cpsw.c 85.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Texas Instruments Ethernet Switch Driver
 *
 * Copyright (C) 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/irqreturn.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
27
#include <linux/net_tstamp.h>
28 29 30
#include <linux/phy.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
31
#include <linux/pm_runtime.h>
32
#include <linux/gpio.h>
33
#include <linux/of.h>
34
#include <linux/of_mdio.h>
35 36
#include <linux/of_net.h>
#include <linux/of_device.h>
37
#include <linux/if_vlan.h>
38

39
#include <linux/pinctrl/consumer.h>
40

41
#include "cpsw.h"
42
#include "cpsw_ale.h"
43
#include "cpts.h"
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
#include "davinci_cpdma.h"

#define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
			 NETIF_MSG_RX_STATUS)

#define cpsw_info(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_info(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_err(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_err(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_dbg(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_notice(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

79 80
#define ALE_ALL_PORTS		0x7

81 82 83 84
#define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
#define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
#define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)

85 86
#define CPSW_VERSION_1		0x19010a
#define CPSW_VERSION_2		0x19010c
87
#define CPSW_VERSION_3		0x19010f
88
#define CPSW_VERSION_4		0x190112
89 90 91 92 93 94 95 96 97

#define HOST_PORT_NUM		0
#define SLIVER_SIZE		0x40

#define CPSW1_HOST_PORT_OFFSET	0x028
#define CPSW1_SLAVE_OFFSET	0x050
#define CPSW1_SLAVE_SIZE	0x040
#define CPSW1_CPDMA_OFFSET	0x100
#define CPSW1_STATERAM_OFFSET	0x200
98
#define CPSW1_HW_STATS		0x400
99 100 101 102 103 104 105 106
#define CPSW1_CPTS_OFFSET	0x500
#define CPSW1_ALE_OFFSET	0x600
#define CPSW1_SLIVER_OFFSET	0x700

#define CPSW2_HOST_PORT_OFFSET	0x108
#define CPSW2_SLAVE_OFFSET	0x200
#define CPSW2_SLAVE_SIZE	0x100
#define CPSW2_CPDMA_OFFSET	0x800
107
#define CPSW2_HW_STATS		0x900
108 109 110 111 112 113
#define CPSW2_STATERAM_OFFSET	0xa00
#define CPSW2_CPTS_OFFSET	0xc00
#define CPSW2_ALE_OFFSET	0xd00
#define CPSW2_SLIVER_OFFSET	0xd80
#define CPSW2_BD_OFFSET		0x2000

114 115 116 117 118 119 120 121 122 123 124 125 126
#define CPDMA_RXTHRESH		0x0c0
#define CPDMA_RXFREE		0x0e0
#define CPDMA_TXHDP		0x00
#define CPDMA_RXHDP		0x20
#define CPDMA_TXCP		0x40
#define CPDMA_RXCP		0x60

#define CPSW_POLL_WEIGHT	64
#define CPSW_MIN_PACKET_SIZE	60
#define CPSW_MAX_PACKET_SIZE	(1500 + 14 + 4 + 4)

#define RX_PRIORITY_MAPPING	0x76543210
#define TX_PRIORITY_MAPPING	0x33221100
127
#define CPDMA_TX_PRIORITY_MAP	0x01234567
128

129 130 131
#define CPSW_VLAN_AWARE		BIT(1)
#define CPSW_ALE_VLAN_AWARE	1

132 133 134
#define CPSW_FIFO_NORMAL_MODE		(0 << 16)
#define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
#define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
135

136 137 138 139 140 141 142
#define CPSW_INTPACEEN		(0x3f << 16)
#define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
#define CPSW_CMINTMAX_CNT	63
#define CPSW_CMINTMIN_CNT	2
#define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
#define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)

143 144 145
#define cpsw_slave_index(cpsw, priv)				\
		((cpsw->data.dual_emac) ? priv->emac_port :	\
		cpsw->data.active_slave)
146
#define IRQ_NUM			2
147
#define CPSW_MAX_QUEUES		8
148
#define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
149

150 151 152 153 154 155 156 157 158 159 160 161
static int debug_level;
module_param(debug_level, int, 0);
MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");

static int ale_ageout = 10;
module_param(ale_ageout, int, 0);
MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");

static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
module_param(rx_packet_max, int, 0);
MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");

162 163 164 165
static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
module_param(descs_pool_size, int, 0444);
MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");

166
struct cpsw_wr_regs {
167 168 169 170 171 172 173 174
	u32	id_ver;
	u32	soft_reset;
	u32	control;
	u32	int_control;
	u32	rx_thresh_en;
	u32	rx_en;
	u32	tx_en;
	u32	misc_en;
175 176 177 178 179 180 181 182 183
	u32	mem_allign1[8];
	u32	rx_thresh_stat;
	u32	rx_stat;
	u32	tx_stat;
	u32	misc_stat;
	u32	mem_allign2[8];
	u32	rx_imax;
	u32	tx_imax;

184 185
};

186
struct cpsw_ss_regs {
187 188 189 190 191
	u32	id_ver;
	u32	control;
	u32	soft_reset;
	u32	stat_port_en;
	u32	ptype;
192 193 194 195 196 197 198 199
	u32	soft_idle;
	u32	thru_rate;
	u32	gap_thresh;
	u32	tx_start_wds;
	u32	flow_control;
	u32	vlan_ltype;
	u32	ts_ltype;
	u32	dlr_ltype;
200 201
};

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
/* CPSW_PORT_V1 */
#define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
#define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
#define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
#define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
#define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW1_TS_CTL        0x14 /* Time Sync Control */
#define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
#define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */

/* CPSW_PORT_V2 */
#define CPSW2_CONTROL       0x00 /* Control Register */
#define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
#define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
#define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
#define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
#define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */

/* CPSW_PORT_V1 and V2 */
#define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
#define SA_HI               0x24 /* CPGMAC_SL Source Address High */
#define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */

/* CPSW_PORT_V2 only */
#define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */

/* Bit definitions for the CPSW2_CONTROL register */
#define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
#define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
#define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
#define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
#define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
#define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
#define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
#define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
#define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
#define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
247 248
#define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
#define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
249 250 251 252 253 254
#define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
#define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
#define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
#define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
#define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */

255 256 257
#define CTRL_V2_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
258

259 260 261 262 263 264 265 266 267 268 269 270 271
#define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
#define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)


#define CTRL_V3_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
	 TS_LTYPE1_EN)

#define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
#define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
272 273 274 275 276 277 278 279 280

/* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
#define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
#define TS_SEQ_ID_OFFSET_MASK    (0x3f)
#define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
#define TS_MSG_TYPE_EN_MASK      (0xffff)

/* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
#define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
281

282 283 284 285 286 287 288 289
/* Bit definitions for the CPSW1_TS_CTL register */
#define CPSW_V1_TS_RX_EN		BIT(0)
#define CPSW_V1_TS_TX_EN		BIT(4)
#define CPSW_V1_MSG_TYPE_OFS		16

/* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
#define CPSW_V1_SEQ_ID_OFS_SHIFT	16

290 291 292
struct cpsw_host_regs {
	u32	max_blks;
	u32	blk_cnt;
293
	u32	tx_in_ctl;
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	u32	port_vlan;
	u32	tx_pri_map;
	u32	cpdma_tx_pri_map;
	u32	cpdma_rx_chan_map;
};

struct cpsw_sliver_regs {
	u32	id_ver;
	u32	mac_control;
	u32	mac_status;
	u32	soft_reset;
	u32	rx_maxlen;
	u32	__reserved_0;
	u32	rx_pause;
	u32	tx_pause;
	u32	__reserved_1;
	u32	rx_pri_map;
};

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
struct cpsw_hw_stats {
	u32	rxgoodframes;
	u32	rxbroadcastframes;
	u32	rxmulticastframes;
	u32	rxpauseframes;
	u32	rxcrcerrors;
	u32	rxaligncodeerrors;
	u32	rxoversizedframes;
	u32	rxjabberframes;
	u32	rxundersizedframes;
	u32	rxfragments;
	u32	__pad_0[2];
	u32	rxoctets;
	u32	txgoodframes;
	u32	txbroadcastframes;
	u32	txmulticastframes;
	u32	txpauseframes;
	u32	txdeferredframes;
	u32	txcollisionframes;
	u32	txsinglecollframes;
	u32	txmultcollframes;
	u32	txexcessivecollisions;
	u32	txlatecollisions;
	u32	txunderrun;
	u32	txcarriersenseerrors;
	u32	txoctets;
	u32	octetframes64;
	u32	octetframes65t127;
	u32	octetframes128t255;
	u32	octetframes256t511;
	u32	octetframes512t1023;
	u32	octetframes1024tup;
	u32	netoctets;
	u32	rxsofoverruns;
	u32	rxmofoverruns;
	u32	rxdmaoverruns;
};

351
struct cpsw_slave {
352
	void __iomem			*regs;
353 354 355 356 357
	struct cpsw_sliver_regs __iomem	*sliver;
	int				slave_num;
	u32				mac_control;
	struct cpsw_slave_data		*data;
	struct phy_device		*phy;
358 359 360
	struct net_device		*ndev;
	u32				port_vlan;
	u32				open_stat;
361 362
};

363 364 365 366 367 368 369 370 371 372
static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
{
	return __raw_readl(slave->regs + offset);
}

static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
{
	__raw_writel(val, slave->regs + offset);
}

373 374 375 376 377
struct cpsw_vector {
	struct cpdma_chan *ch;
	int budget;
};

378
struct cpsw_common {
379
	struct device			*dev;
380
	struct cpsw_platform_data	data;
381 382
	struct napi_struct		napi_rx;
	struct napi_struct		napi_tx;
383 384 385 386
	struct cpsw_ss_regs __iomem	*regs;
	struct cpsw_wr_regs __iomem	*wr_regs;
	u8 __iomem			*hw_stats;
	struct cpsw_host_regs __iomem	*host_port_regs;
387 388 389 390
	u32				version;
	u32				coal_intvl;
	u32				bus_freq_mhz;
	int				rx_packet_max;
391
	struct cpsw_slave		*slaves;
392
	struct cpdma_ctlr		*dma;
393 394
	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
395
	struct cpsw_ale			*ale;
396 397 398 399
	bool				quirk_irq;
	bool				rx_irq_disabled;
	bool				tx_irq_disabled;
	u32 irqs_table[IRQ_NUM];
400
	struct cpts			*cpts;
401
	int				rx_ch_num, tx_ch_num;
402
	int				speed;
403 404 405
};

struct cpsw_priv {
406 407 408 409
	struct net_device		*ndev;
	struct device			*dev;
	u32				msg_enable;
	u8				mac_addr[ETH_ALEN];
410 411
	bool				rx_pause;
	bool				tx_pause;
412
	u32 emac_port;
413
	struct cpsw_common *cpsw;
414 415
};

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
struct cpsw_stats {
	char stat_string[ETH_GSTRING_LEN];
	int type;
	int sizeof_stat;
	int stat_offset;
};

enum {
	CPSW_STATS,
	CPDMA_RX_STATS,
	CPDMA_TX_STATS,
};

