dib8000.c 71.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
/*
 * Linux-DVB Driver for DiBcom's DiB8000 chip (ISDB-T).
 *
 * Copyright (C) 2009 DiBcom (http://www.dibcom.fr/)
 *
 * This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License as
 *  published by the Free Software Foundation, version 2.
 */
#include <linux/kernel.h>
#include <linux/i2c.h>
#include "dvb_math.h"

#include "dvb_frontend.h"

#include "dib8000.h"

#define LAYER_ALL -1
#define LAYER_A   1
#define LAYER_B   2
#define LAYER_C   3

#define FE_CALLBACK_TIME_NEVER 0xffffffff

static int debug = 0;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");

#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB8000: "); printk(args); printk("\n"); } } while (0)

enum frontend_tune_state {
	CT_AGC_START = 20,
	CT_AGC_STEP_0,
	CT_AGC_STEP_1,
	CT_AGC_STEP_2,
	CT_AGC_STEP_3,
	CT_AGC_STEP_4,
	CT_AGC_STOP,

	CT_DEMOD_START = 30,
};

#define FE_STATUS_TUNE_FAILED 0

struct i2c_device {
	struct i2c_adapter *adap;
	u8 addr;
};

struct dib8000_state {
	struct dvb_frontend fe;
	struct dib8000_config cfg;

	struct i2c_device i2c;

	struct dibx000_i2c_master i2c_master;

	u16 wbd_ref;

	u8 current_band;
	u32 current_bandwidth;
	struct dibx000_agc_config *current_agc;
	u32 timf;
	u32 timf_default;

	u8 div_force_off:1;
	u8 div_state:1;
	u16 div_sync_wait;

	u8 agc_state;
	u8 differential_constellation;
	u8 diversity_onoff;

	s16 ber_monitored_layer;
	u16 gpio_dir;
	u16 gpio_val;

	u16 revision;
	u8 isdbt_cfg_loaded;
	enum frontend_tune_state tune_state;
	u32 status;
};

enum dib8000_power_mode {
	DIB8000M_POWER_ALL = 0,
	DIB8000M_POWER_INTERFACE_ONLY,
};

static u16 dib8000_i2c_read16(struct i2c_device *i2c, u16 reg)
{
	u8 wb[2] = { reg >> 8, reg & 0xff };
	u8 rb[2];
	struct i2c_msg msg[2] = {
		{.addr = i2c->addr >> 1,.flags = 0,.buf = wb,.len = 2},
		{.addr = i2c->addr >> 1,.flags = I2C_M_RD,.buf = rb,.len = 2},
	};

	if (i2c_transfer(i2c->adap, msg, 2) != 2)
		dprintk("i2c read error on %d", reg);

	return (rb[0] << 8) | rb[1];
}

static u16 dib8000_read_word(struct dib8000_state *state, u16 reg)
{
	return dib8000_i2c_read16(&state->i2c, reg);
}

static u32 dib8000_read32(struct dib8000_state *state, u16 reg)
{
	u16 rw[2];

	rw[0] = dib8000_read_word(state, reg + 0);
	rw[1] = dib8000_read_word(state, reg + 1);

	return ((rw[0] << 16) | (rw[1]));
}

static int dib8000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val)
{
	u8 b[4] = {
		(reg >> 8) & 0xff, reg & 0xff,
		(val >> 8) & 0xff, val & 0xff,
	};
	struct i2c_msg msg = {
		.addr = i2c->addr >> 1,.flags = 0,.buf = b,.len = 4
	};
	return i2c_transfer(i2c->adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
}

static int dib8000_write_word(struct dib8000_state *state, u16 reg, u16 val)
{
	return dib8000_i2c_write16(&state->i2c, reg, val);
}

const int16_t coeff_2k_sb_1seg_dqpsk[8] = {
	(769 << 5) | 0x0a, (745 << 5) | 0x03, (595 << 5) | 0x0d, (769 << 5) | 0x0a, (920 << 5) | 0x09, (784 << 5) | 0x02, (519 << 5) | 0x0c,
	    (920 << 5) | 0x09
};

const int16_t coeff_2k_sb_1seg[8] = {
	(692 << 5) | 0x0b, (683 << 5) | 0x01, (519 << 5) | 0x09, (692 << 5) | 0x0b, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f
};

const int16_t coeff_2k_sb_3seg_0dqpsk_1dqpsk[8] = {
	(832 << 5) | 0x10, (912 << 5) | 0x05, (900 << 5) | 0x12, (832 << 5) | 0x10, (-931 << 5) | 0x0f, (912 << 5) | 0x04, (807 << 5) | 0x11,
	    (-931 << 5) | 0x0f
};

const int16_t coeff_2k_sb_3seg_0dqpsk[8] = {
	(622 << 5) | 0x0c, (941 << 5) | 0x04, (796 << 5) | 0x10, (622 << 5) | 0x0c, (982 << 5) | 0x0c, (519 << 5) | 0x02, (572 << 5) | 0x0e,
	    (982 << 5) | 0x0c
};

const int16_t coeff_2k_sb_3seg_1dqpsk[8] = {
	(699 << 5) | 0x14, (607 << 5) | 0x04, (944 << 5) | 0x13, (699 << 5) | 0x14, (-720 << 5) | 0x0d, (640 << 5) | 0x03, (866 << 5) | 0x12,
	    (-720 << 5) | 0x0d
};

const int16_t coeff_2k_sb_3seg[8] = {
	(664 << 5) | 0x0c, (925 << 5) | 0x03, (937 << 5) | 0x10, (664 << 5) | 0x0c, (-610 << 5) | 0x0a, (697 << 5) | 0x01, (836 << 5) | 0x0e,
	    (-610 << 5) | 0x0a
};

const int16_t coeff_4k_sb_1seg_dqpsk[8] = {
	(-955 << 5) | 0x0e, (687 << 5) | 0x04, (818 << 5) | 0x10, (-955 << 5) | 0x0e, (-922 << 5) | 0x0d, (750 << 5) | 0x03, (665 << 5) | 0x0f,
	    (-922 << 5) | 0x0d
};

const int16_t coeff_4k_sb_1seg[8] = {
	(638 << 5) | 0x0d, (683 << 5) | 0x02, (638 << 5) | 0x0d, (638 << 5) | 0x0d, (-655 << 5) | 0x0a, (517 << 5) | 0x00, (698 << 5) | 0x0d,
	    (-655 << 5) | 0x0a
};

const int16_t coeff_4k_sb_3seg_0dqpsk_1dqpsk[8] = {
	(-707 << 5) | 0x14, (910 << 5) | 0x06, (889 << 5) | 0x16, (-707 << 5) | 0x14, (-958 << 5) | 0x13, (993 << 5) | 0x05, (523 << 5) | 0x14,
	    (-958 << 5) | 0x13
};

const int16_t coeff_4k_sb_3seg_0dqpsk[8] = {
	(-723 << 5) | 0x13, (910 << 5) | 0x05, (777 << 5) | 0x14, (-723 << 5) | 0x13, (-568 << 5) | 0x0f, (547 << 5) | 0x03, (696 << 5) | 0x12,
	    (-568 << 5) | 0x0f
};

const int16_t coeff_4k_sb_3seg_1dqpsk[8] = {
	(-940 << 5) | 0x15, (607 << 5) | 0x05, (915 << 5) | 0x16, (-940 << 5) | 0x15, (-848 << 5) | 0x13, (683 << 5) | 0x04, (543 << 5) | 0x14,
	    (-848 << 5) | 0x13
};

const int16_t coeff_4k_sb_3seg[8] = {
	(612 << 5) | 0x12, (910 << 5) | 0x04, (864 << 5) | 0x14, (612 << 5) | 0x12, (-869 << 5) | 0x13, (683 << 5) | 0x02, (869 << 5) | 0x12,
	    (-869 << 5) | 0x13
};

const int16_t coeff_8k_sb_1seg_dqpsk[8] = {
	(-835 << 5) | 0x12, (684 << 5) | 0x05, (735 << 5) | 0x14, (-835 << 5) | 0x12, (-598 << 5) | 0x10, (781 << 5) | 0x04, (739 << 5) | 0x13,
	    (-598 << 5) | 0x10
};

const int16_t coeff_8k_sb_1seg[8] = {
	(673 << 5) | 0x0f, (683 << 5) | 0x03, (808 << 5) | 0x12, (673 << 5) | 0x0f, (585 << 5) | 0x0f, (512 << 5) | 0x01, (780 << 5) | 0x0f,
	    (585 << 5) | 0x0f
};

const int16_t coeff_8k_sb_3seg_0dqpsk_1dqpsk[8] = {
	(863 << 5) | 0x17, (930 << 5) | 0x07, (878 << 5) | 0x19, (863 << 5) | 0x17, (0 << 5) | 0x14, (521 << 5) | 0x05, (980 << 5) | 0x18,
	    (0 << 5) | 0x14
};

const int16_t coeff_8k_sb_3seg_0dqpsk[8] = {
	(-924 << 5) | 0x17, (910 << 5) | 0x06, (774 << 5) | 0x17, (-924 << 5) | 0x17, (-877 << 5) | 0x15, (565 << 5) | 0x04, (553 << 5) | 0x15,
	    (-877 << 5) | 0x15
};

const int16_t coeff_8k_sb_3seg_1dqpsk[8] = {
	(-921 << 5) | 0x19, (607 << 5) | 0x06, (881 << 5) | 0x19, (-921 << 5) | 0x19, (-921 << 5) | 0x14, (713 << 5) | 0x05, (1018 << 5) | 0x18,
	    (-921 << 5) | 0x14
};

const int16_t coeff_8k_sb_3seg[8] = {
	(514 << 5) | 0x14, (910 << 5) | 0x05, (861 << 5) | 0x17, (514 << 5) | 0x14, (690 << 5) | 0x14, (683 << 5) | 0x03, (662 << 5) | 0x15,
	    (690 << 5) | 0x14
};

const int16_t ana_fe_coeff_3seg[24] = {
	81, 80, 78, 74, 68, 61, 54, 45, 37, 28, 19, 11, 4, 1022, 1017, 1013, 1010, 1008, 1008, 1008, 1008, 1010, 1014, 1017
};

const int16_t ana_fe_coeff_1seg[24] = {
	249, 226, 164, 82, 5, 981, 970, 988, 1018, 20, 31, 26, 8, 1012, 1000, 1018, 1012, 8, 15, 14, 9, 3, 1017, 1003
};

const int16_t ana_fe_coeff_13seg[24] = {
	396, 305, 105, -51, -77, -12, 41, 31, -11, -30, -11, 14, 15, -2, -13, -7, 5, 8, 1, -6, -7, -3, 0, 1
};

static u16 fft_to_mode(struct dib8000_state *state)
{
	u16 mode;
	switch (state->fe.dtv_property_cache.transmission_mode) {
	case TRANSMISSION_MODE_2K:
		mode = 1;
		break;
	case TRANSMISSION_MODE_4K:
		mode = 2;
		break;
	default:
	case TRANSMISSION_MODE_AUTO:
	case TRANSMISSION_MODE_8K:
		mode = 3;
		break;
	}
	return mode;
}

static void dib8000_set_acquisition_mode(struct dib8000_state *state)
{
	u16 nud = dib8000_read_word(state, 298);
	nud |= (1 << 3) | (1 << 0);
	dprintk("acquisition mode activated");
	dib8000_write_word(state, 298, nud);
}

static int dib8000_set_output_mode(struct dib8000_state *state, int mode)
{
	u16 outreg, fifo_threshold, smo_mode, sram = 0x0205;	/* by default SDRAM deintlv is enabled */

	outreg = 0;
	fifo_threshold = 1792;
	smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1);

