blackfin_sram.c 13.9 KB
Newer Older
B
Bryan Wu 已提交
1 2 3 4 5 6 7 8 9
/*
 * File:         arch/blackfin/mm/blackfin_sram.c
 * Based on:
 * Author:
 *
 * Created:
 * Description:  SRAM driver for Blackfin ADSP-BF5xx
 *
 * Modified:
10
 *               Copyright 2004-2007 Analog Devices Inc.
B
Bryan Wu 已提交
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
 *
 * Bugs:         Enter bugs at http://blackfin.uclinux.org/
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see the file COPYING, or write
 * to the Free Software Foundation, Inc.,
 * 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */

#include <linux/autoconf.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/miscdevice.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/spinlock.h>
#include <linux/rtc.h>
#include <asm/blackfin.h>
#include "blackfin_sram.h"

spinlock_t l1sram_lock, l1_data_sram_lock, l1_inst_sram_lock;

#if CONFIG_L1_MAX_PIECE < 16
#undef CONFIG_L1_MAX_PIECE
#define CONFIG_L1_MAX_PIECE        16
#endif

#if CONFIG_L1_MAX_PIECE > 1024
#undef CONFIG_L1_MAX_PIECE
#define CONFIG_L1_MAX_PIECE        1024
#endif

#define SRAM_SLT_NULL      0
#define SRAM_SLT_FREE      1
#define SRAM_SLT_ALLOCATED 2

/* the data structure for L1 scratchpad and DATA SRAM */
struct l1_sram_piece {
	void *paddr;
	int size;
	int flag;
66
	pid_t pid;
B
Bryan Wu 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
};

static struct l1_sram_piece l1_ssram[CONFIG_L1_MAX_PIECE];

#if L1_DATA_A_LENGTH != 0
static struct l1_sram_piece l1_data_A_sram[CONFIG_L1_MAX_PIECE];
#endif

#if L1_DATA_B_LENGTH != 0
static struct l1_sram_piece l1_data_B_sram[CONFIG_L1_MAX_PIECE];
#endif

#if L1_CODE_LENGTH != 0
static struct l1_sram_piece l1_inst_sram[CONFIG_L1_MAX_PIECE];
#endif

/* L1 Scratchpad SRAM initialization function */
84
void __init l1sram_init(void)
B
Bryan Wu 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97
{
	printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
	       L1_SCRATCH_LENGTH >> 10);

	memset(&l1_ssram, 0x00, sizeof(l1_ssram));
	l1_ssram[0].paddr = (void*)L1_SCRATCH_START;
	l1_ssram[0].size = L1_SCRATCH_LENGTH;
	l1_ssram[0].flag = SRAM_SLT_FREE;

	/* mutex initialize */
	spin_lock_init(&l1sram_lock);
}

98
void __init l1_data_sram_init(void)
B
Bryan Wu 已提交
99 100 101
{
#if L1_DATA_A_LENGTH != 0
	memset(&l1_data_A_sram, 0x00, sizeof(l1_data_A_sram));
102 103
	l1_data_A_sram[0].paddr = (void *)L1_DATA_A_START +
					(_ebss_l1 - _sdata_l1);
B
Bryan Wu 已提交
104 105
	l1_data_A_sram[0].size = L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
	l1_data_A_sram[0].flag = SRAM_SLT_FREE;
106 107 108

	printk(KERN_INFO "Blackfin Data A SRAM: %d KB (%d KB free)\n",
	       L1_DATA_A_LENGTH >> 10, l1_data_A_sram[0].size >> 10);
B
Bryan Wu 已提交
109 110 111 112 113 114
#endif
#if L1_DATA_B_LENGTH != 0
	memset(&l1_data_B_sram, 0x00, sizeof(l1_data_B_sram));
	l1_data_B_sram[0].paddr = (void*)L1_DATA_B_START;
	l1_data_B_sram[0].size = L1_DATA_B_LENGTH;
	l1_data_B_sram[0].flag = SRAM_SLT_FREE;
115 116 117

	printk(KERN_INFO "Blackfin Data B SRAM: %d KB (%d KB free)\n",
	       L1_DATA_B_LENGTH >> 10, l1_data_B_sram[0].size >> 10);
B
Bryan Wu 已提交
118 119 120 121 122 123
#endif