#define CPSW_STAT(m)		CPSW_STATS,				\
				sizeof(((struct cpsw_hw_stats *)0)->m), \
				offsetof(struct cpsw_hw_stats, m)
#define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)
#define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)

static const struct cpsw_stats cpsw_gstrings_stats[] = {
	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
	{ "Rx Fragments", CPSW_STAT(rxfragments) },
	{ "Rx Octets", CPSW_STAT(rxoctets) },
	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
	{ "Collisions", CPSW_STAT(txcollisionframes) },
	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
	{ "Tx Underrun", CPSW_STAT(txunderrun) },
	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
	{ "Tx Octets", CPSW_STAT(txoctets) },
	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
	{ "Net Octets", CPSW_STAT(netoctets) },
	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
};

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
	{ "misqueued", CPDMA_RX_STAT(misqueued) },
	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
	{ "requeue", CPDMA_RX_STAT(requeue) },
	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
};

#define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
#define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
494

495
#define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
496
#define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
497 498
#define for_each_slave(priv, func, arg...)				\
	do {								\
499
		struct cpsw_slave *slave;				\
500
		struct cpsw_common *cpsw = (priv)->cpsw;		\
501
		int n;							\
502 503
		if (cpsw->data.dual_emac)				\
			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
504
		else							\
505 506
			for (n = cpsw->data.slaves,			\
					slave = cpsw->slaves;		\
507 508
					n; n--)				\
				(func)(slave++, ##arg);			\
509 510
	} while (0)

511
#define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)		\
512
	do {								\
513
		if (!cpsw->data.dual_emac)				\
514 515
			break;						\
		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
516
			ndev = cpsw->slaves[0].ndev;			\
517 518
			skb->dev = ndev;				\
		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
519
			ndev = cpsw->slaves[1].ndev;			\
520 521
			skb->dev = ndev;				\
		}							\
522
	} while (0)
523
#define cpsw_add_mcast(cpsw, priv, addr)				\
524
	do {								\
525 526
		if (cpsw->data.dual_emac) {				\
			struct cpsw_slave *slave = cpsw->slaves +	\
527
						priv->emac_port;	\
528
			int slave_port = cpsw_get_slave_port(		\
529
						slave->slave_num);	\
530
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
531
				1 << slave_port | ALE_PORT_HOST,	\
532 533
				ALE_VLAN, slave->port_vlan, 0);		\
		} else {						\
534
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
535
				ALE_ALL_PORTS,				\
536 537 538 539
				0, 0, 0);				\
		}							\
	} while (0)

540
static inline int cpsw_get_slave_port(u32 slave_num)
541
{
542
	return slave_num + 1;
543
}
544

545 546
static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
{
547 548
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_ale *ale = cpsw->ale;
549 550
	int i;

551
	if (cpsw->data.dual_emac) {
552 553 554 555 556 557
		bool flag = false;

		/* Enabling promiscuous mode for one interface will be
		 * common for both the interface as the interface shares
		 * the same hardware resource.
		 */
558 559
		for (i = 0; i < cpsw->data.slaves; i++)
			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
				flag = true;

		if (!enable && flag) {
			enable = true;
			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
		}

		if (enable) {
			/* Enable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);

			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
			/* Disable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	} else {
		if (enable) {
			unsigned long timeout = jiffies + HZ;

581
			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
582
			for (i = 0; i <= cpsw->data.slaves; i++) {
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 1);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 1);
			}

			/* Clear All Untouched entries */
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
			do {
				cpu_relax();
				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
					break;
			} while (time_after(timeout, jiffies));
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);

			/* Clear all mcast from ALE */
599
			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
600 601 602 603 604

			/* Flood All Unicast Packets to Host port */
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
605
			/* Don't Flood All Unicast Packets to Host port */
606 607
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);

608
			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
609
			for (i = 0; i <= cpsw->data.slaves; i++) {
610 611 612 613 614 615 616 617 618 619
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 0);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 0);
			}
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	}
}

620 621 622
static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
623
	struct cpsw_common *cpsw = priv->cpsw;
624 625
	int vid;

626 627
	if (cpsw->data.dual_emac)
		vid = cpsw->slaves[priv->emac_port].port_vlan;
628
	else
629
		vid = cpsw->data.default_vlan;
630 631 632

	if (ndev->flags & IFF_PROMISC) {
		/* Enable promiscuous mode */
633
		cpsw_set_promiscious(ndev, true);
634
		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
635
		return;
636 637 638
	} else {
		/* Disable promiscuous mode */
		cpsw_set_promiscious(ndev, false);
639 640
	}

641
	/* Restore allmulti on vlans if necessary */
642
	cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
643

644
	/* Clear all mcast from ALE */
645
	cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
646 647 648 649 650 651

	if (!netdev_mc_empty(ndev)) {
		struct netdev_hw_addr *ha;

		/* program multicast address list into ALE register */
		netdev_for_each_mc_addr(ha, ndev) {
652
			cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
653 654 655 656
		}
	}
}

657
static void cpsw_intr_enable(struct cpsw_common *cpsw)
658
{
659 660
	__raw_writel(0xFF, &cpsw->wr_regs->tx_en);
	__raw_writel(0xFF, &cpsw->wr_regs->rx_en);
661

662
	cpdma_ctlr_int_ctrl(cpsw->dma, true);
663 664 665
	return;
}

666
static void cpsw_intr_disable(struct cpsw_common *cpsw)
667
{
668 669
	__raw_writel(0, &cpsw->wr_regs->tx_en);
	__raw_writel(0, &cpsw->wr_regs->rx_en);
670

671
	cpdma_ctlr_int_ctrl(cpsw->dma, false);
672 673 674
	return;
}

675
static void cpsw_tx_handler(void *token, int len, int status)
676
{
677
	struct netdev_queue	*txq;
678 679
	struct sk_buff		*skb = token;
	struct net_device	*ndev = skb->dev;
680
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
681

682 683 684
	/* Check whether the queue is stopped due to stalled tx dma, if the
	 * queue is stopped then start the queue as we have free desc for tx
	 */
685 686 687 688
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	if (unlikely(netif_tx_queue_stopped(txq)))
		netif_tx_wake_queue(txq);

689
	cpts_tx_timestamp(cpsw->cpts, skb);
690 691
	ndev->stats.tx_packets++;
	ndev->stats.tx_bytes += len;
692 693 694
	dev_kfree_skb_any(skb);
}

695
static void cpsw_rx_handler(void *token, int len, int status)
696
{
697
	struct cpdma_chan	*ch;
698
	struct sk_buff		*skb = token;
699
	struct sk_buff		*new_skb;
700 701
	struct net_device	*ndev = skb->dev;
	int			ret = 0;
702
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
703

704
	cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
705

706
	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
707
		bool ndev_status = false;
708
		struct cpsw_slave *slave = cpsw->slaves;
709 710
		int n;

711
		if (cpsw->data.dual_emac) {
712
			/* In dual emac mode check for all interfaces */
713
			for (n = cpsw->data.slaves; n; n--, slave++)
714 715 716 717 718 719 720
				if (netif_running(slave->ndev))
					ndev_status = true;
		}

		if (ndev_status && (status >= 0)) {
			/* The packet received is for the interface which
			 * is already down and the other interface is up
721
			 * and running, instead of freeing which results
722 723 724 725 726 727 728
			 * in reducing of the number of rx descriptor in
			 * DMA engine, requeue skb back to cpdma.
			 */
			new_skb = skb;
			goto requeue;
		}

729
		/* the interface is going down, skbs are purged */
730 731 732
		dev_kfree_skb_any(skb);
		return;
	}
733

734
	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
735
	if (new_skb) {
736
		skb_copy_queue_mapping(new_skb, skb);
737
		skb_put(skb, len);
738
		cpts_rx_timestamp(cpsw->cpts, skb);
739 740
		skb->protocol = eth_type_trans(skb, ndev);
		netif_receive_skb(skb);
741 742
		ndev->stats.rx_bytes += len;
		ndev->stats.rx_packets++;
743
		kmemleak_not_leak(new_skb);
744
	} else {
745
		ndev->stats.rx_dropped++;
746
		new_skb = skb;
747 748
	}

749
requeue:
750 751 752 753 754
	if (netif_dormant(ndev)) {
		dev_kfree_skb_any(new_skb);
		return;
	}

755
	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
756
	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
757
				skb_tailroom(new_skb), 0);
758 759
	if (WARN_ON(ret < 0))
		dev_kfree_skb_any(new_skb);
760 761
}

762
static void cpsw_split_res(struct net_device *ndev)
763 764
{
	struct cpsw_priv *priv = netdev_priv(ndev);
765
	u32 consumed_rate = 0, bigest_rate = 0;
766 767
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_vector *txv = cpsw->txv;
768
	int i, ch_weight, rlim_ch_num = 0;
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
	int budget, bigest_rate_ch = 0;
	u32 ch_rate, max_rate;
	int ch_budget = 0;

	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (!ch_rate)
			continue;

		rlim_ch_num++;
		consumed_rate += ch_rate;
	}

	if (cpsw->tx_ch_num == rlim_ch_num) {
		max_rate = consumed_rate;
784 785 786 787
	} else if (!rlim_ch_num) {
		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
		bigest_rate = 0;
		max_rate = consumed_rate;
788
	} else {
789 790 791 792 793 794 795 796 797 798
		max_rate = cpsw->speed * 1000;

		/* if max_rate is less then expected due to reduced link speed,
		 * split proportionally according next potential max speed
		 */
		if (max_rate < consumed_rate)
			max_rate *= 10;

		if (max_rate < consumed_rate)
			max_rate *= 10;
799

800 801 802 803 804 805 806
		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
			    (cpsw->tx_ch_num - rlim_ch_num);
		bigest_rate = (max_rate - consumed_rate) /
			      (cpsw->tx_ch_num - rlim_ch_num);
	}

807
	/* split tx weight/budget */
808 809 810 811 812 813
	budget = CPSW_POLL_WEIGHT;
	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (ch_rate) {
			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
			if (!txv[i].budget)
814
				txv[i].budget++;
815 816 817 818
			if (ch_rate > bigest_rate) {
				bigest_rate_ch = i;
				bigest_rate = ch_rate;
			}
819 820 821 822 823

			ch_weight = (ch_rate * 100) / max_rate;
			if (!ch_weight)
				ch_weight++;
			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
824 825 826 827
		} else {
			txv[i].budget = ch_budget;
			if (!bigest_rate_ch)
				bigest_rate_ch = i;
828
			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
		}

		budget -= txv[i].budget;
	}

	if (budget)
		txv[bigest_rate_ch].budget += budget;

	/* split rx budget */
	budget = CPSW_POLL_WEIGHT;
	ch_budget = budget / cpsw->rx_ch_num;
	for (i = 0; i < cpsw->rx_ch_num; i++) {
		cpsw->rxv[i].budget = ch_budget;
		budget -= ch_budget;
	}

	if (budget)
		cpsw->rxv[0].budget += budget;
}

849
static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
850
{
851
	struct cpsw_common *cpsw = dev_id;
852

853
	writel(0, &cpsw->wr_regs->tx_en);
854
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
855