	dprintk("-I-  Setting output mode for demod %p to %d", &state->fe, mode);

	switch (mode) {
	case OUTMODE_MPEG2_PAR_GATED_CLK:	// STBs with parallel gated clock
		outreg = (1 << 10);	/* 0x0400 */
		break;
	case OUTMODE_MPEG2_PAR_CONT_CLK:	// STBs with parallel continues clock
		outreg = (1 << 10) | (1 << 6);	/* 0x0440 */
		break;
	case OUTMODE_MPEG2_SERIAL:	// STBs with serial input
		outreg = (1 << 10) | (2 << 6) | (0 << 1);	/* 0x0482 */
		break;
	case OUTMODE_DIVERSITY:
		if (state->cfg.hostbus_diversity) {
			outreg = (1 << 10) | (4 << 6);	/* 0x0500 */
			sram &= 0xfdff;
		} else
			sram |= 0x0c00;
		break;
	case OUTMODE_MPEG2_FIFO:	// e.g. USB feeding
		smo_mode |= (3 << 1);
		fifo_threshold = 512;
		outreg = (1 << 10) | (5 << 6);
		break;
	case OUTMODE_HIGH_Z:	// disable
		outreg = 0;
		break;

	case OUTMODE_ANALOG_ADC:
		outreg = (1 << 10) | (3 << 6);
		dib8000_set_acquisition_mode(state);
		break;

	default:
		dprintk("Unhandled output_mode passed to be set for demod %p", &state->fe);
		return -EINVAL;
	}

	if (state->cfg.output_mpeg2_in_188_bytes)
		smo_mode |= (1 << 5);

	dib8000_write_word(state, 299, smo_mode);
	dib8000_write_word(state, 300, fifo_threshold);	/* synchronous fread */
	dib8000_write_word(state, 1286, outreg);
	dib8000_write_word(state, 1291, sram);

	return 0;
}

static int dib8000_set_diversity_in(struct dvb_frontend *fe, int onoff)
{
	struct dib8000_state *state = fe->demodulator_priv;
	u16 sync_wait = dib8000_read_word(state, 273) & 0xfff0;

	if (!state->differential_constellation) {
		dib8000_write_word(state, 272, 1 << 9);	//dvsy_off_lmod4 = 1
		dib8000_write_word(state, 273, sync_wait | (1 << 2) | 2);	// sync_enable = 1; comb_mode = 2
	} else {
		dib8000_write_word(state, 272, 0);	//dvsy_off_lmod4 = 0
		dib8000_write_word(state, 273, sync_wait);	// sync_enable = 0; comb_mode = 0
	}
	state->diversity_onoff = onoff;

	switch (onoff) {
	case 0:		/* only use the internal way - not the diversity input */
		dib8000_write_word(state, 270, 1);
		dib8000_write_word(state, 271, 0);
		break;
	case 1:		/* both ways */
		dib8000_write_word(state, 270, 6);
		dib8000_write_word(state, 271, 6);
		break;
	case 2:		/* only the diversity input */
		dib8000_write_word(state, 270, 0);
		dib8000_write_word(state, 271, 1);
		break;
	}
	return 0;
}

static void dib8000_set_power_mode(struct dib8000_state *state, enum dib8000_power_mode mode)
{
	/* by default everything is going to be powered off */
	u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0xffff,
	    reg_900 = (dib8000_read_word(state, 900) & 0xfffc) | 0x3, reg_1280 = (dib8000_read_word(state, 1280) & 0x00ff) | 0xff00;

	/* now, depending on the requested mode, we power on */
	switch (mode) {
		/* power up everything in the demod */
	case DIB8000M_POWER_ALL:
		reg_774 = 0x0000;
		reg_775 = 0x0000;
		reg_776 = 0x0000;
		reg_900 &= 0xfffc;
		reg_1280 &= 0x00ff;
		break;
	case DIB8000M_POWER_INTERFACE_ONLY:
		reg_1280 &= 0x00ff;
		break;
	}

	dprintk("powermode : 774 : %x ; 775 : %x; 776 : %x ; 900 : %x; 1280 : %x", reg_774, reg_775, reg_776, reg_900, reg_1280);
	dib8000_write_word(state, 774, reg_774);
	dib8000_write_word(state, 775, reg_775);
	dib8000_write_word(state, 776, reg_776);
	dib8000_write_word(state, 900, reg_900);
	dib8000_write_word(state, 1280, reg_1280);
}

static int dib8000_set_adc_state(struct dib8000_state *state, enum dibx000_adc_states no)
{
	int ret = 0;
	u16 reg_907 = dib8000_read_word(state, 907), reg_908 = dib8000_read_word(state, 908);

	switch (no) {
	case DIBX000_SLOW_ADC_ON:
		reg_908 |= (1 << 1) | (1 << 0);
		ret |= dib8000_write_word(state, 908, reg_908);
		reg_908 &= ~(1 << 1);
		break;

	case DIBX000_SLOW_ADC_OFF:
		reg_908 |= (1 << 1) | (1 << 0);
		break;

	case DIBX000_ADC_ON:
		reg_907 &= 0x0fff;
		reg_908 &= 0x0003;
		break;

	case DIBX000_ADC_OFF:	// leave the VBG voltage on
		reg_907 |= (1 << 14) | (1 << 13) | (1 << 12);
		reg_908 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
		break;

	case DIBX000_VBG_ENABLE:
		reg_907 &= ~(1 << 15);
		break;

	case DIBX000_VBG_DISABLE:
		reg_907 |= (1 << 15);
		break;

	default:
		break;
	}

	ret |= dib8000_write_word(state, 907, reg_907);
	ret |= dib8000_write_word(state, 908, reg_908);

	return ret;
}

static int dib8000_set_bandwidth(struct dib8000_state *state, u32 bw)
{
	u32 timf;

	if (bw == 0)
		bw = 6000;

	if (state->timf == 0) {
		dprintk("using default timf");
		timf = state->timf_default;
	} else {
		dprintk("using updated timf");
		timf = state->timf;
	}

	dib8000_write_word(state, 29, (u16) ((timf >> 16) & 0xffff));
	dib8000_write_word(state, 30, (u16) ((timf) & 0xffff));

	return 0;
}

static int dib8000_sad_calib(struct dib8000_state *state)
{
/* internal */
	dib8000_write_word(state, 923, (0 << 1) | (0 << 0));
	dib8000_write_word(state, 924, 776);	// 0.625*3.3 / 4096

	/* do the calibration */
	dib8000_write_word(state, 923, (1 << 0));
	dib8000_write_word(state, 923, (0 << 0));

	msleep(1);
	return 0;
}

int dib8000_set_wbd_ref(struct dvb_frontend *fe, u16 value)
{
	struct dib8000_state *state = fe->demodulator_priv;
	if (value > 4095)
		value = 4095;
	state->wbd_ref = value;
	return dib8000_write_word(state, 106, value);
}

EXPORT_SYMBOL(dib8000_set_wbd_ref);
static void dib8000_reset_pll_common(struct dib8000_state *state, const struct dibx000_bandwidth_config *bw)
{
	dprintk("ifreq: %d %x, inversion: %d", bw->ifreq, bw->ifreq, bw->ifreq >> 25);
	dib8000_write_word(state, 23, (u16) (((bw->internal * 1000) >> 16) & 0xffff));	/* P_sec_len */
	dib8000_write_word(state, 24, (u16) ((bw->internal * 1000) & 0xffff));
	dib8000_write_word(state, 27, (u16) ((bw->ifreq >> 16) & 0x01ff));
	dib8000_write_word(state, 28, (u16) (bw->ifreq & 0xffff));
	dib8000_write_word(state, 26, (u16) ((bw->ifreq >> 25) & 0x0003));

	dib8000_write_word(state, 922, bw->sad_cfg);
}

static void dib8000_reset_pll(struct dib8000_state *state)
{
	const struct dibx000_bandwidth_config *pll = state->cfg.pll;
	u16 clk_cfg1;

	// clk_cfg0
	dib8000_write_word(state, 901, (pll->pll_prediv << 8) | (pll->pll_ratio << 0));

	// clk_cfg1
	clk_cfg1 = (1 << 10) | (0 << 9) | (pll->IO_CLK_en_core << 8) |
	    (pll->bypclk_div << 5) | (pll->enable_refdiv << 4) | (1 << 3) | (pll->pll_range << 1) | (pll->pll_reset << 0);

	dib8000_write_word(state, 902, clk_cfg1);
	clk_cfg1 = (clk_cfg1 & 0xfff7) | (pll->pll_bypass << 3);
	dib8000_write_word(state, 902, clk_cfg1);

	dprintk("clk_cfg1: 0x%04x", clk_cfg1);	/* 0x507 1 0 1 000 0 0 11 1 */

	/* smpl_cfg: P_refclksel=2, P_ensmplsel=1 nodivsmpl=1 */
	if (state->cfg.pll->ADClkSrc == 0)
		dib8000_write_word(state, 904, (0 << 15) | (0 << 12) | (0 << 10) | (pll->modulo << 8) | (pll->ADClkSrc << 7) | (0 << 1));
	else if (state->cfg.refclksel != 0)
		dib8000_write_word(state, 904,
				   (0 << 15) | (1 << 12) | ((state->cfg.refclksel & 0x3) << 10) | (pll->modulo << 8) | (pll->
															ADClkSrc << 7) | (0 << 1));
	else
		dib8000_write_word(state, 904, (0 << 15) | (1 << 12) | (3 << 10) | (pll->modulo << 8) | (pll->ADClkSrc << 7) | (0 << 1));

	dib8000_reset_pll_common(state, pll);
}

static int dib8000_reset_gpio(struct dib8000_state *st)
{
	/* reset the GPIOs */
	dib8000_write_word(st, 1029, st->cfg.gpio_dir);
	dib8000_write_word(st, 1030, st->cfg.gpio_val);

	/* TODO 782 is P_gpio_od */

	dib8000_write_word(st, 1032, st->cfg.gpio_pwm_pos);

	dib8000_write_word(st, 1037, st->cfg.pwm_freq_div);
	return 0;
}

static int dib8000_cfg_gpio(struct dib8000_state *st, u8 num, u8 dir, u8 val)
{
	st->cfg.gpio_dir = dib8000_read_word(st, 1029);
	st->cfg.gpio_dir &= ~(1 << num);	/* reset the direction bit */
	st->cfg.gpio_dir |= (dir & 0x1) << num;	/* set the new direction */
	dib8000_write_word(st, 1029, st->cfg.gpio_dir);

	st->cfg.gpio_val = dib8000_read_word(st, 1030);
	st->cfg.gpio_val &= ~(1 << num);	/* reset the direction bit */
	st->cfg.gpio_val |= (val & 0x01) << num;	/* set the new value */
	dib8000_write_word(st, 1030, st->cfg.gpio_val);

	dprintk("gpio dir: %x: gpio val: %x", st->cfg.gpio_dir, st->cfg.gpio_val);

	return 0;
}

int dib8000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val)
{
	struct dib8000_state *state = fe->demodulator_priv;
	return dib8000_cfg_gpio(state, num, dir, val);
}

EXPORT_SYMBOL(dib8000_set_gpio);
static const u16 dib8000_defaults[] = {
	/* auto search configuration - lock0 by default waiting
	 * for cpil_lock; lock1 cpil_lock; lock2 tmcc_sync_lock */
	3, 7,
	0x0004,
	0x0400,
	0x0814,

	12, 11,
	0x001b,
	0x7740,
	0x005b,
	0x8d80,
	0x01c9,
	0xc380,
	0x0000,
	0x0080,
	0x0000,
	0x0090,
	0x0001,
	0xd4c0,