	/* mutex initialize */
	spin_lock_init(&l1_data_sram_lock);
}

124
void __init l1_inst_sram_init(void)
B
Bryan Wu 已提交
125 126 127 128 129 130
{
#if L1_CODE_LENGTH != 0
	memset(&l1_inst_sram, 0x00, sizeof(l1_inst_sram));
	l1_inst_sram[0].paddr = (void*)L1_CODE_START + (_etext_l1 - _stext_l1);
	l1_inst_sram[0].size = L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
	l1_inst_sram[0].flag = SRAM_SLT_FREE;
131 132 133

	printk(KERN_INFO "Blackfin Instruction SRAM: %d KB (%d KB free)\n",
	       L1_CODE_LENGTH >> 10, l1_inst_sram[0].size >> 10);
B
Bryan Wu 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
#endif

	/* mutex initialize */
	spin_lock_init(&l1_inst_sram_lock);
}

/* L1 memory allocate function */
static void *_l1_sram_alloc(size_t size, struct l1_sram_piece *pfree, int count)
{
	int i, index = 0;
	void *addr = NULL;

	if (size <= 0)
		return NULL;

	/* Align the size */
	size = (size + 3) & ~3;

	/* not use the good method to match the best slot !!! */
S
Simon Arlott 已提交
153
	/* search an available memory slot */
B
Bryan Wu 已提交
154 155 156 157 158
	for (i = 0; i < count; i++) {
		if ((pfree[i].flag == SRAM_SLT_FREE)
		    && (pfree[i].size >= size)) {
			addr = pfree[i].paddr;
			pfree[i].flag = SRAM_SLT_ALLOCATED;
159
			pfree[i].pid = current->pid;
B
Bryan Wu 已提交
160 161 162 163 164 165 166
			index = i;
			break;
		}
	}
	if (i >= count)
		return NULL;

S
Simon Arlott 已提交
167
	/* updated the NULL memory slot !!! */
B
Bryan Wu 已提交
168 169 170
	if (pfree[i].size > size) {
		for (i = 0; i < count; i++) {
			if (pfree[i].flag == SRAM_SLT_NULL) {
171
				pfree[i].pid = 0;
B
Bryan Wu 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
				pfree[i].flag = SRAM_SLT_FREE;
				pfree[i].paddr = addr + size;
				pfree[i].size = pfree[index].size - size;
				pfree[index].size = size;
				break;
			}
		}
	}

	return addr;
}

/* Allocate the largest available block.  */
static void *_l1_sram_alloc_max(struct l1_sram_piece *pfree, int count,
				unsigned long *psize)
{
	unsigned long best = 0;
	int i, index = -1;
	void *addr = NULL;

S
Simon Arlott 已提交
192
	/* search an available memory slot */
B
Bryan Wu 已提交
193 194 195 196 197 198 199 200 201 202 203
	for (i = 0; i < count; i++) {
		if (pfree[i].flag == SRAM_SLT_FREE && pfree[i].size > best) {
			addr = pfree[i].paddr;
			index = i;
			best = pfree[i].size;
		}
	}
	if (index < 0)
		return NULL;
	*psize = best;

204
	pfree[index].pid = current->pid;
B
Bryan Wu 已提交
205 206 207 208 209 210
	pfree[index].flag = SRAM_SLT_ALLOCATED;
	return addr;
}

/* L1 memory free function */
static int _l1_sram_free(const void *addr,
211 212
			struct l1_sram_piece *pfree,
			int count)
B
Bryan Wu 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
{
	int i, index = 0;