856 857 858
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[1]);
		cpsw->tx_irq_disabled = true;
859 860
	}

861
	napi_schedule(&cpsw->napi_tx);
862 863 864 865 866
	return IRQ_HANDLED;
}

static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
{
867
	struct cpsw_common *cpsw = dev_id;
868

869
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
870
	writel(0, &cpsw->wr_regs->rx_en);
871

872 873 874
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[0]);
		cpsw->rx_irq_disabled = true;
875 876
	}

877
	napi_schedule(&cpsw->napi_rx);
878
	return IRQ_HANDLED;
879 880
}

881 882
static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
{
883
	u32			ch_map;
884
	int			num_tx, cur_budget, ch;
885
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
886
	struct cpsw_vector	*txv;
887

888 889
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
890
	for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
891 892 893
		if (!(ch_map & 0x01))
			continue;

894 895 896 897 898 899 900
		txv = &cpsw->txv[ch];
		if (unlikely(txv->budget > budget - num_tx))
			cur_budget = budget - num_tx;
		else
			cur_budget = txv->budget;

		num_tx += cpdma_chan_process(txv->ch, cur_budget);
901 902
		if (num_tx >= budget)
			break;
903 904
	}

905 906
	if (num_tx < budget) {
		napi_complete(napi_tx);
907
		writel(0xff, &cpsw->wr_regs->tx_en);
908 909 910
		if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
911
		}
912 913 914 915 916 917
	}

	return num_tx;
}

static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
918
{
919
	u32			ch_map;
920
	int			num_rx, cur_budget, ch;
921
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
922
	struct cpsw_vector	*rxv;
923

924 925
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
926
	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
927 928 929
		if (!(ch_map & 0x01))
			continue;

930 931 932 933 934 935 936
		rxv = &cpsw->rxv[ch];
		if (unlikely(rxv->budget > budget - num_rx))
			cur_budget = budget - num_rx;
		else
			cur_budget = rxv->budget;

		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
937 938
		if (num_rx >= budget)
			break;
939 940
	}

941
	if (num_rx < budget) {
942
		napi_complete(napi_rx);
943
		writel(0xff, &cpsw->wr_regs->rx_en);
944 945 946
		if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
947
		}
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
	}

	return num_rx;
}

static inline void soft_reset(const char *module, void __iomem *reg)
{
	unsigned long timeout = jiffies + HZ;

	__raw_writel(1, reg);
	do {
		cpu_relax();
	} while ((__raw_readl(reg) & 1) && time_after(timeout, jiffies));

	WARN(__raw_readl(reg) & 1, "failed to soft-reset %s\n", module);
}

#define mac_hi(mac)	(((mac)[0] << 0) | ((mac)[1] << 8) |	\
			 ((mac)[2] << 16) | ((mac)[3] << 24))
#define mac_lo(mac)	(((mac)[4] << 0) | ((mac)[5] << 8))

static void cpsw_set_slave_mac(struct cpsw_slave *slave,
			       struct cpsw_priv *priv)
{
972 973
	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
974 975 976 977 978 979 980 981
}

static void _cpsw_adjust_link(struct cpsw_slave *slave,
			      struct cpsw_priv *priv, bool *link)
{
	struct phy_device	*phy = slave->phy;
	u32			mac_control = 0;
	u32			slave_port;
982
	struct cpsw_common *cpsw = priv->cpsw;
983 984 985 986

	if (!phy)
		return;

987
	slave_port = cpsw_get_slave_port(slave->slave_num);
988 989

	if (phy->link) {
990
		mac_control = cpsw->data.mac_control;
991 992

		/* enable forwarding */
993
		cpsw_ale_control_set(cpsw->ale, slave_port,
994 995 996 997 998 999
				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

		if (phy->speed == 1000)
			mac_control |= BIT(7);	/* GIGABITEN	*/
		if (phy->duplex)
			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
1000 1001 1002 1003

		/* set speed_in input in case RMII mode is used in 100Mbps */
		if (phy->speed == 100)
			mac_control |= BIT(15);
1004 1005
		else if (phy->speed == 10)
			mac_control |= BIT(18); /* In Band mode */
1006

1007 1008 1009 1010 1011 1012
		if (priv->rx_pause)
			mac_control |= BIT(3);

		if (priv->tx_pause)
			mac_control |= BIT(4);

1013 1014 1015 1016
		*link = true;
	} else {
		mac_control = 0;
		/* disable forwarding */
1017
		cpsw_ale_control_set(cpsw->ale, slave_port,
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
	}

	if (mac_control != slave->mac_control) {
		phy_print_status(phy);
		__raw_writel(mac_control, &slave->sliver->mac_control);
	}

	slave->mac_control = mac_control;
}

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
static int cpsw_get_common_speed(struct cpsw_common *cpsw)
{
	int i, speed;

	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
			speed += cpsw->slaves[i].phy->speed;

	return speed;
}

static int cpsw_need_resplit(struct cpsw_common *cpsw)
{
	int i, rlim_ch_num;
	int speed, ch_rate;

	/* re-split resources only in case speed was changed */
	speed = cpsw_get_common_speed(cpsw);
	if (speed == cpsw->speed || !speed)
		return 0;

	cpsw->speed = speed;

	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
		if (!ch_rate)
			break;

		rlim_ch_num++;
	}

	/* cases not dependent on speed */
	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
		return 0;

	return 1;
}

1067 1068 1069
static void cpsw_adjust_link(struct net_device *ndev)
{
	struct cpsw_priv	*priv = netdev_priv(ndev);
1070
	struct cpsw_common	*cpsw = priv->cpsw;
1071 1072 1073 1074 1075
	bool			link = false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);

	if (link) {
1076 1077 1078
		if (cpsw_need_resplit(cpsw))
			cpsw_split_res(ndev);

1079 1080
		netif_carrier_on(ndev);
		if (netif_running(ndev))
1081
			netif_tx_wake_all_queues(ndev);
1082 1083
	} else {
		netif_carrier_off(ndev);
1084
		netif_tx_stop_all_queues(ndev);
1085 1086 1087
	}
}

1088 1089 1090
static int cpsw_get_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
1091
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1092

1093
	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	return 0;
}

static int cpsw_set_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	u32 int_ctrl;
	u32 num_interrupts = 0;
	u32 prescale = 0;
	u32 addnl_dvdr = 1;
	u32 coal_intvl = 0;
1106
	struct cpsw_common *cpsw = priv->cpsw;
1107 1108 1109

	coal_intvl = coal->rx_coalesce_usecs;

1110
	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1111
	prescale = cpsw->bus_freq_mhz * 4;
1112

1113 1114 1115 1116 1117
	if (!coal->rx_coalesce_usecs) {
		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
		goto update_return;
	}

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
	if (coal_intvl < CPSW_CMINTMIN_INTVL)
		coal_intvl = CPSW_CMINTMIN_INTVL;

	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
		/* Interrupt pacer works with 4us Pulse, we can
		 * throttle further by dilating the 4us pulse.
		 */
		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;

		if (addnl_dvdr > 1) {
			prescale *= addnl_dvdr;
			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
				coal_intvl = (CPSW_CMINTMAX_INTVL
						* addnl_dvdr);
		} else {
			addnl_dvdr = 1;
			coal_intvl = CPSW_CMINTMAX_INTVL;
		}
	}

	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1139 1140
	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1141 1142 1143 1144

	int_ctrl |= CPSW_INTPACEEN;
	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1145 1146

update_return:
1147
	writel(int_ctrl, &cpsw->wr_regs->int_control);
1148 1149

	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1150
	cpsw->coal_intvl = coal_intvl;
1151 1152 1153 1154

	return 0;
}

1155 1156
static int cpsw_get_sset_count(struct net_device *ndev, int sset)
{
1157 1158
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

1159 1160
	switch (sset) {
	case ETH_SS_STATS:
1161 1162 1163
		return (CPSW_STATS_COMMON_LEN +
		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
		       CPSW_STATS_CH_LEN);
1164 1165 1166 1167 1168
	default:
		return -EOPNOTSUPP;
	}
}

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
{
	int ch_stats_len;
	int line;
	int i;

	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
	for (i = 0; i < ch_stats_len; i++) {
		line = i % CPSW_STATS_CH_LEN;
		snprintf(*p, ETH_GSTRING_LEN,
			 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
			 i / CPSW_STATS_CH_LEN,
			 cpsw_gstrings_ch_stats[line].stat_string);
		*p += ETH_GSTRING_LEN;
	}
}

1186 1187
static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
{
1188
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1189 1190 1191 1192 1193
	u8 *p = data;
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
1194
		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1195 1196 1197 1198
			memcpy(p, cpsw_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
1199 1200 1201

		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1202 1203 1204 1205 1206 1207 1208 1209
		break;
	}
}

static void cpsw_get_ethtool_stats(struct net_device *ndev,
				    struct ethtool_stats *stats, u64 *data)
{
	u8 *p;
1210
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1211 1212
	struct cpdma_chan_stats ch_stats;
	int i, l, ch;
1213 1214

	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1215 1216 1217 1218 1219
	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
		data[l] = readl(cpsw->hw_stats +
				cpsw_gstrings_stats[l].stat_offset);

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1220
		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1221 1222 1223 1224 1225 1226
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
		}
	}
1227

1228
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1229
		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1230 1231 1232 1233
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
1234 1235 1236 1237
		}
	}
}

1238
static int cpsw_common_res_usage_state(struct cpsw_common *cpsw)
1239 1240 1241 1242
{
	u32 i;
	u32 usage_count = 0;

1243
	if (!cpsw->data.dual_emac)
1244 1245
		return 0;

1246 1247
	for (i = 0; i < cpsw->data.slaves; i++)
		if (cpsw->slaves[i].open_stat)
1248 1249 1250 1251 1252
			usage_count++;

	return usage_count;
}

1253
static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1254 1255
					struct sk_buff *skb,
					struct cpdma_chan *txch)
1256
{
1257 1258
	struct cpsw_common *cpsw = priv->cpsw;

1259
	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1260
				 priv->emac_port + cpsw->data.dual_emac);
1261 1262 1263 1264 1265 1266
}

static inline void cpsw_add_dual_emac_def_ale_entries(
		struct cpsw_priv *priv, struct cpsw_slave *slave,
		u32 slave_port)
{
1267
	struct cpsw_common *cpsw = priv->cpsw;
1268
	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1269

1270
	if (cpsw->version == CPSW_VERSION_1)
1271 1272 1273
		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
	else
		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1274
	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1275
			  port_mask, port_mask, 0);
1276
	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1277
			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1278 1279 1280
	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
			   HOST_PORT_NUM, ALE_VLAN |
			   ALE_SECURE, slave->port_vlan);
1281 1282
}

1283
static void soft_reset_slave(struct cpsw_slave *slave)
1284 1285 1286
{
	char name[32];

1287
	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1288
	soft_reset(name, &slave->sliver->soft_reset);
1289 1290 1291 1292 1293
}

static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	u32 slave_port;
1294
	struct cpsw_common *cpsw = priv->cpsw;
1295 1296

	soft_reset_slave(slave);
1297 1298 1299

	/* setup priority mapping */
	__raw_writel(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1300

