dib0090_write_reg(state, 0x0c, tune->v2i);
		dib0090_write_reg(state, 0x0d, tune->mix);
		dib0090_write_reg(state, 0x0e, tune->load);
2333
		*tune_state = CT_TUNER_STEP_1;
2334

2335
	} else if (*tune_state == CT_TUNER_STEP_1) {
2336 2337
		/* initialize the lt gain register */
		state->rf_lt_def = 0x7c00;
2338
		// dib0090_write_reg(state, 0x0f, state->rf_lt_def);
2339 2340 2341

		dib0090_set_bandwidth(state);
		state->tuner_is_tuned = 1;
2342 2343 2344 2345 2346

//	if(!state->identity.p1g)
		state->calibrate |= WBD_CAL;	// TODO: only do the WBD calibration for new tune
//
		state->calibrate |= TEMP_CAL;	// Force the Temperature to be remesured at next TUNE.
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
		*tune_state = CT_TUNER_STOP;
	} else
		ret = FE_CALLBACK_TIME_NEVER;
	return ret;
}

static int dib0090_release(struct dvb_frontend *fe)
{
	kfree(fe->tuner_priv);
	fe->tuner_priv = NULL;
	return 0;
}

enum frontend_tune_state dib0090_get_tune_state(struct dvb_frontend *fe)
{
	struct dib0090_state *state = fe->tuner_priv;

	return state->tune_state;
}
2366

2367 2368 2369 2370 2371 2372 2373 2374 2375
EXPORT_SYMBOL(dib0090_get_tune_state);

int dib0090_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state)
{
	struct dib0090_state *state = fe->tuner_priv;

	state->tune_state = tune_state;
	return 0;
}
2376

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
EXPORT_SYMBOL(dib0090_set_tune_state);

static int dib0090_get_frequency(struct dvb_frontend *fe, u32 * frequency)
{
	struct dib0090_state *state = fe->tuner_priv;

	*frequency = 1000 * state->current_rf;
	return 0;
}

static int dib0090_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *p)
{
	struct dib0090_state *state = fe->tuner_priv;
2390
	u32 ret;
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419

	state->tune_state = CT_TUNER_START;

	do {
		ret = dib0090_tune(fe);
		if (ret != FE_CALLBACK_TIME_NEVER)
			msleep(ret / 10);
		else
			break;
	} while (state->tune_state != CT_TUNER_STOP);

	return 0;
}

static const struct dvb_tuner_ops dib0090_ops = {
	.info = {
		 .name = "DiBcom DiB0090",
		 .frequency_min = 45000000,
		 .frequency_max = 860000000,
		 .frequency_step = 1000,
		 },
	.release = dib0090_release,

	.init = dib0090_wakeup,
	.sleep = dib0090_sleep,
	.set_params = dib0090_set_params,
	.get_frequency = dib0090_get_frequency,
};

2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
static const struct dvb_tuner_ops dib0090_fw_ops = {
	.info = {
		 .name = "DiBcom DiB0090",
		 .frequency_min = 45000000,
		 .frequency_max = 860000000,
		 .frequency_step = 1000,
		 },
	.release = dib0090_release,

	.init = NULL,
	.sleep = NULL,
	.set_params = NULL,
	.get_frequency = NULL,
};

static const struct dib0090_wbd_slope dib0090_wbd_table_default[] = {
	{470, 0, 250, 0, 100, 4},
	{860, 51, 866, 21, 375, 4},
	{1700, 0, 800, 0, 850, 4},	//LBAND Predefinition , to calibrate
	{2900, 0, 250, 0, 100, 6},	//SBAND Predefinition , NOT tested Yet
	{0xFFFF, 0, 0, 0, 0, 0},
};

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
struct dvb_frontend *dib0090_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config)
{
	struct dib0090_state *st = kzalloc(sizeof(struct dib0090_state), GFP_KERNEL);
	if (st == NULL)
		return NULL;

	st->config = config;
	st->i2c = i2c;
	st->fe = fe;
	fe->tuner_priv = st;

2454 2455 2456 2457 2458
	if (config->wbd == NULL)
		st->current_wbd_table = dib0090_wbd_table_default;
	else
		st->current_wbd_table = config->wbd;

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
	if (dib0090_reset(fe) != 0)
		goto free_mem;

	printk(KERN_INFO "DiB0090: successfully identified\n");
	memcpy(&fe->ops.tuner_ops, &dib0090_ops, sizeof(struct dvb_tuner_ops));

	return fe;
 free_mem:
	kfree(st);
	fe->tuner_priv = NULL;
	return NULL;
}
2471

2472 2473
EXPORT_SYMBOL(dib0090_register);

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
struct dvb_frontend *dib0090_fw_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config)
{
	struct dib0090_fw_state *st = kzalloc(sizeof(struct dib0090_fw_state), GFP_KERNEL);
	if (st == NULL)
		return NULL;

	st->config = config;
	st->i2c = i2c;
	st->fe = fe;
	fe->tuner_priv = st;

	if (dib0090_fw_reset_digital(fe, st->config) != 0)
		goto free_mem;

	dprintk("DiB0090 FW: successfully identified");
	memcpy(&fe->ops.tuner_ops, &dib0090_fw_ops, sizeof(struct dvb_tuner_ops));

	return fe;
 free_mem:
	kfree(st);
	fe->tuner_priv = NULL;
	return NULL;
}

EXPORT_SYMBOL(dib0090_fw_register);

2500 2501 2502 2503
MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
MODULE_AUTHOR("Olivier Grenie <olivier.grenie@dibcom.fr>");
MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner");
MODULE_LICENSE("GPL");