	/*1, 32,
	   0x6680 // P_corm_thres Lock algorithms configuration */

	11, 80,			/* set ADC level to -16 */
	(1 << 13) - 825 - 117,
	(1 << 13) - 837 - 117,
	(1 << 13) - 811 - 117,
	(1 << 13) - 766 - 117,
	(1 << 13) - 737 - 117,
	(1 << 13) - 693 - 117,
	(1 << 13) - 648 - 117,
	(1 << 13) - 619 - 117,
	(1 << 13) - 575 - 117,
	(1 << 13) - 531 - 117,
	(1 << 13) - 501 - 117,

	4, 108,
	0,
	0,
	0,
	0,

	1, 175,
	0x0410,
	1, 179,
	8192,			// P_fft_nb_to_cut

	6, 181,
	0x2800,			// P_coff_corthres_ ( 2k 4k 8k ) 0x2800
	0x2800,
	0x2800,
	0x2800,			// P_coff_cpilthres_ ( 2k 4k 8k ) 0x2800
	0x2800,
	0x2800,

	2, 193,
	0x0666,			// P_pha3_thres
	0x0000,			// P_cti_use_cpe, P_cti_use_prog

	2, 205,
	0x200f,			// P_cspu_regul, P_cspu_win_cut
	0x000f,			// P_des_shift_work

	5, 215,
	0x023d,			// P_adp_regul_cnt
	0x00a4,			// P_adp_noise_cnt
	0x00a4,			// P_adp_regul_ext
	0x7ff0,			// P_adp_noise_ext
	0x3ccc,			// P_adp_fil

	1, 230,
	0x0000,			// P_2d_byp_ti_num

	1, 263,
	0x800,			//P_equal_thres_wgn

	1, 268,
	(2 << 9) | 39,		// P_equal_ctrl_synchro, P_equal_speedmode

	1, 270,
	0x0001,			// P_div_lock0_wait
	1, 285,
	0x0020,			//p_fec_
	1, 299,
	0x0062,			// P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard

	1, 338,
	(1 << 12) |		// P_ctrl_corm_thres4pre_freq_inh=1
	    (1 << 10) |		// P_ctrl_pre_freq_mode_sat=1
	    (0 << 9) |		// P_ctrl_pre_freq_inh=0
	    (3 << 5) |		// P_ctrl_pre_freq_step=3
	    (1 << 0),		// P_pre_freq_win_len=1

	1, 903,
	(0 << 4) | 2,		// P_divclksel=0 P_divbitsel=2 (was clk=3,bit=1 for MPW)

	0,
};

static u16 dib8000_identify(struct i2c_device *client)
{
	u16 value;

	//because of glitches sometimes
	value = dib8000_i2c_read16(client, 896);

	if ((value = dib8000_i2c_read16(client, 896)) != 0x01b3) {
		dprintk("wrong Vendor ID (read=0x%x)", value);
		return 0;
	}

	value = dib8000_i2c_read16(client, 897);
	if (value != 0x8000 && value != 0x8001 && value != 0x8002) {
		dprintk("wrong Device ID (%x)", value);
		return 0;
	}

	switch (value) {
	case 0x8000:
		dprintk("found DiB8000A");
		break;
	case 0x8001:
		dprintk("found DiB8000B");
		break;
	case 0x8002:
		dprintk("found DiB8000C");
		break;
	}
	return value;
}

static int dib8000_reset(struct dvb_frontend *fe)
{
	struct dib8000_state *state = fe->demodulator_priv;

	dib8000_write_word(state, 1287, 0x0003);	/* sram lead in, rdy */

	if ((state->revision = dib8000_identify(&state->i2c)) == 0)
		return -EINVAL;

	if (state->revision == 0x8000)
		dprintk("error : dib8000 MA not supported");

	dibx000_reset_i2c_master(&state->i2c_master);

	dib8000_set_power_mode(state, DIB8000M_POWER_ALL);

	/* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */
	dib8000_set_adc_state(state, DIBX000_VBG_ENABLE);

	/* restart all parts */
	dib8000_write_word(state, 770, 0xffff);
	dib8000_write_word(state, 771, 0xffff);
	dib8000_write_word(state, 772, 0xfffc);
	dib8000_write_word(state, 898, 0x000c);	// sad
	dib8000_write_word(state, 1280, 0x004d);
	dib8000_write_word(state, 1281, 0x000c);

	dib8000_write_word(state, 770, 0x0000);
	dib8000_write_word(state, 771, 0x0000);
	dib8000_write_word(state, 772, 0x0000);
	dib8000_write_word(state, 898, 0x0004);	// sad
	dib8000_write_word(state, 1280, 0x0000);
	dib8000_write_word(state, 1281, 0x0000);

	/* drives */
	if (state->cfg.drives)
		dib8000_write_word(state, 906, state->cfg.drives);
	else {
		dprintk("using standard PAD-drive-settings, please adjust settings in config-struct to be optimal.");
		dib8000_write_word(state, 906, 0x2d98);	// min drive SDRAM - not optimal - adjust
	}

	dib8000_reset_pll(state);

	if (dib8000_reset_gpio(state) != 0)
		dprintk("GPIO reset was not successful.");

	if (dib8000_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
		dprintk("OUTPUT_MODE could not be resetted.");

	state->current_agc = NULL;

	// P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ...
	/* P_iqc_ca2 = 0; P_iqc_impnc_on = 0; P_iqc_mode = 0; */
	if (state->cfg.pll->ifreq == 0)
		dib8000_write_word(state, 40, 0x0755);	/* P_iqc_corr_inh = 0 enable IQcorr block */
	else
		dib8000_write_word(state, 40, 0x1f55);	/* P_iqc_corr_inh = 1 disable IQcorr block */

	{
		u16 l = 0, r;
		const u16 *n;
		n = dib8000_defaults;
		l = *n++;
		while (l) {
			r = *n++;
			do {
				dib8000_write_word(state, r, *n++);
				r++;
			} while (--l);
			l = *n++;
		}
	}
	state->isdbt_cfg_loaded = 0;

	//div_cfg override for special configs
	if (state->cfg.div_cfg != 0)
		dib8000_write_word(state, 903, state->cfg.div_cfg);

	/* unforce divstr regardless whether i2c enumeration was done or not */
	dib8000_write_word(state, 1285, dib8000_read_word(state, 1285) & ~(1 << 1));

	dib8000_set_bandwidth(state, 6000);

	dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON);
	dib8000_sad_calib(state);
	dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF);

	dib8000_set_power_mode(state, DIB8000M_POWER_INTERFACE_ONLY);

	return 0;
}

static void dib8000_restart_agc(struct dib8000_state *state)
{
	// P_restart_iqc & P_restart_agc
	dib8000_write_word(state, 770, 0x0a00);
	dib8000_write_word(state, 770, 0x0000);
}

static int dib8000_update_lna(struct dib8000_state *state)
{
	u16 dyn_gain;

	if (state->cfg.update_lna) {
		// read dyn_gain here (because it is demod-dependent and not tuner)
		dyn_gain = dib8000_read_word(state, 390);

		if (state->cfg.update_lna(&state->fe, dyn_gain)) {	// LNA has changed
			dib8000_restart_agc(state);
			return 1;
		}
	}
	return 0;
}

static int dib8000_set_agc_config(struct dib8000_state *state, u8 band)
{
	struct dibx000_agc_config *agc = NULL;
	int i;
	if (state->current_band == band && state->current_agc != NULL)
		return 0;
	state->current_band = band;

	for (i = 0; i < state->cfg.agc_config_count; i++)
		if (state->cfg.agc[i].band_caps & band) {
			agc = &state->cfg.agc[i];
			break;
		}

	if (agc == NULL) {
		dprintk("no valid AGC configuration found for band 0x%02x", band);
		return -EINVAL;
	}

	state->current_agc = agc;

	/* AGC */
	dib8000_write_word(state, 76, agc->setup);
	dib8000_write_word(state, 77, agc->inv_gain);
	dib8000_write_word(state, 78, agc->time_stabiliz);
	dib8000_write_word(state, 101, (agc->alpha_level << 12) | agc->thlock);

	// Demod AGC loop configuration
	dib8000_write_word(state, 102, (agc->alpha_mant << 5) | agc->alpha_exp);
	dib8000_write_word(state, 103, (agc->beta_mant << 6) | agc->beta_exp);

	dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d",
		state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);

	/* AGC continued */
	if (state->wbd_ref != 0)
		dib8000_write_word(state, 106, state->wbd_ref);
	else			// use default
		dib8000_write_word(state, 106, agc->wbd_ref);
	dib8000_write_word(state, 107, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8));
	dib8000_write_word(state, 108, agc->agc1_max);
	dib8000_write_word(state, 109, agc->agc1_min);
	dib8000_write_word(state, 110, agc->agc2_max);
	dib8000_write_word(state, 111, agc->agc2_min);
	dib8000_write_word(state, 112, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
	dib8000_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
	dib8000_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
	dib8000_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2);

	dib8000_write_word(state, 75, agc->agc1_pt3);
	dib8000_write_word(state, 923, (dib8000_read_word(state, 923) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2));	/*LB : 929 -> 923 */

	return 0;
}

static int dib8000_agc_soft_split(struct dib8000_state *state)
{
	u16 agc, split_offset;

	if (!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0)
		return FE_CALLBACK_TIME_NEVER;

	// n_agc_global
	agc = dib8000_read_word(state, 390);

	if (agc > state->current_agc->split.min_thres)
		split_offset = state->current_agc->split.min;
	else if (agc < state->current_agc->split.max_thres)
		split_offset = state->current_agc->split.max;
	else
		split_offset = state->current_agc->split.max *
		    (agc - state->current_agc->split.min_thres) / (state->current_agc->split.max_thres - state->current_agc->split.min_thres);

	dprintk("AGC split_offset: %d", split_offset);

	// P_agc_force_split and P_agc_split_offset
	dib8000_write_word(state, 107, (dib8000_read_word(state, 107) & 0xff00) | split_offset);
	return 5000;
}

static int dib8000_agc_startup(struct dvb_frontend *fe)
{
	struct dib8000_state *state = fe->demodulator_priv;
	enum frontend_tune_state *tune_state = &state->tune_state;

	int ret = 0;

	switch (*tune_state) {
	case CT_AGC_START:
		// set power-up level: interf+analog+AGC

		dib8000_set_adc_state(state, DIBX000_ADC_ON);

		if (dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000))) != 0) {
			*tune_state = CT_AGC_STOP;
			state->status = FE_STATUS_TUNE_FAILED;
			break;
		}

		ret = 70;
		*tune_state = CT_AGC_STEP_0;
		break;

	case CT_AGC_STEP_0:
		//AGC initialization
		if (state->cfg.agc_control)
			state->cfg.agc_control(&state->fe, 1);

		dib8000_restart_agc(state);

		// wait AGC rough lock time
		ret = 50;
		*tune_state = CT_AGC_STEP_1;
		break;

	case CT_AGC_STEP_1:
		// wait AGC accurate lock time
		ret = 70;

		if (dib8000_update_lna(state))
			// wait only AGC rough lock time
			ret = 50;
		else
			*tune_state = CT_AGC_STEP_2;
		break;

	case CT_AGC_STEP_2:
		dib8000_agc_soft_split(state);

		if (state->cfg.agc_control)
			state->cfg.agc_control(&state->fe, 0);

		*tune_state = CT_AGC_STOP;
		break;
	default:
		ret = dib8000_agc_soft_split(state);
		break;
	}
	return ret;