1301
	switch (cpsw->version) {
1302 1303 1304 1305
	case CPSW_VERSION_1:
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
		break;
	case CPSW_VERSION_2:
1306
	case CPSW_VERSION_3:
1307
	case CPSW_VERSION_4:
1308 1309 1310
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
		break;
	}
1311 1312

	/* setup max packet size, and mac address */
1313
	__raw_writel(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1314 1315 1316 1317
	cpsw_set_slave_mac(slave, priv);

	slave->mac_control = 0;	/* no link yet */

1318
	slave_port = cpsw_get_slave_port(slave->slave_num);
1319

1320
	if (cpsw->data.dual_emac)
1321 1322
		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
	else
1323
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1324
				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1325

1326
	if (slave->data->phy_node) {
1327
		slave->phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1328
				 &cpsw_adjust_link, 0, slave->data->phy_if);
1329 1330 1331 1332 1333 1334 1335
		if (!slave->phy) {
			dev_err(priv->dev, "phy \"%s\" not found on slave %d\n",
				slave->data->phy_node->full_name,
				slave->slave_num);
			return;
		}
	} else {
1336
		slave->phy = phy_connect(priv->ndev, slave->data->phy_id,
1337
				 &cpsw_adjust_link, slave->data->phy_if);
1338 1339 1340 1341 1342 1343 1344 1345 1346
		if (IS_ERR(slave->phy)) {
			dev_err(priv->dev,
				"phy \"%s\" not found on slave %d, err %ld\n",
				slave->data->phy_id, slave->slave_num,
				PTR_ERR(slave->phy));
			slave->phy = NULL;
			return;
		}
	}
1347

1348
	phy_attached_info(slave->phy);
1349

1350 1351 1352
	phy_start(slave->phy);

	/* Configure GMII_SEL register */
1353
	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1354 1355
}

1356 1357
static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
{
1358 1359
	struct cpsw_common *cpsw = priv->cpsw;
	const int vlan = cpsw->data.default_vlan;
1360 1361
	u32 reg;
	int i;
1362
	int unreg_mcast_mask;
1363

1364
	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1365 1366
	       CPSW2_PORT_VLAN;

1367
	writel(vlan, &cpsw->host_port_regs->port_vlan);
1368

1369 1370
	for (i = 0; i < cpsw->data.slaves; i++)
		slave_write(cpsw->slaves + i, vlan, reg);
1371

1372 1373 1374 1375 1376
	if (priv->ndev->flags & IFF_ALLMULTI)
		unreg_mcast_mask = ALE_ALL_PORTS;
	else
		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;

1377
	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1378 1379
			  ALE_ALL_PORTS, ALE_ALL_PORTS,
			  unreg_mcast_mask);
1380 1381
}

1382 1383
static void cpsw_init_host_port(struct cpsw_priv *priv)
{
1384
	u32 fifo_mode;
1385 1386
	u32 control_reg;
	struct cpsw_common *cpsw = priv->cpsw;
1387

1388
	/* soft reset the controller and initialize ale */
1389
	soft_reset("cpsw", &cpsw->regs->soft_reset);
1390
	cpsw_ale_start(cpsw->ale);
1391 1392

	/* switch to vlan unaware mode */
1393
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1394
			     CPSW_ALE_VLAN_AWARE);
1395
	control_reg = readl(&cpsw->regs->control);
1396
	control_reg |= CPSW_VLAN_AWARE;
1397
	writel(control_reg, &cpsw->regs->control);
1398
	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1399
		     CPSW_FIFO_NORMAL_MODE;
1400
	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1401 1402 1403

	/* setup host port priority mapping */
	__raw_writel(CPDMA_TX_PRIORITY_MAP,
1404 1405
		     &cpsw->host_port_regs->cpdma_tx_pri_map);
	__raw_writel(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1406

1407
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1408 1409
			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

1410
	if (!cpsw->data.dual_emac) {
1411
		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1412
				   0, 0);
1413
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1414
				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1415
	}
1416 1417
}

1418 1419 1420 1421 1422
static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct sk_buff *skb;
	int ch_buf_num;
1423 1424 1425
	int ch, i, ret;

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1426
		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1427 1428 1429 1430 1431 1432 1433 1434
		for (i = 0; i < ch_buf_num; i++) {
			skb = __netdev_alloc_skb_ip_align(priv->ndev,
							  cpsw->rx_packet_max,
							  GFP_KERNEL);
			if (!skb) {
				cpsw_err(priv, ifup, "cannot allocate skb\n");
				return -ENOMEM;
			}
1435

1436
			skb_set_queue_mapping(skb, ch);
1437 1438 1439
			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
						skb->data, skb_tailroom(skb),
						0);
1440 1441 1442 1443 1444 1445 1446 1447
			if (ret < 0) {
				cpsw_err(priv, ifup,
					 "cannot submit skb to channel %d rx, error %d\n",
					 ch, ret);
				kfree_skb(skb);
				return ret;
			}
			kmemleak_not_leak(skb);
1448 1449
		}

1450 1451 1452
		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
			  ch, ch_buf_num);
	}
1453

1454
	return 0;
1455 1456
}

1457
static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1458
{
1459 1460
	u32 slave_port;

1461
	slave_port = cpsw_get_slave_port(slave->slave_num);
1462

1463 1464 1465 1466 1467
	if (!slave->phy)
		return;
	phy_stop(slave->phy);
	phy_disconnect(slave->phy);
	slave->phy = NULL;
1468
	cpsw_ale_control_set(cpsw->ale, slave_port,
1469
			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1470
	soft_reset_slave(slave);
1471 1472
}

1473 1474 1475
static int cpsw_ndo_open(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1476
	struct cpsw_common *cpsw = priv->cpsw;
1477
	int ret;
1478 1479
	u32 reg;

1480
	ret = pm_runtime_get_sync(cpsw->dev);
1481
	if (ret < 0) {
1482
		pm_runtime_put_noidle(cpsw->dev);
1483 1484
		return ret;
	}
1485

1486
	if (!cpsw_common_res_usage_state(cpsw))
1487
		cpsw_intr_disable(cpsw);
1488 1489
	netif_carrier_off(ndev);

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	/* Notify the stack of the actual queue counts. */
	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of tx queues\n");
		goto err_cleanup;
	}

	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of rx queues\n");
		goto err_cleanup;
	}

1503
	reg = cpsw->version;
1504 1505 1506 1507 1508 1509

	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
		 CPSW_RTL_VERSION(reg));

	/* initialize host and slave ports */
1510
	if (!cpsw_common_res_usage_state(cpsw))
1511
		cpsw_init_host_port(priv);
1512 1513
	for_each_slave(priv, cpsw_slave_open, priv);

1514
	/* Add default VLAN */
1515
	if (!cpsw->data.dual_emac)
1516 1517
		cpsw_add_default_vlan(priv);
	else
1518
		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1519
				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1520

1521
	if (!cpsw_common_res_usage_state(cpsw)) {
1522
		/* disable priority elevation */
1523
		__raw_writel(0, &cpsw->regs->ptype);
1524

1525
		/* enable statistics collection only on all ports */
1526
		__raw_writel(0x7, &cpsw->regs->stat_port_en);
1527

1528
		/* Enable internal fifo flow control */
1529
		writel(0x7, &cpsw->regs->flow_control);
1530

1531 1532
		napi_enable(&cpsw->napi_rx);
		napi_enable(&cpsw->napi_tx);
1533

1534 1535 1536
		if (cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
1537 1538
		}

1539 1540 1541
		if (cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
1542 1543
		}

1544 1545 1546
		ret = cpsw_fill_rx_channels(priv);
		if (ret < 0)
			goto err_cleanup;
1547

1548
		if (cpts_register(cpsw->cpts))
1549 1550
			dev_err(priv->dev, "error registering cpts device\n");

1551 1552
	}

1553
	/* Enable Interrupt pacing if configured */
1554
	if (cpsw->coal_intvl != 0) {
1555 1556
		struct ethtool_coalesce coal;

1557
		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1558 1559 1560
		cpsw_set_coalesce(ndev, &coal);
	}

1561 1562
	cpdma_ctlr_start(cpsw->dma);
	cpsw_intr_enable(cpsw);
1563

1564 1565
	if (cpsw->data.dual_emac)
		cpsw->slaves[priv->emac_port].open_stat = true;
1566

1567 1568
	return 0;

1569
err_cleanup:
1570
	cpdma_ctlr_stop(cpsw->dma);
1571
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1572
	pm_runtime_put_sync(cpsw->dev);
1573 1574
	netif_carrier_off(priv->ndev);
	return ret;
1575 1576 1577 1578 1579
}

static int cpsw_ndo_stop(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1580
	struct cpsw_common *cpsw = priv->cpsw;
1581 1582

	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1583
	netif_tx_stop_all_queues(priv->ndev);
1584
	netif_carrier_off(priv->ndev);
1585

1586
	if (cpsw_common_res_usage_state(cpsw) <= 1) {
1587 1588
		napi_disable(&cpsw->napi_rx);
		napi_disable(&cpsw->napi_tx);
1589
		cpts_unregister(cpsw->cpts);
1590 1591
		cpsw_intr_disable(cpsw);
		cpdma_ctlr_stop(cpsw->dma);
1592
		cpsw_ale_stop(cpsw->ale);
1593
	}
1594
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1595 1596 1597 1598

	if (cpsw_need_resplit(cpsw))
		cpsw_split_res(ndev);

1599
	pm_runtime_put_sync(cpsw->dev);
1600 1601
	if (cpsw->data.dual_emac)
		cpsw->slaves[priv->emac_port].open_stat = false;
1602 1603 1604 1605 1606 1607 1608
	return 0;
}

static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
				       struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1609
	struct cpsw_common *cpsw = priv->cpsw;
1610 1611 1612
	struct netdev_queue *txq;
	struct cpdma_chan *txch;
	int ret, q_idx;
1613

1614
	netif_trans_update(ndev);
1615 1616 1617

	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
		cpsw_err(priv, tx_err, "packet pad failed\n");
1618
		ndev->stats.tx_dropped++;
1619 1620 1621
		return NETDEV_TX_OK;
	}

1622
	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1623
	    cpts_is_tx_enabled(cpsw->cpts))
1624 1625 1626 1627
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;

	skb_tx_timestamp(skb);

1628 1629 1630 1631
	q_idx = skb_get_queue_mapping(skb);
	if (q_idx >= cpsw->tx_ch_num)
		q_idx = q_idx % cpsw->tx_ch_num;

1632
	txch = cpsw->txv[q_idx].ch;
1633
	ret = cpsw_tx_packet_submit(priv, skb, txch);
1634 1635 1636 1637 1638
	if (unlikely(ret != 0)) {
		cpsw_err(priv, tx_err, "desc submit failed\n");
		goto fail;
	}

1639 1640 1641
	/* If there is no more tx desc left free then we need to
	 * tell the kernel to stop sending us tx frames.
	 */
1642 1643 1644 1645
	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
		txq = netdev_get_tx_queue(ndev, q_idx);
		netif_tx_stop_queue(txq);
	}
1646

