hcd.c 84.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
/*
 * hcd.c - DesignWare HS OTG Controller host-mode routines
 *
 * Copyright (C) 2004-2013 Synopsys, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions, and the following disclaimer,
 *    without modification.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The names of the above-listed copyright holders may not be used
 *    to endorse or promote products derived from this software without
 *    specific prior written permission.
 *
 * ALTERNATIVELY, this software may be distributed under the terms of the
 * GNU General Public License ("GPL") as published by the Free Software
 * Foundation; either version 2 of the License, or (at your option) any
 * later version.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * This file contains the core HCD code, and implements the Linux hc_driver
 * API
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/usb.h>

#include <linux/usb/hcd.h>
#include <linux/usb/ch11.h>

#include "core.h"
#include "hcd.h"

/**
 * dwc2_dump_channel_info() - Prints the state of a host channel
 *
 * @hsotg: Programming view of DWC_otg controller
 * @chan:  Pointer to the channel to dump
 *
 * Must be called with interrupt disabled and spinlock held
 *
 * NOTE: This function will be removed once the peripheral controller code
 * is integrated and the driver is stable
 */
static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
				   struct dwc2_host_chan *chan)
{
#ifdef VERBOSE_DEBUG
	int num_channels = hsotg->core_params->host_channels;
	struct dwc2_qh *qh;
	u32 hcchar;
	u32 hcsplt;
	u32 hctsiz;
	u32 hc_dma;
	int i;

	if (chan == NULL)
		return;

	hcchar = readl(hsotg->regs + HCCHAR(chan->hc_num));
	hcsplt = readl(hsotg->regs + HCSPLT(chan->hc_num));
	hctsiz = readl(hsotg->regs + HCTSIZ(chan->hc_num));
	hc_dma = readl(hsotg->regs + HCDMA(chan->hc_num));

	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
		hcchar, hcsplt);
	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
		hctsiz, hc_dma);
	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
		chan->dev_addr, chan->ep_num, chan->ep_is_in);
	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
		(unsigned long)chan->xfer_dma);
	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
			    qh_list_entry)
		dev_dbg(hsotg->dev, "    %p\n", qh);
	dev_dbg(hsotg->dev, "  NP active sched:\n");
	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
			    qh_list_entry)
		dev_dbg(hsotg->dev, "    %p\n", qh);
	dev_dbg(hsotg->dev, "  Channels:\n");
	for (i = 0; i < num_channels; i++) {
		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];

		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
	}
#endif /* VERBOSE_DEBUG */
}

/*
 * Processes all the URBs in a single list of QHs. Completes them with
 * -ETIMEDOUT and frees the QTD.
 *
 * Must be called with interrupt disabled and spinlock held
 */
static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
				      struct list_head *qh_list)
{
	struct dwc2_qh *qh, *qh_tmp;
	struct dwc2_qtd *qtd, *qtd_tmp;

	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
					 qtd_list_entry) {
137 138
			dwc2_host_complete(hsotg, qtd, -ETIMEDOUT);
			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
		}
	}
}

static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
			      struct list_head *qh_list)
{
	struct dwc2_qtd *qtd, *qtd_tmp;
	struct dwc2_qh *qh, *qh_tmp;
	unsigned long flags;

	if (!qh_list->next)
		/* The list hasn't been initialized yet */
		return;

	spin_lock_irqsave(&hsotg->lock, flags);

	/* Ensure there are no QTDs or URBs left */
	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);

	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
		dwc2_hcd_qh_unlink(hsotg, qh);

		/* Free each QTD in the QH's QTD list */
		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
					 qtd_list_entry)
			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);

		spin_unlock_irqrestore(&hsotg->lock, flags);
		dwc2_hcd_qh_free(hsotg, qh);
		spin_lock_irqsave(&hsotg->lock, flags);
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
}

/*
 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
 * and periodic schedules. The QTD associated with each URB is removed from
 * the schedule and freed. This function may be called when a disconnect is
 * detected or when the HCD is being stopped.
 *
 * Must be called with interrupt disabled and spinlock held
 */
static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
{
	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
}

/**
 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
 *
 * @hsotg: Pointer to struct dwc2_hsotg
 */
void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
{
	u32 hprt0;

	if (hsotg->op_state == OTG_STATE_B_HOST) {
		/*
		 * Reset the port. During a HNP mode switch the reset
		 * needs to occur within 1ms and have a duration of at
		 * least 50ms.
		 */
		hprt0 = dwc2_read_hprt0(hsotg);
		hprt0 |= HPRT0_RST;
		writel(hprt0, hsotg->regs + HPRT0);
	}

	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
			   msecs_to_jiffies(50));
}

/* Must be called with interrupt disabled and spinlock held */
static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
{
	int num_channels = hsotg->core_params->host_channels;
	struct dwc2_host_chan *channel;
	u32 hcchar;
	int i;

	if (hsotg->core_params->dma_enable <= 0) {
		/* Flush out any channel requests in slave mode */
		for (i = 0; i < num_channels; i++) {
			channel = hsotg->hc_ptr_array[i];
			if (!list_empty(&channel->hc_list_entry))
				continue;
			hcchar = readl(hsotg->regs + HCCHAR(i));
			if (hcchar & HCCHAR_CHENA) {
				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
				hcchar |= HCCHAR_CHDIS;
				writel(hcchar, hsotg->regs + HCCHAR(i));
			}
		}
	}

	for (i = 0; i < num_channels; i++) {
		channel = hsotg->hc_ptr_array[i];
		if (!list_empty(&channel->hc_list_entry))
			continue;
		hcchar = readl(hsotg->regs + HCCHAR(i));
		if (hcchar & HCCHAR_CHENA) {
			/* Halt the channel */
			hcchar |= HCCHAR_CHDIS;
			writel(hcchar, hsotg->regs + HCCHAR(i));
		}

		dwc2_hc_cleanup(hsotg, channel);
		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
		/*
		 * Added for Descriptor DMA to prevent channel double cleanup in
		 * release_channel_ddma(), which is called from ep_disable when
		 * device disconnects
		 */
		channel->qh = NULL;
	}
260 261 262 263 264 265 266 267
	/* All channels have been freed, mark them available */
	if (hsotg->core_params->uframe_sched > 0) {
		hsotg->available_host_channels =
			hsotg->core_params->host_channels;
	} else {
		hsotg->non_periodic_channels = 0;
		hsotg->periodic_channels = 0;
	}
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
}

/**
 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
 *
 * @hsotg: Pointer to struct dwc2_hsotg
 *
 * Must be called with interrupt disabled and spinlock held
 */
void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg)
{
	u32 intr;

	/* Set status flags for the hub driver */
	hsotg->flags.b.port_connect_status_change = 1;
	hsotg->flags.b.port_connect_status = 0;

	/*
	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
	 * interrupt mask and status bits and disabling subsequent host
	 * channel interrupts.
	 */
	intr = readl(hsotg->regs + GINTMSK);
	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
	writel(intr, hsotg->regs + GINTMSK);
	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
	writel(intr, hsotg->regs + GINTSTS);

	/*
	 * Turn off the vbus power only if the core has transitioned to device
	 * mode. If still in host mode, need to keep power on to detect a
	 * reconnection.
	 */
	if (dwc2_is_device_mode(hsotg)) {
		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
			writel(0, hsotg->regs + HPRT0);
		}

		dwc2_disable_host_interrupts(hsotg);
	}

	/* Respond with an error status to all URBs in the schedule */
	dwc2_kill_all_urbs(hsotg);

	if (dwc2_is_host_mode(hsotg))
		/* Clean up any host channels that were in use */
		dwc2_hcd_cleanup_channels(hsotg);

	dwc2_host_disconnect(hsotg);
}

/**
 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
 *
 * @hsotg: Pointer to struct dwc2_hsotg
 */
static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
{
327
	if (hsotg->lx_state == DWC2_L2) {
328
		hsotg->flags.b.port_suspend_change = 1;
329 330
		usb_hcd_resume_root_hub(hsotg->priv);
	} else {
331
		hsotg->flags.b.port_l1_change = 1;
332
	}
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
}

/**
 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
 *
 * @hsotg: Pointer to struct dwc2_hsotg
 *
 * Must be called with interrupt disabled and spinlock held
 */
void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
{
	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");

	/*
	 * The root hub should be disconnected before this function is called.
	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
	 * and the QH lists (via ..._hcd_endpoint_disable).
	 */

	/* Turn off all host-specific interrupts */
	dwc2_disable_host_interrupts(hsotg);

	/* Turn off the vbus power */
	dev_dbg(hsotg->dev, "PortPower off\n");
	writel(0, hsotg->regs + HPRT0);
}

static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
				struct dwc2_hcd_urb *urb, void **ep_handle,
				gfp_t mem_flags)
{
	struct dwc2_qtd *qtd;
	unsigned long flags;
	u32 intr_mask;
	int retval;
368
	int dev_speed;
369 370 371 372 373 374 375

	if (!hsotg->flags.b.port_connect_status) {
		/* No longer connected */
		dev_err(hsotg->dev, "Not connected\n");
		return -ENODEV;
	}

376 377 378 379 380 381 382 383 384 385 386 387 388
	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);

	/* Some configurations cannot support LS traffic on a FS root port */
	if ((dev_speed == USB_SPEED_LOW) &&
	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
		u32 hprt0 = readl(hsotg->regs + HPRT0);
		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;

		if (prtspd == HPRT0_SPD_FULL_SPEED)
			return -ENODEV;
	}

389 390 391 392 393 394 395
	qtd = kzalloc(sizeof(*qtd), mem_flags);
	if (!qtd)
		return -ENOMEM;

	dwc2_hcd_qtd_init(qtd, urb);
	retval = dwc2_hcd_qtd_add(hsotg, qtd, (struct dwc2_qh **)ep_handle,
				  mem_flags);
396
	if (retval) {
397 398 399 400 401 402 403 404
		dev_err(hsotg->dev,
			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
			retval);
		kfree(qtd);
		return retval;
	}

	intr_mask = readl(hsotg->regs + GINTMSK);
405
	if (!(intr_mask & GINTSTS_SOF)) {
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
		enum dwc2_transaction_type tr_type;

		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
			/*
			 * Do not schedule SG transactions until qtd has
			 * URB_GIVEBACK_ASAP set
			 */
			return 0;

		spin_lock_irqsave(&hsotg->lock, flags);
		tr_type = dwc2_hcd_select_transactions(hsotg);
		if (tr_type != DWC2_TRANSACTION_NONE)
			dwc2_hcd_queue_transactions(hsotg, tr_type);
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}