	/* search the relevant memory slot */
	for (i = 0; i < count; i++) {
		if (pfree[i].paddr == addr) {
			if (pfree[i].flag != SRAM_SLT_ALLOCATED) {
				/* error log */
				return -1;
			}
			index = i;
			break;
		}
	}
	if (i >= count)
		return -1;

230
	pfree[index].pid = 0;
B
Bryan Wu 已提交
231 232 233 234 235 236
	pfree[index].flag = SRAM_SLT_FREE;

	/* link the next address slot */
	for (i = 0; i < count; i++) {
		if (((pfree[index].paddr + pfree[index].size) == pfree[i].paddr)
		    && (pfree[i].flag == SRAM_SLT_FREE)) {
237
			pfree[i].pid = 0;
B
Bryan Wu 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
			pfree[i].flag = SRAM_SLT_NULL;
			pfree[index].size += pfree[i].size;
			pfree[index].flag = SRAM_SLT_FREE;
			break;
		}
	}

	/* link the last address slot */
	for (i = 0; i < count; i++) {
		if (((pfree[i].paddr + pfree[i].size) == pfree[index].paddr) &&
		    (pfree[i].flag == SRAM_SLT_FREE)) {
			pfree[index].flag = SRAM_SLT_NULL;
			pfree[i].size += pfree[index].size;
			break;
		}
	}

	return 0;
}

int sram_free(const void *addr)
{
	if (0) {}
#if L1_CODE_LENGTH != 0
	else if (addr >= (void *)L1_CODE_START
		 && addr < (void *)(L1_CODE_START + L1_CODE_LENGTH))
		return l1_inst_sram_free(addr);
#endif
#if L1_DATA_A_LENGTH != 0
	else if (addr >= (void *)L1_DATA_A_START
		 && addr < (void *)(L1_DATA_A_START + L1_DATA_A_LENGTH))
		return l1_data_A_sram_free(addr);
#endif
#if L1_DATA_B_LENGTH != 0
	else if (addr >= (void *)L1_DATA_B_START
		 && addr < (void *)(L1_DATA_B_START + L1_DATA_B_LENGTH))
		return l1_data_B_sram_free(addr);
#endif
	else
		return -1;
}
EXPORT_SYMBOL(sram_free);

void *l1_data_A_sram_alloc(size_t size)
{
	unsigned flags;
	void *addr = NULL;

	/* add mutex operation */
	spin_lock_irqsave(&l1_data_sram_lock, flags);

#if L1_DATA_A_LENGTH != 0
	addr = _l1_sram_alloc(size, l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram));
#endif

	/* add mutex operation */
	spin_unlock_irqrestore(&l1_data_sram_lock, flags);

	pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
		 (long unsigned int)addr, size);

	return addr;
}
EXPORT_SYMBOL(l1_data_A_sram_alloc);

int l1_data_A_sram_free(const void *addr)
{
	unsigned flags;
	int ret;

	/* add mutex operation */
	spin_lock_irqsave(&l1_data_sram_lock, flags);

#if L1_DATA_A_LENGTH != 0
	ret = _l1_sram_free(addr,
			   l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram));
#else
	ret = -1;
#endif

	/* add mutex operation */
	spin_unlock_irqrestore(&l1_data_sram_lock, flags);

	return ret;
}
EXPORT_SYMBOL(l1_data_A_sram_free);

void *l1_data_B_sram_alloc(size_t size)
{
#if L1_DATA_B_LENGTH != 0
	unsigned flags;
	void *addr;

	/* add mutex operation */
	spin_lock_irqsave(&l1_data_sram_lock, flags);

	addr = _l1_sram_alloc(size, l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram));

	/* add mutex operation */
	spin_unlock_irqrestore(&l1_data_sram_lock, flags);

	pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
		 (long unsigned int)addr, size);

	return addr;
#else
	return NULL;
#endif
}
EXPORT_SYMBOL(l1_data_B_sram_alloc);

int l1_data_B_sram_free(const void *addr)
{
#if L1_DATA_B_LENGTH != 0
	unsigned flags;
	int ret;