1647 1648
	return NETDEV_TX_OK;
fail:
1649
	ndev->stats.tx_dropped++;
1650 1651
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	netif_tx_stop_queue(txq);
1652 1653 1654
	return NETDEV_TX_BUSY;
}

1655
#if IS_ENABLED(CONFIG_TI_CPTS)
1656

1657
static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1658
{
1659
	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1660 1661
	u32 ts_en, seq_id;

1662 1663
	if (!cpts_is_tx_enabled(cpsw->cpts) &&
	    !cpts_is_rx_enabled(cpsw->cpts)) {
1664 1665 1666 1667 1668 1669 1670
		slave_write(slave, 0, CPSW1_TS_CTL);
		return;
	}

	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;

1671
	if (cpts_is_tx_enabled(cpsw->cpts))
1672 1673
		ts_en |= CPSW_V1_TS_TX_EN;

1674
	if (cpts_is_rx_enabled(cpsw->cpts))
1675 1676 1677 1678 1679 1680 1681 1682
		ts_en |= CPSW_V1_TS_RX_EN;

	slave_write(slave, ts_en, CPSW1_TS_CTL);
	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
}

static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
{
1683
	struct cpsw_slave *slave;
1684
	struct cpsw_common *cpsw = priv->cpsw;
1685 1686
	u32 ctrl, mtype;

1687
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1688

1689
	ctrl = slave_read(slave, CPSW2_CONTROL);
1690
	switch (cpsw->version) {
1691 1692
	case CPSW_VERSION_2:
		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1693

1694
		if (cpts_is_tx_enabled(cpsw->cpts))
1695
			ctrl |= CTRL_V2_TX_TS_BITS;
1696

1697
		if (cpts_is_rx_enabled(cpsw->cpts))
1698
			ctrl |= CTRL_V2_RX_TS_BITS;
1699
		break;
1700 1701 1702 1703
	case CPSW_VERSION_3:
	default:
		ctrl &= ~CTRL_V3_ALL_TS_MASK;

1704
		if (cpts_is_tx_enabled(cpsw->cpts))
1705 1706
			ctrl |= CTRL_V3_TX_TS_BITS;

1707
		if (cpts_is_rx_enabled(cpsw->cpts))
1708
			ctrl |= CTRL_V3_RX_TS_BITS;
1709
		break;
1710
	}
1711 1712 1713 1714 1715

	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;

	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
	slave_write(slave, ctrl, CPSW2_CONTROL);
1716
	__raw_writel(ETH_P_1588, &cpsw->regs->ts_ltype);
1717 1718
}

1719
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1720
{
1721
	struct cpsw_priv *priv = netdev_priv(dev);
1722
	struct hwtstamp_config cfg;
1723 1724
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpts *cpts = cpsw->cpts;
1725

1726 1727 1728
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1729 1730
		return -EOPNOTSUPP;

1731 1732 1733 1734 1735 1736 1737
	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
		return -EFAULT;

	/* reserved for future extensions */
	if (cfg.flags)
		return -EINVAL;

1738
	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1739 1740 1741 1742
		return -ERANGE;

	switch (cfg.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
1743
		cpts_rx_enable(cpts, 0);
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
		break;
	case HWTSTAMP_FILTER_ALL:
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		return -ERANGE;
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1759
		cpts_rx_enable(cpts, 1);
1760 1761 1762 1763 1764 1765
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		break;
	default:
		return -ERANGE;
	}

1766
	cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1767

1768
	switch (cpsw->version) {
1769
	case CPSW_VERSION_1:
1770
		cpsw_hwtstamp_v1(cpsw);
1771 1772
		break;
	case CPSW_VERSION_2:
1773
	case CPSW_VERSION_3:
1774 1775 1776
		cpsw_hwtstamp_v2(priv);
		break;
	default:
1777
		WARN_ON(1);
1778 1779 1780 1781 1782
	}

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}

1783 1784
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
1785 1786
	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
	struct cpts *cpts = cpsw->cpts;
1787 1788
	struct hwtstamp_config cfg;

1789 1790 1791
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1792 1793 1794
		return -EOPNOTSUPP;

	cfg.flags = 0;
1795 1796 1797
	cfg.tx_type = cpts_is_tx_enabled(cpts) ?
		      HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
	cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1798 1799 1800 1801
			 HWTSTAMP_FILTER_PTP_V2_EVENT : HWTSTAMP_FILTER_NONE);

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
1802 1803 1804 1805 1806
#else
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
1807

1808 1809 1810 1811
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
1812 1813 1814 1815
#endif /*CONFIG_TI_CPTS*/

static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
1816
	struct cpsw_priv *priv = netdev_priv(dev);
1817 1818
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
1819

1820 1821 1822
	if (!netif_running(dev))
		return -EINVAL;

1823 1824
	switch (cmd) {
	case SIOCSHWTSTAMP:
1825 1826 1827
		return cpsw_hwtstamp_set(dev, req);
	case SIOCGHWTSTAMP:
		return cpsw_hwtstamp_get(dev, req);
1828 1829
	}

1830
	if (!cpsw->slaves[slave_no].phy)
1831
		return -EOPNOTSUPP;
1832
	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1833 1834
}

1835 1836 1837
static void cpsw_ndo_tx_timeout(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1838
	struct cpsw_common *cpsw = priv->cpsw;
1839
	int ch;
1840 1841

	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1842
	ndev->stats.tx_errors++;
1843
	cpsw_intr_disable(cpsw);
1844
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1845 1846
		cpdma_chan_stop(cpsw->txv[ch].ch);
		cpdma_chan_start(cpsw->txv[ch].ch);
1847 1848
	}

1849
	cpsw_intr_enable(cpsw);
1850 1851
}

1852 1853 1854 1855
static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct sockaddr *addr = (struct sockaddr *)p;
1856
	struct cpsw_common *cpsw = priv->cpsw;
1857 1858
	int flags = 0;
	u16 vid = 0;
1859
	int ret;
1860 1861 1862 1863

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

1864
	ret = pm_runtime_get_sync(cpsw->dev);
1865
	if (ret < 0) {
1866
		pm_runtime_put_noidle(cpsw->dev);
1867 1868 1869
		return ret;
	}

1870 1871
	if (cpsw->data.dual_emac) {
		vid = cpsw->slaves[priv->emac_port].port_vlan;
1872 1873 1874
		flags = ALE_VLAN;
	}

1875
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1876
			   flags, vid);
1877
	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1878 1879 1880 1881 1882 1883
			   flags, vid);

	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
	for_each_slave(priv, cpsw_set_slave_mac, priv);

1884
	pm_runtime_put(cpsw->dev);
1885

1886 1887 1888
	return 0;
}

1889 1890 1891
#ifdef CONFIG_NET_POLL_CONTROLLER
static void cpsw_ndo_poll_controller(struct net_device *ndev)
{
1892
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1893

1894 1895 1896 1897
	cpsw_intr_disable(cpsw);
	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
	cpsw_intr_enable(cpsw);
1898 1899 1900
}
#endif

1901 1902 1903 1904
static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
				unsigned short vid)
{
	int ret;
1905 1906
	int unreg_mcast_mask = 0;
	u32 port_mask;
1907
	struct cpsw_common *cpsw = priv->cpsw;
1908

1909
	if (cpsw->data.dual_emac) {
1910
		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = port_mask;
	} else {
		port_mask = ALE_ALL_PORTS;

		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = ALE_ALL_PORTS;
		else
			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
	}
1922

1923
	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1924
				unreg_mcast_mask);
1925 1926 1927
	if (ret != 0)
		return ret;

1928
	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1929
				 HOST_PORT_NUM, ALE_VLAN, vid);
1930 1931 1932
	if (ret != 0)
		goto clean_vid;

1933
	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1934
				 port_mask, ALE_VLAN, vid, 0);
1935 1936 1937 1938 1939
	if (ret != 0)
		goto clean_vlan_ucast;
	return 0;

clean_vlan_ucast:
1940
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1941
			   HOST_PORT_NUM, ALE_VLAN, vid);
1942
clean_vid:
1943
	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1944 1945 1946 1947
	return ret;
}

static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1948
				    __be16 proto, u16 vid)
1949 1950
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1951
	struct cpsw_common *cpsw = priv->cpsw;
1952
	int ret;
1953

1954
	if (vid == cpsw->data.default_vlan)
1955 1956
		return 0;

1957
	ret = pm_runtime_get_sync(cpsw->dev);
1958
	if (ret < 0) {
1959
		pm_runtime_put_noidle(cpsw->dev);
1960 1961 1962
		return ret;
	}

1963
	if (cpsw->data.dual_emac) {
1964 1965 1966 1967 1968 1969
		/* In dual EMAC, reserved VLAN id should not be used for
		 * creating VLAN interfaces as this can break the dual
		 * EMAC port separation
		 */
		int i;

1970 1971
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
1972 1973 1974 1975
				return -EINVAL;
		}
	}

1976
	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1977 1978
	ret = cpsw_add_vlan_ale_entry(priv, vid);

1979
	pm_runtime_put(cpsw->dev);
1980
	return ret;
1981 1982 1983
}

static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1984
				     __be16 proto, u16 vid)
1985 1986
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1987
	struct cpsw_common *cpsw = priv->cpsw;
1988 1989
	int ret;

1990
	if (vid == cpsw->data.default_vlan)
1991 1992
		return 0;

1993
	ret = pm_runtime_get_sync(cpsw->dev);
1994
	if (ret < 0) {
1995
		pm_runtime_put_noidle(cpsw->dev);
1996 1997 1998
		return ret;
	}

1999
	if (cpsw->data.dual_emac) {
2000 2001
		int i;

2002 2003
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
2004 2005 2006 2007
				return -EINVAL;
		}
	}

2008
	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2009
	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2010 2011 2012
	if (ret != 0)
		return ret;

2013
	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2014
				 HOST_PORT_NUM, ALE_VLAN, vid);
2015 2016 2017
	if (ret != 0)
		return ret;

2018
	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2019
				 0, ALE_VLAN, vid);
2020
	pm_runtime_put(cpsw->dev);
2021
	return ret;
2022 2023
}

2024 2025 2026 2027
static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
2028
	struct cpsw_slave *slave;
2029
	u32 min_rate;
2030
	u32 ch_rate;
2031
	int i, ret;
2032 2033 2034 2035 2036

	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
	if (ch_rate == rate)
		return 0;

2037 2038 2039 2040 2041
	ch_rate = rate * 1000;
	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
	if ((ch_rate < min_rate && ch_rate)) {
		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
			min_rate);
2042 2043 2044
		return -EINVAL;
	}

2045
	if (rate > cpsw->speed) {
2046
		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2047 2048 2049 2050 2051 2052 2053 2054 2055
		return -EINVAL;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

2056 2057
	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
	pm_runtime_put(cpsw->dev);
2058

2059 2060
	if (ret)
		return ret;
2061

2062 2063 2064 2065 2066 2067 2068 2069 2070
	/* update rates for slaves tx queues */
	for (i = 0; i < cpsw->data.slaves; i++) {
		slave = &cpsw->slaves[i];
		if (!slave->ndev)
			continue;