423
	return 0;
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
}

/* Must be called with interrupt disabled and spinlock held */
static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
				struct dwc2_hcd_urb *urb)
{
	struct dwc2_qh *qh;
	struct dwc2_qtd *urb_qtd;

	urb_qtd = urb->qtd;
	if (!urb_qtd) {
		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
		return -EINVAL;
	}

	qh = urb_qtd->qh;
	if (!qh) {
		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
		return -EINVAL;
	}

445 446
	urb->priv = NULL;

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
	if (urb_qtd->in_process && qh->channel) {
		dwc2_dump_channel_info(hsotg, qh->channel);

		/* The QTD is in process (it has been assigned to a channel) */
		if (hsotg->flags.b.port_connect_status)
			/*
			 * If still connected (i.e. in host mode), halt the
			 * channel so it can be used for other transfers. If
			 * no longer connected, the host registers can't be
			 * written to halt the channel since the core is in
			 * device mode.
			 */
			dwc2_hc_halt(hsotg, qh->channel,
				     DWC2_HC_XFER_URB_DEQUEUE);
	}

	/*
	 * Free the QTD and clean up the associated QH. Leave the QH in the
	 * schedule if it has any remaining QTDs.
	 */
	if (hsotg->core_params->dma_desc_enable <= 0) {
		u8 in_process = urb_qtd->in_process;

		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
		if (in_process) {
			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
			qh->channel = NULL;
		} else if (list_empty(&qh->qtd_list)) {
			dwc2_hcd_qh_unlink(hsotg, qh);
		}
	} else {
		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
	}

	return 0;
}

/* Must NOT be called with interrupt disabled or spinlock held */
static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
				     struct usb_host_endpoint *ep, int retry)
{
	struct dwc2_qtd *qtd, *qtd_tmp;
	struct dwc2_qh *qh;
	unsigned long flags;
	int rc;

	spin_lock_irqsave(&hsotg->lock, flags);

	qh = ep->hcpriv;
	if (!qh) {
		rc = -EINVAL;
		goto err;
	}

	while (!list_empty(&qh->qtd_list) && retry--) {
		if (retry == 0) {
			dev_err(hsotg->dev,
				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
			rc = -EBUSY;
			goto err;
		}

		spin_unlock_irqrestore(&hsotg->lock, flags);
		usleep_range(20000, 40000);
		spin_lock_irqsave(&hsotg->lock, flags);
		qh = ep->hcpriv;
		if (!qh) {
			rc = -EINVAL;
			goto err;
		}
	}

	dwc2_hcd_qh_unlink(hsotg, qh);

	/* Free each QTD in the QH's QTD list */
	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);

	ep->hcpriv = NULL;
	spin_unlock_irqrestore(&hsotg->lock, flags);
	dwc2_hcd_qh_free(hsotg, qh);

	return 0;

err:
	ep->hcpriv = NULL;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return rc;
}

/* Must be called with interrupt disabled and spinlock held */
static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
				   struct usb_host_endpoint *ep)
{
	struct dwc2_qh *qh = ep->hcpriv;

	if (!qh)
		return -EINVAL;

	qh->data_toggle = DWC2_HC_PID_DATA0;

	return 0;
}

/*
 * Initializes dynamic portions of the DWC_otg HCD state
 *
 * Must be called with interrupt disabled and spinlock held
 */
static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
{
	struct dwc2_host_chan *chan, *chan_tmp;
	int num_channels;
	int i;

	hsotg->flags.d32 = 0;
	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
565 566 567 568 569 570 571 572

	if (hsotg->core_params->uframe_sched > 0) {
		hsotg->available_host_channels =
			hsotg->core_params->host_channels;
	} else {
		hsotg->non_periodic_channels = 0;
		hsotg->periodic_channels = 0;
	}
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709

	/*
	 * Put all channels in the free channel list and clean up channel
	 * states
	 */
	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
				 hc_list_entry)
		list_del_init(&chan->hc_list_entry);

	num_channels = hsotg->core_params->host_channels;
	for (i = 0; i < num_channels; i++) {
		chan = hsotg->hc_ptr_array[i];
		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
		dwc2_hc_cleanup(hsotg, chan);
	}

	/* Initialize the DWC core for host mode operation */
	dwc2_core_host_init(hsotg);
}

static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
			       struct dwc2_host_chan *chan,
			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
{
	int hub_addr, hub_port;

	chan->do_split = 1;
	chan->xact_pos = qtd->isoc_split_pos;
	chan->complete_split = qtd->complete_split;
	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
	chan->hub_addr = (u8)hub_addr;
	chan->hub_port = (u8)hub_port;
}

static void *dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
			       struct dwc2_host_chan *chan,
			       struct dwc2_qtd *qtd, void *bufptr)
{
	struct dwc2_hcd_urb *urb = qtd->urb;
	struct dwc2_hcd_iso_packet_desc *frame_desc;

	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
	case USB_ENDPOINT_XFER_CONTROL:
		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;

		switch (qtd->control_phase) {
		case DWC2_CONTROL_SETUP:
			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
			chan->do_ping = 0;
			chan->ep_is_in = 0;
			chan->data_pid_start = DWC2_HC_PID_SETUP;
			if (hsotg->core_params->dma_enable > 0)
				chan->xfer_dma = urb->setup_dma;
			else
				chan->xfer_buf = urb->setup_packet;
			chan->xfer_len = 8;
			bufptr = NULL;
			break;

		case DWC2_CONTROL_DATA:
			dev_vdbg(hsotg->dev, "  Control data transaction\n");
			chan->data_pid_start = qtd->data_toggle;
			break;

		case DWC2_CONTROL_STATUS:
			/*
			 * Direction is opposite of data direction or IN if no
			 * data
			 */
			dev_vdbg(hsotg->dev, "  Control status transaction\n");
			if (urb->length == 0)
				chan->ep_is_in = 1;
			else
				chan->ep_is_in =
					dwc2_hcd_is_pipe_out(&urb->pipe_info);
			if (chan->ep_is_in)
				chan->do_ping = 0;
			chan->data_pid_start = DWC2_HC_PID_DATA1;
			chan->xfer_len = 0;
			if (hsotg->core_params->dma_enable > 0)
				chan->xfer_dma = hsotg->status_buf_dma;
			else
				chan->xfer_buf = hsotg->status_buf;
			bufptr = NULL;
			break;
		}
		break;

	case USB_ENDPOINT_XFER_BULK:
		chan->ep_type = USB_ENDPOINT_XFER_BULK;
		break;

	case USB_ENDPOINT_XFER_INT:
		chan->ep_type = USB_ENDPOINT_XFER_INT;
		break;

	case USB_ENDPOINT_XFER_ISOC:
		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
		if (hsotg->core_params->dma_desc_enable > 0)
			break;

		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
		frame_desc->status = 0;

		if (hsotg->core_params->dma_enable > 0) {
			chan->xfer_dma = urb->dma;
			chan->xfer_dma += frame_desc->offset +
					qtd->isoc_split_offset;
		} else {
			chan->xfer_buf = urb->buf;
			chan->xfer_buf += frame_desc->offset +
					qtd->isoc_split_offset;
		}

		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;

		/* For non-dword aligned buffers */
		if (hsotg->core_params->dma_enable > 0 &&
		    (chan->xfer_dma & 0x3))
			bufptr = (u8 *)urb->buf + frame_desc->offset +
					qtd->isoc_split_offset;
		else
			bufptr = NULL;

		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
			if (chan->xfer_len <= 188)
				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
			else
				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
		}
		break;
	}

	return bufptr;
}

static int dwc2_hc_setup_align_buf(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
710 711
				   struct dwc2_host_chan *chan,
				   struct dwc2_hcd_urb *urb, void *bufptr)
712 713
{
	u32 buf_size;
714 715
	struct urb *usb_urb;
	struct usb_hcd *hcd;
716 717

	if (!qh->dw_align_buf) {
718 719 720 721 722 723
		if (chan->ep_type != USB_ENDPOINT_XFER_ISOC)
			buf_size = hsotg->core_params->max_transfer_size;
		else
			/* 3072 = 3 max-size Isoc packets */
			buf_size = 3072;

724 725 726 727 728
		qh->dw_align_buf = dma_alloc_coherent(hsotg->dev, buf_size,
						      &qh->dw_align_buf_dma,
						      GFP_ATOMIC);
		if (!qh->dw_align_buf)
			return -ENOMEM;
729
		qh->dw_align_buf_size = buf_size;
730 731
	}

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
	if (chan->xfer_len) {
		dev_vdbg(hsotg->dev, "%s(): non-aligned buffer\n", __func__);
		usb_urb = urb->priv;

		if (usb_urb) {
			if (usb_urb->transfer_flags &
			    (URB_SETUP_MAP_SINGLE | URB_DMA_MAP_SG |
			     URB_DMA_MAP_PAGE | URB_DMA_MAP_SINGLE)) {
				hcd = dwc2_hsotg_to_hcd(hsotg);
				usb_hcd_unmap_urb_for_dma(hcd, usb_urb);
			}
			if (!chan->ep_is_in)
				memcpy(qh->dw_align_buf, bufptr,
				       chan->xfer_len);
		} else {
			dev_warn(hsotg->dev, "no URB in dwc2_urb\n");
		}
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
	}

	chan->align_buf = qh->dw_align_buf_dma;
	return 0;
}

/**
 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
 * channel and initializes the host channel to perform the transactions. The
 * host channel is removed from the free list.
 *
 * @hsotg: The HCD state structure
 * @qh:    Transactions from the first QTD for this QH are selected and assigned
 *         to a free host channel
 */
764
static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
765 766 767 768 769 770
{
	struct dwc2_host_chan *chan;
	struct dwc2_hcd_urb *urb;
	struct dwc2_qtd *qtd;
	void *bufptr = NULL;

771 772
	if (dbg_qh(qh))
		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
773 774 775

	if (list_empty(&qh->qtd_list)) {
		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
776
		return -ENOMEM;
777 778 779 780
	}

	if (list_empty(&hsotg->free_hc_list)) {
		dev_dbg(hsotg->dev, "No free channel to assign\n");
781
		return -ENOMEM;
782 783 784 785 786
	}

	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
				hc_list_entry);

787
	/* Remove host channel from free list */
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
	list_del_init(&chan->hc_list_entry);

	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
	urb = qtd->urb;
	qh->channel = chan;
	qtd->in_process = 1;

	/*
	 * Use usb_pipedevice to determine device address. This address is
	 * 0 before the SET_ADDRESS command and the correct address afterward.
	 */
	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
	chan->speed = qh->dev_speed;
	chan->max_packet = dwc2_max_packet(qh->maxp);

	chan->xfer_started = 0;
	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
	chan->error_state = (qtd->error_count > 0);
	chan->halt_on_queue = 0;
	chan->halt_pending = 0;
	chan->requests = 0;