}

static void dib8000_update_timf(struct dib8000_state *state)
{
	u32 timf = state->timf = dib8000_read32(state, 435);

	dib8000_write_word(state, 29, (u16) (timf >> 16));
	dib8000_write_word(state, 30, (u16) (timf & 0xffff));
	dprintk("Updated timing frequency: %d (default: %d)", state->timf, state->timf_default);
}

static void dib8000_set_channel(struct dib8000_state *state, u8 seq, u8 autosearching)
{
	u16 mode, max_constellation, seg_diff_mask = 0, nbseg_diff = 0;
	u8 guard, crate, constellation, timeI;
	u8 permu_seg[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12 };
	u16 i, coeff[4], P_cfr_left_edge = 0, P_cfr_right_edge = 0, seg_mask13 = 0x1fff;	// All 13 segments enabled
	const s16 *ncoeff, *ana_fe;
	u16 tmcc_pow = 0;
	u16 coff_pow = 0x2800;
	u16 init_prbs = 0xfff;
	u16 ana_gain = 0;
	u16 adc_target_16dB[11] = {
		(1 << 13) - 825 - 117,
		(1 << 13) - 837 - 117,
		(1 << 13) - 811 - 117,
		(1 << 13) - 766 - 117,
		(1 << 13) - 737 - 117,
		(1 << 13) - 693 - 117,
		(1 << 13) - 648 - 117,
		(1 << 13) - 619 - 117,
		(1 << 13) - 575 - 117,
		(1 << 13) - 531 - 117,
		(1 << 13) - 501 - 117
	};

	if (state->ber_monitored_layer != LAYER_ALL)
		dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & 0x60) | state->ber_monitored_layer);
	else
		dib8000_write_word(state, 285, dib8000_read_word(state, 285) & 0x60);

	i = dib8000_read_word(state, 26) & 1;	// P_dds_invspec
	dib8000_write_word(state, 26, state->fe.dtv_property_cache.inversion ^ i);

	if (state->fe.dtv_property_cache.isdbt_sb_mode) {
		//compute new dds_freq for the seg and adjust prbs
		int seg_offset =
		    state->fe.dtv_property_cache.isdbt_sb_segment_idx - (state->fe.dtv_property_cache.isdbt_sb_segment_count / 2) -
		    (state->fe.dtv_property_cache.isdbt_sb_segment_count % 2);
		int clk = state->cfg.pll->internal;
		u32 segtodds = ((u32) (430 << 23) / clk) << 3;	// segtodds = SegBW / Fclk * pow(2,26)
		int dds_offset = seg_offset * segtodds;
		int new_dds, sub_channel;
		if ((state->fe.dtv_property_cache.isdbt_sb_segment_count % 2) == 0)	// if even
			dds_offset -= (int)(segtodds / 2);

		if (state->cfg.pll->ifreq == 0) {
			if ((state->fe.dtv_property_cache.inversion ^ i) == 0) {
				dib8000_write_word(state, 26, dib8000_read_word(state, 26) | 1);
				new_dds = dds_offset;
			} else
				new_dds = dds_offset;

			// We shift tuning frequency if the wanted segment is :
			//  - the segment of center frequency with an odd total number of segments
			//  - the segment to the left of center frequency with an even total number of segments
			//  - the segment to the right of center frequency with an even total number of segments
			if ((state->fe.dtv_property_cache.delivery_system == SYS_ISDBT) && (state->fe.dtv_property_cache.isdbt_sb_mode == 1)
			    &&
			    (((state->fe.dtv_property_cache.isdbt_sb_segment_count % 2)
			      && (state->fe.dtv_property_cache.isdbt_sb_segment_idx ==
				  ((state->fe.dtv_property_cache.isdbt_sb_segment_count / 2) + 1)))
			     || (((state->fe.dtv_property_cache.isdbt_sb_segment_count % 2) == 0)
				 && (state->fe.dtv_property_cache.isdbt_sb_segment_idx == (state->fe.dtv_property_cache.isdbt_sb_segment_count / 2)))
			     || (((state->fe.dtv_property_cache.isdbt_sb_segment_count % 2) == 0)
				 && (state->fe.dtv_property_cache.isdbt_sb_segment_idx ==
				     ((state->fe.dtv_property_cache.isdbt_sb_segment_count / 2) + 1)))
			    )) {
				new_dds -= ((u32) (850 << 22) / clk) << 4;	// new_dds = 850 (freq shift in KHz) / Fclk * pow(2,26)
			}
		} else {
			if ((state->fe.dtv_property_cache.inversion ^ i) == 0)
				new_dds = state->cfg.pll->ifreq - dds_offset;
			else
				new_dds = state->cfg.pll->ifreq + dds_offset;
		}
		dib8000_write_word(state, 27, (u16) ((new_dds >> 16) & 0x01ff));
		dib8000_write_word(state, 28, (u16) (new_dds & 0xffff));
		if (state->fe.dtv_property_cache.isdbt_sb_segment_count % 2)	// if odd
			sub_channel = ((state->fe.dtv_property_cache.isdbt_sb_subchannel + (3 * seg_offset) + 1) % 41) / 3;
		else		// if even
			sub_channel = ((state->fe.dtv_property_cache.isdbt_sb_subchannel + (3 * seg_offset)) % 41) / 3;
		sub_channel -= 6;

		if (state->fe.dtv_property_cache.transmission_mode == TRANSMISSION_MODE_2K
		    || state->fe.dtv_property_cache.transmission_mode == TRANSMISSION_MODE_4K) {
			dib8000_write_word(state, 219, dib8000_read_word(state, 219) | 0x1);	//adp_pass =1
			dib8000_write_word(state, 190, dib8000_read_word(state, 190) | (0x1 << 14));	//pha3_force_pha_shift = 1
		} else {
			dib8000_write_word(state, 219, dib8000_read_word(state, 219) & 0xfffe);	//adp_pass =0
			dib8000_write_word(state, 190, dib8000_read_word(state, 190) & 0xbfff);	//pha3_force_pha_shift = 0
		}

		switch (state->fe.dtv_property_cache.transmission_mode) {
		case TRANSMISSION_MODE_2K:
			switch (sub_channel) {
			case -6:
				init_prbs = 0x0;
				break;	// 41, 0, 1
			case -5:
				init_prbs = 0x423;
				break;	// 02~04
			case -4:
				init_prbs = 0x9;
				break;	// 05~07
			case -3:
				init_prbs = 0x5C7;
				break;	// 08~10
			case -2:
				init_prbs = 0x7A6;
				break;	// 11~13
			case -1:
				init_prbs = 0x3D8;
				break;	// 14~16
			case 0:
				init_prbs = 0x527;
				break;	// 17~19
			case 1:
				init_prbs = 0x7FF;
				break;	// 20~22
			case 2:
				init_prbs = 0x79B;
				break;	// 23~25
			case 3:
				init_prbs = 0x3D6;
				break;	// 26~28
			case 4:
				init_prbs = 0x3A2;
				break;	// 29~31
			case 5:
				init_prbs = 0x53B;
				break;	// 32~34
			case 6:
				init_prbs = 0x2F4;
				break;	// 35~37
			default:
			case 7:
				init_prbs = 0x213;
				break;	// 38~40
			}
			break;

		case TRANSMISSION_MODE_4K:
			switch (sub_channel) {
			case -6:
				init_prbs = 0x0;
				break;	// 41, 0, 1
			case -5:
				init_prbs = 0x208;
				break;	// 02~04
			case -4:
				init_prbs = 0xC3;
				break;	// 05~07
			case -3:
				init_prbs = 0x7B9;
				break;	// 08~10
			case -2:
				init_prbs = 0x423;
				break;	// 11~13
			case -1:
				init_prbs = 0x5C7;
				break;	// 14~16
			case 0:
				init_prbs = 0x3D8;
				break;	// 17~19
			case 1:
				init_prbs = 0x7FF;
				break;	// 20~22
			case 2:
				init_prbs = 0x3D6;
				break;	// 23~25
			case 3:
				init_prbs = 0x53B;
				break;	// 26~28
			case 4:
				init_prbs = 0x213;
				break;	// 29~31
			case 5:
				init_prbs = 0x29;
				break;	// 32~34
			case 6:
				init_prbs = 0xD0;
				break;	// 35~37
			default:
			case 7:
				init_prbs = 0x48E;
				break;	// 38~40
			}
			break;

		default:
		case TRANSMISSION_MODE_8K:
			switch (sub_channel) {
			case -6:
				init_prbs = 0x0;
				break;	// 41, 0, 1
			case -5:
				init_prbs = 0x740;
				break;	// 02~04
			case -4:
				init_prbs = 0x069;
				break;	// 05~07
			case -3:
				init_prbs = 0x7DD;
				break;	// 08~10
			case -2:
				init_prbs = 0x208;
				break;	// 11~13
			case -1:
				init_prbs = 0x7B9;
				break;	// 14~16
			case 0:
				init_prbs = 0x5C7;
				break;	// 17~19
			case 1:
				init_prbs = 0x7FF;
				break;	// 20~22
			case 2:
				init_prbs = 0x53B;
				break;	// 23~25
			case 3:
				init_prbs = 0x29;
				break;	// 26~28
			case 4:
				init_prbs = 0x48E;
				break;	// 29~31
			case 5:
				init_prbs = 0x4C4;
				break;	// 32~34
			case 6:
				init_prbs = 0x367;
				break;	// 33~37
			default:
			case 7:
				init_prbs = 0x684;
				break;	// 38~40
			}
			break;
		}
	} else {		// if not state->fe.dtv_property_cache.isdbt_sb_mode
		dib8000_write_word(state, 27, (u16) ((state->cfg.pll->ifreq >> 16) & 0x01ff));
		dib8000_write_word(state, 28, (u16) (state->cfg.pll->ifreq & 0xffff));
		dib8000_write_word(state, 26, (u16) ((state->cfg.pll->ifreq >> 25) & 0x0003));
	}
	/*P_mode == ?? */
	dib8000_write_word(state, 10, (seq << 4));
	//  dib8000_write_word(state, 287, (dib8000_read_word(state, 287) & 0xe000) | 0x1000);

	switch (state->fe.dtv_property_cache.guard_interval) {
	case GUARD_INTERVAL_1_32:
		guard = 0;
		break;
	case GUARD_INTERVAL_1_16:
		guard = 1;
		break;
	case GUARD_INTERVAL_1_8:
		guard = 2;
		break;
	case GUARD_INTERVAL_1_4:
	default:
		guard = 3;
		break;
	}

	dib8000_write_word(state, 1, (init_prbs << 2) | (guard & 0x3));	// ADDR 1

	max_constellation = DQPSK;
	for (i = 0; i < 3; i++) {
		switch (state->fe.dtv_property_cache.layer[i].modulation) {
		case DQPSK:
			constellation = 0;
			break;
		case QPSK:
			constellation = 1;
			break;
		case QAM_16:
			constellation = 2;
			break;
		case QAM_64:
		default:
			constellation = 3;
			break;
		}

		switch (state->fe.dtv_property_cache.layer[i].fec) {
		case FEC_1_2:
			crate = 1;
			break;
		case FEC_2_3:
			crate = 2;
			break;
		case FEC_3_4:
			crate = 3;
			break;
		case FEC_5_6:
			crate = 5;
			break;
		case FEC_7_8:
		default:
			crate = 7;
			break;
		}

		if ((state->fe.dtv_property_cache.layer[i].interleaving > 0) &&
		    ((state->fe.dtv_property_cache.layer[i].interleaving <= 3) ||
		     (state->fe.dtv_property_cache.layer[i].interleaving == 4 && state->fe.dtv_property_cache.isdbt_sb_mode == 1))
		    )
			timeI = state->fe.dtv_property_cache.layer[i].interleaving;
		else
			timeI = 0;
		dib8000_write_word(state, 2 + i, (constellation << 10) | ((state->fe.dtv_property_cache.layer[i].segment_count & 0xf) << 6) |
				   (crate << 3) | timeI);
		if (state->fe.dtv_property_cache.layer[i].segment_count > 0) {
			switch (max_constellation) {
			case DQPSK:
			case QPSK:
				if (state->fe.dtv_property_cache.layer[i].modulation == QAM_16 ||
				    state->fe.dtv_property_cache.layer[i].modulation == QAM_64)
					max_constellation = state->fe.dtv_property_cache.layer[i].modulation;
				break;
			case QAM_16:
				if (state->fe.dtv_property_cache.layer[i].modulation == QAM_64)
					max_constellation = state->fe.dtv_property_cache.layer[i].modulation;
				break;
			}
		}
	}

	mode = fft_to_mode(state);