	/* add mutex operation */
	spin_lock_irqsave(&l1_data_sram_lock, flags);

	ret = _l1_sram_free(addr, l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram));

	/* add mutex operation */
	spin_unlock_irqrestore(&l1_data_sram_lock, flags);

	return ret;
#else
	return -1;
#endif
}
EXPORT_SYMBOL(l1_data_B_sram_free);

void *l1_data_sram_alloc(size_t size)
{
	void *addr = l1_data_A_sram_alloc(size);

	if (!addr)
		addr = l1_data_B_sram_alloc(size);

	return addr;
}
EXPORT_SYMBOL(l1_data_sram_alloc);

void *l1_data_sram_zalloc(size_t size)
{
	void *addr = l1_data_sram_alloc(size);

	if (addr)
		memset(addr, 0x00, size);

	return addr;
}
EXPORT_SYMBOL(l1_data_sram_zalloc);

int l1_data_sram_free(const void *addr)
{
	int ret;
	ret = l1_data_A_sram_free(addr);
	if (ret == -1)
		ret = l1_data_B_sram_free(addr);
	return ret;
}
EXPORT_SYMBOL(l1_data_sram_free);

void *l1_inst_sram_alloc(size_t size)
{
#if L1_DATA_A_LENGTH != 0
	unsigned flags;
	void *addr;

	/* add mutex operation */
	spin_lock_irqsave(&l1_inst_sram_lock, flags);

	addr = _l1_sram_alloc(size, l1_inst_sram, ARRAY_SIZE(l1_inst_sram));

	/* add mutex operation */
	spin_unlock_irqrestore(&l1_inst_sram_lock, flags);

	pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
		 (long unsigned int)addr, size);

	return addr;
#else
	return NULL;
#endif
}
EXPORT_SYMBOL(l1_inst_sram_alloc);

int l1_inst_sram_free(const void *addr)
{
#if L1_CODE_LENGTH != 0
	unsigned flags;
	int ret;

	/* add mutex operation */
	spin_lock_irqsave(&l1_inst_sram_lock, flags);

	ret = _l1_sram_free(addr, l1_inst_sram, ARRAY_SIZE(l1_inst_sram));

	/* add mutex operation */
	spin_unlock_irqrestore(&l1_inst_sram_lock, flags);

	return ret;
#else
	return -1;
#endif
}
EXPORT_SYMBOL(l1_inst_sram_free);

/* L1 Scratchpad memory allocate function */
void *l1sram_alloc(size_t size)
{
	unsigned flags;
	void *addr;

	/* add mutex operation */
	spin_lock_irqsave(&l1sram_lock, flags);

	addr = _l1_sram_alloc(size, l1_ssram, ARRAY_SIZE(l1_ssram));

	/* add mutex operation */
	spin_unlock_irqrestore(&l1sram_lock, flags);

	return addr;
}

/* L1 Scratchpad memory allocate function */
void *l1sram_alloc_max(size_t *psize)
{
	unsigned flags;
	void *addr;

	/* add mutex operation */
	spin_lock_irqsave(&l1sram_lock, flags);

	addr = _l1_sram_alloc_max(l1_ssram, ARRAY_SIZE(l1_ssram), psize);

	/* add mutex operation */
	spin_unlock_irqrestore(&l1sram_lock, flags);

	return addr;
}

/* L1 Scratchpad memory free function */
int l1sram_free(const void *addr)
{
	unsigned flags;
	int ret;

	/* add mutex operation */
	spin_lock_irqsave(&l1sram_lock, flags);

	ret = _l1_sram_free(addr, l1_ssram, ARRAY_SIZE(l1_ssram));