	/*
	 * The following values may be modified in the transfer type section
	 * below. The xfer_len value may be reduced when the transfer is
	 * started to accommodate the max widths of the XferSize and PktCnt
	 * fields in the HCTSIZn register.
	 */

	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
	if (chan->ep_is_in)
		chan->do_ping = 0;
	else
		chan->do_ping = qh->ping_state;

	chan->data_pid_start = qh->data_toggle;
	chan->multi_count = 1;

827 828
	if (urb->actual_length > urb->length &&
		!dwc2_hcd_is_pipe_in(&urb->pipe_info))
829 830
		urb->actual_length = urb->length;

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	if (hsotg->core_params->dma_enable > 0) {
		chan->xfer_dma = urb->dma + urb->actual_length;

		/* For non-dword aligned case */
		if (hsotg->core_params->dma_desc_enable <= 0 &&
		    (chan->xfer_dma & 0x3))
			bufptr = (u8 *)urb->buf + urb->actual_length;
	} else {
		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
	}

	chan->xfer_len = urb->length - urb->actual_length;
	chan->xfer_count = 0;

	/* Set the split attributes if required */
	if (qh->do_split)
		dwc2_hc_init_split(hsotg, chan, qtd, urb);
	else
		chan->do_split = 0;

	/* Set the transfer attributes */
	bufptr = dwc2_hc_init_xfer(hsotg, chan, qtd, bufptr);

	/* Non DWORD-aligned buffer case */
	if (bufptr) {
		dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
857
		if (dwc2_hc_setup_align_buf(hsotg, qh, chan, urb, bufptr)) {
858 859 860 861 862 863 864 865 866 867
			dev_err(hsotg->dev,
				"%s: Failed to allocate memory to handle non-dword aligned buffer\n",
				__func__);
			/* Add channel back to free list */
			chan->align_buf = 0;
			chan->multi_count = 0;
			list_add_tail(&chan->hc_list_entry,
				      &hsotg->free_hc_list);
			qtd->in_process = 0;
			qh->channel = NULL;
868
			return -ENOMEM;
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
		}
	} else {
		chan->align_buf = 0;
	}

	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
		/*
		 * This value may be modified when the transfer is started
		 * to reflect the actual transfer length
		 */
		chan->multi_count = dwc2_hb_mult(qh->maxp);

	if (hsotg->core_params->dma_desc_enable > 0)
		chan->desc_list_addr = qh->desc_list_dma;

	dwc2_hc_init(hsotg, chan);
	chan->qh = qh;
887 888

	return 0;
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
}

/**
 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
 * schedule and assigns them to available host channels. Called from the HCD
 * interrupt handler functions.
 *
 * @hsotg: The HCD state structure
 *
 * Return: The types of new transactions that were assigned to host channels
 */
enum dwc2_transaction_type dwc2_hcd_select_transactions(
		struct dwc2_hsotg *hsotg)
{
	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
	struct list_head *qh_ptr;
	struct dwc2_qh *qh;
	int num_channels;

#ifdef DWC2_DEBUG_SOF
	dev_vdbg(hsotg->dev, "  Select Transactions\n");
#endif

	/* Process entries in the periodic ready list */
	qh_ptr = hsotg->periodic_sched_ready.next;
	while (qh_ptr != &hsotg->periodic_sched_ready) {
		if (list_empty(&hsotg->free_hc_list))
			break;
917 918 919 920 921
		if (hsotg->core_params->uframe_sched > 0) {
			if (hsotg->available_host_channels <= 1)
				break;
			hsotg->available_host_channels--;
		}
922
		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
923 924
		if (dwc2_assign_and_init_hc(hsotg, qh))
			break;
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942

		/*
		 * Move the QH from the periodic ready schedule to the
		 * periodic assigned schedule
		 */
		qh_ptr = qh_ptr->next;
		list_move(&qh->qh_list_entry, &hsotg->periodic_sched_assigned);
		ret_val = DWC2_TRANSACTION_PERIODIC;
	}

	/*
	 * Process entries in the inactive portion of the non-periodic
	 * schedule. Some free host channels may not be used if they are
	 * reserved for periodic transfers.
	 */
	num_channels = hsotg->core_params->host_channels;
	qh_ptr = hsotg->non_periodic_sched_inactive.next;
	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
943 944
		if (hsotg->core_params->uframe_sched <= 0 &&
		    hsotg->non_periodic_channels >= num_channels -
945 946 947 948 949
						hsotg->periodic_channels)
			break;
		if (list_empty(&hsotg->free_hc_list))
			break;
		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
950 951 952 953 954 955 956 957
		if (hsotg->core_params->uframe_sched > 0) {
			if (hsotg->available_host_channels < 1)
				break;
			hsotg->available_host_channels--;
		}

		if (dwc2_assign_and_init_hc(hsotg, qh))
			break;
958 959 960 961 962 963 964 965 966 967 968 969 970 971

		/*
		 * Move the QH from the non-periodic inactive schedule to the
		 * non-periodic active schedule
		 */
		qh_ptr = qh_ptr->next;
		list_move(&qh->qh_list_entry,
			  &hsotg->non_periodic_sched_active);

		if (ret_val == DWC2_TRANSACTION_NONE)
			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
		else
			ret_val = DWC2_TRANSACTION_ALL;

972 973
		if (hsotg->core_params->uframe_sched <= 0)
			hsotg->non_periodic_channels++;
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	}

	return ret_val;
}

/**
 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
 * a host channel associated with either a periodic or non-periodic transfer
 *
 * @hsotg: The HCD state structure
 * @chan:  Host channel descriptor associated with either a periodic or
 *         non-periodic transfer
 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
 *                     for periodic transfers or the non-periodic Tx FIFO
 *                     for non-periodic transfers
 *
 * Return: 1 if a request is queued and more requests may be needed to
 * complete the transfer, 0 if no more requests are required for this
 * transfer, -1 if there is insufficient space in the Tx FIFO
 *
 * This function assumes that there is space available in the appropriate
 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
 * it checks whether space is available in the appropriate Tx FIFO.
 *
 * Must be called with interrupt disabled and spinlock held
 */
static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
				  struct dwc2_host_chan *chan,
				  u16 fifo_dwords_avail)
{
	int retval = 0;

	if (hsotg->core_params->dma_enable > 0) {
		if (hsotg->core_params->dma_desc_enable > 0) {
			if (!chan->xfer_started ||
			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
				chan->qh->ping_state = 0;
			}
		} else if (!chan->xfer_started) {
			dwc2_hc_start_transfer(hsotg, chan);
			chan->qh->ping_state = 0;
		}
	} else if (chan->halt_pending) {
		/* Don't queue a request if the channel has been halted */
	} else if (chan->halt_on_queue) {
		dwc2_hc_halt(hsotg, chan, chan->halt_status);
	} else if (chan->do_ping) {
		if (!chan->xfer_started)
			dwc2_hc_start_transfer(hsotg, chan);
	} else if (!chan->ep_is_in ||
		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
			if (!chan->xfer_started) {
				dwc2_hc_start_transfer(hsotg, chan);
				retval = 1;
			} else {
				retval = dwc2_hc_continue_transfer(hsotg, chan);
			}
		} else {
			retval = -1;
		}
	} else {
		if (!chan->xfer_started) {
			dwc2_hc_start_transfer(hsotg, chan);
			retval = 1;
		} else {
			retval = dwc2_hc_continue_transfer(hsotg, chan);
		}
	}

	return retval;
}

/*
 * Processes periodic channels for the next frame and queues transactions for
 * these channels to the DWC_otg controller. After queueing transactions, the
 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
 * to queue as Periodic Tx FIFO or request queue space becomes available.
 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
 *
 * Must be called with interrupt disabled and spinlock held
 */
static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
{
	struct list_head *qh_ptr;
	struct dwc2_qh *qh;
	u32 tx_status;
	u32 fspcavail;
	u32 gintmsk;
	int status;
	int no_queue_space = 0;
	int no_fifo_space = 0;
	u32 qspcavail;

1069 1070
	if (dbg_perio())
		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
1071 1072

	tx_status = readl(hsotg->regs + HPTXSTS);
1073 1074 1075 1076
	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
		    TXSTS_QSPCAVAIL_SHIFT;
	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
		    TXSTS_FSPCAVAIL_SHIFT;
1077 1078 1079 1080 1081 1082 1083

	if (dbg_perio()) {
		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
			 qspcavail);
		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
			 fspcavail);
	}
1084 1085 1086 1087

	qh_ptr = hsotg->periodic_sched_assigned.next;
	while (qh_ptr != &hsotg->periodic_sched_assigned) {
		tx_status = readl(hsotg->regs + HPTXSTS);
1088 1089 1090
		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
			    TXSTS_QSPCAVAIL_SHIFT;
		if (qspcavail == 0) {
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
			no_queue_space = 1;
			break;
		}

		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
		if (!qh->channel) {
			qh_ptr = qh_ptr->next;
			continue;
		}

		/* Make sure EP's TT buffer is clean before queueing qtds */
		if (qh->tt_buffer_dirty) {
			qh_ptr = qh_ptr->next;
			continue;
		}

		/*
		 * Set a flag if we're queuing high-bandwidth in slave mode.
		 * The flag prevents any halts to get into the request queue in
		 * the middle of multiple high-bandwidth packets getting queued.
		 */
		if (hsotg->core_params->dma_enable <= 0 &&
				qh->channel->multi_count > 1)
			hsotg->queuing_high_bandwidth = 1;

1116 1117
		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
			    TXSTS_FSPCAVAIL_SHIFT;
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
		if (status < 0) {
			no_fifo_space = 1;
			break;
		}

		/*
		 * In Slave mode, stay on the current transfer until there is
		 * nothing more to do or the high-bandwidth request count is
		 * reached. In DMA mode, only need to queue one request. The
		 * controller automatically handles multiple packets for
		 * high-bandwidth transfers.
		 */
		if (hsotg->core_params->dma_enable > 0 || status == 0 ||
		    qh->channel->requests == qh->channel->multi_count) {
			qh_ptr = qh_ptr->next;
			/*
			 * Move the QH from the periodic assigned schedule to
			 * the periodic queued schedule
			 */
			list_move(&qh->qh_list_entry,
				  &hsotg->periodic_sched_queued);