	//dib8000_write_word(state, 5, 13); /*p_last_seg = 13*/

	dib8000_write_word(state, 274, (dib8000_read_word(state, 274) & 0xffcf) |
			   ((state->fe.dtv_property_cache.isdbt_partial_reception & 1) << 5) | ((state->fe.dtv_property_cache.
												 isdbt_sb_mode & 1) << 4));

	dprintk("mode = %d ; guard = %d", mode, state->fe.dtv_property_cache.guard_interval);

	/* signal optimization parameter */

	if (state->fe.dtv_property_cache.isdbt_partial_reception) {
		seg_diff_mask = (state->fe.dtv_property_cache.layer[0].modulation == DQPSK) << permu_seg[0];
		for (i = 1; i < 3; i++)
			nbseg_diff +=
			    (state->fe.dtv_property_cache.layer[i].modulation == DQPSK) * state->fe.dtv_property_cache.layer[i].segment_count;
		for (i = 0; i < nbseg_diff; i++)
			seg_diff_mask |= 1 << permu_seg[i + 1];
	} else {
		for (i = 0; i < 3; i++)
			nbseg_diff +=
			    (state->fe.dtv_property_cache.layer[i].modulation == DQPSK) * state->fe.dtv_property_cache.layer[i].segment_count;
		for (i = 0; i < nbseg_diff; i++)
			seg_diff_mask |= 1 << permu_seg[i];
	}
	dprintk("nbseg_diff = %X (%d)", seg_diff_mask, seg_diff_mask);

	state->differential_constellation = (seg_diff_mask != 0);
	dib8000_set_diversity_in(&state->fe, state->diversity_onoff);

	if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) {	// ISDB-Tsb
		if (state->fe.dtv_property_cache.isdbt_partial_reception == 1)	// 3-segments
			seg_mask13 = 0x00E0;
		else		// 1-segment
			seg_mask13 = 0x0040;
	} else
		seg_mask13 = 0x1fff;

	// WRITE: Mode & Diff mask
	dib8000_write_word(state, 0, (mode << 13) | seg_diff_mask);

	if ((seg_diff_mask) || (state->fe.dtv_property_cache.isdbt_sb_mode))
		dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200);
	else
		dib8000_write_word(state, 268, (2 << 9) | 39);	//init value

	// ---- SMALL ----
	// P_small_seg_diff
	dib8000_write_word(state, 352, seg_diff_mask);	// ADDR 352

	dib8000_write_word(state, 353, seg_mask13);	// ADDR 353

/*     // P_small_narrow_band=0, P_small_last_seg=13, P_small_offset_num_car=5 */
	// dib8000_write_word(state, 351, (state->fe.dtv_property_cache.isdbt_sb_mode << 8) | (13 << 4) | 5 );

	// ---- SMALL ----
	if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) {
		switch (state->fe.dtv_property_cache.transmission_mode) {
		case TRANSMISSION_MODE_2K:
			if (state->fe.dtv_property_cache.isdbt_partial_reception == 0) {	// 1-seg
				if (state->fe.dtv_property_cache.layer[0].modulation == DQPSK)	// DQPSK
					ncoeff = coeff_2k_sb_1seg_dqpsk;
				else	// QPSK or QAM
					ncoeff = coeff_2k_sb_1seg;
			} else {	// 3-segments
				if (state->fe.dtv_property_cache.layer[0].modulation == DQPSK) {	// DQPSK on central segment
					if (state->fe.dtv_property_cache.layer[1].modulation == DQPSK)	// DQPSK on external segments
						ncoeff = coeff_2k_sb_3seg_0dqpsk_1dqpsk;
					else	// QPSK or QAM on external segments
						ncoeff = coeff_2k_sb_3seg_0dqpsk;
				} else {	// QPSK or QAM on central segment
					if (state->fe.dtv_property_cache.layer[1].modulation == DQPSK)	// DQPSK on external segments
						ncoeff = coeff_2k_sb_3seg_1dqpsk;
					else	// QPSK or QAM on external segments
						ncoeff = coeff_2k_sb_3seg;
				}
			}
			break;

		case TRANSMISSION_MODE_4K:
			if (state->fe.dtv_property_cache.isdbt_partial_reception == 0) {	// 1-seg
				if (state->fe.dtv_property_cache.layer[0].modulation == DQPSK)	// DQPSK
					ncoeff = coeff_4k_sb_1seg_dqpsk;
				else	// QPSK or QAM
					ncoeff = coeff_4k_sb_1seg;
			} else {	// 3-segments
				if (state->fe.dtv_property_cache.layer[0].modulation == DQPSK) {	// DQPSK on central segment
					if (state->fe.dtv_property_cache.layer[1].modulation == DQPSK) {	// DQPSK on external segments
						ncoeff = coeff_4k_sb_3seg_0dqpsk_1dqpsk;
					} else {	// QPSK or QAM on external segments
						ncoeff = coeff_4k_sb_3seg_0dqpsk;
					}
				} else {	// QPSK or QAM on central segment
					if (state->fe.dtv_property_cache.layer[1].modulation == DQPSK) {	// DQPSK on external segments
						ncoeff = coeff_4k_sb_3seg_1dqpsk;
					} else	// QPSK or QAM on external segments
						ncoeff = coeff_4k_sb_3seg;
				}
			}
			break;

		case TRANSMISSION_MODE_AUTO:
		case TRANSMISSION_MODE_8K:
		default:
			if (state->fe.dtv_property_cache.isdbt_partial_reception == 0) {	// 1-seg
				if (state->fe.dtv_property_cache.layer[0].modulation == DQPSK)	// DQPSK
					ncoeff = coeff_8k_sb_1seg_dqpsk;
				else	// QPSK or QAM
					ncoeff = coeff_8k_sb_1seg;
			} else {	// 3-segments
				if (state->fe.dtv_property_cache.layer[0].modulation == DQPSK) {	// DQPSK on central segment
					if (state->fe.dtv_property_cache.layer[1].modulation == DQPSK) {	// DQPSK on external segments
						ncoeff = coeff_8k_sb_3seg_0dqpsk_1dqpsk;
					} else {	// QPSK or QAM on external segments
						ncoeff = coeff_8k_sb_3seg_0dqpsk;
					}
				} else {	// QPSK or QAM on central segment
					if (state->fe.dtv_property_cache.layer[1].modulation == DQPSK) {	// DQPSK on external segments
						ncoeff = coeff_8k_sb_3seg_1dqpsk;
					} else	// QPSK or QAM on external segments
						ncoeff = coeff_8k_sb_3seg;
				}
			}
			break;
		}
	}
	if (state->fe.dtv_property_cache.isdbt_sb_mode == 1)
		for (i = 0; i < 8; i++)
			dib8000_write_word(state, 343 + i, ncoeff[i]);

	// P_small_coef_ext_enable=ISDB-Tsb, P_small_narrow_band=ISDB-Tsb, P_small_last_seg=13, P_small_offset_num_car=5
	dib8000_write_word(state, 351,
			   (state->fe.dtv_property_cache.isdbt_sb_mode << 9) | (state->fe.dtv_property_cache.isdbt_sb_mode << 8) | (13 << 4) | 5);

	// ---- COFF ----
	// Carloff, the most robust
	if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) {	// Sound Broadcasting mode - use both TMCC and AC pilots

		// P_coff_cpil_alpha=4, P_coff_inh=0, P_coff_cpil_winlen=64
		// P_coff_narrow_band=1, P_coff_square_val=1, P_coff_one_seg=~partial_rcpt, P_coff_use_tmcc=1, P_coff_use_ac=1
		dib8000_write_word(state, 187,
				   (4 << 12) | (0 << 11) | (63 << 5) | (0x3 << 3) | ((~state->fe.dtv_property_cache.isdbt_partial_reception & 1) << 2)
				   | 0x3);

/*             // P_small_coef_ext_enable = 1 */
/*             dib8000_write_word(state, 351, dib8000_read_word(state, 351) | 0x200); */

		if (state->fe.dtv_property_cache.isdbt_partial_reception == 0) {	// Sound Broadcasting mode 1 seg

			// P_coff_winlen=63, P_coff_thres_lock=15, P_coff_one_seg_width= (P_mode == 3) , P_coff_one_seg_sym= (P_mode-1)
			if (mode == 3)
				dib8000_write_word(state, 180, 0x1fcf | ((mode - 1) << 14));
			else
				dib8000_write_word(state, 180, 0x0fcf | ((mode - 1) << 14));
			// P_ctrl_corm_thres4pre_freq_inh=1,P_ctrl_pre_freq_mode_sat=1,
			// P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 5, P_pre_freq_win_len=4
			dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (5 << 5) | 4);
			// P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8
			dib8000_write_word(state, 340, (16 << 6) | (8 << 0));
			// P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1
			dib8000_write_word(state, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0));

			// P_coff_corthres_8k, 4k, 2k and P_coff_cpilthres_8k, 4k, 2k
			dib8000_write_word(state, 181, 300);
			dib8000_write_word(state, 182, 150);
			dib8000_write_word(state, 183, 80);
			dib8000_write_word(state, 184, 300);
			dib8000_write_word(state, 185, 150);
			dib8000_write_word(state, 186, 80);
		} else {	// Sound Broadcasting mode 3 seg
			// P_coff_one_seg_sym= 1, P_coff_one_seg_width= 1, P_coff_winlen=63, P_coff_thres_lock=15
			/*                 if (mode == 3) */
			/*                     dib8000_write_word(state, 180, 0x2fca | ((0) << 14)); */
			/*                 else */
			/*                     dib8000_write_word(state, 180, 0x2fca | ((1) << 14)); */
			dib8000_write_word(state, 180, 0x1fcf | (1 << 14));

			// P_ctrl_corm_thres4pre_freq_inh = 1, P_ctrl_pre_freq_mode_sat=1,
			// P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 4, P_pre_freq_win_len=4
			dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (4 << 5) | 4);
			// P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8
			dib8000_write_word(state, 340, (16 << 6) | (8 << 0));
			//P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1
			dib8000_write_word(state, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0));

			// P_coff_corthres_8k, 4k, 2k and P_coff_cpilthres_8k, 4k, 2k
			dib8000_write_word(state, 181, 350);
			dib8000_write_word(state, 182, 300);
			dib8000_write_word(state, 183, 250);
			dib8000_write_word(state, 184, 350);
			dib8000_write_word(state, 185, 300);
			dib8000_write_word(state, 186, 250);
		}

	} else if (state->isdbt_cfg_loaded == 0) {	// if not Sound Broadcasting mode : put default values for 13 segments
		dib8000_write_word(state, 180, (16 << 6) | 9);
		dib8000_write_word(state, 187, (4 << 12) | (8 << 5) | 0x2);
		coff_pow = 0x2800;
		for (i = 0; i < 6; i++)
			dib8000_write_word(state, 181 + i, coff_pow);