		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
	}

2071
	cpsw_split_res(ndev);
2072 2073 2074
	return ret;
}

2075 2076 2077 2078
static const struct net_device_ops cpsw_netdev_ops = {
	.ndo_open		= cpsw_ndo_open,
	.ndo_stop		= cpsw_ndo_stop,
	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2079
	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2080
	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2081 2082
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2083
	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2084
	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2085 2086 2087
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= cpsw_ndo_poll_controller,
#endif
2088 2089
	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2090 2091
};

2092 2093
static int cpsw_get_regs_len(struct net_device *ndev)
{
2094
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2095

2096
	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2097 2098 2099 2100 2101 2102
}

static void cpsw_get_regs(struct net_device *ndev,
			  struct ethtool_regs *regs, void *p)
{
	u32 *reg = p;
2103
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2104 2105

	/* update CPSW IP version */
2106
	regs->version = cpsw->version;
2107

2108
	cpsw_ale_dump(cpsw->ale, reg);
2109 2110
}

2111 2112 2113
static void cpsw_get_drvinfo(struct net_device *ndev,
			     struct ethtool_drvinfo *info)
{
2114
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2115
	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2116

2117
	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2118
	strlcpy(info->version, "1.0", sizeof(info->version));
2119
	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
}

static u32 cpsw_get_msglevel(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	return priv->msg_enable;
}

static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	priv->msg_enable = value;
}

2134
#if IS_ENABLED(CONFIG_TI_CPTS)
2135 2136 2137
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2138
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2139 2140 2141 2142 2143 2144 2145 2146

	info->so_timestamping =
		SOF_TIMESTAMPING_TX_HARDWARE |
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_HARDWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE |
		SOF_TIMESTAMPING_RAW_HARDWARE;
2147
	info->phc_index = cpsw->cpts->phc_index;
2148 2149 2150 2151 2152 2153
	info->tx_types =
		(1 << HWTSTAMP_TX_OFF) |
		(1 << HWTSTAMP_TX_ON);
	info->rx_filters =
		(1 << HWTSTAMP_FILTER_NONE) |
		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2154 2155
	return 0;
}
2156
#else
2157 2158 2159
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2160 2161 2162 2163 2164 2165 2166 2167 2168
	info->so_timestamping =
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE;
	info->phc_index = -1;
	info->tx_types = 0;
	info->rx_filters = 0;
	return 0;
}
2169
#endif
2170

2171 2172
static int cpsw_get_link_ksettings(struct net_device *ndev,
				   struct ethtool_link_ksettings *ecmd)
2173 2174
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2175 2176
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2177

2178
	if (cpsw->slaves[slave_no].phy)
2179 2180
		return phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy,
						 ecmd);
2181 2182 2183 2184
	else
		return -EOPNOTSUPP;
}

2185 2186
static int cpsw_set_link_ksettings(struct net_device *ndev,
				   const struct ethtool_link_ksettings *ecmd)
2187 2188
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2189 2190
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2191

2192
	if (cpsw->slaves[slave_no].phy)
2193 2194
		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
						 ecmd);
2195 2196 2197 2198
	else
		return -EOPNOTSUPP;
}

2199 2200 2201
static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2202 2203
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2204 2205 2206 2207

	wol->supported = 0;
	wol->wolopts = 0;

2208 2209
	if (cpsw->slaves[slave_no].phy)
		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2210 2211 2212 2213 2214
}

static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2215 2216
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2217

2218 2219
	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2220 2221 2222 2223
	else
		return -EOPNOTSUPP;
}

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
static void cpsw_get_pauseparam(struct net_device *ndev,
				struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);

	pause->autoneg = AUTONEG_DISABLE;
	pause->rx_pause = priv->rx_pause ? true : false;
	pause->tx_pause = priv->tx_pause ? true : false;
}

static int cpsw_set_pauseparam(struct net_device *ndev,
			       struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	bool link;

	priv->rx_pause = pause->rx_pause ? true : false;
	priv->tx_pause = pause->tx_pause ? true : false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
	return 0;
}

2247 2248 2249
static int cpsw_ethtool_op_begin(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2250
	struct cpsw_common *cpsw = priv->cpsw;
2251 2252
	int ret;

2253
	ret = pm_runtime_get_sync(cpsw->dev);
2254 2255
	if (ret < 0) {
		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2256
		pm_runtime_put_noidle(cpsw->dev);
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
	}

	return ret;
}

static void cpsw_ethtool_op_complete(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	int ret;

2267
	ret = pm_runtime_put(priv->cpsw->dev);
2268 2269 2270 2271
	if (ret < 0)
		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
}

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
static void cpsw_get_channels(struct net_device *ndev,
			      struct ethtool_channels *ch)
{
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

	ch->max_combined = 0;
	ch->max_rx = CPSW_MAX_QUEUES;
	ch->max_tx = CPSW_MAX_QUEUES;
	ch->max_other = 0;
	ch->other_count = 0;
	ch->rx_count = cpsw->rx_ch_num;
	ch->tx_count = cpsw->tx_ch_num;
	ch->combined_count = 0;
}

static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
				  struct ethtool_channels *ch)
{
	if (ch->combined_count)
		return -EINVAL;

	/* verify we have at least one channel in each direction */
	if (!ch->rx_count || !ch->tx_count)
		return -EINVAL;

	if (ch->rx_count > cpsw->data.channels ||
	    ch->tx_count > cpsw->data.channels)
		return -EINVAL;

	return 0;
}

static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
{
	int (*poll)(struct napi_struct *, int);
	struct cpsw_common *cpsw = priv->cpsw;
	void (*handler)(void *, int, int);
2309
	struct netdev_queue *queue;
2310
	struct cpsw_vector *vec;
2311 2312 2313 2314
	int ret, *ch;

	if (rx) {
		ch = &cpsw->rx_ch_num;
2315
		vec = cpsw->rxv;
2316 2317 2318 2319
		handler = cpsw_rx_handler;
		poll = cpsw_rx_poll;
	} else {
		ch = &cpsw->tx_ch_num;
2320
		vec = cpsw->txv;
2321 2322 2323 2324 2325
		handler = cpsw_tx_handler;
		poll = cpsw_tx_poll;
	}

	while (*ch < ch_num) {
2326
		vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2327 2328
		queue = netdev_get_tx_queue(priv->ndev, *ch);
		queue->tx_maxrate = 0;
2329

2330 2331
		if (IS_ERR(vec[*ch].ch))
			return PTR_ERR(vec[*ch].ch);
2332

2333
		if (!vec[*ch].ch)
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
			return -EINVAL;

		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
		(*ch)++;
	}

	while (*ch > ch_num) {
		(*ch)--;

2344
		ret = cpdma_chan_destroy(vec[*ch].ch);
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
		if (ret)
			return ret;

		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
	}

	return 0;
}

static int cpsw_update_channels(struct cpsw_priv *priv,
				struct ethtool_channels *ch)
{
	int ret;

	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
	if (ret)
		return ret;

	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
	if (ret)
		return ret;

	return 0;
}

static int cpsw_set_channels(struct net_device *ndev,
			     struct ethtool_channels *chs)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	ret = cpsw_check_ch_settings(cpsw, chs);
	if (ret < 0)
		return ret;

	/* Disable NAPI scheduling */
	cpsw_intr_disable(cpsw);

	/* Stop all transmit queues for every network device.
	 * Disable re-using rx descriptors with dormant_on.
	 */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		netif_tx_stop_all_queues(slave->ndev);
		netif_dormant_on(slave->ndev);
	}

	/* Handle rest of tx packets and stop cpdma channels */
	cpdma_ctlr_stop(cpsw->dma);
	ret = cpsw_update_channels(priv, chs);
	if (ret)
		goto err;

	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		/* Inform stack about new count of queues */
		ret = netif_set_real_num_tx_queues(slave->ndev,
						   cpsw->tx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of tx queues\n");
			goto err;
		}

		ret = netif_set_real_num_rx_queues(slave->ndev,
						   cpsw->rx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of rx queues\n");
			goto err;
		}

		/* Enable rx packets handling */
		netif_dormant_off(slave->ndev);
	}

	if (cpsw_common_res_usage_state(cpsw)) {
2427 2428
		ret = cpsw_fill_rx_channels(priv);
		if (ret)
2429 2430
			goto err;

2431
		cpsw_split_res(ndev);
2432

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
		/* After this receive is started */
		cpdma_ctlr_start(cpsw->dma);
		cpsw_intr_enable(cpsw);
	}

	/* Resume transmit for every affected interface */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;
		netif_tx_start_all_queues(slave->ndev);
	}
	return 0;
err:
	dev_err(priv->dev, "cannot update channels number, closing device\n");
	dev_close(ndev);
	return ret;
}

2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
static int cpsw_nway_reset(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
	else
		return -EOPNOTSUPP;
}

2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
static void cpsw_get_ringparam(struct net_device *ndev,
			       struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;

	/* not supported */
	ering->tx_max_pending = 0;
	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
	/* Max 90% RX buffers */
	ering->rx_max_pending = (descs_pool_size * 9) / 10;
	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
}

static int cpsw_set_ringparam(struct net_device *ndev,
			      struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	/* ignore ering->tx_pending - only rx_pending adjustment is supported */

	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
	    ering->rx_pending < (descs_pool_size / 10) ||
	    ering->rx_pending > ((descs_pool_size * 9) / 10))
		return -EINVAL;

	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
		return 0;

	/* Disable NAPI scheduling */
	cpsw_intr_disable(cpsw);

	/* Stop all transmit queues for every network device.
	 * Disable re-using rx descriptors with dormant_on.
	 */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		netif_tx_stop_all_queues(slave->ndev);
		netif_dormant_on(slave->ndev);
	}

	/* Handle rest of tx packets and stop cpdma channels */
	cpdma_ctlr_stop(cpsw->dma);

	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);

	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		/* Enable rx packets handling */
		netif_dormant_off(slave->ndev);
	}

	if (cpsw_common_res_usage_state(cpsw)) {
		cpdma_chan_split_pool(cpsw->dma);

		ret = cpsw_fill_rx_channels(priv);
		if (ret)
			goto err;

		/* After this receive is started */
		cpdma_ctlr_start(cpsw->dma);
		cpsw_intr_enable(cpsw);
	}

	/* Resume transmit for every affected interface */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;
		netif_tx_start_all_queues(slave->ndev);
	}
	return 0;
err:
	dev_err(priv->dev, "cannot set ring params, closing device\n");
	dev_close(ndev);
	return ret;
}