			/* done queuing high bandwidth */
			hsotg->queuing_high_bandwidth = 0;
		}
	}

	if (hsotg->core_params->dma_enable <= 0) {
		tx_status = readl(hsotg->regs + HPTXSTS);
1148 1149 1150 1151
		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
			    TXSTS_QSPCAVAIL_SHIFT;
		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
			    TXSTS_FSPCAVAIL_SHIFT;
1152 1153 1154 1155 1156 1157 1158 1159
		if (dbg_perio()) {
			dev_vdbg(hsotg->dev,
				 "  P Tx Req Queue Space Avail (after queue): %d\n",
				 qspcavail);
			dev_vdbg(hsotg->dev,
				 "  P Tx FIFO Space Avail (after queue): %d\n",
				 fspcavail);
		}
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

		if (!list_empty(&hsotg->periodic_sched_assigned) ||
		    no_queue_space || no_fifo_space) {
			/*
			 * May need to queue more transactions as the request
			 * queue or Tx FIFO empties. Enable the periodic Tx
			 * FIFO empty interrupt. (Always use the half-empty
			 * level to ensure that new requests are loaded as
			 * soon as possible.)
			 */
			gintmsk = readl(hsotg->regs + GINTMSK);
			gintmsk |= GINTSTS_PTXFEMP;
			writel(gintmsk, hsotg->regs + GINTMSK);
		} else {
			/*
			 * Disable the Tx FIFO empty interrupt since there are
			 * no more transactions that need to be queued right
			 * now. This function is called from interrupt
			 * handlers to queue more transactions as transfer
			 * states change.
			 */
			gintmsk = readl(hsotg->regs + GINTMSK);
			gintmsk &= ~GINTSTS_PTXFEMP;
			writel(gintmsk, hsotg->regs + GINTMSK);
		}
	}
}

/*
 * Processes active non-periodic channels and queues transactions for these
 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
 * FIFO Empty interrupt is enabled if there are more transactions to queue as
 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
 * FIFO Empty interrupt is disabled.
 *
 * Must be called with interrupt disabled and spinlock held
 */
static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
{
	struct list_head *orig_qh_ptr;
	struct dwc2_qh *qh;
	u32 tx_status;
	u32 qspcavail;
	u32 fspcavail;
	u32 gintmsk;
	int status;
	int no_queue_space = 0;
	int no_fifo_space = 0;
	int more_to_do = 0;

	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");

	tx_status = readl(hsotg->regs + GNPTXSTS);
1213 1214 1215 1216
	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
		    TXSTS_QSPCAVAIL_SHIFT;
	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
		    TXSTS_FSPCAVAIL_SHIFT;
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
		 qspcavail);
	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
		 fspcavail);

	/*
	 * Keep track of the starting point. Skip over the start-of-list
	 * entry.
	 */
	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
	orig_qh_ptr = hsotg->non_periodic_qh_ptr;

	/*
	 * Process once through the active list or until no more space is
	 * available in the request queue or the Tx FIFO
	 */
	do {
		tx_status = readl(hsotg->regs + GNPTXSTS);
1236 1237
		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
			    TXSTS_QSPCAVAIL_SHIFT;
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
		if (hsotg->core_params->dma_enable <= 0 && qspcavail == 0) {
			no_queue_space = 1;
			break;
		}

		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
				qh_list_entry);
		if (!qh->channel)
			goto next;

		/* Make sure EP's TT buffer is clean before queueing qtds */
		if (qh->tt_buffer_dirty)
			goto next;

1252 1253
		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
			    TXSTS_FSPCAVAIL_SHIFT;
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);

		if (status > 0) {
			more_to_do = 1;
		} else if (status < 0) {
			no_fifo_space = 1;
			break;
		}
next:
		/* Advance to next QH, skipping start-of-list entry */
		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
		if (hsotg->non_periodic_qh_ptr ==
				&hsotg->non_periodic_sched_active)
			hsotg->non_periodic_qh_ptr =
					hsotg->non_periodic_qh_ptr->next;
	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);

	if (hsotg->core_params->dma_enable <= 0) {
		tx_status = readl(hsotg->regs + GNPTXSTS);
1273 1274 1275 1276
		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
			    TXSTS_QSPCAVAIL_SHIFT;
		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
			    TXSTS_FSPCAVAIL_SHIFT;
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
		dev_vdbg(hsotg->dev,
			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
			 qspcavail);
		dev_vdbg(hsotg->dev,
			 "  NP Tx FIFO Space Avail (after queue): %d\n",
			 fspcavail);

		if (more_to_do || no_queue_space || no_fifo_space) {
			/*
			 * May need to queue more transactions as the request
			 * queue or Tx FIFO empties. Enable the non-periodic
			 * Tx FIFO empty interrupt. (Always use the half-empty
			 * level to ensure that new requests are loaded as
			 * soon as possible.)
			 */
			gintmsk = readl(hsotg->regs + GINTMSK);
			gintmsk |= GINTSTS_NPTXFEMP;
			writel(gintmsk, hsotg->regs + GINTMSK);
		} else {
			/*
			 * Disable the Tx FIFO empty interrupt since there are
			 * no more transactions that need to be queued right
			 * now. This function is called from interrupt
			 * handlers to queue more transactions as transfer
			 * states change.
			 */
			gintmsk = readl(hsotg->regs + GINTMSK);
			gintmsk &= ~GINTSTS_NPTXFEMP;
			writel(gintmsk, hsotg->regs + GINTMSK);
		}
	}
}

/**
 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
 * and queues transactions for these channels to the DWC_otg controller. Called
 * from the HCD interrupt handler functions.
 *
 * @hsotg:   The HCD state structure
 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
 *           or both)
 *
 * Must be called with interrupt disabled and spinlock held
 */
void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
				 enum dwc2_transaction_type tr_type)
{
#ifdef DWC2_DEBUG_SOF
	dev_vdbg(hsotg->dev, "Queue Transactions\n");
#endif
	/* Process host channels associated with periodic transfers */
	if ((tr_type == DWC2_TRANSACTION_PERIODIC ||
	     tr_type == DWC2_TRANSACTION_ALL) &&
	    !list_empty(&hsotg->periodic_sched_assigned))
		dwc2_process_periodic_channels(hsotg);

	/* Process host channels associated with non-periodic transfers */
	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
	    tr_type == DWC2_TRANSACTION_ALL) {
		if (!list_empty(&hsotg->non_periodic_sched_active)) {
			dwc2_process_non_periodic_channels(hsotg);
		} else {
			/*
			 * Ensure NP Tx FIFO empty interrupt is disabled when
			 * there are no non-periodic transfers to process
			 */
			u32 gintmsk = readl(hsotg->regs + GINTMSK);

			gintmsk &= ~GINTSTS_NPTXFEMP;
			writel(gintmsk, hsotg->regs + GINTMSK);
		}
	}
}

static void dwc2_conn_id_status_change(struct work_struct *work)
{
	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
						wf_otg);
	u32 count = 0;
	u32 gotgctl;

	dev_dbg(hsotg->dev, "%s()\n", __func__);

	gotgctl = readl(hsotg->regs + GOTGCTL);
	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
		!!(gotgctl & GOTGCTL_CONID_B));

	/* B-Device connector (Device Mode) */
	if (gotgctl & GOTGCTL_CONID_B) {
		/* Wait for switch to device mode */
		dev_dbg(hsotg->dev, "connId B\n");
		while (!dwc2_is_device_mode(hsotg)) {
			dev_info(hsotg->dev,
				 "Waiting for Peripheral Mode, Mode=%s\n",
				 dwc2_is_host_mode(hsotg) ? "Host" :
				 "Peripheral");
			usleep_range(20000, 40000);
			if (++count > 250)
				break;
		}
		if (count > 250)
			dev_err(hsotg->dev,
1380
				"Connection id status change timed out\n");
1381
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
1382
		dwc2_core_init(hsotg, false, -1);
1383
		dwc2_enable_global_interrupts(hsotg);
1384
		s3c_hsotg_core_init_disconnected(hsotg, false);
1385
		s3c_hsotg_core_connect(hsotg);
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	} else {
		/* A-Device connector (Host Mode) */
		dev_dbg(hsotg->dev, "connId A\n");
		while (!dwc2_is_host_mode(hsotg)) {
			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
				 dwc2_is_host_mode(hsotg) ?
				 "Host" : "Peripheral");
			usleep_range(20000, 40000);
			if (++count > 250)
				break;
		}
		if (count > 250)
			dev_err(hsotg->dev,
1399
				"Connection id status change timed out\n");
1400 1401 1402
		hsotg->op_state = OTG_STATE_A_HOST;

		/* Initialize the Core for Host mode */
1403
		dwc2_core_init(hsotg, false, -1);
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
		dwc2_enable_global_interrupts(hsotg);
		dwc2_hcd_start(hsotg);
	}
}

static void dwc2_wakeup_detected(unsigned long data)
{
	struct dwc2_hsotg *hsotg = (struct dwc2_hsotg *)data;
	u32 hprt0;

	dev_dbg(hsotg->dev, "%s()\n", __func__);

	/*
	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
	 * so that OPT tests pass with all PHYs.)
	 */
	hprt0 = dwc2_read_hprt0(hsotg);
	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
	hprt0 &= ~HPRT0_RES;
	writel(hprt0, hsotg->regs + HPRT0);
	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
		readl(hsotg->regs + HPRT0));

	dwc2_hcd_rem_wakeup(hsotg);

	/* Change to L0 state */
	hsotg->lx_state = DWC2_L0;
}

static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
{
	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);

	return hcd->self.b_hnp_enable;
}

/* Must NOT be called with interrupt disabled or spinlock held */
static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
{
	unsigned long flags;
	u32 hprt0;
	u32 pcgctl;
	u32 gotgctl;

	dev_dbg(hsotg->dev, "%s()\n", __func__);

	spin_lock_irqsave(&hsotg->lock, flags);

	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
		gotgctl = readl(hsotg->regs + GOTGCTL);
		gotgctl |= GOTGCTL_HSTSETHNPEN;
		writel(gotgctl, hsotg->regs + GOTGCTL);
		hsotg->op_state = OTG_STATE_A_SUSPEND;
	}

	hprt0 = dwc2_read_hprt0(hsotg);
	hprt0 |= HPRT0_SUSP;
	writel(hprt0, hsotg->regs + HPRT0);

	/* Update lx_state */
	hsotg->lx_state = DWC2_L2;

	/* Suspend the Phy Clock */
	pcgctl = readl(hsotg->regs + PCGCTL);
	pcgctl |= PCGCTL_STOPPCLK;
	writel(pcgctl, hsotg->regs + PCGCTL);
	udelay(10);

	/* For HNP the bus must be suspended for at least 200ms */
	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
		pcgctl = readl(hsotg->regs + PCGCTL);
		pcgctl &= ~PCGCTL_STOPPCLK;
		writel(pcgctl, hsotg->regs + PCGCTL);

		spin_unlock_irqrestore(&hsotg->lock, flags);

		usleep_range(200000, 250000);
	} else {
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
}