		// P_ctrl_corm_thres4pre_freq_inh=1, P_ctrl_pre_freq_mode_sat=1,
		// P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 3, P_pre_freq_win_len=1
		dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (3 << 5) | 1);

		// P_ctrl_pre_freq_win_len=8, P_ctrl_pre_freq_thres_lockin=6
		dib8000_write_word(state, 340, (8 << 6) | (6 << 0));
		// P_ctrl_pre_freq_thres_lockout=4, P_small_use_tmcc/ac/cp=1
		dib8000_write_word(state, 341, (4 << 3) | (1 << 2) | (1 << 1) | (1 << 0));
	}
	// ---- FFT ----
	if (state->fe.dtv_property_cache.isdbt_sb_mode == 1 && state->fe.dtv_property_cache.isdbt_partial_reception == 0)	// 1-seg
		dib8000_write_word(state, 178, 64);	// P_fft_powrange=64
	else
		dib8000_write_word(state, 178, 32);	// P_fft_powrange=32

	/* make the cpil_coff_lock more robust but slower p_coff_winlen
	 * 6bits; p_coff_thres_lock 6bits (for coff lock if needed)
	 */
	/* if ( ( nbseg_diff>0)&&(nbseg_diff<13))
	   dib8000_write_word(state, 187, (dib8000_read_word(state, 187) & 0xfffb) | (1 << 3)); */

	dib8000_write_word(state, 189, ~seg_mask13 | seg_diff_mask);	/* P_lmod4_seg_inh       */
	dib8000_write_word(state, 192, ~seg_mask13 | seg_diff_mask);	/* P_pha3_seg_inh        */
	dib8000_write_word(state, 225, ~seg_mask13 | seg_diff_mask);	/* P_tac_seg_inh         */
	if ((!state->fe.dtv_property_cache.isdbt_sb_mode) && (state->cfg.pll->ifreq == 0))
		dib8000_write_word(state, 266, ~seg_mask13 | seg_diff_mask | 0x40);	/* P_equal_noise_seg_inh */
	else
		dib8000_write_word(state, 266, ~seg_mask13 | seg_diff_mask);	/* P_equal_noise_seg_inh */
	dib8000_write_word(state, 287, ~seg_mask13 | 0x1000);	/* P_tmcc_seg_inh        */
	//dib8000_write_word(state, 288, ~seg_mask13 | seg_diff_mask); /* P_tmcc_seg_eq_inh */
	if (!autosearching)
		dib8000_write_word(state, 288, (~seg_mask13 | seg_diff_mask) & 0x1fff);	/* P_tmcc_seg_eq_inh */
	else
		dib8000_write_word(state, 288, 0x1fff);	//disable equalisation of the tmcc when autosearch to be able to find the DQPSK channels.
	dprintk("287 = %X (%d)", ~seg_mask13 | 0x1000, ~seg_mask13 | 0x1000);

	dib8000_write_word(state, 211, seg_mask13 & (~seg_diff_mask));	/* P_des_seg_enabled     */

	/* offset loop parameters */
	if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) {
		if (state->fe.dtv_property_cache.isdbt_partial_reception == 0)	// Sound Broadcasting mode 1 seg
			/* P_timf_alpha = (11-P_mode), P_corm_alpha=6, P_corm_thres=0x80 */
			dib8000_write_word(state, 32, ((11 - mode) << 12) | (6 << 8) | 0x40);

		else		// Sound Broadcasting mode 3 seg
			/* P_timf_alpha = (10-P_mode), P_corm_alpha=6, P_corm_thres=0x80 */
			dib8000_write_word(state, 32, ((10 - mode) << 12) | (6 << 8) | 0x60);
	} else
		// TODO in 13 seg, timf_alpha can always be the same or not ?
		/* P_timf_alpha = (9-P_mode, P_corm_alpha=6, P_corm_thres=0x80 */
		dib8000_write_word(state, 32, ((9 - mode) << 12) | (6 << 8) | 0x80);

	if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) {
		if (state->fe.dtv_property_cache.isdbt_partial_reception == 0)	// Sound Broadcasting mode 1 seg
			/* P_ctrl_pha_off_max=3   P_ctrl_sfreq_inh =0  P_ctrl_sfreq_step = (11-P_mode)  */
			dib8000_write_word(state, 37, (3 << 5) | (0 << 4) | (10 - mode));

		else		// Sound Broadcasting mode 3 seg
			/* P_ctrl_pha_off_max=3   P_ctrl_sfreq_inh =0  P_ctrl_sfreq_step = (10-P_mode)  */
			dib8000_write_word(state, 37, (3 << 5) | (0 << 4) | (9 - mode));
	} else
		/* P_ctrl_pha_off_max=3   P_ctrl_sfreq_inh =0  P_ctrl_sfreq_step = 9  */
		dib8000_write_word(state, 37, (3 << 5) | (0 << 4) | (8 - mode));

	/* P_dvsy_sync_wait - reuse mode */
	switch (state->fe.dtv_property_cache.transmission_mode) {
	case TRANSMISSION_MODE_8K:
		mode = 256;
		break;
	case TRANSMISSION_MODE_4K:
		mode = 128;
		break;
	default:
	case TRANSMISSION_MODE_2K:
		mode = 64;
		break;
	}
	if (state->cfg.diversity_delay == 0)
		mode = (mode * (1 << (guard)) * 3) / 2 + 48;	// add 50% SFN margin + compensate for one DVSY-fifo
	else
		mode = (mode * (1 << (guard)) * 3) / 2 + state->cfg.diversity_delay;	// add 50% SFN margin + compensate for DVSY-fifo
	mode <<= 4;
	dib8000_write_word(state, 273, (dib8000_read_word(state, 273) & 0x000f) | mode);

	/* channel estimation fine configuration */
	switch (max_constellation) {
	case QAM_64:
		ana_gain = 0x7;	// -1 : avoid def_est saturation when ADC target is -16dB
		coeff[0] = 0x0148;	/* P_adp_regul_cnt 0.04 */
		coeff[1] = 0xfff0;	/* P_adp_noise_cnt -0.002 */
		coeff[2] = 0x00a4;	/* P_adp_regul_ext 0.02 */
		coeff[3] = 0xfff8;	/* P_adp_noise_ext -0.001 */
		//if (!state->cfg.hostbus_diversity) //if diversity, we should prehaps use the configuration of the max_constallation -1
		break;
	case QAM_16:
		ana_gain = 0x7;	// -1 : avoid def_est saturation when ADC target is -16dB
		coeff[0] = 0x023d;	/* P_adp_regul_cnt 0.07 */
		coeff[1] = 0xffdf;	/* P_adp_noise_cnt -0.004 */
		coeff[2] = 0x00a4;	/* P_adp_regul_ext 0.02 */
		coeff[3] = 0xfff0;	/* P_adp_noise_ext -0.002 */
		//if (!((state->cfg.hostbus_diversity) && (max_constellation == QAM_16)))
		break;
	default:
		ana_gain = 0;	// 0 : goes along with ADC target at -22dB to keep good mobile performance and lock at sensitivity level
		coeff[0] = 0x099a;	/* P_adp_regul_cnt 0.3 */
		coeff[1] = 0xffae;	/* P_adp_noise_cnt -0.01 */
		coeff[2] = 0x0333;	/* P_adp_regul_ext 0.1 */
		coeff[3] = 0xfff8;	/* P_adp_noise_ext -0.002 */
		break;
	}
	for (mode = 0; mode < 4; mode++)
		dib8000_write_word(state, 215 + mode, coeff[mode]);

	// update ana_gain depending on max constellation
	dib8000_write_word(state, 116, ana_gain);
	// update ADC target depending on ana_gain
	if (ana_gain) {		// set -16dB ADC target for ana_gain=-1
		for (i = 0; i < 10; i++)
			dib8000_write_word(state, 80 + i, adc_target_16dB[i]);
	} else {		// set -22dB ADC target for ana_gain=0
		for (i = 0; i < 10; i++)
			dib8000_write_word(state, 80 + i, adc_target_16dB[i] - 355);
	}

	// ---- ANA_FE ----
	if (state->fe.dtv_property_cache.isdbt_sb_mode) {
		if (state->fe.dtv_property_cache.isdbt_partial_reception == 1)	// 3-segments
			ana_fe = ana_fe_coeff_3seg;
		else		// 1-segment
			ana_fe = ana_fe_coeff_1seg;
	} else
		ana_fe = ana_fe_coeff_13seg;

	if (state->fe.dtv_property_cache.isdbt_sb_mode == 1 || state->isdbt_cfg_loaded == 0)
		for (mode = 0; mode < 24; mode++)
			dib8000_write_word(state, 117 + mode, ana_fe[mode]);

	// ---- CHAN_BLK ----
	for (i = 0; i < 13; i++) {
		if ((((~seg_diff_mask) >> i) & 1) == 1) {
			P_cfr_left_edge += (1 << i) * ((i == 0) || ((((seg_mask13 & (~seg_diff_mask)) >> (i - 1)) & 1) == 0));
			P_cfr_right_edge += (1 << i) * ((i == 12) || ((((seg_mask13 & (~seg_diff_mask)) >> (i + 1)) & 1) == 0));
		}
	}
	dib8000_write_word(state, 222, P_cfr_left_edge);	// P_cfr_left_edge
	dib8000_write_word(state, 223, P_cfr_right_edge);	// P_cfr_right_edge
	// "P_cspu_left_edge"  not used => do not care
	// "P_cspu_right_edge" not used => do not care

	if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) {	// ISDB-Tsb
		dib8000_write_word(state, 228, 1);	// P_2d_mode_byp=1
		dib8000_write_word(state, 205, dib8000_read_word(state, 205) & 0xfff0);	// P_cspu_win_cut = 0
		if (state->fe.dtv_property_cache.isdbt_partial_reception == 0	// 1-segment
		    && state->fe.dtv_property_cache.transmission_mode == TRANSMISSION_MODE_2K) {
			//dib8000_write_word(state, 219, dib8000_read_word(state, 219) & 0xfffe); // P_adp_pass = 0
			dib8000_write_word(state, 265, 15);	// P_equal_noise_sel = 15
		}
	} else if (state->isdbt_cfg_loaded == 0) {
		dib8000_write_word(state, 228, 0);	// default value
		dib8000_write_word(state, 265, 31);	// default value
		dib8000_write_word(state, 205, 0x200f);	// init value
	}
	// ---- TMCC ----
	for (i = 0; i < 3; i++)
		tmcc_pow +=
		    (((state->fe.dtv_property_cache.layer[i].modulation == DQPSK) * 4 + 1) * state->fe.dtv_property_cache.layer[i].segment_count);
	// Quantif of "P_tmcc_dec_thres_?k" is (0, 5+mode, 9);
	// Threshold is set at 1/4 of max power.
	tmcc_pow *= (1 << (9 - 2));

	dib8000_write_word(state, 290, tmcc_pow);	// P_tmcc_dec_thres_2k
	dib8000_write_word(state, 291, tmcc_pow);	// P_tmcc_dec_thres_4k
	dib8000_write_word(state, 292, tmcc_pow);	// P_tmcc_dec_thres_8k
	//dib8000_write_word(state, 287, (1 << 13) | 0x1000 );
	// ---- PHA3 ----

	if (state->isdbt_cfg_loaded == 0)
		dib8000_write_word(state, 250, 3285);	/*p_2d_hspeed_thr0 */

	if (state->fe.dtv_property_cache.isdbt_sb_mode == 1)
		state->isdbt_cfg_loaded = 0;
	else
		state->isdbt_cfg_loaded = 1;