	/* add mutex operation */
	spin_unlock_irqrestore(&l1sram_lock, flags);

	return ret;
}

int sram_free_with_lsl(const void *addr)
{
	struct sram_list_struct *lsl, **tmp;
	struct mm_struct *mm = current->mm;

	for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
		if ((*tmp)->addr == addr)
			goto found;
	return -1;
found:
	lsl = *tmp;
	sram_free(addr);
	*tmp = lsl->next;
	kfree(lsl);

	return 0;
}
EXPORT_SYMBOL(sram_free_with_lsl);

void *sram_alloc_with_lsl(size_t size, unsigned long flags)
{
	void *addr = NULL;
	struct sram_list_struct *lsl = NULL;
	struct mm_struct *mm = current->mm;

	lsl = kmalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
	if (!lsl)
		return NULL;
	memset(lsl, 0, sizeof(*lsl));

	if (flags & L1_INST_SRAM)
		addr = l1_inst_sram_alloc(size);

	if (addr == NULL && (flags & L1_DATA_A_SRAM))
		addr = l1_data_A_sram_alloc(size);

	if (addr == NULL && (flags & L1_DATA_B_SRAM))
		addr = l1_data_B_sram_alloc(size);

	if (addr == NULL) {
		kfree(lsl);
		return NULL;
	}
	lsl->addr = addr;
	lsl->length = size;
	lsl->next = mm->context.sram_list;
	mm->context.sram_list = lsl;
	return addr;
}
EXPORT_SYMBOL(sram_alloc_with_lsl);
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

#ifdef CONFIG_PROC_FS
/* Once we get a real allocator, we'll throw all of this away.
 * Until then, we need some sort of visibility into the L1 alloc.
 */
static void _l1sram_proc_read(char *buf, int *len, const char *desc,
		struct l1_sram_piece *pfree, const int array_size)
{
	int i;

	*len += sprintf(&buf[*len], "--- L1 %-14s Size  PID State\n", desc);
	for (i = 0; i < array_size; ++i) {
		const char *alloc_type;
		switch (pfree[i].flag) {
		case SRAM_SLT_NULL:      alloc_type = "NULL"; break;
		case SRAM_SLT_FREE:      alloc_type = "FREE"; break;
		case SRAM_SLT_ALLOCATED: alloc_type = "ALLOCATED"; break;
		default:                 alloc_type = "????"; break;
		}
		*len += sprintf(&buf[*len], "%p-%p %8i %4i %s\n",
			pfree[i].paddr, pfree[i].paddr + pfree[i].size,
			pfree[i].size, pfree[i].pid, alloc_type);
	}
}
static int l1sram_proc_read(char *buf, char **start, off_t offset, int count,
		int *eof, void *data)
{
	int len = 0;

	_l1sram_proc_read(buf, &len, "Scratchpad",
			l1_ssram, ARRAY_SIZE(l1_ssram));
#if L1_DATA_A_LENGTH != 0
	_l1sram_proc_read(buf, &len, "Data A",
			l1_data_A_sram, ARRAY_SIZE(l1_data_A_sram));
#endif
#if L1_DATA_B_LENGTH != 0
	_l1sram_proc_read(buf, &len, "Data B",
			l1_data_B_sram, ARRAY_SIZE(l1_data_B_sram));
#endif
#if L1_CODE_LENGTH != 0
	_l1sram_proc_read(buf, &len, "Instruction",
			l1_inst_sram, ARRAY_SIZE(l1_inst_sram));
#endif

	return len;
}

static int __init l1sram_proc_init(void)
{
	struct proc_dir_entry *ptr;
	ptr = create_proc_entry("sram", S_IFREG | S_IRUGO, NULL);
	if (!ptr) {
		printk(KERN_WARNING "unable to create /proc/sram\n");
		return -1;
	}
	ptr->owner = THIS_MODULE;
	ptr->read_proc = l1sram_proc_read;
	return 0;
}
late_initcall(l1sram_proc_init);
#endif