/* Handles hub class-specific requests */
static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
				u16 wvalue, u16 windex, char *buf, u16 wlength)
{
	struct usb_hub_descriptor *hub_desc;
	int retval = 0;
	u32 hprt0;
	u32 port_status;
	u32 speed;
	u32 pcgctl;

	switch (typereq) {
	case ClearHubFeature:
		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);

		switch (wvalue) {
		case C_HUB_LOCAL_POWER:
		case C_HUB_OVER_CURRENT:
			/* Nothing required here */
			break;

		default:
			retval = -EINVAL;
			dev_err(hsotg->dev,
				"ClearHubFeature request %1xh unknown\n",
				wvalue);
		}
		break;

	case ClearPortFeature:
		if (wvalue != USB_PORT_FEAT_L1)
			if (!windex || windex > 1)
				goto error;
		switch (wvalue) {
		case USB_PORT_FEAT_ENABLE:
			dev_dbg(hsotg->dev,
				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
			hprt0 = dwc2_read_hprt0(hsotg);
			hprt0 |= HPRT0_ENA;
			writel(hprt0, hsotg->regs + HPRT0);
			break;

		case USB_PORT_FEAT_SUSPEND:
			dev_dbg(hsotg->dev,
				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
1531
			writel(0, hsotg->regs + PCGCTL);
1532
			msleep(USB_RESUME_TIMEOUT);
1533 1534 1535 1536 1537 1538 1539 1540 1541

			hprt0 = dwc2_read_hprt0(hsotg);
			hprt0 |= HPRT0_RES;
			writel(hprt0, hsotg->regs + HPRT0);
			hprt0 &= ~HPRT0_SUSP;
			usleep_range(100000, 150000);

			hprt0 &= ~HPRT0_RES;
			writel(hprt0, hsotg->regs + HPRT0);
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
			break;

		case USB_PORT_FEAT_POWER:
			dev_dbg(hsotg->dev,
				"ClearPortFeature USB_PORT_FEAT_POWER\n");
			hprt0 = dwc2_read_hprt0(hsotg);
			hprt0 &= ~HPRT0_PWR;
			writel(hprt0, hsotg->regs + HPRT0);
			break;

		case USB_PORT_FEAT_INDICATOR:
			dev_dbg(hsotg->dev,
				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
			/* Port indicator not supported */
			break;

		case USB_PORT_FEAT_C_CONNECTION:
			/*
			 * Clears driver's internal Connect Status Change flag
			 */
			dev_dbg(hsotg->dev,
				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
			hsotg->flags.b.port_connect_status_change = 0;
			break;

		case USB_PORT_FEAT_C_RESET:
			/* Clears driver's internal Port Reset Change flag */
			dev_dbg(hsotg->dev,
				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
			hsotg->flags.b.port_reset_change = 0;
			break;

		case USB_PORT_FEAT_C_ENABLE:
			/*
			 * Clears the driver's internal Port Enable/Disable
			 * Change flag
			 */
			dev_dbg(hsotg->dev,
				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
			hsotg->flags.b.port_enable_change = 0;
			break;

		case USB_PORT_FEAT_C_SUSPEND:
			/*
			 * Clears the driver's internal Port Suspend Change
			 * flag, which is set when resume signaling on the host
			 * port is complete
			 */
			dev_dbg(hsotg->dev,
				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
			hsotg->flags.b.port_suspend_change = 0;
			break;

		case USB_PORT_FEAT_C_PORT_L1:
			dev_dbg(hsotg->dev,
				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
			hsotg->flags.b.port_l1_change = 0;
			break;

		case USB_PORT_FEAT_C_OVER_CURRENT:
			dev_dbg(hsotg->dev,
				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
			hsotg->flags.b.port_over_current_change = 0;
			break;

		default:
			retval = -EINVAL;
			dev_err(hsotg->dev,
				"ClearPortFeature request %1xh unknown or unsupported\n",
				wvalue);
		}
		break;

	case GetHubDescriptor:
		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
		hub_desc = (struct usb_hub_descriptor *)buf;
		hub_desc->bDescLength = 9;
S
Sergei Shtylyov 已提交
1619
		hub_desc->bDescriptorType = USB_DT_HUB;
1620
		hub_desc->bNbrPorts = 1;
S
Sergei Shtylyov 已提交
1621 1622 1623
		hub_desc->wHubCharacteristics =
			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
				    HUB_CHAR_INDV_PORT_OCPM);
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
		hub_desc->bPwrOn2PwrGood = 1;
		hub_desc->bHubContrCurrent = 0;
		hub_desc->u.hs.DeviceRemovable[0] = 0;
		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
		break;

	case GetHubStatus:
		dev_dbg(hsotg->dev, "GetHubStatus\n");
		memset(buf, 0, 4);
		break;

	case GetPortStatus:
1636 1637 1638
		dev_vdbg(hsotg->dev,
			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
			 hsotg->flags.d32);
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
		if (!windex || windex > 1)
			goto error;

		port_status = 0;
		if (hsotg->flags.b.port_connect_status_change)
			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
		if (hsotg->flags.b.port_enable_change)
			port_status |= USB_PORT_STAT_C_ENABLE << 16;
		if (hsotg->flags.b.port_suspend_change)
			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
		if (hsotg->flags.b.port_l1_change)
			port_status |= USB_PORT_STAT_C_L1 << 16;
		if (hsotg->flags.b.port_reset_change)
			port_status |= USB_PORT_STAT_C_RESET << 16;
		if (hsotg->flags.b.port_over_current_change) {
			dev_warn(hsotg->dev, "Overcurrent change detected\n");
			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
		}

		if (!hsotg->flags.b.port_connect_status) {
			/*
			 * The port is disconnected, which means the core is
			 * either in device mode or it soon will be. Just
			 * return 0's for the remainder of the port status
			 * since the port register can't be read if the core
			 * is in device mode.
			 */
			*(__le32 *)buf = cpu_to_le32(port_status);
			break;
		}

		hprt0 = readl(hsotg->regs + HPRT0);
1671
		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685

		if (hprt0 & HPRT0_CONNSTS)
			port_status |= USB_PORT_STAT_CONNECTION;
		if (hprt0 & HPRT0_ENA)
			port_status |= USB_PORT_STAT_ENABLE;
		if (hprt0 & HPRT0_SUSP)
			port_status |= USB_PORT_STAT_SUSPEND;
		if (hprt0 & HPRT0_OVRCURRACT)
			port_status |= USB_PORT_STAT_OVERCURRENT;
		if (hprt0 & HPRT0_RST)
			port_status |= USB_PORT_STAT_RESET;
		if (hprt0 & HPRT0_PWR)
			port_status |= USB_PORT_STAT_POWER;

1686
		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1687 1688 1689 1690 1691 1692 1693 1694 1695
		if (speed == HPRT0_SPD_HIGH_SPEED)
			port_status |= USB_PORT_STAT_HIGH_SPEED;
		else if (speed == HPRT0_SPD_LOW_SPEED)
			port_status |= USB_PORT_STAT_LOW_SPEED;

		if (hprt0 & HPRT0_TSTCTL_MASK)
			port_status |= USB_PORT_STAT_TEST;
		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */

1696
		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
		*(__le32 *)buf = cpu_to_le32(port_status);
		break;

	case SetHubFeature:
		dev_dbg(hsotg->dev, "SetHubFeature\n");
		/* No HUB features supported */
		break;

	case SetPortFeature:
		dev_dbg(hsotg->dev, "SetPortFeature\n");
		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
			goto error;

		if (!hsotg->flags.b.port_connect_status) {
			/*
			 * The port is disconnected, which means the core is
			 * either in device mode or it soon will be. Just
			 * return without doing anything since the port
			 * register can't be written if the core is in device
			 * mode.
			 */
			break;
		}

		switch (wvalue) {
		case USB_PORT_FEAT_SUSPEND:
			dev_dbg(hsotg->dev,
				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
			if (windex != hsotg->otg_port)
				goto error;
			dwc2_port_suspend(hsotg, windex);
			break;

		case USB_PORT_FEAT_POWER:
			dev_dbg(hsotg->dev,
				"SetPortFeature - USB_PORT_FEAT_POWER\n");
			hprt0 = dwc2_read_hprt0(hsotg);
			hprt0 |= HPRT0_PWR;
			writel(hprt0, hsotg->regs + HPRT0);
			break;

		case USB_PORT_FEAT_RESET:
			hprt0 = dwc2_read_hprt0(hsotg);
			dev_dbg(hsotg->dev,
				"SetPortFeature - USB_PORT_FEAT_RESET\n");
			pcgctl = readl(hsotg->regs + PCGCTL);
			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
			writel(pcgctl, hsotg->regs + PCGCTL);
			/* ??? Original driver does this */
			writel(0, hsotg->regs + PCGCTL);

			hprt0 = dwc2_read_hprt0(hsotg);
			/* Clear suspend bit if resetting from suspend state */
			hprt0 &= ~HPRT0_SUSP;

			/*
			 * When B-Host the Port reset bit is set in the Start
			 * HCD Callback function, so that the reset is started
			 * within 1ms of the HNP success interrupt
			 */
			if (!dwc2_hcd_is_b_host(hsotg)) {
				hprt0 |= HPRT0_PWR | HPRT0_RST;
				dev_dbg(hsotg->dev,
					"In host mode, hprt0=%08x\n", hprt0);
				writel(hprt0, hsotg->regs + HPRT0);
			}

			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
			usleep_range(50000, 70000);
			hprt0 &= ~HPRT0_RST;
			writel(hprt0, hsotg->regs + HPRT0);
			hsotg->lx_state = DWC2_L0; /* Now back to On state */
			break;

		case USB_PORT_FEAT_INDICATOR:
			dev_dbg(hsotg->dev,
				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
			/* Not supported */
			break;

		default:
			retval = -EINVAL;
			dev_err(hsotg->dev,
				"SetPortFeature %1xh unknown or unsupported\n",
				wvalue);
			break;
		}
		break;

	default:
error:
		retval = -EINVAL;
		dev_dbg(hsotg->dev,
			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
			typereq, windex, wvalue);
		break;
	}

	return retval;
}

static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
{
	int retval;

	if (port != 1)
		return -EINVAL;

	retval = (hsotg->flags.b.port_connect_status_change ||
		  hsotg->flags.b.port_reset_change ||
		  hsotg->flags.b.port_enable_change ||
		  hsotg->flags.b.port_suspend_change ||
		  hsotg->flags.b.port_over_current_change);

	if (retval) {
		dev_dbg(hsotg->dev,
			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
			hsotg->flags.b.port_connect_status_change);
		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
			hsotg->flags.b.port_reset_change);
		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
			hsotg->flags.b.port_enable_change);
		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
			hsotg->flags.b.port_suspend_change);
		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
			hsotg->flags.b.port_over_current_change);
	}

	return retval;
}

int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
{
	u32 hfnum = readl(hsotg->regs + HFNUM);