}

static int dib8000_autosearch_start(struct dvb_frontend *fe)
{
	u8 factor;
	u32 value;
	struct dib8000_state *state = fe->demodulator_priv;

	int slist = 0;

	state->fe.dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K;
	state->fe.dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8;
	//state->fe.dtv_property_cache.isdbt_sb_mode                = 0;
	//state->fe.dtv_property_cache.isdbt_partial_reception      = 0;
	state->fe.dtv_property_cache.inversion = 0;
	if (!state->fe.dtv_property_cache.isdbt_sb_mode)
		state->fe.dtv_property_cache.layer[0].segment_count = 13;
	state->fe.dtv_property_cache.layer[0].modulation = QAM_64;
	state->fe.dtv_property_cache.layer[0].fec = FEC_2_3;
	state->fe.dtv_property_cache.layer[0].interleaving = 0;

	//choose the right list, in sb, always do everything
	if (state->fe.dtv_property_cache.isdbt_sb_mode) {
		slist = 7;
		dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13));
	} else {
		if (state->fe.dtv_property_cache.guard_interval == GUARD_INTERVAL_AUTO) {
			if (state->fe.dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO) {
				slist = 7;
				dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13));	// P_mode = 1 to have autosearch start ok with mode2
			} else {
				slist = 3;
				state->fe.dtv_property_cache.transmission_mode = state->fe.dtv_property_cache.transmission_mode;
			}
		} else {
			if (state->fe.dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO) {
				slist = 2;
				state->fe.dtv_property_cache.guard_interval = state->fe.dtv_property_cache.guard_interval;
				dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13));	// P_mode = 1
			} else {
				slist = 0;
				state->fe.dtv_property_cache.transmission_mode = state->fe.dtv_property_cache.transmission_mode;
				state->fe.dtv_property_cache.guard_interval = state->fe.dtv_property_cache.guard_interval;
			}
		}

		dprintk("using list for autosearch : %d", slist);
		dib8000_set_channel(state, (unsigned char)slist, 1);
		//dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13));  // P_mode = 1

		factor = 1;

		//set lock_mask values
		dib8000_write_word(state, 6, 0x4);
		dib8000_write_word(state, 7, 0x8);
		dib8000_write_word(state, 8, 0x1000);

		//set lock_mask wait time values
		value = 50 * state->cfg.pll->internal * factor;
		dib8000_write_word(state, 11, (u16) ((value >> 16) & 0xffff));	// lock0 wait time
		dib8000_write_word(state, 12, (u16) (value & 0xffff));	// lock0 wait time
		value = 100 * state->cfg.pll->internal * factor;
		dib8000_write_word(state, 13, (u16) ((value >> 16) & 0xffff));	// lock1 wait time
		dib8000_write_word(state, 14, (u16) (value & 0xffff));	// lock1 wait time
		value = 1000 * state->cfg.pll->internal * factor;
		dib8000_write_word(state, 15, (u16) ((value >> 16) & 0xffff));	// lock2 wait time
		dib8000_write_word(state, 16, (u16) (value & 0xffff));	// lock2 wait time

		value = dib8000_read_word(state, 0);
		dib8000_write_word(state, 0, (u16) ((1 << 15) | value));
		dib8000_read_word(state, 1284);	// reset the INT. n_irq_pending
		dib8000_write_word(state, 0, (u16) value);
	}

	return 0;
}

static int dib8000_autosearch_irq(struct dvb_frontend *fe)
{
	struct dib8000_state *state = fe->demodulator_priv;
	u16 irq_pending = dib8000_read_word(state, 1284);

	if (irq_pending & 0x1) {	// failed
		dprintk("dib8000_autosearch_irq failed");
		return 1;
	}

	if (irq_pending & 0x2) {	// succeeded
		dprintk("dib8000_autosearch_irq succeeded");
		return 2;
	}

	return 0;		// still pending
}

static int dib8000_tune(struct dvb_frontend *fe)
{
	struct dib8000_state *state = fe->demodulator_priv;
	int ret = 0;
	u16 value, mode = fft_to_mode(state);

	// we are already tuned - just resuming from suspend
	if (state == NULL)
		return -EINVAL;

	dib8000_set_bandwidth(state, state->fe.dtv_property_cache.bandwidth_hz / 1000);
	dib8000_set_channel(state, 0, 0);

	// restart demod
	ret |= dib8000_write_word(state, 770, 0x4000);
	ret |= dib8000_write_word(state, 770, 0x0000);
	msleep(45);

	/* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3 */
	/*  ret |= dib8000_write_word(state, 29, (0 << 9) | (4 << 5) | (0 << 4) | (3 << 0) );  workaround inh_isi stays at 1 */

	// never achieved a lock before - wait for timfreq to update
	if (state->timf == 0) {
		if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) {
			if (state->fe.dtv_property_cache.isdbt_partial_reception == 0)	// Sound Broadcasting mode 1 seg
				msleep(300);
			else	// Sound Broadcasting mode 3 seg
				msleep(500);
		} else		// 13 seg
			msleep(200);
	}
	//dump_reg(state);
	if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) {
		if (state->fe.dtv_property_cache.isdbt_partial_reception == 0) {	// Sound Broadcasting mode 1 seg

			/* P_timf_alpha = (13-P_mode) , P_corm_alpha=6, P_corm_thres=0x40  alpha to check on board */
			dib8000_write_word(state, 32, ((13 - mode) << 12) | (6 << 8) | 0x40);
			//dib8000_write_word(state, 32, (8 << 12) | (6 << 8) | 0x80);

			/*  P_ctrl_sfreq_step= (12-P_mode)   P_ctrl_sfreq_inh =0     P_ctrl_pha_off_max  */
			ret |= dib8000_write_word(state, 37, (12 - mode) | ((5 + mode) << 5));

		} else {	// Sound Broadcasting mode 3 seg

			/* P_timf_alpha = (12-P_mode) , P_corm_alpha=6, P_corm_thres=0x60  alpha to check on board */
			dib8000_write_word(state, 32, ((12 - mode) << 12) | (6 << 8) | 0x60);

			ret |= dib8000_write_word(state, 37, (11 - mode) | ((5 + mode) << 5));
		}

	} else {		// 13 seg
		/* P_timf_alpha = 8 , P_corm_alpha=6, P_corm_thres=0x80  alpha to check on board */
		dib8000_write_word(state, 32, ((11 - mode) << 12) | (6 << 8) | 0x80);

		ret |= dib8000_write_word(state, 37, (10 - mode) | ((5 + mode) << 5));

	}

	// we achieved a coff_cpil_lock - it's time to update the timf
	if ((dib8000_read_word(state, 568) >> 11) & 0x1)
		dib8000_update_timf(state);

	//now that tune is finished, lock0 should lock on fec_mpeg to output this lock on MP_LOCK. It's changed in autosearch start
	dib8000_write_word(state, 6, 0x200);

	if (state->revision == 0x8002) {
		value = dib8000_read_word(state, 903);
		dib8000_write_word(state, 903, value & ~(1 << 3));
		msleep(1);
		dib8000_write_word(state, 903, value | (1 << 3));
	}

	return ret;
}

static int dib8000_wakeup(struct dvb_frontend *fe)
{
	struct dib8000_state *state = fe->demodulator_priv;

	dib8000_set_power_mode(state, DIB8000M_POWER_ALL);
	dib8000_set_adc_state(state, DIBX000_ADC_ON);
	if (dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0)
		dprintk("could not start Slow ADC");

	return 0;
}

static int dib8000_sleep(struct dvb_frontend *fe)
{
	struct dib8000_state *st = fe->demodulator_priv;
	if (1) {
		dib8000_set_output_mode(st, OUTMODE_HIGH_Z);
		dib8000_set_power_mode(st, DIB8000M_POWER_INTERFACE_ONLY);
		return dib8000_set_adc_state(st, DIBX000_SLOW_ADC_OFF) | dib8000_set_adc_state(st, DIBX000_ADC_OFF);
	} else {

		return 0;
	}
}

static int dib8000_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep)
{
	struct dib8000_state *state = fe->demodulator_priv;
	u16 i, val = 0;

	fe->dtv_property_cache.bandwidth_hz = 6000000;

	fe->dtv_property_cache.isdbt_sb_mode = dib8000_read_word(state, 508) & 0x1;

	val = dib8000_read_word(state, 570);
	fe->dtv_property_cache.inversion = (val & 0x40) >> 6;
	switch ((val & 0x30) >> 4) {
	case 1:
		fe->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_2K;
		break;
	case 3:
	default:
		fe->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K;
		break;
	}

	switch (val & 0x3) {
	case 0:
		fe->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_32;
		dprintk("dib8000_get_frontend GI = 1/32 ");
		break;
	case 1:
		fe->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_16;
		dprintk("dib8000_get_frontend GI = 1/16 ");
		break;
	case 2:
		dprintk("dib8000_get_frontend GI = 1/8 ");
		fe->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8;
		break;
	case 3:
		dprintk("dib8000_get_frontend GI = 1/4 ");
		fe->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_4;
		break;
	}

	val = dib8000_read_word(state, 505);
	fe->dtv_property_cache.isdbt_partial_reception = val & 1;
	dprintk("dib8000_get_frontend : partial_reception = %d ", fe->dtv_property_cache.isdbt_partial_reception);

	for (i = 0; i < 3; i++) {
		val = dib8000_read_word(state, 493 + i);
		fe->dtv_property_cache.layer[i].segment_count = val & 0x0F;
		dprintk("dib8000_get_frontend : Layer %d segments = %d ", i, fe->dtv_property_cache.layer[i].segment_count);

		val = dib8000_read_word(state, 499 + i);
		fe->dtv_property_cache.layer[i].interleaving = val & 0x3;
		dprintk("dib8000_get_frontend : Layer %d time_intlv = %d ", i, fe->dtv_property_cache.layer[i].interleaving);

		val = dib8000_read_word(state, 481 + i);
		switch (val & 0x7) {
		case 1:
			fe->dtv_property_cache.layer[i].fec = FEC_1_2;
			dprintk("dib8000_get_frontend : Layer %d Code Rate = 1/2 ", i);
			break;
		case 2:
			fe->dtv_property_cache.layer[i].fec = FEC_2_3;
			dprintk("dib8000_get_frontend : Layer %d Code Rate = 2/3 ", i);
			break;
		case 3:
			fe->dtv_property_cache.layer[i].fec = FEC_3_4;
			dprintk("dib8000_get_frontend : Layer %d Code Rate = 3/4 ", i);
			break;
		case 5:
			fe->dtv_property_cache.layer[i].fec = FEC_5_6;
			dprintk("dib8000_get_frontend : Layer %d Code Rate = 5/6 ", i);
			break;
		default:
			fe->dtv_property_cache.layer[i].fec = FEC_7_8;
			dprintk("dib8000_get_frontend : Layer %d Code Rate = 7/8 ", i);
			break;
		}

		val = dib8000_read_word(state, 487 + i);
		switch (val & 0x3) {
		case 0:
			dprintk("dib8000_get_frontend : Layer %d DQPSK ", i);
			fe->dtv_property_cache.layer[i].modulation = DQPSK;
			break;
		case 1:
			fe->dtv_property_cache.layer[i].modulation = QPSK;
			dprintk("dib8000_get_frontend : Layer %d QPSK ", i);
			break;
		case 2:
			fe->dtv_property_cache.layer[i].modulation = QAM_16;
			dprintk("dib8000_get_frontend : Layer %d QAM16 ", i);
			break;
		case 3:
		default:
			dprintk("dib8000_get_frontend : Layer %d QAM64 ", i);
			fe->dtv_property_cache.layer[i].modulation = QAM_64;
			break;
		}
	}
	return 0;
}

static int dib8000_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep)
{
	struct dib8000_state *state = fe->demodulator_priv;
	int time, ret;

	dib8000_set_output_mode(state, OUTMODE_HIGH_Z);

	if (fe->ops.tuner_ops.set_params)
		fe->ops.tuner_ops.set_params(fe, fep);