2571 2572 2573 2574 2575
static const struct ethtool_ops cpsw_ethtool_ops = {
	.get_drvinfo	= cpsw_get_drvinfo,
	.get_msglevel	= cpsw_get_msglevel,
	.set_msglevel	= cpsw_set_msglevel,
	.get_link	= ethtool_op_get_link,
2576
	.get_ts_info	= cpsw_get_ts_info,
2577 2578
	.get_coalesce	= cpsw_get_coalesce,
	.set_coalesce	= cpsw_set_coalesce,
2579 2580 2581
	.get_sset_count		= cpsw_get_sset_count,
	.get_strings		= cpsw_get_strings,
	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2582 2583
	.get_pauseparam		= cpsw_get_pauseparam,
	.set_pauseparam		= cpsw_set_pauseparam,
2584 2585
	.get_wol	= cpsw_get_wol,
	.set_wol	= cpsw_set_wol,
2586 2587
	.get_regs_len	= cpsw_get_regs_len,
	.get_regs	= cpsw_get_regs,
2588 2589
	.begin		= cpsw_ethtool_op_begin,
	.complete	= cpsw_ethtool_op_complete,
2590 2591
	.get_channels	= cpsw_get_channels,
	.set_channels	= cpsw_set_channels,
2592 2593
	.get_link_ksettings	= cpsw_get_link_ksettings,
	.set_link_ksettings	= cpsw_set_link_ksettings,
2594 2595
	.get_eee	= cpsw_get_eee,
	.set_eee	= cpsw_set_eee,
2596
	.nway_reset	= cpsw_nway_reset,
2597 2598
	.get_ringparam = cpsw_get_ringparam,
	.set_ringparam = cpsw_set_ringparam,
2599 2600
};

2601
static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2602
			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
2603
{
2604
	void __iomem		*regs = cpsw->regs;
2605
	int			slave_num = slave->slave_num;
2606
	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
2607 2608

	slave->data	= data;
2609 2610
	slave->regs	= regs + slave_reg_ofs;
	slave->sliver	= regs + sliver_reg_ofs;
2611
	slave->port_vlan = data->dual_emac_res_vlan;
2612 2613
}

2614
static int cpsw_probe_dt(struct cpsw_platform_data *data,
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
			 struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0, ret;
	u32 prop;

	if (!node)
		return -EINVAL;

	if (of_property_read_u32(node, "slaves", &prop)) {
2626
		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2627 2628 2629 2630
		return -EINVAL;
	}
	data->slaves = prop;

2631
	if (of_property_read_u32(node, "active_slave", &prop)) {
2632
		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2633
		return -EINVAL;
2634
	}
2635
	data->active_slave = prop;
2636

2637 2638 2639
	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
					* sizeof(struct cpsw_slave_data),
					GFP_KERNEL);
2640
	if (!data->slave_data)
2641
		return -ENOMEM;
2642 2643

	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2644
		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2645
		return -EINVAL;
2646 2647 2648 2649
	}
	data->channels = prop;

	if (of_property_read_u32(node, "ale_entries", &prop)) {
2650
		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2651
		return -EINVAL;
2652 2653 2654 2655
	}
	data->ale_entries = prop;

	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2656
		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2657
		return -EINVAL;
2658 2659 2660 2661
	}
	data->bd_ram_size = prop;

	if (of_property_read_u32(node, "mac_control", &prop)) {
2662
		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2663
		return -EINVAL;
2664 2665 2666
	}
	data->mac_control = prop;

2667 2668
	if (of_property_read_bool(node, "dual_emac"))
		data->dual_emac = 1;
2669

2670 2671 2672 2673 2674 2675
	/*
	 * Populate all the child nodes here...
	 */
	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
	/* We do not want to force this, as in some cases may not have child */
	if (ret)
2676
		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2677

2678
	for_each_available_child_of_node(node, slave_node) {
2679 2680
		struct cpsw_slave_data *slave_data = data->slave_data + i;
		const void *mac_addr = NULL;
2681 2682 2683
		int lenp;
		const __be32 *parp;

2684 2685 2686 2687
		/* This is no slave child node, continue */
		if (strcmp(slave_node->name, "slave"))
			continue;

2688 2689
		slave_data->phy_node = of_parse_phandle(slave_node,
							"phy-handle", 0);
2690
		parp = of_get_property(slave_node, "phy_id", &lenp);
2691 2692 2693 2694 2695
		if (slave_data->phy_node) {
			dev_dbg(&pdev->dev,
				"slave[%d] using phy-handle=\"%s\"\n",
				i, slave_data->phy_node->full_name);
		} else if (of_phy_is_fixed_link(slave_node)) {
2696 2697 2698
			/* In the case of a fixed PHY, the DT node associated
			 * to the PHY is the Ethernet MAC DT node.
			 */
2699
			ret = of_phy_register_fixed_link(slave_node);
2700 2701 2702
			if (ret) {
				if (ret != -EPROBE_DEFER)
					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2703
				return ret;
2704
			}
2705
			slave_data->phy_node = of_node_get(slave_node);
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
		} else if (parp) {
			u32 phyid;
			struct device_node *mdio_node;
			struct platform_device *mdio;

			if (lenp != (sizeof(__be32) * 2)) {
				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
				goto no_phy_slave;
			}
			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
			phyid = be32_to_cpup(parp+1);
			mdio = of_find_device_by_node(mdio_node);
			of_node_put(mdio_node);
			if (!mdio) {
				dev_err(&pdev->dev, "Missing mdio platform device\n");
				return -EINVAL;
			}
			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
				 PHY_ID_FMT, mdio->name, phyid);
2725
			put_device(&mdio->dev);
2726
		} else {
2727 2728 2729
			dev_err(&pdev->dev,
				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
				i);
2730
			goto no_phy_slave;
2731
		}
2732 2733 2734 2735 2736 2737 2738 2739
		slave_data->phy_if = of_get_phy_mode(slave_node);
		if (slave_data->phy_if < 0) {
			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
				i);
			return slave_data->phy_if;
		}

no_phy_slave:
2740
		mac_addr = of_get_mac_address(slave_node);
2741
		if (mac_addr) {
2742
			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2743
		} else {
2744 2745 2746 2747
			ret = ti_cm_get_macid(&pdev->dev, i,
					      slave_data->mac_addr);
			if (ret)
				return ret;
2748
		}
2749
		if (data->dual_emac) {
2750
			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2751
						 &prop)) {
2752
				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2753
				slave_data->dual_emac_res_vlan = i+1;
2754 2755
				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
					slave_data->dual_emac_res_vlan, i);
2756 2757 2758 2759 2760
			} else {
				slave_data->dual_emac_res_vlan = prop;
			}
		}

2761
		i++;
2762 2763
		if (i == data->slaves)
			break;
2764 2765 2766 2767 2768
	}

	return 0;
}

2769 2770
static void cpsw_remove_dt(struct platform_device *pdev)
{
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_platform_data *data = &cpsw->data;
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0;

	for_each_available_child_of_node(node, slave_node) {
		struct cpsw_slave_data *slave_data = &data->slave_data[i];

		if (strcmp(slave_node->name, "slave"))
			continue;

2784 2785
		if (of_phy_is_fixed_link(slave_node))
			of_phy_deregister_fixed_link(slave_node);
2786 2787 2788 2789 2790 2791 2792 2793

		of_node_put(slave_data->phy_node);

		i++;
		if (i == data->slaves)
			break;
	}

2794 2795 2796
	of_platform_depopulate(&pdev->dev);
}

2797
static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2798
{
2799 2800
	struct cpsw_common		*cpsw = priv->cpsw;
	struct cpsw_platform_data	*data = &cpsw->data;
2801 2802
	struct net_device		*ndev;
	struct cpsw_priv		*priv_sl2;
2803
	int ret = 0;
2804

2805
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2806
	if (!ndev) {
2807
		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2808 2809 2810 2811
		return -ENOMEM;
	}

	priv_sl2 = netdev_priv(ndev);
2812
	priv_sl2->cpsw = cpsw;
2813 2814 2815 2816 2817 2818 2819
	priv_sl2->ndev = ndev;
	priv_sl2->dev  = &ndev->dev;
	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);

	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
			ETH_ALEN);
2820 2821
		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
			 priv_sl2->mac_addr);
2822 2823
	} else {
		random_ether_addr(priv_sl2->mac_addr);
2824 2825
		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
			 priv_sl2->mac_addr);
2826 2827 2828 2829
	}
	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);

	priv_sl2->emac_port = 1;
2830
	cpsw->slaves[1].ndev = ndev;
2831
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2832 2833

	ndev->netdev_ops = &cpsw_netdev_ops;
2834
	ndev->ethtool_ops = &cpsw_ethtool_ops;
2835 2836

	/* register the network device */
2837
	SET_NETDEV_DEV(ndev, cpsw->dev);
2838 2839
	ret = register_netdev(ndev);
	if (ret) {
2840
		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2841 2842 2843 2844 2845 2846 2847
		free_netdev(ndev);
		ret = -ENODEV;
	}

	return ret;
}

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
#define CPSW_QUIRK_IRQ		BIT(0)

static struct platform_device_id cpsw_devtype[] = {
	{
		/* keep it for existing comaptibles */
		.name = "cpsw",
		.driver_data = CPSW_QUIRK_IRQ,
	}, {
		.name = "am335x-cpsw",
		.driver_data = CPSW_QUIRK_IRQ,
	}, {
		.name = "am4372-cpsw",
		.driver_data = 0,
	}, {
		.name = "dra7-cpsw",
		.driver_data = 0,
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(platform, cpsw_devtype);

enum ti_cpsw_type {
	CPSW = 0,
	AM335X_CPSW,
	AM4372_CPSW,
	DRA7_CPSW,
};

static const struct of_device_id cpsw_of_mtable[] = {
	{ .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
	{ .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
	{ .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
	{ .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cpsw_of_mtable);

B
Bill Pemberton 已提交
2886
static int cpsw_probe(struct platform_device *pdev)
2887
{
2888
	struct clk			*clk;
2889
	struct cpsw_platform_data	*data;
2890 2891 2892 2893
	struct net_device		*ndev;
	struct cpsw_priv		*priv;
	struct cpdma_params		dma_params;
	struct cpsw_ale_params		ale_params;
2894
	void __iomem			*ss_regs;
2895
	void __iomem			*cpts_regs;
2896
	struct resource			*res, *ss_res;
2897
	const struct of_device_id	*of_id;
2898
	struct gpio_descs		*mode;
2899
	u32 slave_offset, sliver_offset, slave_size;
2900
	struct cpsw_common		*cpsw;
2901 2902
	int ret = 0, i;
	int irq;
2903

2904
	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2905 2906 2907
	if (!cpsw)
		return -ENOMEM;

2908
	cpsw->dev = &pdev->dev;
2909

2910
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2911
	if (!ndev) {
2912
		dev_err(&pdev->dev, "error allocating net_device\n");
2913 2914 2915 2916 2917
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, ndev);
	priv = netdev_priv(ndev);
2918
	priv->cpsw = cpsw;
2919 2920 2921
	priv->ndev = ndev;
	priv->dev  = &ndev->dev;
	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2922
	cpsw->rx_packet_max = max(rx_packet_max, 128);
2923

2924 2925 2926 2927 2928 2929 2930
	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
	if (IS_ERR(mode)) {
		ret = PTR_ERR(mode);
		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
		goto clean_ndev_ret;
	}

2931 2932 2933 2934 2935
	/*
	 * This may be required here for child devices.
	 */
	pm_runtime_enable(&pdev->dev);

2936 2937 2938
	/* Select default pin state */
	pinctrl_pm_select_default_state(&pdev->dev);