#ifdef DWC2_DEBUG_SOF
	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
1835
		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
1836
#endif
1837
	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
1838 1839 1840 1841
}

int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
{
1842
	return hsotg->op_state == OTG_STATE_B_HOST;
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
}

static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
					       int iso_desc_count,
					       gfp_t mem_flags)
{
	struct dwc2_hcd_urb *urb;
	u32 size = sizeof(*urb) + iso_desc_count *
		   sizeof(struct dwc2_hcd_iso_packet_desc);

	urb = kzalloc(size, mem_flags);
	if (urb)
		urb->packet_count = iso_desc_count;
	return urb;
}

static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
				      struct dwc2_hcd_urb *urb, u8 dev_addr,
				      u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
{
1863 1864 1865 1866 1867 1868
	if (dbg_perio() ||
	    ep_type == USB_ENDPOINT_XFER_BULK ||
	    ep_type == USB_ENDPOINT_XFER_CONTROL)
		dev_vdbg(hsotg->dev,
			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
			 dev_addr, ep_num, ep_dir, ep_type, mps);
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	urb->pipe_info.dev_addr = dev_addr;
	urb->pipe_info.ep_num = ep_num;
	urb->pipe_info.pipe_type = ep_type;
	urb->pipe_info.pipe_dir = ep_dir;
	urb->pipe_info.mps = mps;
}

/*
 * NOTE: This function will be removed once the peripheral controller code
 * is integrated and the driver is stable
 */
void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
{
#ifdef DEBUG
	struct dwc2_host_chan *chan;
	struct dwc2_hcd_urb *urb;
	struct dwc2_qtd *qtd;
	int num_channels;
	u32 np_tx_status;
	u32 p_tx_status;
	int i;

	num_channels = hsotg->core_params->host_channels;
	dev_dbg(hsotg->dev, "\n");
	dev_dbg(hsotg->dev,
		"************************************************************\n");
	dev_dbg(hsotg->dev, "HCD State:\n");
	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);

	for (i = 0; i < num_channels; i++) {
		chan = hsotg->hc_ptr_array[i];
		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
		dev_dbg(hsotg->dev,
			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
			chan->dev_addr, chan->ep_num, chan->ep_is_in);
		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
			chan->data_pid_start);
		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
			chan->xfer_started);
		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
			(unsigned long)chan->xfer_dma);
		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
			chan->halt_on_queue);
		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
			chan->halt_pending);
		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
		dev_dbg(hsotg->dev, "    complete_split: %d\n",
			chan->complete_split);
		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);

		if (chan->xfer_started) {
			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;

			hfnum = readl(hsotg->regs + HFNUM);
			hcchar = readl(hsotg->regs + HCCHAR(i));
			hctsiz = readl(hsotg->regs + HCTSIZ(i));
			hcint = readl(hsotg->regs + HCINT(i));
			hcintmsk = readl(hsotg->regs + HCINTMSK(i));
			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
		}

		if (!(chan->xfer_started && chan->qh))
			continue;

		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
			if (!qtd->in_process)
				break;
			urb = qtd->urb;
			dev_dbg(hsotg->dev, "    URB Info:\n");
			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
				qtd, urb);
			if (urb) {
				dev_dbg(hsotg->dev,
					"      Dev: %d, EP: %d %s\n",
					dwc2_hcd_get_dev_addr(&urb->pipe_info),
					dwc2_hcd_get_ep_num(&urb->pipe_info),
					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
					"IN" : "OUT");
				dev_dbg(hsotg->dev,
					"      Max packet size: %d\n",
					dwc2_hcd_get_mps(&urb->pipe_info));
				dev_dbg(hsotg->dev,
					"      transfer_buffer: %p\n",
					urb->buf);
1969 1970 1971
				dev_dbg(hsotg->dev,
					"      transfer_dma: %08lx\n",
					(unsigned long)urb->dma);
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
				dev_dbg(hsotg->dev,
					"      transfer_buffer_length: %d\n",
					urb->length);
				dev_dbg(hsotg->dev, "      actual_length: %d\n",
					urb->actual_length);
			}
		}
	}

	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
		hsotg->non_periodic_channels);
	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
		hsotg->periodic_channels);
	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
	np_tx_status = readl(hsotg->regs + GNPTXSTS);
	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
1988
		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
1989
	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
1990
		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
1991 1992
	p_tx_status = readl(hsotg->regs + HPTXSTS);
	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
1993
		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
1994
	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
1995
		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
	dwc2_hcd_dump_frrem(hsotg);
	dwc2_dump_global_registers(hsotg);
	dwc2_dump_host_registers(hsotg);
	dev_dbg(hsotg->dev,
		"************************************************************\n");
	dev_dbg(hsotg->dev, "\n");
#endif
}

/*
 * NOTE: This function will be removed once the peripheral controller code
 * is integrated and the driver is stable
 */
void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg)
{
#ifdef DWC2_DUMP_FRREM
	dev_dbg(hsotg->dev, "Frame remaining at SOF:\n");
	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
		hsotg->frrem_samples, hsotg->frrem_accum,
		hsotg->frrem_samples > 0 ?
		hsotg->frrem_accum / hsotg->frrem_samples : 0);
	dev_dbg(hsotg->dev, "\n");
	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 7):\n");
	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
		hsotg->hfnum_7_samples,
		hsotg->hfnum_7_frrem_accum,
		hsotg->hfnum_7_samples > 0 ?
		hsotg->hfnum_7_frrem_accum / hsotg->hfnum_7_samples : 0);
	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 0):\n");
	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
		hsotg->hfnum_0_samples,
		hsotg->hfnum_0_frrem_accum,
		hsotg->hfnum_0_samples > 0 ?
		hsotg->hfnum_0_frrem_accum / hsotg->hfnum_0_samples : 0);
	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 1-6):\n");
	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
		hsotg->hfnum_other_samples,
		hsotg->hfnum_other_frrem_accum,
		hsotg->hfnum_other_samples > 0 ?
		hsotg->hfnum_other_frrem_accum / hsotg->hfnum_other_samples :
		0);
	dev_dbg(hsotg->dev, "\n");
	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 7):\n");
	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
		hsotg->hfnum_7_samples_a, hsotg->hfnum_7_frrem_accum_a,
		hsotg->hfnum_7_samples_a > 0 ?
		hsotg->hfnum_7_frrem_accum_a / hsotg->hfnum_7_samples_a : 0);
	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 0):\n");
	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
		hsotg->hfnum_0_samples_a, hsotg->hfnum_0_frrem_accum_a,
		hsotg->hfnum_0_samples_a > 0 ?
		hsotg->hfnum_0_frrem_accum_a / hsotg->hfnum_0_samples_a : 0);
	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 1-6):\n");
	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
		hsotg->hfnum_other_samples_a, hsotg->hfnum_other_frrem_accum_a,
		hsotg->hfnum_other_samples_a > 0 ?
		hsotg->hfnum_other_frrem_accum_a / hsotg->hfnum_other_samples_a
		: 0);
	dev_dbg(hsotg->dev, "\n");
	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 7):\n");
	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
		hsotg->hfnum_7_samples_b, hsotg->hfnum_7_frrem_accum_b,
		hsotg->hfnum_7_samples_b > 0 ?
		hsotg->hfnum_7_frrem_accum_b / hsotg->hfnum_7_samples_b : 0);
	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 0):\n");
	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
		hsotg->hfnum_0_samples_b, hsotg->hfnum_0_frrem_accum_b,
		(hsotg->hfnum_0_samples_b > 0) ?
		hsotg->hfnum_0_frrem_accum_b / hsotg->hfnum_0_samples_b : 0);
	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 1-6):\n");
	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
		hsotg->hfnum_other_samples_b, hsotg->hfnum_other_frrem_accum_b,
		(hsotg->hfnum_other_samples_b > 0) ?
		hsotg->hfnum_other_frrem_accum_b / hsotg->hfnum_other_samples_b
		: 0);
#endif
}

struct wrapper_priv_data {
	struct dwc2_hsotg *hsotg;
};

/* Gets the dwc2_hsotg from a usb_hcd */
static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
{
	struct wrapper_priv_data *p;

	p = (struct wrapper_priv_data *) &hcd->hcd_priv;
	return p->hsotg;
}

static int _dwc2_hcd_start(struct usb_hcd *hcd);

void dwc2_host_start(struct dwc2_hsotg *hsotg)
{
	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);

	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
	_dwc2_hcd_start(hcd);
}

void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
{
	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);

	hcd->self.is_b_host = 0;
}

void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context, int *hub_addr,
			int *hub_port)
{
	struct urb *urb = context;

	if (urb->dev->tt)
		*hub_addr = urb->dev->tt->hub->devnum;
	else
		*hub_addr = 0;
	*hub_port = urb->dev->ttport;
}

int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
{
	struct urb *urb = context;

	return urb->dev->speed;
}

static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
					struct urb *urb)
{
	struct usb_bus *bus = hcd_to_bus(hcd);

	if (urb->interval)
		bus->bandwidth_allocated += bw / urb->interval;
	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
		bus->bandwidth_isoc_reqs++;
	else
		bus->bandwidth_int_reqs++;
}

static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
				    struct urb *urb)
{
	struct usb_bus *bus = hcd_to_bus(hcd);

	if (urb->interval)
		bus->bandwidth_allocated -= bw / urb->interval;
	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
		bus->bandwidth_isoc_reqs--;
	else
		bus->bandwidth_int_reqs--;
}

/*
 * Sets the final status of an URB and returns it to the upper layer. Any
 * required cleanup of the URB is performed.
 *
 * Must be called with interrupt disabled and spinlock held
 */
2155 2156
void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
			int status)
2157
{
2158
	struct urb *urb;
2159 2160
	int i;

2161 2162
	if (!qtd) {
		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
2163 2164 2165
		return;
	}

2166 2167
	if (!qtd->urb) {
		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
2168 2169 2170
		return;
	}

2171 2172 2173 2174 2175 2176 2177
	urb = qtd->urb->priv;
	if (!urb) {
		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
		return;
	}

	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
2178

2179 2180 2181 2182 2183 2184 2185
	if (dbg_urb(urb))
		dev_vdbg(hsotg->dev,
			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
			 __func__, urb, usb_pipedevice(urb->pipe),
			 usb_pipeendpoint(urb->pipe),
			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
			 urb->actual_length);
2186

2187
	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
2188 2189 2190 2191 2192 2193
		for (i = 0; i < urb->number_of_packets; i++)
			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
				 i, urb->iso_frame_desc[i].status);
	}