	/* start up the AGC */
	state->tune_state = CT_AGC_START;
	do {
		time = dib8000_agc_startup(fe);
		if (time != FE_CALLBACK_TIME_NEVER)
			msleep(time / 10);
		else
			break;
	} while (state->tune_state != CT_AGC_STOP);

	if (state->fe.dtv_property_cache.frequency == 0) {
		dprintk("dib8000: must at least specify frequency ");
		return 0;
	}

	if (state->fe.dtv_property_cache.bandwidth_hz == 0) {
		dprintk("dib8000: no bandwidth specified, set to default ");
		state->fe.dtv_property_cache.bandwidth_hz = 6000000;
	}

	state->tune_state = CT_DEMOD_START;

	if ((state->fe.dtv_property_cache.delivery_system != SYS_ISDBT) ||
	    (state->fe.dtv_property_cache.inversion == INVERSION_AUTO) ||
	    (state->fe.dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO) ||
	    (state->fe.dtv_property_cache.guard_interval == GUARD_INTERVAL_AUTO) ||
	    (((state->fe.dtv_property_cache.isdbt_layer_enabled & (1 << 0)) != 0) &&
	     (state->fe.dtv_property_cache.layer[0].segment_count != 0xff) &&
	     (state->fe.dtv_property_cache.layer[0].segment_count != 0) &&
	     ((state->fe.dtv_property_cache.layer[0].modulation == QAM_AUTO) ||
	      (state->fe.dtv_property_cache.layer[0].fec == FEC_AUTO))) ||
	    (((state->fe.dtv_property_cache.isdbt_layer_enabled & (1 << 1)) != 0) &&
	     (state->fe.dtv_property_cache.layer[1].segment_count != 0xff) &&
	     (state->fe.dtv_property_cache.layer[1].segment_count != 0) &&
	     ((state->fe.dtv_property_cache.layer[1].modulation == QAM_AUTO) ||
	      (state->fe.dtv_property_cache.layer[1].fec == FEC_AUTO))) ||
	    (((state->fe.dtv_property_cache.isdbt_layer_enabled & (1 << 2)) != 0) &&
	     (state->fe.dtv_property_cache.layer[2].segment_count != 0xff) &&
	     (state->fe.dtv_property_cache.layer[2].segment_count != 0) &&
	     ((state->fe.dtv_property_cache.layer[2].modulation == QAM_AUTO) ||
	      (state->fe.dtv_property_cache.layer[2].fec == FEC_AUTO))) ||
	    (((state->fe.dtv_property_cache.layer[0].segment_count == 0) ||
	      ((state->fe.dtv_property_cache.isdbt_layer_enabled & (1 << 0)) == 0)) &&
	     ((state->fe.dtv_property_cache.layer[1].segment_count == 0) ||
	      ((state->fe.dtv_property_cache.isdbt_layer_enabled & (2 << 0)) == 0)) &&
	     ((state->fe.dtv_property_cache.layer[2].segment_count == 0) || ((state->fe.dtv_property_cache.isdbt_layer_enabled & (3 << 0)) == 0)))) {
		int i = 800, found;

		dib8000_set_bandwidth(state, fe->dtv_property_cache.bandwidth_hz / 1000);
		dib8000_autosearch_start(fe);
		do {
			msleep(10);
			found = dib8000_autosearch_irq(fe);
		} while (found == 0 && i--);

		dprintk("Frequency %d Hz, autosearch returns: %d", fep->frequency, found);

		if (found == 0 || found == 1)
			return 0;	// no channel found

		dib8000_get_frontend(fe, fep);
	}

	ret = dib8000_tune(fe);

	/* make this a config parameter */
	dib8000_set_output_mode(state, state->cfg.output_mode);

	return ret;
}

static int dib8000_read_status(struct dvb_frontend *fe, fe_status_t * stat)
{
	struct dib8000_state *state = fe->demodulator_priv;
	u16 lock = dib8000_read_word(state, 568);

	*stat = 0;

	if ((lock >> 14) & 1)	// AGC
		*stat |= FE_HAS_SIGNAL;

	if ((lock >> 8) & 1)	// Equal
		*stat |= FE_HAS_CARRIER;

	if ((lock >> 3) & 1)	// TMCC_SYNC
		*stat |= FE_HAS_SYNC;

	if ((lock >> 5) & 7)	// FEC MPEG
		*stat |= FE_HAS_LOCK;

	lock = dib8000_read_word(state, 554);	// Viterbi Layer A
	if (lock & 0x01)
		*stat |= FE_HAS_VITERBI;

	lock = dib8000_read_word(state, 555);	// Viterbi Layer B
	if (lock & 0x01)
		*stat |= FE_HAS_VITERBI;

	lock = dib8000_read_word(state, 556);	// Viterbi Layer C
	if (lock & 0x01)
		*stat |= FE_HAS_VITERBI;

	return 0;
}

static int dib8000_read_ber(struct dvb_frontend *fe, u32 * ber)
{
	struct dib8000_state *state = fe->demodulator_priv;
	*ber = (dib8000_read_word(state, 560) << 16) | dib8000_read_word(state, 561);	// 13 segments
	return 0;
}

static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc)
{
	struct dib8000_state *state = fe->demodulator_priv;
	*unc = dib8000_read_word(state, 565);	// packet error on 13 seg
	return 0;
}

static int dib8000_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
{
	struct dib8000_state *state = fe->demodulator_priv;
	u16 val = dib8000_read_word(state, 390);
	*strength = 65535 - val;
	return 0;
}

static int dib8000_read_snr(struct dvb_frontend *fe, u16 * snr)
{
	struct dib8000_state *state = fe->demodulator_priv;
	u16 val;
	s32 signal_mant, signal_exp, noise_mant, noise_exp;
	u32 result = 0;

	val = dib8000_read_word(state, 542);
	noise_mant = (val >> 6) & 0xff;
	noise_exp = (val & 0x3f);

	val = dib8000_read_word(state, 543);
	signal_mant = (val >> 6) & 0xff;
	signal_exp = (val & 0x3f);

	if ((noise_exp & 0x20) != 0)
		noise_exp -= 0x40;
	if ((signal_exp & 0x20) != 0)
		signal_exp -= 0x40;

	if (signal_mant != 0)
		result = intlog10(2) * 10 * signal_exp + 10 * intlog10(signal_mant);
	else
		result = intlog10(2) * 10 * signal_exp - 100;
	if (noise_mant != 0)
		result -= intlog10(2) * 10 * noise_exp + 10 * intlog10(noise_mant);
	else
		result -= intlog10(2) * 10 * noise_exp - 100;

	*snr = result / (1 << 24);
	return 0;
}

int dib8000_i2c_enumeration(struct i2c_adapter *host, int no_of_demods, u8 default_addr, u8 first_addr)
{
	int k = 0;
	u8 new_addr = 0;
	struct i2c_device client = {.adap = host };

	for (k = no_of_demods - 1; k >= 0; k--) {
		/* designated i2c address */
		new_addr = first_addr + (k << 1);

		client.addr = new_addr;
		dib8000_i2c_write16(&client, 1287, 0x0003);	/* sram lead in, rdy */
		if (dib8000_identify(&client) == 0) {
			dib8000_i2c_write16(&client, 1287, 0x0003);	/* sram lead in, rdy */
			client.addr = default_addr;
			if (dib8000_identify(&client) == 0) {
				dprintk("#%d: not identified", k);
				return -EINVAL;
			}
		}

		/* start diversity to pull_down div_str - just for i2c-enumeration */
		dib8000_i2c_write16(&client, 1286, (1 << 10) | (4 << 6));

		/* set new i2c address and force divstart */
		dib8000_i2c_write16(&client, 1285, (new_addr << 2) | 0x2);
		client.addr = new_addr;
		dib8000_identify(&client);

		dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr);
	}

	for (k = 0; k < no_of_demods; k++) {
		new_addr = first_addr | (k << 1);
		client.addr = new_addr;

		// unforce divstr
		dib8000_i2c_write16(&client, 1285, new_addr << 2);

		/* deactivate div - it was just for i2c-enumeration */
		dib8000_i2c_write16(&client, 1286, 0);
	}

	return 0;
}

EXPORT_SYMBOL(dib8000_i2c_enumeration);
static int dib8000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune)
{
	tune->min_delay_ms = 1000;
	tune->step_size = 0;
	tune->max_drift = 0;
	return 0;
}

static void dib8000_release(struct dvb_frontend *fe)
{
	struct dib8000_state *st = fe->demodulator_priv;
	dibx000_exit_i2c_master(&st->i2c_master);
	kfree(st);
}

struct i2c_adapter *dib8000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating)
{
	struct dib8000_state *st = fe->demodulator_priv;
	return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
}

EXPORT_SYMBOL(dib8000_get_i2c_master);

static const struct dvb_frontend_ops dib8000_ops = {
	.info = {
		 .name = "DiBcom 8000 ISDB-T",
		 .type = FE_OFDM,
		 .frequency_min = 44250000,
		 .frequency_max = 867250000,
		 .frequency_stepsize = 62500,
		 .caps = FE_CAN_INVERSION_AUTO |
		 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
		 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
		 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
		 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO,
		 },

	.release = dib8000_release,

	.init = dib8000_wakeup,
	.sleep = dib8000_sleep,

	.set_frontend = dib8000_set_frontend,
	.get_tune_settings = dib8000_fe_get_tune_settings,
	.get_frontend = dib8000_get_frontend,

	.read_status = dib8000_read_status,
	.read_ber = dib8000_read_ber,
	.read_signal_strength = dib8000_read_signal_strength,
	.read_snr = dib8000_read_snr,
	.read_ucblocks = dib8000_read_unc_blocks,
};

struct dvb_frontend *dib8000_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib8000_config *cfg)
{
	struct dvb_frontend *fe;
	struct dib8000_state *state;

	dprintk("dib8000_attach");

	state = kzalloc(sizeof(struct dib8000_state), GFP_KERNEL);
	if (state == NULL)
		return NULL;

	memcpy(&state->cfg, cfg, sizeof(struct dib8000_config));
	state->i2c.adap = i2c_adap;
	state->i2c.addr = i2c_addr;
	state->gpio_val = cfg->gpio_val;
	state->gpio_dir = cfg->gpio_dir;

	/* Ensure the output mode remains at the previous default if it's
	 * not specifically set by the caller.
	 */
	if ((state->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (state->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
		state->cfg.output_mode = OUTMODE_MPEG2_FIFO;

	fe = &state->fe;
	fe->demodulator_priv = state;
	memcpy(&state->fe.ops, &dib8000_ops, sizeof(struct dvb_frontend_ops));

	state->timf_default = cfg->pll->timf;

	if (dib8000_identify(&state->i2c) == 0)
		goto error;

	dibx000_init_i2c_master(&state->i2c_master, DIB8000, state->i2c.adap, state->i2c.addr);

	dib8000_reset(fe);

	dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5));	/* ber_rs_len = 3 */

	return fe;

 error:
	kfree(state);
	return NULL;
}

EXPORT_SYMBOL(dib8000_attach);

MODULE_AUTHOR("Olivier Grenie <Olivier.Grenie@dibcom.fr, " "Patrick Boettcher <pboettcher@dibcom.fr>");
MODULE_DESCRIPTION("Driver for the DiBcom 8000 ISDB-T demodulator");
MODULE_LICENSE("GPL");