2939 2940 2941 2942 2943 2944
	/* Need to enable clocks with runtime PM api to access module
	 * registers
	 */
	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
2945
		goto clean_runtime_disable_ret;
2946
	}
2947

2948 2949
	ret = cpsw_probe_dt(&cpsw->data, pdev);
	if (ret)
2950
		goto clean_dt_ret;
2951

2952
	data = &cpsw->data;
2953 2954
	cpsw->rx_ch_num = 1;
	cpsw->tx_ch_num = 1;
2955

2956 2957
	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2958
		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2959
	} else {
J
Joe Perches 已提交
2960
		eth_random_addr(priv->mac_addr);
2961
		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2962 2963 2964 2965
	}

	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);

2966
	cpsw->slaves = devm_kzalloc(&pdev->dev,
2967 2968
				    sizeof(struct cpsw_slave) * data->slaves,
				    GFP_KERNEL);
2969
	if (!cpsw->slaves) {
2970
		ret = -ENOMEM;
2971
		goto clean_dt_ret;
2972 2973
	}
	for (i = 0; i < data->slaves; i++)
2974
		cpsw->slaves[i].slave_num = i;
2975

2976
	cpsw->slaves[0].ndev = ndev;
2977 2978
	priv->emac_port = 0;

2979 2980
	clk = devm_clk_get(&pdev->dev, "fck");
	if (IS_ERR(clk)) {
2981
		dev_err(priv->dev, "fck is not found\n");
2982
		ret = -ENODEV;
2983
		goto clean_dt_ret;
2984
	}
2985
	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2986

2987 2988 2989 2990
	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
	if (IS_ERR(ss_regs)) {
		ret = PTR_ERR(ss_regs);
2991
		goto clean_dt_ret;
2992
	}
2993
	cpsw->regs = ss_regs;
2994

2995
	cpsw->version = readl(&cpsw->regs->id_ver);
2996

2997
	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2998 2999 3000
	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(cpsw->wr_regs)) {
		ret = PTR_ERR(cpsw->wr_regs);
3001
		goto clean_dt_ret;
3002 3003 3004
	}

	memset(&dma_params, 0, sizeof(dma_params));
3005 3006
	memset(&ale_params, 0, sizeof(ale_params));

3007
	switch (cpsw->version) {
3008
	case CPSW_VERSION_1:
3009
		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3010
		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
3011
		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
3012 3013 3014 3015 3016 3017 3018 3019 3020
		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
		slave_offset         = CPSW1_SLAVE_OFFSET;
		slave_size           = CPSW1_SLAVE_SIZE;
		sliver_offset        = CPSW1_SLIVER_OFFSET;
		dma_params.desc_mem_phys = 0;
		break;
	case CPSW_VERSION_2:
3021
	case CPSW_VERSION_3:
3022
	case CPSW_VERSION_4:
3023
		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3024
		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
3025
		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
3026 3027 3028 3029 3030 3031 3032
		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
		slave_offset         = CPSW2_SLAVE_OFFSET;
		slave_size           = CPSW2_SLAVE_SIZE;
		sliver_offset        = CPSW2_SLIVER_OFFSET;
		dma_params.desc_mem_phys =
3033
			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3034 3035
		break;
	default:
3036
		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3037
		ret = -ENODEV;
3038
		goto clean_dt_ret;
3039
	}
3040 3041 3042 3043
	for (i = 0; i < cpsw->data.slaves; i++) {
		struct cpsw_slave *slave = &cpsw->slaves[i];

		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3044 3045 3046 3047
		slave_offset  += slave_size;
		sliver_offset += SLIVER_SIZE;
	}

3048
	dma_params.dev		= &pdev->dev;
3049 3050 3051 3052 3053
	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3054 3055 3056 3057 3058 3059 3060

	dma_params.num_chan		= data->channels;
	dma_params.has_soft_reset	= true;
	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
	dma_params.desc_mem_size	= data->bd_ram_size;
	dma_params.desc_align		= 16;
	dma_params.has_ext_regs		= true;
3061
	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3062
	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3063
	dma_params.descs_pool_size	= descs_pool_size;
3064

3065 3066
	cpsw->dma = cpdma_ctlr_create(&dma_params);
	if (!cpsw->dma) {
3067 3068
		dev_err(priv->dev, "error initializing dma\n");
		ret = -ENOMEM;
3069
		goto clean_dt_ret;
3070 3071
	}

3072 3073 3074
	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
	if (WARN_ON(!cpsw->rxv[0].ch || !cpsw->txv[0].ch)) {
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
		dev_err(priv->dev, "error initializing dma channels\n");
		ret = -ENOMEM;
		goto clean_dma_ret;
	}

	ale_params.dev			= &ndev->dev;
	ale_params.ale_ageout		= ale_ageout;
	ale_params.ale_entries		= data->ale_entries;
	ale_params.ale_ports		= data->slaves;

3085 3086
	cpsw->ale = cpsw_ale_create(&ale_params);
	if (!cpsw->ale) {
3087 3088 3089 3090 3091
		dev_err(priv->dev, "error initializing ale engine\n");
		ret = -ENODEV;
		goto clean_dma_ret;
	}

3092
	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3093 3094 3095 3096 3097
	if (IS_ERR(cpsw->cpts)) {
		ret = PTR_ERR(cpsw->cpts);
		goto clean_ale_ret;
	}

3098
	ndev->irq = platform_get_irq(pdev, 1);
3099 3100
	if (ndev->irq < 0) {
		dev_err(priv->dev, "error getting irq resource\n");
3101
		ret = ndev->irq;
3102 3103 3104
		goto clean_ale_ret;
	}

3105 3106 3107 3108
	of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
	if (of_id) {
		pdev->id_entry = of_id->data;
		if (pdev->id_entry->driver_data)
3109
			cpsw->quirk_irq = true;
3110 3111
	}

3112 3113 3114 3115 3116 3117 3118
	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
	 * MISC IRQs which are always kept disabled with this driver so
	 * we will not request them.
	 *
	 * If anyone wants to implement support for those, make sure to
	 * first request and append them to irqs_table array.
	 */
3119

3120
	/* RX IRQ */
3121
	irq = platform_get_irq(pdev, 1);
3122 3123
	if (irq < 0) {
		ret = irq;
3124
		goto clean_ale_ret;
3125
	}
3126

3127
	cpsw->irqs_table[0] = irq;
3128
	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3129
			       0, dev_name(&pdev->dev), cpsw);
3130 3131 3132 3133 3134
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
		goto clean_ale_ret;
	}

3135
	/* TX IRQ */
3136
	irq = platform_get_irq(pdev, 2);
3137 3138
	if (irq < 0) {
		ret = irq;
3139
		goto clean_ale_ret;
3140
	}
3141

3142
	cpsw->irqs_table[1] = irq;
3143
	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3144
			       0, dev_name(&pdev->dev), cpsw);
3145 3146 3147
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
		goto clean_ale_ret;
3148
	}
3149

3150
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3151 3152

	ndev->netdev_ops = &cpsw_netdev_ops;
3153
	ndev->ethtool_ops = &cpsw_ethtool_ops;
3154 3155
	netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
	netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
3156
	cpsw_split_res(ndev);
3157 3158 3159 3160 3161 3162 3163

	/* register the network device */
	SET_NETDEV_DEV(ndev, &pdev->dev);
	ret = register_netdev(ndev);
	if (ret) {
		dev_err(priv->dev, "error registering net device\n");
		ret = -ENODEV;
3164
		goto clean_ale_ret;
3165 3166
	}

3167 3168 3169
	cpsw_notice(priv, probe,
		    "initialized device (regs %pa, irq %d, pool size %d)\n",
		    &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3170
	if (cpsw->data.dual_emac) {
3171
		ret = cpsw_probe_dual_emac(priv);
3172 3173
		if (ret) {
			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
3174
			goto clean_unregister_netdev_ret;
3175 3176 3177
		}
	}

3178 3179
	pm_runtime_put(&pdev->dev);

3180 3181
	return 0;

3182 3183
clean_unregister_netdev_ret:
	unregister_netdev(ndev);
3184
clean_ale_ret:
3185
	cpsw_ale_destroy(cpsw->ale);
3186
clean_dma_ret:
3187
	cpdma_ctlr_destroy(cpsw->dma);
3188 3189
clean_dt_ret:
	cpsw_remove_dt(pdev);
3190
	pm_runtime_put_sync(&pdev->dev);
3191
clean_runtime_disable_ret:
3192
	pm_runtime_disable(&pdev->dev);
3193
clean_ndev_ret:
3194
	free_netdev(priv->ndev);
3195 3196 3197
	return ret;
}

B
Bill Pemberton 已提交
3198
static int cpsw_remove(struct platform_device *pdev)
3199 3200
{
	struct net_device *ndev = platform_get_drvdata(pdev);
3201
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3202 3203 3204 3205 3206 3207 3208
	int ret;

	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
		return ret;
	}
3209

3210 3211
	if (cpsw->data.dual_emac)
		unregister_netdev(cpsw->slaves[1].ndev);
3212
	unregister_netdev(ndev);
3213

3214
	cpts_release(cpsw->cpts);
3215
	cpsw_ale_destroy(cpsw->ale);
3216
	cpdma_ctlr_destroy(cpsw->dma);
3217
	cpsw_remove_dt(pdev);
3218 3219
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
3220 3221
	if (cpsw->data.dual_emac)
		free_netdev(cpsw->slaves[1].ndev);
3222 3223 3224 3225
	free_netdev(ndev);
	return 0;
}

3226
#ifdef CONFIG_PM_SLEEP
3227 3228 3229 3230
static int cpsw_suspend(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
3231
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3232

3233
	if (cpsw->data.dual_emac) {
3234
		int i;
3235

3236 3237 3238
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3239 3240 3241 3242 3243
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_stop(ndev);
	}
3244

3245
	/* Select sleep pin state */
3246
	pinctrl_pm_select_sleep_state(dev);
3247

3248 3249 3250 3251 3252 3253 3254
	return 0;
}

static int cpsw_resume(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
3255
	struct cpsw_common	*cpsw = netdev_priv(ndev);
3256

3257
	/* Select default pin state */
3258
	pinctrl_pm_select_default_state(dev);
3259

3260 3261
	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
	rtnl_lock();
3262
	if (cpsw->data.dual_emac) {
3263 3264
		int i;

3265 3266 3267
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_open(cpsw->slaves[i].ndev);
3268 3269 3270 3271 3272
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_open(ndev);
	}
3273 3274
	rtnl_unlock();

3275 3276
	return 0;
}
3277
#endif
3278

3279
static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3280 3281 3282 3283 3284

static struct platform_driver cpsw_driver = {
	.driver = {
		.name	 = "cpsw",
		.pm	 = &cpsw_pm_ops,
3285
		.of_match_table = cpsw_of_mtable,
3286 3287
	},
	.probe = cpsw_probe,
B
Bill Pemberton 已提交
3288
	.remove = cpsw_remove,
3289 3290
};

3291
module_platform_driver(cpsw_driver);
3292 3293 3294 3295 3296

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
MODULE_DESCRIPTION("TI CPSW Ethernet driver");