	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
2194
		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
2195 2196 2197
		for (i = 0; i < urb->number_of_packets; ++i) {
			urb->iso_frame_desc[i].actual_length =
				dwc2_hcd_urb_get_iso_desc_actual_length(
2198
						qtd->urb, i);
2199
			urb->iso_frame_desc[i].status =
2200
				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
		}
	}

	urb->status = status;
	if (!status) {
		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
		    urb->actual_length < urb->transfer_buffer_length)
			urb->status = -EREMOTEIO;
	}

	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
		struct usb_host_endpoint *ep = urb->ep;

		if (ep)
			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
					urb);
	}

2221
	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
2222 2223 2224
	urb->hcpriv = NULL;
	kfree(qtd->urb);
	qtd->urb = NULL;
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380

	spin_unlock(&hsotg->lock);
	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
	spin_lock(&hsotg->lock);
}

/*
 * Work queue function for starting the HCD when A-Cable is connected
 */
static void dwc2_hcd_start_func(struct work_struct *work)
{
	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
						start_work.work);

	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
	dwc2_host_start(hsotg);
}

/*
 * Reset work queue function
 */
static void dwc2_hcd_reset_func(struct work_struct *work)
{
	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
						reset_work.work);
	u32 hprt0;

	dev_dbg(hsotg->dev, "USB RESET function called\n");
	hprt0 = dwc2_read_hprt0(hsotg);
	hprt0 &= ~HPRT0_RST;
	writel(hprt0, hsotg->regs + HPRT0);
	hsotg->flags.b.port_reset_change = 1;
}

/*
 * =========================================================================
 *  Linux HC Driver Functions
 * =========================================================================
 */

/*
 * Initializes the DWC_otg controller and its root hub and prepares it for host
 * mode operation. Activates the root port. Returns 0 on success and a negative
 * error code on failure.
 */
static int _dwc2_hcd_start(struct usb_hcd *hcd)
{
	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
	struct usb_bus *bus = hcd_to_bus(hcd);
	unsigned long flags;

	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");

	spin_lock_irqsave(&hsotg->lock, flags);

	hcd->state = HC_STATE_RUNNING;

	if (dwc2_is_device_mode(hsotg)) {
		spin_unlock_irqrestore(&hsotg->lock, flags);
		return 0;	/* why 0 ?? */
	}

	dwc2_hcd_reinit(hsotg);

	/* Initialize and connect root hub if one is not already attached */
	if (bus->root_hub) {
		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
		/* Inform the HUB driver to resume */
		usb_hcd_resume_root_hub(hcd);
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

/*
 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
 * stopped.
 */
static void _dwc2_hcd_stop(struct usb_hcd *hcd)
{
	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
	unsigned long flags;

	spin_lock_irqsave(&hsotg->lock, flags);
	dwc2_hcd_stop(hsotg);
	spin_unlock_irqrestore(&hsotg->lock, flags);

	usleep_range(1000, 3000);
}

/* Returns the current frame number */
static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
{
	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);

	return dwc2_hcd_get_frame_number(hsotg);
}

static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
			       char *fn_name)
{
#ifdef VERBOSE_DEBUG
	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
	char *pipetype;
	char *speed;

	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
	dev_vdbg(hsotg->dev, "  Device address: %d\n",
		 usb_pipedevice(urb->pipe));
	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
		 usb_pipeendpoint(urb->pipe),
		 usb_pipein(urb->pipe) ? "IN" : "OUT");

	switch (usb_pipetype(urb->pipe)) {
	case PIPE_CONTROL:
		pipetype = "CONTROL";
		break;
	case PIPE_BULK:
		pipetype = "BULK";
		break;
	case PIPE_INTERRUPT:
		pipetype = "INTERRUPT";
		break;
	case PIPE_ISOCHRONOUS:
		pipetype = "ISOCHRONOUS";
		break;
	default:
		pipetype = "UNKNOWN";
		break;
	}

	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
		 "IN" : "OUT");

	switch (urb->dev->speed) {
	case USB_SPEED_HIGH:
		speed = "HIGH";
		break;
	case USB_SPEED_FULL:
		speed = "FULL";
		break;
	case USB_SPEED_LOW:
		speed = "LOW";
		break;
	default:
		speed = "UNKNOWN";
		break;
	}

	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
	dev_vdbg(hsotg->dev, "  Max packet size: %d\n",
		 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
		 urb->transfer_buffer_length);
2381 2382 2383 2384
	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
		 urb->setup_packet, (unsigned long)urb->setup_dma);
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);

	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
		int i;

		for (i = 0; i < urb->number_of_packets; i++) {
			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
				 urb->iso_frame_desc[i].offset,
				 urb->iso_frame_desc[i].length);
		}
	}
#endif
}

/*
 * Starts processing a USB transfer request specified by a USB Request Block
 * (URB). mem_flags indicates the type of memory allocation to use while
 * processing this URB.
 */
static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
				 gfp_t mem_flags)
{
	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
	struct usb_host_endpoint *ep = urb->ep;
	struct dwc2_hcd_urb *dwc2_urb;
	int i;
2412
	int retval;
2413 2414 2415 2416 2417 2418
	int alloc_bandwidth = 0;
	u8 ep_type = 0;
	u32 tflags = 0;
	void *buf;
	unsigned long flags;

2419 2420 2421 2422
	if (dbg_urb(urb)) {
		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
	}
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463

	if (ep == NULL)
		return -EINVAL;

	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
		spin_lock_irqsave(&hsotg->lock, flags);
		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
			alloc_bandwidth = 1;
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}

	switch (usb_pipetype(urb->pipe)) {
	case PIPE_CONTROL:
		ep_type = USB_ENDPOINT_XFER_CONTROL;
		break;
	case PIPE_ISOCHRONOUS:
		ep_type = USB_ENDPOINT_XFER_ISOC;
		break;
	case PIPE_BULK:
		ep_type = USB_ENDPOINT_XFER_BULK;
		break;
	case PIPE_INTERRUPT:
		ep_type = USB_ENDPOINT_XFER_INT;
		break;
	default:
		dev_warn(hsotg->dev, "Wrong ep type\n");
	}

	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
				      mem_flags);
	if (!dwc2_urb)
		return -ENOMEM;

	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
				  usb_pipeendpoint(urb->pipe), ep_type,
				  usb_pipein(urb->pipe),
				  usb_maxpacket(urb->dev, urb->pipe,
						!(usb_pipein(urb->pipe))));

	buf = urb->transfer_buffer;
2464

2465
	if (hcd->self.uses_dma) {
2466 2467 2468 2469 2470 2471 2472
		if (!buf && (urb->transfer_dma & 3)) {
			dev_err(hsotg->dev,
				"%s: unaligned transfer with no transfer_buffer",
				__func__);
			retval = -EINVAL;
			goto fail1;
		}
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	}

	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
		tflags |= URB_GIVEBACK_ASAP;
	if (urb->transfer_flags & URB_ZERO_PACKET)
		tflags |= URB_SEND_ZERO_PACKET;

	dwc2_urb->priv = urb;
	dwc2_urb->buf = buf;
	dwc2_urb->dma = urb->transfer_dma;
	dwc2_urb->length = urb->transfer_buffer_length;
	dwc2_urb->setup_packet = urb->setup_packet;
	dwc2_urb->setup_dma = urb->setup_dma;
	dwc2_urb->flags = tflags;
	dwc2_urb->interval = urb->interval;
	dwc2_urb->status = -EINPROGRESS;

	for (i = 0; i < urb->number_of_packets; ++i)
		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
						 urb->iso_frame_desc[i].offset,
						 urb->iso_frame_desc[i].length);

	urb->hcpriv = dwc2_urb;
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512

	spin_lock_irqsave(&hsotg->lock, flags);
	retval = usb_hcd_link_urb_to_ep(hcd, urb);
	spin_unlock_irqrestore(&hsotg->lock, flags);
	if (retval)
		goto fail1;

	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, &ep->hcpriv, mem_flags);
	if (retval)
		goto fail2;

	if (alloc_bandwidth) {
		spin_lock_irqsave(&hsotg->lock, flags);
		dwc2_allocate_bus_bandwidth(hcd,
				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
				urb);
		spin_unlock_irqrestore(&hsotg->lock, flags);
2513 2514
	}

2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
	return 0;

fail2:
	spin_lock_irqsave(&hsotg->lock, flags);
	dwc2_urb->priv = NULL;
	usb_hcd_unlink_urb_from_ep(hcd, urb);
	spin_unlock_irqrestore(&hsotg->lock, flags);
fail1:
	urb->hcpriv = NULL;
	kfree(dwc2_urb);

2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
	return retval;
}

/*
 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
 */
static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
				 int status)
{
	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
2536
	int rc;
2537 2538 2539 2540 2541 2542 2543
	unsigned long flags;

	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");

	spin_lock_irqsave(&hsotg->lock, flags);

2544 2545 2546 2547
	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
	if (rc)
		goto out;

2548 2549 2550 2551 2552 2553 2554
	if (!urb->hcpriv) {
		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
		goto out;
	}

	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);

2555 2556
	usb_hcd_unlink_urb_from_ep(hcd, urb);

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
	kfree(urb->hcpriv);
	urb->hcpriv = NULL;

	/* Higher layer software sets URB status */
	spin_unlock(&hsotg->lock);
	usb_hcd_giveback_urb(hcd, urb, status);
	spin_lock(&hsotg->lock);

	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
out:
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return rc;
}

/*
 * Frees resources in the DWC_otg controller related to a given endpoint. Also
 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
 * must already be dequeued.
 */
static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
				       struct usb_host_endpoint *ep)
{
	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);

	dev_dbg(hsotg->dev,
		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
		ep->desc.bEndpointAddress, ep->hcpriv);
	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
}

/*
 * Resets endpoint specific parameter values, in current version used to reset
 * the data toggle (as a WA). This function can be called from usb_clear_halt
 * routine.
 */
static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
				     struct usb_host_endpoint *ep)
{
	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
	unsigned long flags;

	dev_dbg(hsotg->dev,
		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
		ep->desc.bEndpointAddress);

	spin_lock_irqsave(&hsotg->lock, flags);
	dwc2_hcd_endpoint_reset(hsotg, ep);
	spin_unlock_irqrestore(&hsotg->lock, flags);
}

/*
 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
 * interrupt.
 *
 * This function is called by the USB core when an interrupt occurs
 */
static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
{
	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);

2620
	return dwc2_handle_hcd_intr(hsotg);
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
}

/*
 * Creates Status Change bitmap for the root hub and root port. The bitmap is
 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
 * is the status change indicator for the single root port. Returns 1 if either
 * change indicator is 1, otherwise returns 0.
 */
static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
{
	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);

	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
	return buf[0] != 0;
}

/* Handles hub class-specific requests */
static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
				 u16 windex, char *buf, u16 wlength)
{
	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
					  wvalue, windex, buf, wlength);
	return retval;
}

/* Handles hub TT buffer clear completions */
static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
					       struct usb_host_endpoint *ep)
{
	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
	struct dwc2_qh *qh;
	unsigned long flags;

	qh = ep->hcpriv;
	if (!qh)
		return;

	spin_lock_irqsave(&hsotg->lock, flags);
	qh->tt_buffer_dirty = 0;

	if (hsotg->flags.b.port_connect_status)
		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);

	spin_unlock_irqrestore(&hsotg->lock, flags);
}

static struct hc_driver dwc2_hc_driver = {
	.description = "dwc2_hsotg",
	.product_desc = "DWC OTG Controller",
	.hcd_priv_size = sizeof(struct wrapper_priv_data),

	.irq = _dwc2_hcd_irq,
	.flags = HCD_MEMORY | HCD_USB2,

	.start = _dwc2_hcd_start,
	.stop = _dwc2_hcd_stop,
	.urb_enqueue = _dwc2_hcd_urb_enqueue,
	.urb_dequeue = _dwc2_hcd_urb_dequeue,
	.endpoint_disable = _dwc2_hcd_endpoint_disable,
	.endpoint_reset = _dwc2_hcd_endpoint_reset,
	.get_frame_number = _dwc2_hcd_get_frame_number,

	.hub_status_data = _dwc2_hcd_hub_status_data,
	.hub_control = _dwc2_hcd_hub_control,
	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
};

/*
 * Frees secondary storage associated with the dwc2_hsotg structure contained
 * in the struct usb_hcd field
 */
static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
{
	u32 ahbcfg;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");

	/* Free memory for QH/QTD lists */
	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);

	/* Free memory for the host channels */
	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];

		if (chan != NULL) {
			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
				i, chan);
			hsotg->hc_ptr_array[i] = NULL;
			kfree(chan);
		}
	}

	if (hsotg->core_params->dma_enable > 0) {
		if (hsotg->status_buf) {
			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
					  hsotg->status_buf,
					  hsotg->status_buf_dma);
			hsotg->status_buf = NULL;
		}
	} else {
		kfree(hsotg->status_buf);
		hsotg->status_buf = NULL;
	}

	ahbcfg = readl(hsotg->regs + GAHBCFG);

	/* Disable all interrupts */
	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
	writel(ahbcfg, hsotg->regs + GAHBCFG);
	writel(0, hsotg->regs + GINTMSK);

2739
	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
		dctl = readl(hsotg->regs + DCTL);
		dctl |= DCTL_SFTDISCON;
		writel(dctl, hsotg->regs + DCTL);
	}

	if (hsotg->wq_otg) {
		if (!cancel_work_sync(&hsotg->wf_otg))
			flush_workqueue(hsotg->wq_otg);
		destroy_workqueue(hsotg->wq_otg);
	}

	kfree(hsotg->core_params);
	hsotg->core_params = NULL;
	del_timer(&hsotg->wkp_timer);
}

static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
{
	/* Turn off all host-specific interrupts */
	dwc2_disable_host_interrupts(hsotg);

	dwc2_hcd_free(hsotg);
}

2764 2765 2766 2767 2768 2769
/*
 * Sets all parameters to the given value.
 *
 * Assumes that the dwc2_core_params struct contains only integers.
 */
void dwc2_set_all_params(struct dwc2_core_params *params, int value)
2770
{
2771 2772
	int *p = (int *)params;
	size_t size = sizeof(*params) / sizeof(*p);
2773 2774 2775
	int i;

	for (i = 0; i < size; i++)
2776
		p[i] = value;
2777
}
2778
EXPORT_SYMBOL_GPL(dwc2_set_all_params);
2779 2780 2781 2782 2783 2784 2785

/*
 * Initializes the HCD. This function allocates memory for and initializes the
 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
 * USB bus with the core and calls the hc_driver->start() function. It returns
 * a negative error on failure.
 */
2786
int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq,
2787
		  const struct dwc2_core_params *params)
2788 2789 2790
{
	struct usb_hcd *hcd;
	struct dwc2_host_chan *channel;
2791
	u32 hcfg;
2792
	int i, num_channels;
2793
	int retval;
2794

2795 2796 2797
	if (usb_disabled())
		return -ENODEV;

2798
	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
2799

2800 2801
	/* Detect config values from hardware */
	retval = dwc2_get_hwparams(hsotg);
2802

2803 2804 2805 2806
	if (retval)
		return retval;

	retval = -ENOMEM;
2807 2808 2809 2810 2811 2812 2813 2814

	hcfg = readl(hsotg->regs + HCFG);
	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);

#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
	hsotg->frame_num_array = kzalloc(sizeof(*hsotg->frame_num_array) *
					 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
	if (!hsotg->frame_num_array)
2815
		goto error1;
2816 2817 2818 2819
	hsotg->last_frame_num_array = kzalloc(
			sizeof(*hsotg->last_frame_num_array) *
			FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
	if (!hsotg->last_frame_num_array)
2820
		goto error1;
2821 2822 2823 2824 2825
	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
#endif

	hsotg->core_params = kzalloc(sizeof(*hsotg->core_params), GFP_KERNEL);
	if (!hsotg->core_params)
2826
		goto error1;
2827

2828
	dwc2_set_all_params(hsotg->core_params, -1);
2829 2830 2831 2832

	/* Validate parameter values */
	dwc2_set_parameters(hsotg, params);

2833 2834 2835 2836 2837 2838 2839 2840 2841
	/* Check if the bus driver or platform code has setup a dma_mask */
	if (hsotg->core_params->dma_enable > 0 &&
	    hsotg->dev->dma_mask == NULL) {
		dev_warn(hsotg->dev,
			 "dma_mask not set, disabling DMA\n");
		hsotg->core_params->dma_enable = 0;
		hsotg->core_params->dma_desc_enable = 0;
	}

2842 2843
	/* Set device flags indicating whether the HCD supports DMA */
	if (hsotg->core_params->dma_enable > 0) {
2844 2845
		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
			dev_warn(hsotg->dev, "can't set DMA mask\n");
2846 2847
		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
2848 2849 2850 2851 2852 2853
	}

	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
	if (!hcd)
		goto error1;

2854 2855 2856
	if (hsotg->core_params->dma_enable <= 0)
		hcd->self.uses_dma = 0;

2857 2858 2859 2860 2861
	hcd->has_tt = 1;

	((struct wrapper_priv_data *) &hcd->hcd_priv)->hsotg = hsotg;
	hsotg->priv = hcd;

2862 2863 2864 2865 2866 2867
	/*
	 * Disable the global interrupt until all the interrupt handlers are
	 * installed
	 */
	dwc2_disable_global_interrupts(hsotg);

2868 2869 2870 2871 2872
	/* Initialize the DWC_otg core, and select the Phy type */
	retval = dwc2_core_init(hsotg, true, irq);
	if (retval)
		goto error2;

2873
	/* Create new workqueue and init work */
2874
	retval = -ENOMEM;
2875
	hsotg->wq_otg = create_singlethread_workqueue("dwc2");
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
	if (!hsotg->wq_otg) {
		dev_err(hsotg->dev, "Failed to create workqueue\n");
		goto error2;
	}
	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);

	setup_timer(&hsotg->wkp_timer, dwc2_wakeup_detected,
		    (unsigned long)hsotg);

	/* Initialize the non-periodic schedule */
	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);

	/* Initialize the periodic schedule */
	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);

	/*
	 * Create a host channel descriptor for each host channel implemented
	 * in the controller. Initialize the channel descriptor array.
	 */
	INIT_LIST_HEAD(&hsotg->free_hc_list);
	num_channels = hsotg->core_params->host_channels;
	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));

	for (i = 0; i < num_channels; i++) {
		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
		if (channel == NULL)
			goto error3;
		channel->hc_num = i;
		hsotg->hc_ptr_array[i] = channel;
	}

2911 2912 2913
	if (hsotg->core_params->uframe_sched > 0)
		dwc2_hcd_init_usecs(hsotg);

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
	/* Initialize hsotg start work */
	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);

	/* Initialize port reset work */
	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);

	/*
	 * Allocate space for storing data on status transactions. Normally no
	 * data is sent, but this space acts as a bit bucket. This must be
	 * done after usb_add_hcd since that function allocates the DMA buffer
	 * pool.
	 */
	if (hsotg->core_params->dma_enable > 0)
		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
					DWC2_HCD_STATUS_BUF_SIZE,
					&hsotg->status_buf_dma, GFP_KERNEL);
	else
		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
					  GFP_KERNEL);

	if (!hsotg->status_buf)
		goto error3;

	hsotg->otg_port = 1;
	hsotg->frame_list = NULL;
	hsotg->frame_list_dma = 0;
	hsotg->periodic_qh_count = 0;

	/* Initiate lx_state to L3 disconnected state */
	hsotg->lx_state = DWC2_L3;

	hcd->self.otg_port = hsotg->otg_port;

	/* Don't support SG list at this point */
	hcd->self.sg_tablesize = 0;

	/*
	 * Finish generic HCD initialization and start the HCD. This function
	 * allocates the DMA buffer pool, registers the USB bus, requests the
	 * IRQ line, and calls hcd_start method.
	 */
2955
	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
2956 2957 2958
	if (retval < 0)
		goto error3;

2959 2960
	device_wakeup_enable(hcd->self.controller);

2961 2962 2963 2964 2965 2966 2967 2968 2969
	dwc2_hcd_dump_state(hsotg);

	dwc2_enable_global_interrupts(hsotg);

	return 0;

error3:
	dwc2_hcd_release(hsotg);
error2:
2970 2971
	usb_put_hcd(hcd);
error1:
2972 2973 2974 2975 2976 2977 2978
	kfree(hsotg->core_params);

#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
	kfree(hsotg->last_frame_num_array);
	kfree(hsotg->frame_num_array);
#endif

2979
	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
2980 2981 2982 2983 2984 2985 2986 2987
	return retval;
}
EXPORT_SYMBOL_GPL(dwc2_hcd_init);

/*
 * Removes the HCD.
 * Frees memory and resources associated with the HCD and deregisters the bus.
 */
2988
void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
2989 2990 2991
{
	struct usb_hcd *hcd;

2992
	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
2993 2994

	hcd = dwc2_hsotg_to_hcd(hsotg);
2995
	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
2996 2997

	if (!hcd) {
2998
		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
2999 3000 3001 3002 3003 3004 3005
			__func__);
		return;
	}

	usb_remove_hcd(hcd);
	hsotg->priv = NULL;
	dwc2_hcd_release(hsotg);
3006
	usb_put_hcd(hcd);
3007 3008 3009 3010 3011 3012 3013

#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
	kfree(hsotg->last_frame_num_array);
	kfree(hsotg->frame_num_array);
#endif
}
EXPORT_SYMBOL_GPL(dwc2_hcd_remove);